1
|
Sauter AE, Zabicki A, Schüller T, Baldermann JC, Fink GR, Mengotti P, Vossel S. Response and conflict expectations shape motor responses interactively. Exp Brain Res 2024; 242:2599-2612. [PMID: 39316096 DOI: 10.1007/s00221-024-06920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Efficient responses in dynamic environments rely on a combination of readiness and flexibility, regulated by anticipatory and online response control mechanisms. The latter are required when a motor response needs to be reprogrammed or when flanker stimuli induce response conflict and they are crucially modulated by anticipatory signals such as response and conflict expectations. The mutual influence and interplay of these control processes remain to be elucidated. Our behavioral study employed a novel combined response cueing/conflict task designed to test for interactive effects of response reprogramming and conflict resolution and their modulation by expectations. To this end, valid and invalid response cues were combined with congruent and incongruent target flankers. Expectations were modulated by systematically manipulating the proportions of valid versus invalid cues and congruent versus incongruent flanker stimuli in different task blocks. Reaction time and accuracy were assessed in thirty-one healthy volunteers. The results revealed response reprogramming and conflict resolution interactions for both behavioral measures, modulated by response and conflict expectations. Accuracy decreased disproportionally when invalidly cued targets with incongruent flankers were least expected. These findings support coordinated and partially overlapping anticipatory and online response control mechanisms within motor-cognitive networks.
Collapse
Affiliation(s)
- Annika E Sauter
- Institute of Neuroscience & Medicine (INM-3), Cognitive Neuroscience, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
- Department of Psychology, Faculty of Human Sciences, University of Cologne, 50923, Cologne, Germany.
| | - Adam Zabicki
- Institute of Neuroscience & Medicine (INM-3), Cognitive Neuroscience, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
- Department of Psychology, Faculty of Human Sciences, University of Cologne, 50923, Cologne, Germany
| | - Thomas Schüller
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center, University of Freiburg, 79104, Freiburg, Germany
| | - Gereon R Fink
- Institute of Neuroscience & Medicine (INM-3), Cognitive Neuroscience, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Paola Mengotti
- Institute of Neuroscience & Medicine (INM-3), Cognitive Neuroscience, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Simone Vossel
- Institute of Neuroscience & Medicine (INM-3), Cognitive Neuroscience, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
- Department of Psychology, Faculty of Human Sciences, University of Cologne, 50923, Cologne, Germany
| |
Collapse
|
2
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Arif Y, Song RW, Springer SD, John JA, Embury CM, Killanin AD, Son JJ, Okelberry HJ, McDonald KM, Picci G, Wilson TW. High-definition transcranial direct current stimulation of the parietal cortices modulates the neural dynamics underlying verbal working memory. Hum Brain Mapp 2024; 45:e70001. [PMID: 39169661 PMCID: PMC11339318 DOI: 10.1002/hbm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
Verbal working memory (vWM) is an essential limited-capacity cognitive system that spans the fronto-parietal network and utilizes the subprocesses of encoding, maintenance, and retrieval. With the recent widespread use of noninvasive brain stimulation techniques, multiple recent studies have examined whether such stimulation may enhance cognitive abilities such as vWM, but the findings to date remain unclear in terms of both behavior and critical brain regions. In the current study, we applied high-definition direct current stimulation to the left and right parietal cortices of 39 healthy adults in three separate sessions (left anodal, right anodal, and sham). Following stimulation, participants completed a vWM task during high-density magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer and whole-brain ANOVAs were used to identify the specific neuromodulatory effects of the stimulation conditions on neural responses serving distinct phases of vWM. We found that right stimulation had a faciliatory effect relative to left stimulation and sham on theta oscillations during encoding in the right inferior frontal, while the opposite pattern was observed for left supramarginal regions. Stimulation also had a faciliatory effect on theta in occipital regions and alpha in temporal regions regardless of the laterality of stimulation. In summary, our data suggest that parietal HD-tDCS both facilitates and interferes with neural responses underlying both the encoding and maintenance phases of vWM. Future studies are warranted to determine whether specific tDCS parameters can be tuned to accentuate the facilitation responses and attenuate the interfering aspects.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Richard W. Song
