1
|
Beck MM, Kristensen FT, Abrahamsen G, Spedden ME, Christensen MS, Lundbye-Jensen J. Distinct mechanisms for online and offline motor skill learning across human development. Dev Sci 2024; 27:e13536. [PMID: 38867436 DOI: 10.1111/desc.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
The human central nervous system (CNS) undergoes tremendous changes from childhood to adulthood and this may affect how individuals at different stages of development learn new skills. Here, we studied motor skill learning in children, adolescents, and young adults to test the prediction that differences in the maturation of different learning mechanisms lead to distinct temporal patterns of motor learning during practice and overnight. We found that overall learning did not differ between children, adolescents, and young adults. However, we demonstrate that adult-like skill learning is characterized by rapid and large improvements in motor performance during practice (i.e., online) that are susceptible to forgetting and decay over time (i.e., offline). On the other hand, child-like learning exhibits slower and less pronounced improvements in performance during practice, but these improvements are robust against forgetting and lead to gains in performance overnight without further practice. The different temporal dynamics of motor skill learning suggest an engagement of distinct learning mechanisms in the human CNS during development. In conclusion, adult-like skill learning mechanisms favor online improvements in motor performance whereas child-like learning mechanisms favors offline behavioral gains. RESEARCH HIGHLIGHTS: Many essential motor skills, like walking, talking, and writing, are acquired during childhood, and it is colloquially thought that children learn better than adults. We investigated dynamics of motor skill learning in children, adolescents, and young adults. Adults displayed substantial improvements during practice that was susceptible to forgetting over time. Children displayed smaller improvements during practice that were resilient against forgetting. The distinct age-related characteristics of these processes of acquisition and consolidation suggest that skill learning relies on different mechanisms in the immature and mature central nervous system.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | | | - Gitte Abrahamsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
| | | | | | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
2
|
Park JH. Discriminant Power of Smartphone-Derived Keystroke Dynamics for Mild Cognitive Impairment Compared to a Neuropsychological Screening Test: Cross-Sectional Study. J Med Internet Res 2024; 26:e59247. [PMID: 39475819 PMCID: PMC11561447 DOI: 10.2196/59247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Conventional neuropsychological screening tools for mild cognitive impairment (MCI) face challenges in terms of accuracy and practicality. Digital health solutions, such as unobtrusively capturing smartphone interaction data, offer a promising alternative. However, the potential of digital biomarkers as a surrogate for MCI screening remains unclear, with few comparisons between smartphone interactions and existing screening tools. OBJECTIVE This study aimed to investigate the effectiveness of smartphone-derived keystroke dynamics, captured via the Neurokeys keyboard app, in distinguishing patients with MCI from healthy controls (HCs). This study also compared the discriminant performance of these digital biomarkers against the Korean version of the Montreal Cognitive Assessment (MoCA-K), which is widely used for MCI detection in clinical settings. METHODS A total of 64 HCs and 47 patients with MCI were recruited. Over a 1-month period, participants generated 3530 typing sessions, with 2740 (77.6%) analyzed for this study. Keystroke metrics, including hold time and flight time, were extracted. Receiver operating characteristics analysis was used to assess the sensitivity and specificity of keystroke dynamics in discriminating between HCs and patients with MCI. This study also explored the correlation between keystroke dynamics and MoCA-K scores. RESULTS Patients with MCI had significantly higher keystroke latency than HCs (P<.001). In particular, latency between key presses resulted in the highest sensitivity (97.9%) and specificity (96.9%). In addition, keystroke dynamics were significantly correlated with the MoCA-K (hold time: r=-.468; P<.001; flight time: r=-.497; P<.001), further supporting the validity of these digital biomarkers. CONCLUSIONS These findings highlight the potential of smartphone-derived keystroke dynamics as an effective and ecologically valid tool for screening MCI. With higher sensitivity and specificity than the MoCA-K, particularly in measuring flight time, keystroke dynamics can serve as a noninvasive, scalable, and continuous method for early cognitive impairment detection. This novel approach could revolutionize MCI screening, offering a practical alternative to traditional tools in everyday settings. TRIAL REGISTRATION Thai Clinical Trials Registry TCTR20220415002; https://www.thaiclinicaltrials.org/show/TCTR20220415002.
Collapse
Affiliation(s)
- Jin-Hyuck Park
- Department of Occupational Therapy, College of Medical Science, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
3
|
Liu Z, Xia H, Chen A. Impaired brain ability of older adults to transit and persist to latent states with well-organized structures at wakeful rest. GeroScience 2024:10.1007/s11357-024-01366-y. [PMID: 39361232 DOI: 10.1007/s11357-024-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
The intrinsic brain functional network organization continuously changes with aging. By integrating spatial and temporal information, the process of how brain networks temporally reconfigure and remain well-organized spatial structure largely reflects the brain function, thereby holds the potential to capture its age-related declines. In this study, we examined the spatiotemporal brain dynamics from resting-state functional Magnetic Resonance Imaging (fMRI) data of healthy young and older adults using a Hidden Markov Model (HMM). Six brain states were generated by HMM, with the young group showing higher fractional occupancy and mean dwell time in states 1, 3, and 4 (SY1, SY2 and SY3), and the older group in states 2, 5, and 6 (SO1, SO2 and SO3). Importantly, comparisons of transition probabilities revealed that the older group showed a reduced brain ability to transition into states dominated by the younger group, as well as a diminished capacity to persist in them. Moreover, graph analysis revealed that these young-specific states exhibited higher modularity and k-coreness. Collectively, these findings suggested that the older group showed impaired brain ability of both transition into and sustain well spatially organized states. This emphasized that the temporal changes in brain state organization, rather than its static mode, could be a key biomarker for detecting age-related functional decline. These insights may pave the way for targeted interventions aimed at mitigating cognitive decline in the aging population.
Collapse
Affiliation(s)
- Zijin Liu
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200082, China
| | - Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, 400700, China
| | - Antao Chen
- Faculty of Psychology, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
4
|
Wood JM, Thompson E, Wright H, Festa L, Morton SM, Reisman DS, Kim HE. Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke. J Neurophysiol 2024; 132:1172-1182. [PMID: 39230337 PMCID: PMC11495209 DOI: 10.1152/jn.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. After the first 40 strides of split-belt walking, we removed the visual feedback and instructed individuals to walk comfortably, a manipulation intended to minimize contributions from explicit learning. We used a multirate state-space model to characterize individual explicit and implicit process contributions to overall behavioral change. The computational and behavioral analyses revealed that, compared with controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since poststroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning. NEW & NOTEWORTHY Motor learning involves both implicit and explicit processes, the underlying neural substrates of which could be damaged after stroke. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke. Using a locomotor task that elicits dissociable contributions from both processes and computational modeling, we found evidence that chronic stroke causes deficits in both explicit and implicit locomotor learning.
Collapse
Affiliation(s)
- Jonathan M Wood
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, Delaware, United States
| | - Elizabeth Thompson
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
| | - Henry Wright
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
| | - Liam Festa
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, Delaware, United States
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, Delaware, United States
| | - Hyosub E Kim
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, Delaware, United States
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Clayton HA, Abbas S, `t Hart BM, Henriques DYP. Visuomotor adaptation across the lifespan. PLoS One 2024; 19:e0306276. [PMID: 38990816 PMCID: PMC11238954 DOI: 10.1371/journal.pone.0306276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Being able to adapt our movements to changing circumstances allows people to maintain performance across a wide range of tasks throughout life, but it is unclear whether visuomotor learning abilities are fully developed in young children and, if so, whether they remain stable in the elderly. There is limited evidence of changes in motor adaptation ability throughout life, and the findings are inconsistent. Therefore, our goal was to compare visuomotor learning abilities throughout the lifespan. We used a shorter, gamified experimental task and collected data from participants in 5 age groups. Young children (M = 7 years), older children (M = 11 years), young adults (M = 20 years), adults (M = 40 years) and older adults (M = 67 years) adapted to a 45° visuomotor rotation in a centre-out reaching task. Across measures of rate of adaptation, extent of learning, rate of unlearning, generalization, and savings, we found that all groups performed similarly. That is, at least for short bouts of gamified learning, children and older adults perform just as well as young adults.
Collapse
Affiliation(s)
- Holly A. Clayton
- Department of Psychology, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Sahir Abbas
- Department of Psychology, York University, Toronto, Ontario, Canada
| | | | - Denise Y. P. Henriques
- Department of Psychology, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Cisneros E, Karny S, Ivry RB, Tsay JS. Differential Aging Effects on Implicit and Explicit Sensorimotor Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601091. [PMID: 39005271 PMCID: PMC11244996 DOI: 10.1101/2024.07.02.601091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Deterioration in motor control is a hallmark of aging, significantly contributing to a decline in quality of life. More controversial is the question of whether and how aging impacts sensorimotor learning. We hypothesized that the inconsistent picture observed in the current literature can be attributed to at least two factors. First, aging studies tend to be underpowered. Second, the learning assays used in these experiments tend to reflect, to varying degrees, the operation of multiple learning processes, making it difficult to make inferences across studies. We took a two-pronged approach to address these issues. We first performed a meta-analysis of the sensorimotor adaptation literature focusing on outcome measures that provide estimates of explicit and implicit components of adaptation. We then conducted two well-powered experiments to re-examine the effect of aging on sensorimotor adaptation, using behavioral tasks designed to isolate explicit and implicit processes. Convergently, both approaches revealed a striking dissociation: Older individuals exhibited a marked impairment in their ability to discover an explicit strategy to counteract a visuomotor perturbation. However, they exhibited enhanced implicit recalibration. We hypothesize that the effect of aging on explicit learning reflects an age-related decline in reasoning and problem solving, and the effect of aging on implicit learning reflects age-related changes in multisensory integration. Taken together, these findings deepen our understanding of the impact of aging on sensorimotor learning.
Collapse
Affiliation(s)
- Elizabeth Cisneros
- Department of Psychology, University of California, Berkeley
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Sheer Karny
- Department of Psychology, University of California, Berkeley
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | | |
Collapse
|
7
|
Wood JM, Thompson E, Wright H, Festa L, Morton SM, Reisman DS, Kim HE. Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578807. [PMID: 38370851 PMCID: PMC10871205 DOI: 10.1101/2024.02.04.578807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. While both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. The removal of visual feedback after the first 40 strides of split-belt walking, combined with task instructions, minimized contributions from explicit learning for the remainder of the task. We utilized a multi-rate state-space model to characterize individual explicit and implicit process contributions to overall behavioral change. The computational and behavioral analyses revealed that, compared to controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since post-stroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning.