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Vanderbilt UniversityNashvilleTennesseeUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Christine M. Embury
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jake J. Son
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Kellen M. McDonald
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
4
|
Quoilin C, Chaise F, Duque J, de Timary P. Relationship between transcranial magnetic stimulation markers of motor control and clinical recovery in obsessive compulsive disorder/Gilles de la Tourette syndrome: a proof of concept case study. Front Psychiatry 2024; 15:1307344. [PMID: 38304284 PMCID: PMC10832049 DOI: 10.3389/fpsyt.2024.1307344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Background Obsessive compulsive disorder (OCD) and Gilles de la Tourette syndrome (GTS) are neurodevelopmental disorders characterized by difficulties in controlling intrusive thoughts (obsessions) and undesired actions (tics), respectively. Both conditions have been associated with abnormal inhibition but a tangible deficit of inhibitory control abilities is controversial in GTS. Methods Here, we examined a 25 years-old male patient with severe OCD symptoms and a mild form of GTS, where impairments in motor control were central. Transcranial magnetic stimulation (TMS) was applied over the primary motor cortex (M1) to elicit motor-evoked potentials (MEPs) during four experimental sessions, allowing us to assess the excitability of motor intracortical circuitry at rest as well as the degree of MEP suppression during action preparation, a phenomenon thought to regulate movement initiation. Results When tested for the first time, the patient presented a decent level of MEP suppression during action preparation, but he exhibited a lack of intracortical inhibition at rest, as evidenced by reduced short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI). Interestingly, the patient's symptomatology drastically improved over the course of the sessions (reduced obsessions and tics), coinciding with feedback given on his good motor control abilities. These changes were reflected in the TMS measurements, with a significant strengthening of intracortical inhibition (SICI and LICI more pronounced than previously) and a more selective tuning of MEPs during action preparation; MEPs became even more suppressed, or selectively facilitated depending on the behavioral condition in which they we probed. Conclusion This study highlights the importance of better understanding motor inhibitory mechanisms in neurodevelopmental disorders and suggests a biofeedback approach as a potential novel treatment.
Collapse
Affiliation(s)
- Caroline Quoilin
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Fostine Chaise
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Adult Psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
5
|
Valentinova K, Acuña MA, Ntamati NR, Nevian NE, Nevian T. An amygdala-to-cingulate cortex circuit for conflicting choices in chronic pain. Cell Rep 2023; 42:113125. [PMID: 37733589 PMCID: PMC10636611 DOI: 10.1016/j.celrep.2023.113125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Chronic pain is a complex experience with multifaceted behavioral manifestations, often leading to pain avoidance at the expense of reward approach. How pain facilitates avoidance in situations with mixed outcomes is unknown. The anterior cingulate cortex (ACC) plays a key role in pain processing and in value-based decision-making. Distinct ACC inputs inform about the sensory and emotional quality of pain. However, whether specific ACC circuits underlie pathological conflict assessment in pain remains underexplored. Here, we demonstrate that mice with chronic pain favor cold avoidance rather than reward approach in a conflicting task. This occurs along with selective strengthening of basolateral amygdala inputs onto ACC layer 2/3 pyramidal neurons. The amygdala-cingulate projection is necessary and sufficient for the conflicting cold avoidance. Further, low-frequency stimulation of this pathway restores AMPA receptor function and reduces avoidance in pain mice. Our findings provide insights into the circuits and mechanisms underlying cognitive aspects of pain and offer potential targets for treatment.
Collapse
Affiliation(s)
- Kristina Valentinova
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| | - Mario A Acuña
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Niels R Ntamati
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Natalie E Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| |
Collapse
|
6
|
Muralidharan V, Aron AR, Cohen MX, Schmidt R. Two modes of midfrontal theta suggest a role in conflict and error processing. Neuroimage 2023; 273:120107. [PMID: 37059155 DOI: 10.1016/j.neuroimage.2023.120107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023] Open
Abstract
Midfrontal theta increases during scenarios when conflicts are successfully resolved. Often considered a generic signal of cognitive control, its temporal nature has hardly been investigated. Using advanced spatiotemporal techniques, we uncover that midfrontal theta occurs as a transient oscillation or "event" at single trials with their timing reflecting computationally distinct modes. Single-trial analyses of electrophysiological data from participants performing the Flanker (N = 24) and Simon task (N = 15) were used to probe the relationship between theta and metrics of stimulus-response conflict. We specifically investigated "partial errors", in which a small burst of muscle activity in the incorrect response effector occurred, quickly followed by a correction. We found that transient theta events in single trials could be categorized into two distinct theta modes based on their relative timing to different task events. Theta events from the first mode occurred briefly after the task stimulus and might reflect conflict-related processing of the stimulus. In contrast, theta events from the second mode were more likely to occur around the time partial errors were committed, suggesting they were elicited by a potential upcoming error. Importantly, in trials in which a full error was committed, this "error-related theta" occurred too late with respect to the onset of the erroneous muscle response, supporting the role of theta also in error correction. We conclude that different modes of transient midfrontal theta can be adopted in single trials not only to process stimulus-response conflict, but also to correct erroneous responses.
Collapse
Affiliation(s)
- Vignesh Muralidharan
- Department of Psychology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA; Center for Brain Sciences and Applications, School of Artificial Intelligence and Data Sciences, Indian Institute of Technology Jodhpur, India.
| | - Adam R Aron
- Department of Psychology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Michael X Cohen
- Radboud University Medical Centre, Nijmegen, Netherlands, and Donders Centre for Neuroscience
| | - Robert Schmidt
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
7
|
Ye Z, Ding J, Tu Y, Zhang Q, Chen S, Yu H, Sun Q, Hua T. Suppression of top-down influence decreases both behavioral and V1 neuronal response sensitivity to stimulus orientations in cats. Front Behav Neurosci 2023; 17:1061980. [PMID: 36844652 PMCID: PMC9944033 DOI: 10.3389/fnbeh.2023.1061980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
How top-down influence affects behavioral detection of visual signals and neuronal response sensitivity in the primary visual cortex (V1) remains poorly understood. This study examined both behavioral performance in stimulus orientation identification and neuronal response sensitivity to stimulus orientations in the V1 of cat before and after top-down influence of area 7 (A7) was modulated by non-invasive transcranial direct current stimulation (tDCS). Our results showed that cathode (c) but not sham (s) tDCS in A7 significantly increased the behavioral threshold in identifying stimulus orientation difference, which effect recovered after the tDCS effect vanished. Consistently, c-tDCS but not s-tDCS in A7 significantly decreased the response selectivity bias of V1 neurons for stimulus orientations, which effect could recover after withdrawal of the tDCS effect. Further analysis showed that c-tDCS induced reduction of V1 neurons in response selectivity was not resulted from alterations of neuronal preferred orientation, nor of spontaneous activity. Instead, c-tDCS in A7 significantly lowered the visually-evoked response, especially the maximum response of V1 neurons, which caused a decrease in response selectivity and signal-to-noise ratio. By contrast, s-tDCS exerted no significant effect on the responses of V1 neurons. These results indicate that top-down influence of A7 may enhance behavioral identification of stimulus orientations by increasing neuronal visually-evoked response and response selectivity in the V1.