Collapse
Affiliation(s)
- Jonathan M. Wood
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19713, United States
| | - Elizabeth Thompson
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
| | - Henry Wright
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
| | - Liam Festa
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
| | - Susanne M. Morton
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19713, United States
| | - Darcy S. Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19713, United States
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19713, United States
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Jacobsen NA, Ferris DP. Exploring Electrocortical Signatures of Gait Adaptation: Differential Neural Dynamics in Slow and Fast Gait Adapters. eNeuro 2024; 11:ENEURO.0515-23.2024. [PMID: 38871456 PMCID: PMC11242882 DOI: 10.1523/eneuro.0515-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Individuals exhibit significant variability in their ability to adapt locomotor skills, with some adapting quickly and others more slowly. Differences in brain activity likely contribute to this variability, but direct neural evidence is lacking. We investigated individual differences in electrocortical activity that led to faster locomotor adaptation rates. We recorded high-density electroencephalography while young, neurotypical adults adapted their walking on a split-belt treadmill and grouped them based on how quickly they restored their gait symmetry. Results revealed unique spectral signatures within the posterior parietal, bilateral sensorimotor, and right visual cortices that differ between fast and slow adapters. Specifically, fast adapters exhibited lower alpha power in the posterior parietal and right visual cortices during early adaptation, associated with quicker attainment of steady-state step length symmetry. Decreased posterior parietal alpha may reflect enhanced spatial attention, sensory integration, and movement planning to facilitate faster locomotor adaptation. Conversely, slow adapters displayed greater alpha and beta power in the right visual cortex during late adaptation, suggesting potential differences in visuospatial processing. Additionally, fast adapters demonstrated reduced spectral power in the bilateral sensorimotor cortices compared with slow adapters, particularly in the theta band, which may suggest variations in perception of the split-belt perturbation. These findings suggest that alpha and beta oscillations in the posterior parietal and visual cortices and theta oscillations in the sensorimotor cortex are related to the rate of gait adaptation.
Collapse
Affiliation(s)
- Noelle A Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131
| |
Collapse
|
9
|
Lenizky MW, Meehan SK. The effects of verbal and spatial working memory on short- and long-latency sensorimotor circuits in the motor cortex. PLoS One 2024; 19:e0302989. [PMID: 38753604 PMCID: PMC11098330 DOI: 10.1371/journal.pone.0302989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Multiple sensorimotor loops converge in the motor cortex to create an adaptable system capable of context-specific sensorimotor control. Afferent inhibition provides a non-invasive tool to investigate the substrates by which procedural and cognitive control processes interact to shape motor corticospinal projections. Varying the transcranial magnetic stimulation properties during afferent inhibition can probe specific sensorimotor circuits that contribute to short- and long-latency periods of inhibition in response to the peripheral stimulation. The current study used short- (SAI) and long-latency (LAI) afferent inhibition to probe the influence of verbal and spatial working memory load on the specific sensorimotor circuits recruited by posterior-anterior (PA) and anterior-posterior (AP) TMS-induced current. Participants completed two sessions where SAI and LAI were assessed during the short-term maintenance of two- or six-item sets of letters (verbal) or stimulus locations (spatial). The only difference between the sessions was the direction of the induced current. PA SAI decreased as the verbal working memory load increased. In contrast, AP SAI was not modulated by verbal working memory load. Visuospatial working memory load did not affect PA or AP SAI. Neither PA LAI nor AP LAI were sensitive to verbal or spatial working memory load. The dissociation of short-latency PA and AP sensorimotor circuits and short- and long-latency PA sensorimotor circuits with increasing verbal working memory load support multiple convergent sensorimotor loops that provide distinct functional information to facilitate context-specific supraspinal control.
Collapse
Affiliation(s)
- Markus W. Lenizky
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Sean K. Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Krayn-Deckel N, Presaizen K, Kalron A. Cognitive status is associated with performance of manual wheelchair skills in hospitalized older adults. Disabil Rehabil Assist Technol 2024; 19:24-29. [PMID: 35400273 DOI: 10.1080/17483107.2022.2060353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To examine the relationship between manual wheelchair skills and cognitive function in hospitalized older adults. METHODS The observational study included older adults who used a manual wheelchair following hip/knee surgery. Participants underwent a series of tests to evaluate manual wheelchair skills and cognitive performance. Four items appearing on the Wheelchair Skills Test: brake handling (locking/unlocking), a 10-metre forward roll, a 2-metre backward roll and rotating in place, were used to evaluate manual wheelchair skills. Cognitive function was evaluated by the Montreal Cognitive Assessment (MoCA), Trail Making Test (TMT), the Clock Drawing Test, and the Loewenstein Occupational Therapy Cognitive Assessment. The relationship between wheelchair skills and cognitive scores was assessed by a series of univariate linear regression analyses. RESULTS Fifty older adults, aged 65-85, participated in the study. The MoCA-7 (orientation) explained 19.3% of the variance related to the turn in place wheelchair skill, 18.8% of the variance related to the two-metre backwards roll and 31.9% of the variance related to the 10-metre forward roll. The addition of gender (to the MoCA-7) increased the explained variance related to the 10-metre forward roll and turn in place skills to 38.5% and 28.5%, respectively. As for the brakes handling skill test, gender explained 18.3% of the variance. The addition of the CDT (to gender) increased the explained variance for the brakes handling skill to 31.4%. CONCLUSIONS Because cognitive impairments negatively affect the performance of wheelchair skills, rehabilitation therapists may need to adjust wheelchair mobility training methods for cognitively impaired older adults.Implication for rehabilitationGiven the prevalence of older adults with cognitive impairments who use manual wheelchairs, it is critical to better understand the relationship between cognition and wheelchair skills.Poor results reported on the cognitive tests, specifically, visual attention and orientation, were found to be associated with poor performance of four manual wheelchair skills.Rehabilitation therapists should consider the cognitive status of older adults when teaching manual wheelchair skills, specifically in new users. Future studies should examine whether a customized preparation program, enhancing visuospatial orientation, can benefit manual wheelchair control in older adults.
Collapse
Affiliation(s)
- Nurit Krayn-Deckel
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Bayit Balev Rehabilitation Center, Maccabi Health Care Services Group, Ra'anana, Israel
| | - Katya Presaizen
- Bayit Balev Rehabilitation Center, Maccabi Health Care Services Group, Ra'anana, Israel
| | - Alon Kalron
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
Sato SD, Choi JT. Reduced corticospinal drive and inflexible temporal adaptation during visually guided walking in older adults. J Neurophysiol 2023; 130:1508-1520. [PMID: 37937342 PMCID: PMC10994519 DOI: 10.1152/jn.00078.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023] Open
Abstract
Corticospinal drive during walking is reduced in older adults compared with young adults, but it is not clear how this decrease might compromise one's ability to adjust stepping, particularly during visuomotor adaptation. We hypothesize that age-related changes in corticospinal drive could predict differences in older adults' step length and step time adjustments in response to visual perturbations compared with younger adults. Healthy young (n = 21; age 18-33 yr) and older adults (n = 20; age 68-80 yr) were tested with a treadmill task, incorporating visual feedback of the foot position and stepping targets in real-time. During adaptation, the visuomotor gain was reduced on one side, causing the foot cursor and step targets to move slower on that side of the screen (i.e., split-visuomotor adaptation). Corticospinal drive was quantified by coherence between electromyographic signals in the beta-gamma frequency band (15-45 Hz). The results showed that 1) older adults adapted to visuomotor perturbations during walking, with a similar reduction in error asymmetry compared with younger adults; 2) however, older adults showed reduced adaptation in step time symmetry, despite demonstrating similar adaptation in step length asymmetry compared with younger adults; and 3) smaller overall changes in step time asymmetry was associated with reduced corticospinal drive to the tibialis anterior in the slow leg during split-visuomotor adaptation. These findings suggest that changes in corticospinal drive may affect older adults' control of step timing in response to visual challenges. This could be important for safe navigation when walking in different environments or dealing with unexpected circumstances.NEW & NOTEWORTHY Corticospinal input is essential for visually guided walking, especially when the walking pattern must be modified to accurately step on safe locations. Age-related changes in corticospinal drive are associated with inflexible step time, which necessitates different locomotor adaptation strategies in older adults.
Collapse
Affiliation(s)
- Sumire D Sato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Julia T Choi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
12
|
Ruitenberg MFL, Koppelmans V, Seidler RD, Schomaker J. Developmental and age differences in visuomotor adaptation across the lifespan. PSYCHOLOGICAL RESEARCH 2023; 87:1710-1717. [PMID: 36617621 PMCID: PMC10366290 DOI: 10.1007/s00426-022-01784-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/24/2022] [Indexed: 01/10/2023]
Abstract
In the present cross-sectional study, we examined age and sex differences in sensorimotor adaptation. We tested 253 individuals at a local science museum (NEMO Science Museum, Amsterdam). Participants spanned a wide age range (8-70 years old; 54% male), allowing us to examine effects of both development and healthy aging within a single study. Participants performed a visuomotor adaptation task in which they had to adapt manual joystick movements to rotated visual feedback. We assessed the rate of adaptation following the introduction of the visual perturbation (both for early and later stages of adaptation), and the rate of de-adaptation following its removal. Results showed reliable adaptation patterns which did not differ by sex. We observed a quadratic relationship between age and both early adaptation and de-adaptation rates, with younger and older adults exhibiting the fasted adaptation rates. Our findings suggest that both younger and older age are associated with poorer strategic, cognitive processes involved in adaptation. We propose that developmental and age differences in cognitive functions and brain properties may underlie these effects on sensorimotor functioning.