Collapse
Affiliation(s)
- Zheng Ye
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Ding
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China,School of Basic Medical, Wannan Medical College, Wuhu, Anhui, China
| | - Yanni Tu
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qiuyu Zhang
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shunshun Chen
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hao Yu
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qingyan Sun
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Tianmiao Hua
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China,*Correspondence: Tianmiao Hua,
| |
Collapse
|
8
|
Ribot B, de Rugy A, Langbour N, Duron A, Goillandeau M, Michelet T. Competition, Conflict and Change of Mind: A Role of GABAergic Inhibition in the Primary Motor Cortex. Front Hum Neurosci 2022; 15:736732. [PMID: 35058762 PMCID: PMC8763692 DOI: 10.3389/fnhum.2021.736732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Deciding between different voluntary movements implies a continuous control of the competition between potential actions. Many theories postulate a leading role of prefrontal cortices in this executive function, but strong evidence exists that a motor region like the primary motor cortex (M1) is also involved, possibly via inhibitory mechanisms. This was already shown during the pre-movement decision period, but not after movement onset. For this pilot experiment we designed a new task compatible with the dynamics of post-onset control to study the silent period (SP) duration, a pause in electromyographic activity after single-pulse transcranial magnetic stimulation that reflects inhibitory mechanisms. A careful analysis of the SP during the ongoing movement indicates a gradual increase in inhibitory mechanisms with the level of competition, consistent with an increase in mutual inhibition between alternative movement options. However, we also observed a decreased SP duration for high-competition trials associated with change-of-mind inflections in their trajectories. Our results suggest a new post-onset adaptive process that consists in a transient reduction of GABAergic inhibition within M1 for highly conflicting situations. We propose that this reduced inhibition softens the competition between concurrent motor options, thereby favoring response vacillation, an adaptive strategy that proved successful at improving behavioral performance.
Collapse
Affiliation(s)
- Bastien Ribot
- CNRS, IMN, UMR 5293, University of Bordeaux, Bordeaux, France
| | - Aymar de Rugy
- CNRS, EPHE, INCIA, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Nicolas Langbour
- Unité de Recherche Clinique Intersectorielle en Psychiatrie à Vocation Régionale du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Anne Duron
- Faculté de Médecine, Université de Paris, Paris, France
| | | | - Thomas Michelet
- CNRS, EPHE, INCIA, UMR 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Fujiyama H, Tan J, Puri R, Hinder MR. Influence of tDCS over right inferior frontal gyrus and pre-supplementary motor area on perceptual decision-making and response inhibition: A healthy ageing perspective. Neurobiol Aging 2021; 109:11-21. [PMID: 34634749 DOI: 10.1016/j.neurobiolaging.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
A wide body of literature suggests that transcranial direct current stimulation (tDCS) administered over the prefrontal cortex can improve executive function - including decision-making and inhibitory control - in healthy young adults. However, the effects of tDCS in older adults are largely unknown. Here, using a double-blind, sham-controlled approach, changes in a combined perceptual decision-making and inhibitory control task were assessed before and after the application of tDCS (1 mA, 20 minute) targeting the right inferior frontal gyrus (rIFG) or pre-supplementary motor area (preSMA) in 42 young (18-34 years) and 41 older (60-80 years) healthy adults. Compared to sham stimulation, anodal tDCS over the preSMA improved decision-making speed for both age groups. Furthermore, the inhibitory control performance of older and younger adults was improved by preSMA and rIFG stimulation, respectively. This study provides evidence that tDCS can improve both perceptual decision-making and inhibitory control in healthy older adults, with the causal role of the preSMA and rIFG regions in cognitive control appearing to vary as a function of healthy ageing.
Collapse
Affiliation(s)
- Hakuei Fujiyama
- Psychology, Murdoch University, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.
| | - Jane Tan
- Action and Cognition Laboratory, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Rohan Puri
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
10
|
Zhang Z, Yuan Q, Liu Z, Zhang M, Wu J, Lu C, Ding G, Guo T. The cortical organization of writing sequence: evidence from observing Chinese characters in motion. Brain Struct Funct 2021; 226:1627-1639. [DOI: 10.1007/s00429-021-02276-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
|
11
|
Out with the Old and in with the New: the Contribution of Prefrontal and Cerebellar Areas to Backward Inhibition. THE CEREBELLUM 2021; 19:426-436. [PMID: 32140845 DOI: 10.1007/s12311-020-01115-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The inhibitory mechanism named backward inhibition (BI) counteracts interference of previous tasks supporting task switching. For instance, if task set A is inhibited when switching to task B, then it should take longer to immediately return to task set A (as occurring in an ABA sequence), as compared to a task set that has not been just inhibited (as occurring in a CBA sequence), because extra time will be needed to overcome the inhibition of task set A.The evidenced prefrontal and cerebellar role in inhibitory control suggests their involvement even in BI. Here, for the first time, we modulated the excitability of multiple brain sites (right presupplementary motor area (pre-SMA), left and right cerebellar hemispheres) through continuous theta burst stimulation (cTBS) in a valuable sham-controlled order-balanced within-subject experimental design in healthy individuals performing two domain-selective (verbal and spatial) task-switching paradigms. Verbal BI was abolished by prefrontal or cerebellar stimulations through opposite alterations of the basal pattern: cTBS on pre-SMA increased CBA reaction times, disclosing the current prefrontal inhibition of any interfering old task. Conversely, cerebellar cTBS decreased ABA reaction times, disclosing the current cerebellar recognition of sequences in which it is necessary to overcome previously inhibited events.