Collapse
Affiliation(s)
- Marit F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural Sciences, Leiden University, Pieter de La Court Building, P.O. Box 9555, 2300 RB, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | | | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Judith Schomaker
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural Sciences, Leiden University, Pieter de La Court Building, P.O. Box 9555, 2300 RB, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
13
|
Suglia V, Brunetti A, Pasquini G, Caputo M, Marvulli TM, Sibilano E, Della Bella S, Carrozza P, Beni C, Naso D, Monaco V, Cristella G, Bevilacqua V, Buongiorno D. A Serious Game for the Assessment of Visuomotor Adaptation Capabilities during Locomotion Tasks Employing an Embodied Avatar in Virtual Reality. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115017. [PMID: 37299744 DOI: 10.3390/s23115017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The study of visuomotor adaptation (VMA) capabilities has been encompassed in various experimental protocols aimed at investigating human motor control strategies and/or cognitive functions. VMA-oriented frameworks can have clinical applications, primarily in the investigation and assessment of neuromotor impairments caused by conditions such as Parkinson's disease or post-stroke, which affect the lives of tens of thousands of people worldwide. Therefore, they can enhance the understanding of the specific mechanisms of such neuromotor disorders, thus being a potential biomarker for recovery, with the aim of being integrated with conventional rehabilitative programs. Virtual Reality (VR) can be entailed in a framework targeting VMA since it allows the development of visual perturbations in a more customizable and realistic way. Moreover, as has been demonstrated in previous works, a serious game (SG) can further increase engagement thanks to the use of full-body embodied avatars. Most studies implementing VMA frameworks have focused on upper limb tasks and have utilized a cursor as visual feedback for the user. Hence, there is a paucity in the literature about VMA-oriented frameworks targeting locomotion tasks. In this article, the authors present the design, development, and testing of an SG-based framework that addresses VMA in a locomotion activity by controlling a full-body moving avatar in a custom VR environment. This workflow includes a set of metrics to quantitatively assess the participants' performance. Thirteen healthy children were recruited to evaluate the framework. Several quantitative comparisons and analyses were run to validate the different types of introduced visuomotor perturbations and to evaluate the ability of the proposed metrics to describe the difficulty caused by such perturbations. During the experimental sessions, it emerged that the system is safe, easy to use, and practical in a clinical setting. Despite the limited sample size, which represents the main limitation of the study and can be compensated for with future recruitment, the authors claim the potential of this framework as a useful instrument for quantitatively assessing either motor or cognitive impairments. The proposed feature-based approach gives several objective parameters as additional biomarkers that can integrate the conventional clinical scores. Future studies might investigate the relation between the proposed biomarkers and the clinical scores for specific disorders such as Parkinson's disease and cerebral palsy.
Collapse
Affiliation(s)
- Vladimiro Suglia
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy
| | - Antonio Brunetti
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy
- Apulian Bioengineering s.r.l., 70026 Modugno, Italy
| | - Guido Pasquini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy
| | - Mariapia Caputo
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy
| | - Tommaso Maria Marvulli
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy
| | - Elena Sibilano
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy
| | | | - Paola Carrozza
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy
| | - Chiara Beni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy
| | - David Naso
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy
| | - Vito Monaco
- The Biorobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | | | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy
- Apulian Bioengineering s.r.l., 70026 Modugno, Italy
| | - Domenico Buongiorno
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, 70126 Bari, Italy
- Apulian Bioengineering s.r.l., 70026 Modugno, Italy
| |
Collapse
|
14
|
Standage DI, Areshenkoff CN, Gale DJ, Nashed JY, Flanagan JR, Gallivan JP. Whole-brain dynamics of human sensorimotor adaptation. Cereb Cortex 2023; 33:4761-4778. [PMID: 36245212 PMCID: PMC10110437 DOI: 10.1093/cercor/bhac378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Humans vary greatly in their motor learning abilities, yet little is known about the neural processes that underlie this variability. We identified distinct profiles of human sensorimotor adaptation that emerged across 2 days of learning, linking these profiles to the dynamics of whole-brain functional networks early on the first day when cognitive strategies toward sensorimotor adaptation are believed to be most prominent. During early learning, greater recruitment of a network of higher-order brain regions, involving prefrontal and anterior temporal cortex, was associated with faster learning. At the same time, greater integration of this "cognitive network" with a sensorimotor network was associated with slower learning, consistent with the notion that cognitive strategies toward adaptation operate in parallel with implicit learning processes of the sensorimotor system. On the second day, greater recruitment of a network that included the hippocampus was associated with faster learning, consistent with the notion that declarative memory systems are involved with fast relearning of sensorimotor mappings. Together, these findings provide novel evidence for the role of higher-order brain systems in driving variability in adaptation.
Collapse
Affiliation(s)
- Dominic I Standage
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Humphrey Hall, 62 Arch Street, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Humphrey Hall, 62 Arch Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
15
|
Lazar-Kurz Z, Aziz J, McKearney KJ, Hamon-Hill C, MacDonald A, Newman A, Eskes G. Age-related changes to electroencephalographic markers of visuomotor error processing and learning in prism adaptation. Neuropsychologia 2023; 184:108546. [PMID: 36965703 DOI: 10.1016/j.neuropsychologia.2023.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Aging is associated with changes in cognitive function, including declines in learning, memory, and executive function. Prism adaptation (PA) is a useful paradigm to measure changes in explicit and implicit mechanisms of visuo-motor learning with age, but the neural correlates are not well understood. In the present study, we used PA to investigate visuo-motor learning and error processing in older adults. Twenty older adults (56-85 yrs) and 20 younger adults (18-33 yrs) underwent a goal-oriented reaching task while wearing prism goggles as continuous EEG was recorded to examine neural correlates of error detection. We examined behavioural measures of PA, as well as ERP components previously found associated with the early and late phases of adaptation to visual distortion caused by the prism goggles. Our results indicate important age-related behavioural and neurophysiological differences. Older adults reached more slowly than younger adults but showed the same accuracy throughout the prism exposure. Older adults also displayed larger aftereffects, indicating preserved visuomotor adaptation. EEG results indicated similar initial error processing in older and younger adults, as measured by the feedback error related negativity (FRN). As seen previously in young adults, the P3a and P3b declined over the prism exposure phase in both groups. Older adults displayed reduced P3a amplitude compared to the younger group in the early phase of adaptation, however, suggesting reduced attentional orienting. Finally, the older group exhibited a greater P3b amplitude compared to the younger group in the later phases of adaptation, potentially a marker of enhanced context updating underlying spatial realignment, leading to their larger aftereffect. Implications for age-related learning differences and clinical applications are discussed.
Collapse
Affiliation(s)
- Zoë Lazar-Kurz
- Cognitive Health and Recovery Research Lab, Departments of Psychiatry, Psychology and Neuroscience, Brain Repair Centre, Dalhousie University, 1348 Summer St, Halifax, NS, B3H 4R2, Canada; Neurocognitive Imaging Lab, Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4J1, Canada.
| | - Jasmine Aziz
- Cognitive Health and Recovery Research Lab, Departments of Psychiatry, Psychology and Neuroscience, Brain Repair Centre, Dalhousie University, 1348 Summer St, Halifax, NS, B3H 4R2, Canada.
| | - Katelyn J McKearney
- Cognitive Health and Recovery Research Lab, Departments of Psychiatry, Psychology and Neuroscience, Brain Repair Centre, Dalhousie University, 1348 Summer St, Halifax, NS, B3H 4R2, Canada.
| | - Cindy Hamon-Hill
- Cognitive Health and Recovery Research Lab, Departments of Psychiatry, Psychology and Neuroscience, Brain Repair Centre, Dalhousie University, 1348 Summer St, Halifax, NS, B3H 4R2, Canada; Neurocognitive Imaging Lab, Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4J1, Canada.
| | - Arthur MacDonald
- Cognitive Health and Recovery Research Lab, Departments of Psychiatry, Psychology and Neuroscience, Brain Repair Centre, Dalhousie University, 1348 Summer St, Halifax, NS, B3H 4R2, Canada.
| | - Aaron Newman
- Neurocognitive Imaging Lab, Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4J1, Canada.
| | - Gail Eskes
- Cognitive Health and Recovery Research Lab, Departments of Psychiatry, Psychology and Neuroscience, Brain Repair Centre, Dalhousie University, 1348 Summer St, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
16
|
Fettrow T, Hupfeld K, Hass C, Pasternak O, Seidler R. Neural correlates of gait adaptation in younger and older adults. Sci Rep 2023; 13:3842. [PMID: 36890163 PMCID: PMC9995534 DOI: 10.1038/s41598-023-30766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Mobility decline is a major concern for older adults. A key component of maintaining mobility with advancing age is the ability to learn and adapt to the environment. The split-belt treadmill paradigm is an experimental protocol that tests the ability to adapt to a dynamic environment. Here we examined the magnetic resonance imaging (MRI) derived structural neural correlates of individual differences in adaptation to split-belt walking for younger and older adults. We have previously shown that younger adults adopt an asymmetric walking pattern during split-belt walking, particularly in the medial-lateral (ML) direction, but older adults do not. We collected T[Formula: see text]-weighted and diffusion-weighted MRI scans to quantify brain morphological characteristics (i.e. in the gray matter and white matter) on these same participants. We investigated two distinct questions: (1) Are there structural brain metrics that are associated with the ability to adopt asymmetry during split-belt walking; and (2) Are there different brain-behavior relationships for younger and older adults? Given the growing evidence that indicates the brain has a critical role in the maintenance of gait and balance, we hypothesized that brain areas commonly associated with locomotion (i.e. basal ganglia, sensorimotor cortex, cerebellum) would be associated with ML asymmetry and that older adults would show more associations between split-belt walking and prefrontal brain areas. We identified multiple brain-behavior associations. More gray matter volume in the superior frontal gyrus and cerebellar lobules VIIB and VIII, more sulcal depth in the insula, more gyrification in the pre/post central gyri, and more fractional anisotropy in the corticospinal tract and inferior longitudinal fasciculus corresponded to more gait asymmetry. These associations did not differ between younger and older adults. This work progresses our understanding of how brain structure is associated with balance during walking, particularly during adaptation.
Collapse
Affiliation(s)
- Tyler Fettrow
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA.
- NASA Langley Research Center, Hampton, VA, USA.
| | - Kathleen Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA
| | - Chris Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachael Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA
| |
Collapse
|
17
|
Hilt PM, Bertrand MF, Féasson L, Lebon F, Mourey F, Ruffino C, Rozand V. Motor Imagery Training Is Beneficial for Motor Memory of Upper and Lower Limb Tasks in Very Old Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3541. [PMID: 36834234 PMCID: PMC9963345 DOI: 10.3390/ijerph20043541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Human aging is associated with a decline in the capacity to memorize recently acquired motor skills. Motor imagery training is a beneficial method to compensate for this deterioration in old adults. It is not yet known whether these beneficial effects are maintained in very old adults (>80 years), who are more affected by the degeneration processes. The aim of this study was to evaluate the effectiveness of a mental training session of motor imagery on the memorization of new motor skills acquired through physical practice in very old adults. Thus, 30 very old adults performed 3 actual trials of a manual dexterity task (session 1) or a sequential footstep task (session 2) as fast as they could before and after a 20 min motor imagery training (mental-training group) or watching a documentary for 20 min (control group). Performance was improved after three actual trials for both tasks and both groups. For the control group, performance decreased in the manual dexterity task after the 20 min break and remained stable in the sequential footstep task. For the mental-training group, performance was maintained in the manual dexterity task after the 20 min motor imagery training and increased in the sequential footstep task. These results extended the benefits of motor imagery training to the very old population, showing that even a short motor imagery training session improved their performance and favored the motor memory process. These results confirmed that motor imagery training is an effective method to complement traditional rehabilitation protocols.
Collapse
Affiliation(s)
- Pauline M. Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Mathilde F. Bertrand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Léonard Féasson
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
- Université Jean Monnet Saint-Etienne, CHU Saint-Etienne, Myology Unit, Referent Center for Neuromuscular Diseases, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - France Mourey
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Laboratory Culture Sport Health and Society (C3S−UR 4660), Sport and Performance Department, University of Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| |
Collapse
|
18
|
Khanafer S, Sveistrup H, Cressman EK. The Influence of Age on the Intermanual Transfer and Retention of Implicit Visuomotor Adaptation. J Mot Behav 2023; 55:220-235. [PMID: 36509430 DOI: 10.1080/00222895.2022.2156451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We examined age-related changes in intermanual transfer and retention of implicit visuomotor adaptation. We further asked if providing augmented somatosensory feedback regarding movement endpoint would enhance visuomotor adaptation. Twenty young adults and twenty older adults were recruited and randomly divided into an Augmented Feedback group and a Control group. All participants reached to five visual targets with visual feedback rotated 30° counter-clockwise relative to their actual hand motion. Augmented somatosensory feedback was provided at the end of the reach via the robotic handle that participants held. Implicit adaptation was assessed in the absence of visual feedback in the right trained hand and in the left untrained hand following rotated training trials to establish implicit adaptation and intermanual transfer of adaptation respectively. Participants then returned 24 hours later to assess retention in the trained and untrained hands. Results revealed that older adults demonstrated a comparable magnitude of implicit adaptation, transfer and retention of visuomotor adaptation as observed in younger adults, regardless of the presence of augmented somatosensory feedback. To conclude, when visuomotor adaptation is driven implicitly, intermanual transfer and retention do not differ significantly between young and older adults, even when the availability of augmented somatosensory feedback is manipulated.
Collapse
Affiliation(s)
- Sajida Khanafer
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Heidi Sveistrup
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
| | - Erin K Cressman
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
19
|
Schiavo A, Martins LA, Wearick-Silva LE, Orso R, Xavier LL, Mestriner RG. Can anxiety-like behavior and spatial memory predict the extremes of skilled walking performance in mice? An exploratory, preliminary study. Front Behav Neurosci 2023; 17:1059029. [PMID: 36926582 PMCID: PMC10011164 DOI: 10.3389/fnbeh.2023.1059029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Skilled walking is influenced by memory, stress, and anxiety. While this is evident in cases of neurological disorders, memory, and anxiety traits may predict skilled walking performance even in normal functioning. Here, we address whether spatial memory and anxiety-like behavior can predict skilled walking performance in mice. Methods A cohort of 60 adult mice underwent a behavioral assessment including general exploration (open field), anxiety-like behavior (elevated plus maze), working and spatial memory (Y-maze and Barnes maze), and skilled walking performance (ladder walking test). Three groups were established based on their skilled walking performance: superior (SP, percentiles ≥75), regular (RP, percentiles 74-26), and inferior (IP, percentiles ≤25) performers. Results Animals from the SP and IP groups spent more time in the elevated plus maze closed arms compared to the RP group. With every second spent in the elevated plus maze closed arms, the probability of the animal exhibiting extreme percentiles in the ladder walking test increased by 1.4%. Moreover, animals that spent 219 s (73% of the total time of the test) or more in those arms were 4.67 times more likely to exhibit either higher or lower percentiles of skilled walking performance. Discussion We discuss and conclude anxiety traits may influence skilled walking performance in facility-reared mice.
Collapse
Affiliation(s)
- Aniuska Schiavo
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Neuroplasticity and Rehabilitation Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Athaydes Martins
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Neuroplasticity and Rehabilitation Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luís Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Léder Leal Xavier
- Neuroplasticity and Rehabilitation Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Neuroplasticity and Rehabilitation Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
20
|
Wang P, Lingo VanGilder J, Schweighofer N, Schaefer SY. Rey-Osterrieth complex figure recall scores and motor skill learning in older adults: A non-linear mixed effect model-based analysis. Hum Mov Sci 2022; 86:103004. [PMID: 36191575 PMCID: PMC11285843 DOI: 10.1016/j.humov.2022.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 11/04/2022]
Abstract
Age-related declines in motor learning are well documented. Visuospatial memory has been proposed as a key factor explaining age-related declines in sensorimotor adaptation, but most studies have not used standardized visuospatial memory tests nor controlled for age-related visuospatial memory declines. The present study explores the relationship between visuospatial memory and motor learning in older adults while also controlling for age and utilizing a standardized visuospatial memory test. Forty-nine nondemented older adults repetitively practiced a functional upper-extremity motor task and were re-assessed one week later. Training data were modeled with mixed-effect exponential decay functions, with parameters representing amount of performance change, rate of improvement, and final performance. Age and visuospatial memory were included as possible covariates for the parameter measuring rate of improvement (τ). After controlling for age, higher visuospatial memory scores were associated with faster rates of skill acquisition and better short-term retention one week later. These associations with visuospatial memory were dependent, however, on the level of initial skill. These findings suggest that the extent of re-learning motor skills in geriatric physical rehabilitation may depend on intact visuospatial memory.
Collapse
Affiliation(s)
- Peiyuan Wang
- School of Biological and Health Systems Engineering, Arizona State University, USA
| | | | | | - Sydney Y Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, USA.
| |
Collapse
|
21
|
Integrated cognitive and physical fitness training enhances attention abilities in older adults. NPJ AGING 2022; 8:12. [PMID: 36042247 PMCID: PMC9427998 DOI: 10.1038/s41514-022-00093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
Preserving attention abilities is of great concern to older adults who are motivated to maintain their quality of life. Both cognitive and physical fitness interventions have been utilized in intervention studies to assess maintenance and enhancement of attention abilities in seniors, and a coupling of these approaches is a compelling strategy to buttress both cognitive and physical health in a time- and resource-effective manner. With this perspective, we created a closed-loop, motion-capture video game (Body-Brain Trainer: BBT) that adapts a player’s cognitive and physical demands in an integrated approach, thus creating a personalized and cohesive experience across both domains. Older adults who engaged in two months of BBT improved on both physical fitness (measures of blood pressure and balance) and attention (behavioral and neural metrics of attention on a continuous performance task) outcome measures beyond that of an expectancy matched, active, placebo control group, with maintenance of improved attention performance evidenced 1 year later. Following training, the BBT group’s improvement on the attention outcome measure exceeded performance levels attained by an untrained group of 20-year olds, and showed age-equilibration of a neural signature of attention shown to decline with age: midline frontal theta power. These findings highlight the potential benefits of an integrated, cognitive-physical, closed-loop training platform as a powerful tool for both cognitive and physical enhancement in older adults.
Collapse
|
22
|
Ge Y, Zheng W, Li Y, Dou W, Ren S, Chen Z, Wang Z. Altered Brain Volume, Microstructure Metrics and Functional Connectivity Features in Multiple System Atrophy. Front Aging Neurosci 2022; 14:799251. [PMID: 35663568 PMCID: PMC9162384 DOI: 10.3389/fnagi.2022.799251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
In order to deeply understand the specific patterns of volume, microstructure, and functional changes in Multiple System Atrophy patients with cerebellar ataxia syndrome (MSA-c), we perform the current study by simultaneously applying structural (T1-weighted imaging), Diffusion tensor imaging (DTI), functional (BOLD fMRI) and extended Network-Based Statistics (extended-NBS) analysis. Twenty-nine MSA-c type patients and twenty-seven healthy controls (HCs) were involved in this study. First, we analyzed the whole brain changes of volume, microstructure, and functional connectivity (FC) in MSA-c patients. Then, we explored the correlations between significant multimodal MRI features and the total Unified Multiple System Atrophy Rating Scale (UMSARS) scores. Finally, we searched for sensitive imaging biomarkers for the diagnosis of MSA-c using support vector machine (SVM) classifier. Results showed significant grey matter atrophy in cerebellum and white matter microstructural abnormalities in cerebellum, left fusiform gyrus, right precentral gyrus and lingual gyrus. Extended-NBS analysis found two significant different connected components, featuring altered functional connectivity related to left and right cerebellar sub-regions, respectively. Moreover, the reduced fiber bundle counts at right Cerebellum_3 (Cbe3) and decreased fractional anisotropy (FA) values at bilateral Cbe9 were negatively associated with total UMSARS scores. Finally, the significant features at left Cbe9, Cbe1, and Cbe7b were found to be useful as sensitive biomarkers to differentiate MSA-c from HCs according to the SVM analysis. These findings advanced our understanding of the neural pathophysiological mechanisms of MSA from the perspective of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yunxiang Ge
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Yujia Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
- *Correspondence: Weibei Dou,
| | - Shan Ren
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Zhigang Chen,
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
- Zhiqun Wang,
| |
Collapse
|
23
|
Age-related enhancement in visuomotor learning by a dual-task. Sci Rep 2022; 12:5679. [PMID: 35383212 PMCID: PMC8983773 DOI: 10.1038/s41598-022-09553-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Many daily activities require performance of multiple tasks integrating cognitive and motor processes. While the fact that both processes go through deterioration and changes with aging has been generally accepted, not much is known about how aging interacts with stages of motor skill acquisition under a cognitively demanding situation. To address this question, we combined a visuomotor adaptation task with a secondary cognitive task. We made two primary findings beyond the expected age-related performance deterioration. First, while young adults showed classical dual-task cost in the early motor learning phase dominated by explicit processes, older adults instead strikingly displayed enhanced performance in the later stage, dominated by implicit processes. For older adults, the secondary task may have facilitated a shift to their relatively intact implicit learning processes that reduced reliance on their already-deficient explicit processes during visuomotor adaptation. Second, we demonstrated that consistently performing the secondary task in learning and re-learning phases can operate as an internal task-context and facilitate visuomotor memory retrieval later regardless of age groups. Therefore, our study demonstrated age-related similarities and differences in integrating concurrent cognitive load with motor skill acquisition which, may in turn, contributes to the understanding of a shift in balance across multiple systems.
Collapse
|
24
|
Ruitenberg MFL, Koppelmans V, Seidler RD, Schomaker J. Novelty exposure induces stronger sensorimotor representations during a manual adaptation task. Ann N Y Acad Sci 2022; 1510:68-78. [PMID: 34951019 PMCID: PMC9305111 DOI: 10.1111/nyas.14731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Active exploration of novel spatial environments enhances memory for subsequently presented explicit, declarative information in humans. These effects have been attributed to novelty promoting dopamine release via mesolimbic dopaminergic pathways in the brain. As procedural motor learning has been linked to dopamine as well, we predict that novelty effects extend to this domain. To test this hypothesis, the present study examined whether spatial novelty exploration benefits subsequent sensorimotor adaptation. Participants explored either two different virtual environments (i.e., novelty condition; n = 210) or two identical environments (i.e., familiar condition; n = 253). They then performed a manual adaptation task in which they had to adapt joystick movements to a visual perturbation. We assessed the rate of adaptation following the introduction of this perturbation, and the rate of deadaptation following its removal. While results showed reliable adaptation patterns and similar adaptation rates across both conditions, individuals in the novelty condition showed slower deadaptation. This suggests that exposure to spatial novelty induced stronger sensorimotor representations during adaptation, potentially through novelty-induced dopaminergic effects in mesocortical and/or nigrostriatal pathways. Novelty exposure may be employed to promote motor learning on tasks that require precision movements in altered sensory contexts, for example, in astronauts moving in microgravity or patients with impaired motor processing.
Collapse
Affiliation(s)
- Marit F. L. Ruitenberg
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural SciencesLeiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeidenthe Netherlands
| | | | - Rachael D. Seidler
- Department of Applied Physiology & KinesiologyUniversity of FloridaGainesvilleFlorida
| | - Judith Schomaker
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural SciencesLeiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeidenthe Netherlands
| |
Collapse
|
25
|
Petitet P, Spitz G, Emir UE, Johansen-Berg H, O'Shea J. Age-related decline in cortical inhibitory tone strengthens motor memory. Neuroimage 2021; 245:118681. [PMID: 34728243 PMCID: PMC8752967 DOI: 10.1016/j.neuroimage.2021.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/02/2022] Open
Abstract
Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.
Collapse
Affiliation(s)
- Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Centre de Recherche en Neurosciences de Lyon, Equipe Trajectoires, Inserm UMR-S 1028, CNRS UMR 5292, Université Lyon 1, Bron, France.
| | - Gershon Spitz
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxford, United Kingdom.
| |
Collapse
|
26
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
27
|
Li N, Chen G, Xie Y, Chen Z. Aging Effect on Visuomotor Adaptation: Mediated by Cognitive Decline. Front Aging Neurosci 2021; 13:742928. [PMID: 34776929 PMCID: PMC8580951 DOI: 10.3389/fnagi.2021.742928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The question of whether and how aging affects humans’ visuomotor adaptation remains controversial. This study investigates how the effect of aging on visuomotor adaptation is related to age-related cognitive declines. We compared the performance of 100 older people (age: 55–82 years) and 20 young adults (age: 18–27 years) on a visuomotor adaptation task and three cognition tasks. A decline in visuomotor adaptation of older people was well observed. However, this decline was not strongly correlated with chronological age increase but was associated to the age-related declines of cognitive functions and speed of motor planning. We then constructed a structural mediation model in which the declined cognitive resources mediated the effect of age increase on the decline in visuomotor adaptation. The data from the present study was well-explained by the mediation model. These findings indicate that the aging effect on visuomotor adaptation mainly reflects the age-related decline of cognitive functions, which results in insufficient explicit processing on visual perturbation during visuomotor control.
Collapse
Affiliation(s)
- Na Li
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guopeng Chen
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yong Xie
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zhongting Chen
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
28
|
Tays GD, Hupfeld KE, McGregor HR, Salazar AP, De Dios YE, Beltran NE, Reuter-Lorenz PA, Kofman IS, Wood SJ, Bloomberg JJ, Mulavara AP, Seidler RD. The Effects of Long Duration Spaceflight on Sensorimotor Control and Cognition. Front Neural Circuits 2021; 15:723504. [PMID: 34764856 PMCID: PMC8577506 DOI: 10.3389/fncir.2021.723504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Astronauts returning from spaceflight typically show transient declines in mobility and balance. Other sensorimotor behaviors and cognitive function have not been investigated as much. Here, we tested whether spaceflight affects performance on various sensorimotor and cognitive tasks during and after missions to the International Space Station (ISS). We obtained mobility (Functional Mobility Test), balance (Sensory Organization Test-5), bimanual coordination (bimanual Purdue Pegboard), cognitive-motor dual-tasking and various other cognitive measures (Digit Symbol Substitution Test, Cube Rotation, Card Rotation, Rod and Frame Test) before, during and after 15 astronauts completed 6 month missions aboard the ISS. We used linear mixed effect models to analyze performance changes due to entering the microgravity environment, behavioral adaptations aboard the ISS and subsequent recovery from microgravity. We observed declines in mobility and balance from pre- to post-flight, suggesting disruption and/or down weighting of vestibular inputs; these behaviors recovered to baseline levels within 30 days post-flight. We also identified bimanual coordination declines from pre- to post-flight and recovery to baseline levels within 30 days post-flight. There were no changes in dual-task performance during or following spaceflight. Cube rotation response time significantly improved from pre- to post-flight, suggestive of practice effects. There was also a trend for better in-flight cube rotation performance on the ISS when crewmembers had their feet in foot loops on the “floor” throughout the task. This suggests that tactile inputs to the foot sole aided orientation. Overall, these results suggest that sensory reweighting due to the microgravity environment of spaceflight affected sensorimotor performance, while cognitive performance was maintained. A shift from exocentric (gravity) spatial references on Earth toward an egocentric spatial reference may also occur aboard the ISS. Upon return to Earth, microgravity adaptions become maladaptive for certain postural tasks, resulting in transient sensorimotor performance declines that recover within 30 days.
Collapse
Affiliation(s)
- Grant D Tays
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kathleen E Hupfeld
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | - Heather R McGregor
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | - Ana Paula Salazar
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | | | | | | | | | - Scott J Wood
- NASA Johnson Space Center, Houston, TX, United States
| | | | | | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
29
|
Cui B, Zheng W, Ren S, Chen Z, Wang Z. Differentiation of Cerebellum-Type and Parkinson-Type of Multiple System Atrophy by Using Multimodal MRI Parameters. Front Aging Neurosci 2021; 13:687649. [PMID: 34413766 PMCID: PMC8369927 DOI: 10.3389/fnagi.2021.687649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated the structural and functional changes in patients with multiple system atrophy (MSA). However, little is known about the different parameter changes of the most vulnerable regions in different types of MSA. In this study, we collected resting-state structure, perfusion, and patients with functional magnetic resonance imaging (fMRI) data of cerebellum-type of MSA (MSA-c) and Parkinson-type of MSA (MSA-p). First, by simultaneously using voxel-based morphology (VBM), arterial spin labeling (ASL), and amplitude of low-frequency fluctuation (ALFF), we analyzed the whole brain differences of structure, perfusion, and functional activation between patients with MSA-c and MSA-p. Second, we explored the relationships among structure, perfusion, function, and the clinical variables in patients with MSA. Finally, we extracted the MRI parameters of a specific region to separate the two groups and search for a sensitive imaging biomarker. As a result, compared with patients with MSA-p type, patients with MSA-c type showed decreased structure atrophy in several cerebella and vermis subregions, reduced perfusion in bilateral cerebellum_4_5 and vermis_4_5, and an decreased ALFF values in the right lingual gyrus (LG) and fusiform (FFG). Subsequent analyses revealed the close correlations among structure, perfusion, function, and clinical variables in both MSA-c and MSA-p. Finally, the receiver operating characteristic (ROC) analysis showed that the regional cerebral blood flow (rCBF) of bilateral cerebellum_4_5/vermis_4_5 could differentiate the two groups at a relatively high accuracy, yielding the sensitivity of 100%, specificity of 79.2%, and the area under the curve (AUC) value of 0.936. These findings have important implications for understanding the underlying neurobiology of different types of MSA and added the new evidence for the disrupted rCBF, structure, and function of MSA, which may provide the potential biomarker for accurately detecting different types of patients with MSA and new ideas for the treatment of different types of MSA in the future.
Collapse
Affiliation(s)
- Bin Cui
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Shan Ren
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
30
|
Heckner MK, Cieslik EC, Eickhoff SB, Camilleri JA, Hoffstaedter F, Langner R. The Aging Brain and Executive Functions Revisited: Implications from Meta-analytic and Functional-Connectivity Evidence. J Cogn Neurosci 2021; 33:1716-1752. [PMID: 32762523 DOI: 10.1162/jocn_a_01616] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Healthy aging is associated with changes in cognitive performance, including executive functions (EFs) and their associated brain activation patterns. However, it has remained unclear which EF-related brain regions are affected consistently, because the results of pertinent neuroimaging studies and earlier meta-analyses vary considerably. We, therefore, conducted new rigorous meta-analyses of published age differences in EF-related brain activity. Out of a larger set of regions associated with EFs, only left inferior frontal junction and left anterior cuneus/precuneus were found to show consistent age differences. To further characterize these two age-sensitive regions, we performed seed-based resting-state functional connectivity (RS-FC) analyses using fMRI data from a large adult sample with a wide age range. We also assessed associations of the two regions' whole-brain RS-FC patterns with age and EF performance. Although our results largely point toward a domain-general role of left inferior frontal junction in EFs, the pattern of individual study contributions to the meta-analytic results suggests process-specific modulations by age. Our analyses further indicate that the left anterior cuneus/precuneus is recruited differently by older (compared with younger) adults during EF tasks, potentially reflecting inefficiencies in switching the attentional focus. Overall, our findings question earlier meta-analytic results and suggest a larger heterogeneity of age-related differences in brain activity associated with EFs. Hence, they encourage future research that pays greater attention to replicability, investigates age-related differences in deactivation, and focuses on more narrowly defined EF subprocesses, combining multiple behavioral assessments with multimodal imaging.
Collapse
Affiliation(s)
- Marisa K Heckner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| |
Collapse
|
31
|
Hausman HK, Jackson TB, Goen JRM, Bernard JA. From Synchrony to Asynchrony: Cerebellar-Basal Ganglia Functional Circuits in Young and Older Adults. Cereb Cortex 2021; 30:718-729. [PMID: 31219563 DOI: 10.1093/cercor/bhz121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/28/2023] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) has indicated disruptions in functional connectivity in older adults (OA) relative to young adults (YA). While age differences in cortical networks are well studied, differences in subcortical networks are poorly understood. Both the cerebellum and the basal ganglia are of particular interest given their role in cognitive and motor functions, and work in nonhuman primates has demonstrated direct reciprocal connections between these regions. Here, our goal was twofold. First, we were interested in delineating connectivity patterns between distinct regions of the cerebellum and basal ganglia, known to have topologically distinct connectivity patterns with cortex. Our second goal was to quantify age differences in these cerebellar-striatal circuits. We performed a targeted rs-fMRI analysis of the cerebellum and basal ganglia in 33 YA and 31 OA individuals. In the YA, we found significant connectivity both within and between the cerebellum and basal ganglia, in patterns supporting semi-discrete circuits that may differentially subserve motor and cognitive performance. We found a shift in connectivity, from one of synchrony in YA, to asynchrony in OA, resulting in substantial age differences. Connectivity was also associated with behavior. These findings significantly advance our understanding of cerebellar-basal ganglia interactions in the human brain.
Collapse
Affiliation(s)
- Hanna K Hausman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - James R M Goen
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, USA
| |
Collapse
|
32
|
Sharp KC, Cinelli ME. The effects of different environments on older adults' ability to successfully cross a closing gap in virtual reality. Gait Posture 2021; 87:1-5. [PMID: 33866151 DOI: 10.1016/j.gaitpost.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND To navigate through dynamically changing environments and to avoid collisions with stationary and moving obstacles, older adults tend to over rely on their visual system because it is a more reliable source of information. Aging affects both visuomotor integration and visual perception, often resulting in the inability to produce appropriate adaptive locomotor actions in a timely manner. RESEARCH QUESTION Does peripheral visual information in the environment affected older adults' ability to complete a gap-crossing task with a set of closing doors at different rates (0.6-1.2 m/s)? METHODS Fifteen older adults (65-74 years) completed the study inside a virtual environment with three different levels of peripheral visual information: 1) empty; 2) stationary avatars; and 3) moving avatars. Kinematic data was collected using an Optotrak camera system to track the older adults' body movements during the task. RESULTS The results demonstrated that regardless of the environment or closing door speed, older adults maintained consistent approach speeds. However, older adults collided with the fastest moving doors a significant number of times at the fastest door closing rates for the empty and moving avatar conditions. SIGNIFICANCE Although it appears that older adults are able to attend on a central task (i.e., passing through closing doors) and maintain constant behaviours regardless of the visual information from peripheral environment, richness of the peripheral environment provides accurate feedback about self-motion affects success rates.
Collapse
Affiliation(s)
- Kasey C Sharp
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Michael E Cinelli
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
33
|
Sombric CJ, Torres-Oviedo G. Cognitive and Motor Perseveration Are Associated in Older Adults. Front Aging Neurosci 2021; 13:610359. [PMID: 33986654 PMCID: PMC8110726 DOI: 10.3389/fnagi.2021.610359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Aging causes perseveration (difficulty to switch between actions) in motor and cognitive tasks, suggesting that the same neural processes could govern these abilities in older adults. To test this, we evaluated the relation between independently measured motor and cognitive perseveration in young (21.4 ± 3.7 y/o) and older participants (76.5 ± 2.9 y/o). Motor perseveration was measured with a locomotor task in which participants had to transition between distinct walking patterns. Cognitive perseveration was measured with a card matching task in which participants had to switch between distinct matching rules. We found that perseveration in the cognitive and motor domains were positively related in older, but not younger individuals, such that participants exhibiting greater perseveration in the motor task also perseverated more in the cognitive task. Additionally, exposure reduces motor perseveration: older adults who had practiced the motor task could transition between walking patterns as proficiently as naïve, young individuals. Our results suggest an overlap in neural processes governing cognitive and motor perseveration with aging and that exposure can counteract the age-related motor perseveration.
Collapse
Affiliation(s)
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
34
|
Zukowski LA, Tennant JE, Iyigun G, Giuliani CA, Plummer P. Dual-tasking impacts gait, cognitive performance, and gaze behavior during walking in a real-world environment in older adult fallers and non-fallers. Exp Gerontol 2021; 150:111342. [PMID: 33838215 DOI: 10.1016/j.exger.2021.111342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Everyday walking often involves simultaneous performance of a cognitive task in environments with competing auditory and visual stimuli. Previous research has not evaluated task performance in these situations, where older adults are known to fall, limiting our understanding of how older adults adjust their gait, visual scanning (gaze), and cognitive processing to avoid falls (or not). The purpose of this study was to examine the effect of dual-task walking in a high-distraction real-world environment on cognitive performance, gait performance, and gaze behavior in older adult fallers relative to non-fallers. METHODS Fourteen community-dwelling, older adult fallers (76.6 ± 9.1 years, 11 females) and 15 community-dwelling, older adult non-fallers (77.4 ± 7.6 years, 11 females) participated. Participants performed single-task walking, single-task cognitive (seated category naming), and dual-task walking (category naming + walking) trials for 1 min each in a real-world environment (busy hospital lobby). Gait speed, stride length variability, stride duration variability, gaze fixation duration on 6 areas of interest (AOIs), and percentage of time fixating on 6 AOIs were recorded during single- and dual-task walking trials. Number of correct responses, time to first response, and mean subsequent response time (measure of rate of decline of response retrieval throughout trial) were determined for single-task cognitive and dual-task walking trials. Two-way MANCOVAs and MANOVAs were used to compare the effects of fall status and task condition on gait and cognitive variables. Hierarchical linear regression models were used to assess predictors of gaze behavior variables. RESULTS Compared to single-task, during dual-task trials, participants walked 0.21 m/s slower, had 1.5 fewer verbal responses, and a 2823 ms shorter mean subsequent response time, indicating a faster declining rate of retrieval during the cognitive task. Additionally, during dual-task walking, participants fixated their gaze on Far People (AOI) for a significantly smaller percentage of time and on the Near Walking Path (AOI) for a significantly greater percentage of time than during single-task walking. During all trials, being a non-faller predicted a longer average fixation duration on the Far Environment (AOI) than for fallers. Environmental busyness, baseline gait speed, and baseline executive function impacted gaze behavior. CONCLUSION All participants exhibited dual-task decrements in gait and cognitive performance and changes in gaze behavior from single- to dual-task walking. Perhaps of more importance, non-fallers appear to have had more freedom to divert their gaze to less relevant environmental stimuli while walking, and two measures of fall risk impacted patterns of gaze behavior differently. Thus, overt visual attention during walking in real-world environments should be further explored in relation to fall risk.
Collapse
Affiliation(s)
- Lisa A Zukowski
- Department of Physical Therapy, High Point University, High Point, NC, United States of America.
| | - Jaclyn E Tennant
- Guilford County Schools, Guilford County, NC, United States of America
| | - Gozde Iyigun
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, North Cyprus, via Mersin 10, Turkey
| | - Carol A Giuliani
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Prudence Plummer
- Department of Physical Therapy, MGH Institute of Health Professions, Boston, MA, United States of America
| |
Collapse
|
35
|
French MA, Cohen ML, Pohlig RT, Reisman DS. Fluid Cognitive Abilities Are Important for Learning and Retention of a New, Explicitly Learned Walking Pattern in Individuals After Stroke. Neurorehabil Neural Repair 2021; 35:419-430. [PMID: 33754890 DOI: 10.1177/15459683211001025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is significant variability in poststroke locomotor learning that is poorly understood and affects individual responses to rehabilitation interventions. Cognitive abilities relate to upper extremity motor learning in neurologically intact adults, but have not been studied in poststroke locomotor learning. OBJECTIVE To understand the relationship between locomotor learning and retention and cognition after stroke. METHODS Participants with chronic (>6 months) stroke participated in 3 testing sessions. During the first session, participants walked on a treadmill and learned a new walking pattern through visual feedback about their step length. During the second session, participants walked on a treadmill and 24-hour retention was assessed. Physical and cognitive tests, including the Fugl-Meyer-Lower Extremity (FM-LE), Fluid Cognition Composite Score (FCCS) from the NIH Toolbox -Cognition Battery, and Spatial Addition from the Wechsler Memory Scale-IV, were completed in the third session. Two sequential regression models were completed: one with learning and one with retention as the dependent variables. Age, physical impairment (ie, FM-LE), and cognitive measures (ie, FCCS and Spatial Addition) were the independent variables. RESULTS Forty-nine and 34 participants were included in the learning and retention models, respectively. After accounting for age and FM-LE, cognitive measures explained a significant portion of variability in learning (R2 = 0.17, P = .008; overall model R2 = 0.31, P = .002) and retention (ΔR2 = 0.17, P = .023; overall model R2 = 0.44, P = .002). CONCLUSIONS Cognitive abilities appear to be an important factor for understanding locomotor learning and retention after stroke. This has significant implications for incorporating locomotor learning principles into the development of personalized rehabilitation interventions after stroke.
Collapse
|
36
|
Poirier G, Ohayon A, Juranville A, Mourey F, Gaveau J. Deterioration, Compensation and Motor Control Processes in Healthy Aging, Mild Cognitive Impairment and Alzheimer's Disease. Geriatrics (Basel) 2021; 6:33. [PMID: 33807008 PMCID: PMC8006018 DOI: 10.3390/geriatrics6010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/07/2023] Open
Abstract
Aging is associated with modifications of several brain structures and functions. These modifications then manifest as modified behaviors. It has been proposed that some brain function modifications may compensate for some other deteriorated ones, thus maintaining behavioral performance. Through the concept of compensation versus deterioration, this article reviews the literature on motor function in healthy and pathological aging. We first highlight mechanistic studies that used paradigms, allowing us to identify precise compensation mechanisms in healthy aging. Subsequently, we review studies investigating motor function in two often-associated neurological conditions, i.e., mild cognitive impairment and Alzheimer's disease. We point out the need to expand the knowledge gained from descriptive studies with studies targeting specific motor control processes. Teasing apart deteriorated versus compensating processes represents precious knowledge that could significantly improve the prevention and rehabilitation of age-related loss of mobility.
Collapse
Affiliation(s)
- Gabriel Poirier
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France; (A.O.); (A.J.); (F.M.); (J.G.)
- Espace d’Étude du Mouvement—Étienne Jules MAREY, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Alice Ohayon
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France; (A.O.); (A.J.); (F.M.); (J.G.)
| | - Adrien Juranville
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France; (A.O.); (A.J.); (F.M.); (J.G.)
| | - France Mourey
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France; (A.O.); (A.J.); (F.M.); (J.G.)
- Espace d’Étude du Mouvement—Étienne Jules MAREY, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Jeremie Gaveau
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France; (A.O.); (A.J.); (F.M.); (J.G.)
- Espace d’Étude du Mouvement—Étienne Jules MAREY, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| |
Collapse
|
37
|
Li X, Chen Q, Zheng W, Chen X, Wang L, Qin W, Li K, Lu J, Chen N. Inconsistency between cortical reorganization and functional connectivity alteration in the sensorimotor cortex following incomplete cervical spinal cord injury. Brain Imaging Behav 2021; 14:2367-2377. [PMID: 31444779 DOI: 10.1007/s11682-019-00190-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to explore whether there will be any alterations in sensorimotor-related cortex and the possible causes of sensorimotor dysfunction after incomplete cervical spinal cord injury (ICSCI). Structural and resting-state functional magnetic resonance imaging (rs-fMRI) of nineteen ICSCI patients and nineteen healthy controls (HCs) was acquired. Voxel based morphometry (VBM) and tract-based spatial statistics were performed to assess differences in gray matter volume (GMV) and white matter integrity between ICSCI patients and HCs. Whole brain functional connectivity (FC) was analyzed using the results of VBM as seeds. Associations between the clinical variables and the brain changes were studied. Compared with HCs, ICSCI patients demonstrated reduced GMV in the right fusiform gyrus (FG) and left orbitofrontal cortex (OFC) but no changes in areas directly related to sensorimotor function. There were no significant differences in brain white matter. Additionally, the FC in the left primary sensorimotor cortex and cerebellum decreased when the FG and OFC, respectively, were used as seeds. Subsequent relevance analysis suggests a weak positive correlation between the left OFC's GMV and visual analog scale (VAS) scores. In conclusion, brain structural changes following ICSCI occur mainly in certain higher cognitive regions, such as the FG and OFC, rather than in the brain areas directly related to sensation or motor control. The functional areas of the brain that are related to cognitive processing may play an important role in sensorimotor dysfunction through the decreased FC with sensorimotor areas after ICSCI. Therefore, cognition-related functional training may play an important role in rehabilitation of sensorimotor function after ICSCI.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Central Hospital, No. 15 Yuquan Road, Haidian District, Beijing, China
| | - Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Ling Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China.
| |
Collapse
|
38
|
Cerebellar contribution to sensorimotor adaptation deficits in humans with spinal cord injury. Sci Rep 2021; 11:2507. [PMID: 33510183 PMCID: PMC7843630 DOI: 10.1038/s41598-020-77543-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Humans with spinal cord injury (SCI) show deficits in associating motor commands and sensory feedback. Do these deficits affect their ability to adapt movements to new demands? To address this question, we used a robotic exoskeleton to examine learning of a sensorimotor adaptation task during reaching movements by distorting the relationship between hand movement and visual feedback in 22 individuals with chronic incomplete cervical SCI and 22 age-matched control subjects. We found that SCI individuals showed a reduced ability to learn from movement errors compared with control subjects. Sensorimotor areas in anterior and posterior cerebellar lobules contribute to learning of movement errors in intact humans. Structural brain imaging showed that sensorimotor areas in the cerebellum, including lobules I-VI, were reduced in size in SCI compared with control subjects and cerebellar atrophy increased with increasing time post injury. Notably, the degree of spared tissue in the cerebellum was positively correlated with learning rates, indicating participants with lesser atrophy showed higher learning rates. These results suggest that the reduced ability to learn from movement errors during reaching movements in humans with SCI involves abnormalities in the spinocerebellar structures. We argue that this information might help in the rehabilitation of people with SCI.
Collapse
|
39
|
Bakkum A, Gunn SM, Marigold DS. How aging affects visuomotor adaptation and retention in a precision walking paradigm. Sci Rep 2021; 11:789. [PMID: 33437012 PMCID: PMC7804256 DOI: 10.1038/s41598-020-80916-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/28/2020] [Indexed: 01/22/2023] Open
Abstract
Motor learning is a lifelong process. However, age-related changes to musculoskeletal and sensory systems alter the relationship (or mapping) between sensory input and motor output, and thus potentially affect motor learning. Here we asked whether age affects the ability to adapt to and retain a novel visuomotor mapping learned during overground walking. We divided participants into one of three groups (n = 12 each) based on chronological age: a younger-aged group (20–39 years old); a middle-aged group (40–59 years old); and an older-aged group (60–80 years old). Participants learned a new visuomotor mapping, induced by prism lenses, during a precision walking task. We assessed retention one-week later. We did not detect significant effects of age on measures of adaptation or savings (defined as faster relearning). However, we found that older adults demonstrated reduced initial recall of the mapping, reflected by greater foot-placement error during the first adaptation trial one-week later. Additionally, we found that increased age significantly associated with reduced initial recall. Overall, our results suggest that aging does not impair adaptation and that older adults can demonstrate visuomotor savings. However, older adults require some initial context during relearning to recall the appropriate mapping.
Collapse
Affiliation(s)
- Amanda Bakkum
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Shaila M Gunn
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Daniel S Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
40
|
French MA, Morton SM, Reisman DS. Use of explicit processes during a visually guided locomotor learning task predicts 24-h retention after stroke. J Neurophysiol 2021; 125:211-222. [PMID: 33174517 PMCID: PMC8087382 DOI: 10.1152/jn.00340.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023] Open
Abstract
Implicit and explicit processes can occur within a single locomotor learning task. The combination of these learning processes may impact how individuals acquire/retain the task. Because these learning processes rely on distinct neural pathways, neurological conditions may selectively impact the processes that occur, thus, impacting learning and retention. Thus, our purpose was to examine the contribution of implicit and explicit processes during a visually guided walking task and characterize the relationship between explicit processes and performance/retention in stroke survivors and age-matched healthy adults. Twenty chronic stroke survivors and twenty healthy adults participated in a 2-day treadmill study. Day 1 included baseline, acquisition1, catch, acquisition2, and immediate retention phases, and day 2 included 24-h retention. During acquisition phases, subjects learned to take a longer step with one leg through distorted visual feedback. During catch and retention phases, visual feedback was removed and subjects were instructed to walk normally (catch) or how they walked during the acquisition phases (retention). Change in step length from baseline to catch represented implicit processes. Change in step length from catch to the end of acquisition2 represented explicit processes. A mixed ANOVA found no difference in the type of learning between groups (P = 0.74). There was a significant relationship between explicit processes and 24-h retention in stroke survivors (r = 0.47, P = 0.04) but not in healthy adults (r = 0.34, P = 0.15). These results suggest that stroke may not affect the underlying learning mechanisms used during locomotor learning, but that these mechanisms impact how well stroke survivors retain the new walking pattern.NEW & NOTEWORTHY This study found that stroke survivors used implicit and explicit processes similar to age-matched healthy adults during a visually guided locomotion learning task. The amount of explicit processes was related to how well stroke survivors retained the new walking pattern but not to how well they performed during the task. This work illustrates the importance of understanding the underlying learning mechanisms to maximize retention of a newly learned motor behavior.
Collapse
Affiliation(s)
- Margaret A French
- Department of Physical Therapy, University of Delaware, Newark, Delaware
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, Delaware
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, Delaware
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware
| |
Collapse
|
41
|
Adkins TJ, Lee TG. Reward modulates cortical representations of action. Neuroimage 2020; 228:117708. [PMID: 33385555 DOI: 10.1016/j.neuroimage.2020.117708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022] Open
Abstract
People are capable of rapid improvements in performance when they are offered a reward. The neural mechanism by which this performance enhancement occurs remains unclear. We investigated this phenomenon by offering people monetary reward for successful performance in a sequence production task. We found that people performed actions more quickly and accurately when they were offered large reward. Increasing reward magnitude was associated with elevated activity throughout the brain prior to movement. Multivariate patterns of activity in these reward-responsive regions encoded information about the upcoming action. Follow-up analyses provided evidence that action decoding in pre-SMA and other motor planning areas was improved for large reward trials and successful action decoding in SMA was associated with improved performance. These results suggest that reward may enhance performance by enhancing neural representations of action used in motor planning.
Collapse
Affiliation(s)
- Tyler J Adkins
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
42
|
Bernard JA, Nguyen AD, Hausman HK, Maldonado T, Ballard HK, Jackson TB, Eakin SM, Lokshina Y, Goen JRM. Shaky scaffolding: Age differences in cerebellar activation revealed through activation likelihood estimation meta-analysis. Hum Brain Mapp 2020; 41:5255-5281. [PMID: 32936989 PMCID: PMC7670650 DOI: 10.1002/hbm.25191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/27/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Cognitive neuroscience research has provided foundational insights into aging, but has focused primarily on the cerebral cortex. However, the cerebellum is subject to the effects of aging. Given the importance of this structure in the performance of motor and cognitive tasks, cerebellar differences stand to provide critical insights into age differences in behavior. However, our understanding of cerebellar functional activation in aging is limited. Thus, we completed a meta‐analysis of neuroimaging studies across task domains. Unlike in the cortex where an increase in bilateral activation is seen during cognitive task performance with advanced age, there is less overlap in cerebellar activation across tasks in older adults (OAs) relative to young. Conversely, we see an increase in activation overlap in OAs during motor tasks. We propose that this is due to inputs for comparator processing in the context of control theory (cortical and spinal) that may be differentially impacted in aging. These findings advance our understanding of the aging mind and brain.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - An D Nguyen
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hanna K Hausman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Ted Maldonado
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Hannah K Ballard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Sydney M Eakin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Yana Lokshina
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - James R M Goen
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
43
|
Task Feedback Processing Differs Between Young and Older Adults in Visuomotor Rotation Learning Despite Similar Initial Adaptation and Savings. Neuroscience 2020; 451:79-98. [PMID: 33002556 DOI: 10.1016/j.neuroscience.2020.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
Abstract
Ageing has been suggested to affect sensorimotor adaptation by impairing explicit strategy use. Here we recorded electrophysiological (EEG) responses during visuomotor rotation in both young (n = 24) and older adults (n = 25), to investigate the neural processes that underpin putative age-related effects on adaptation. We measured the feedback related negativity (FRN) and the P3 in response to task-feedback, as electrophysiological markers of task error processing and outcome evaluation. The two age groups adapted similarly and showed comparable after effects and savings when re-exposed to the same perturbation several days after the initial session. Older adults, however, had less distinct EEG responses (i.e., reduced FRN amplitudes) to negative and positive task feedback. The P3 did not differ between age groups. Both young and older adults also showed a sustained late positivity following task feedback. Measured at the frontal electrode Fz, this sustained activity was negatively associated with both the amount of voluntary disengagement of explicit strategy and savings. In conclusion, despite preserved task performance, we find clear differences in neural responses to errors in older people, which suggests that there is a fundamental decline in this aspect of sensorimotor brain function with age.
Collapse
|
44
|
Kitchen NM, Miall RC. Adaptation of reach action to a novel force-field is not predicted by acuity of dynamic proprioception in either older or younger adults. Exp Brain Res 2020; 239:557-574. [PMID: 33315127 PMCID: PMC7936968 DOI: 10.1007/s00221-020-05997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Healthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
45
|
Werner S, Hasegawa K, Kanosue K, Strüder HK, Göb T, Vogt T. Martial arts training is related to implicit intermanual transfer of visuomotor adaptation. Eur J Neurosci 2020; 53:1107-1123. [PMID: 33140877 DOI: 10.1111/ejn.15034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 12/01/2022]
Abstract
Recent work identified an explicit and implicit transfer of sensorimotor adaptation with one limb to the other, untrained limb. Here, we pursue the idea that different individual factors contribute differently to the amount of explicit and implicit intermanual transfer. In particular, we tested a group of judo athletes who show enhanced right-hemispheric involvement in motor control and a group of equally trained athletes. After adaptation to a 60° visual rotation, we estimated awareness of the perturbation and transfer to the untrained, non-dominant left hand in two experiments. We measured the total amount of intermanual transfer (explicit plus implicit) by telling the participants to repeat what was learned during adaptation, and the amount of implicit transfer by instructing the participants to refrain from using what was learned and to perform movements as during baseline instead. We found no difference between the total intermanual transfer of judokas and running experts, with mean absolute transfer values of 42.4° and 47.0°. Implicit intermanual transfer was very limited, but larger in judokas than in general sports athletes, with mean values of 5.2° and 1.6°. A multiple linear regression analysis further revealed that total intermanual transfer, which mainly represents the explicit transfer, is related to awareness of the perturbation, while implicit intermanual transfer can be predicted by judo training, amount of total training, speed of adaptation, and handedness scores. The findings suggest that neuronal mechanisms such as hemispheric interactions and functional specialization underlying intermanual transfer of motor learning may be applied according to individual predisposition.
Collapse
Affiliation(s)
- Susen Werner
- Institute of Professional Sport Education and Sport Qualifications, German Sport University, Cologne, Germany.,Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Koki Hasegawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Heiko K Strüder
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Tobias Göb
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Tobias Vogt
- Institute of Professional Sport Education and Sport Qualifications, German Sport University, Cologne, Germany.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
46
|
Rauscher M, Yavari F, Batsikadze G, Ludolph N, Ilg W, Nitsche MA, Timmann D, Steiner KM. Lack of cerebellar tDCS effects on learning of a complex whole body dynamic balance task in middle-aged (50-65 years) adults. Neurol Res Pract 2020; 2:38. [PMID: 33324938 PMCID: PMC7650141 DOI: 10.1186/s42466-020-00085-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cerebellar transcranial direct current stimulation (tDCS) is widely considered as a promising non-invasive tool to foster motor performance and learning in health and disease. The results of previous studies, however, are inconsistent. Our group failed to provide evidence for an effect of cerebellar tDCS on learning of a complex whole body dynamic balance task in young and healthy participants. Ceiling effects in the young study population are one possible explanation for the negative findings. Methods In the present study, we therefore tested 40 middle-aged healthy participants between the ages of 50 to 65 years. Participants received either anodal or sham cerebellar tDCS using a double-blinded study design while performing a balance task on a Lafayette Instrument 16,030 stability platform®. Mean platform angle and mean balance time were assessed as outcome measures. Results Significant learning effects were found in all participants. Balancing performance and learning rate was significantly less in the group of middle-aged adults compared to our previous group of young adults. No significant effects of cerebellar tDCS were observed. Conclusions Our findings are in line with other studies that have failed to prove robust effects of cerebellar tDCS on motor learning. The present findings, however, do not exclude cerebellar tDCS effects. tDCS effects may be more prominent after repeated stimulation, using other stimulus parameters, in patient populations, or in other motor learning tasks. Trial registration Not applicable.
Collapse
Affiliation(s)
- M Rauscher
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - F Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - G Batsikadze
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - N Ludolph
- Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, Eberhard Karls University, Tübingen, Germany
| | - W Ilg
- Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, Eberhard Karls University, Tübingen, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - D Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - K M Steiner
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
47
|
Vachon CM, Modchalingam S, ‘t Hart BM, Henriques DYP. The effect of age on visuomotor learning processes. PLoS One 2020; 15:e0239032. [PMID: 32925937 PMCID: PMC7489529 DOI: 10.1371/journal.pone.0239032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/31/2020] [Indexed: 11/19/2022] Open
Abstract
Knowing where our limbs are in space is essential for moving and for adapting movements to various changes in our environments and bodies. The ability to adapt movements declines with age, and age-related cognitive decline can explain a decreased ability to adopt and deploy explicit, cognitive strategies in motor learning. Age-related sensory decline could also lead to a reduced fidelity of sensory position signals and error signals, each of which can affect implicit motor adaptation. Here we investigate two estimates of limb position; one based on proprioception, the other on predicted sensory consequences of movements. Each is considered a measure of an implicit adaptation process and may be affected by both age and cognitive strategies. Both older (n = 38) and younger (n = 42) adults adapted to a 30° visuomotor rotation in a centre-out reaching task. We make an explicit, cognitive strategy available to half of participants in each age group with a detailed instruction. After training, we first quantify the explicit learning elicited by instruction. Instructed older adults initially use the provided strategy slightly less than younger adults but show a similar ability to evoke it after training. This indicates that cognitive explanations for age-related decline in motor learning are limited. In contrast, training induced much larger shifts of state estimates of hand location in older adults compared to younger adults. This is not modulated by strategy instructions, and appears driven by recalibrated proprioception, which is almost twice as large in older adults, while predictions might not be updated in older adults. This means that in healthy aging, some implicit processes may be compensating for other changes to maintain motor capabilities, while others also show age-related decline (data: https://osf.io/qzhmy).
Collapse
Affiliation(s)
- Chad Michael Vachon
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Shanaathanan Modchalingam
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | | - Denise Y. P. Henriques
- Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Jackson TB, Maldonado T, Eakin SM, Orr JM, Bernard JA. Cerebellar and prefrontal-cortical engagement during higher-order rule learning in older adulthood. Neuropsychologia 2020; 148:107620. [PMID: 32920030 DOI: 10.1016/j.neuropsychologia.2020.107620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Abstract
To date most aging research has focused on cortical systems and networks, ignoring the cerebellum which has been implicated in both cognitive and motor function. Critically, older adults (OA) show marked differences in cerebellar volume and functional networks, suggesting it may play a key role in the behavioral differences observed in advanced age. OA may be less able to recruit cerebellar resources due to network and structural differences. Here, 26 young adults (YA) and 25 OA performed a second-order learning task, known to activate the cerebellum in the fMRI environment. Behavioral results indicated that YA performed significantly better and learned more quickly compared to OA. Functional imaging detailed robust parietal and cerebellar activity during learning (compared to control) blocks within each group. OA showed increased activity (relative to YA) in the left inferior parietal lobe in response to instruction cues during learning (compared to control); whereas, YA showed increased activity (relative to OA) in the left anterior cingulate to feedback cues during learning, potentially explaining age-related performance differences. Visual interpretation of effect size maps showed more bilateral posterior cerebellar activation in OA compared to YA during learning blocks, but early learning showed widespread cerebellar activation in YA compared to OA. There were qualitatively large age-related differences in cerebellar recruitment in terms of effect sizes, yet no statistical difference. These findings serve to further elucidate age-related differences and similarities in cerebellar and cortical brain function and implicate the cerebellum and its networks as regions of interest in aging research.
Collapse
Affiliation(s)
- T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA.
| | - Ted Maldonado
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Sydney M Eakin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Joseph M Orr
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, USA
| |
Collapse
|
49
|
Vandevoorde K, Orban de Xivry JJ. Why is the explicit component of motor adaptation limited in elderly adults? J Neurophysiol 2020; 124:152-167. [PMID: 32459553 DOI: 10.1152/jn.00659.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cognitive component of motor adaptation declines with aging. Yet, in other motor tasks, older adults appear to rely on cognition to improve their motor performance. It is unknown why older adults are not able to do so in motor adaptation. To solve this apparent contradiction, we tested the possibility that older adults require more cognitive resources in unperturbed reaching compared with younger adults, which leaves fewer resources available for the cognitive aspect of motor adaptation. Two cognitive-motor dual-task experiments were designed to test this. The cognitive load of unperturbed reaching was assessed via dual-task costs during the baseline period of visuomotor rotation experiments, which provided us with an estimation of the amount of cognitive resources used during unperturbed reaching. However, we did not observe a link between dual-task costs and explicit adaptation in both experiments and, therefore, failed to confirm this hypothesis. Instead, we observed that explicit adaptation was mainly associated with visuospatial working memory capacity. This suggests that visuospatial working memory of an individual might be linked to the extent of explicit adaptation for young and older adults.NEW & NOTEWORTHY Our work addresses the contradiction between the age-related increase in the contribution of cognition for the execution of motor tasks and the age-related decrease in the cognitive component of motor adaptation. We predicted that elderly adults would need more cognitive resources for reaches and would, therefore, not have enough cognitive resources available for adaptation. Rather, we observed that visuospatial abilities could better explain the amount of cognition used by our participants for motor adaptation.
Collapse
Affiliation(s)
- Koenraad Vandevoorde
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Song Y, Adams S, Legon W. Intermittent theta burst stimulation of the right dorsolateral prefrontal cortex accelerates visuomotor adaptation with delayed feedback. Cortex 2020; 129:376-389. [PMID: 32574841 DOI: 10.1016/j.cortex.2020.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023]
Abstract
Implicit adaptation to visual rotations during fast reaching is a well-recognized function of the cerebellum. However, there is still no well-established understanding of the neural underpinnings that support explicit processes during visuomotor adaptation. We tested the causative involvement of dorsolateral prefrontal cortex (DLPFC) in an adaptive reaching task by employing excitatory intermittent theta burst stimulation (iTBS) to left or right DLPFC during learning to adapt to a sudden large visual rotation with delayed terminal feedback. Spontaneous resting-state electroencephalography (EEG) signals were recorded before and immediately after the administration of iTBS. iTBS to right DLPFC, compared to left DLPFC or control, induced faster adaptation to the rotation and had a greater adjustment of aiming directions in early adaptation trials. Moreover, resting-state functional connectivity of EEG of the frontal cortex after iTBS predicted subsequent adaptation rate. These results suggest a critical role of right DLPFC in supporting explicit learning in the adaptive reaching task.
Collapse
Affiliation(s)
- Yanlong Song
- Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States.
| | - Sarah Adams
- Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Wynn Legon
- Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|