Collapse
|
12
|
Pan D, Pan H, Zhang S, Yu H, Ding J, Ye Z, Hua T. Top-down influence affects the response adaptation of V1 neurons in cats. Brain Res Bull 2020; 167:89-98. [PMID: 33333174 DOI: 10.1016/j.brainresbull.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
The visual system lowers its perceptual sensitivity to a prolonged presentation of the same visual signal. This brain plasticity, called visual adaptation, is generally attributed to the response adaptation of neurons in the visual cortex. Although well-studied in the neurons of the primary visual cortex (V1), the contribution of high-level visual cortical regions to the response adaptation of V1 neurons is unclear. In the present study, we measured the response adaptation strength of V1 neurons before and after the top-down influence of the area 21a (A21a), a higher-order visual cortex homologous to the primate V4 area, was modulated with a noninvasive tool of transcranial direct current stimulation (tDCS). Our results showed that the response adaptation of V1 neurons enhanced significantly after applying anode (a-) tDCS in A21a when compared with that before a-tDCS, whereas the response adaptation of V1 neurons weakened after cathode (c-) tDCS relative to before c-tDCS in A21a. By contrast, sham (s-) tDCS in A21a had no significant impact on the response adaptation of V1 neurons. Further analysis indicated that a-tDCS in A21a significantly increased both the initial response (IR) of V1 neurons to the first several (five) trails of visual stimulation and the plateau response (PR) to the prolonged visual stimulation; the increase in PR was lower than in IR, which caused an enhancement in response adaptation. Conversely, c-tDCS significantly decreased both IR and PR of V1 neurons; the reduction in PR was smaller than in IR, which resulted in a weakness in response adaptation. Furthermore, the tDCS-induced changes of V1 neurons in response and response adaptation could recover after tDCS effect vanished, but did not occur after the neuronal activity in A21a was silenced by electrolytic lesions. These results suggest that the top-down influence of A21a may alter the response adaptation of V1 neurons through activation of local inhibitory circuitry, which enhances network inhibition in the V1 area upon an increased top-down input, weakens inhibition upon a decreased top-down input, and thus maintains homeostasis of V1 neurons in response to the long-presenting visual signals.
Collapse
Affiliation(s)
- Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
13
|
Emanuel A, Herszage J, Sharon H, Liberman N, Censor N. Inhibition of the supplementary motor area affects distribution of effort over time. Cortex 2020; 134:134-144. [PMID: 33278681 DOI: 10.1016/j.cortex.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
In tasks that extend over time, people tend to exert much effort at the beginning and the end, but not in the middle, exhibiting the stuck-in-the-middle pattern (STIM). To date, little is known about the neural mechanisms underlying this effect. As the supplementary motor area (SMA) was previously implicated in coding prospective task-demands, we tested its role in producing the STIM pattern. Participants first underwent an SMA-localization session in which they tapped their fingers repeatedly while fMRI-scanned. In the next two sessions, before playing a 10-min computer game that measured effort-engagement, participants underwent inhibitory 1-Hz repetitive transcranial magnetic stimulation over the SMA, or over a control precuneus location. Three control experiments and a pretest confirmed that this task yields a STIM, which can be eliminated when the task lacks a salient end-point, or is too short. The results of the main experiment showed a more pronounced STIM following inhibitory SMA stimulation compared to control. A control analysis showed that overall level of effort was similar in both conditions, rendering alternative accounts in terms of motor inhibition unlikely. These findings are consistent with the possibility that the SMA may play a role in moment-to-moment coding of effort value, or in related sub-processes, which can cause effort to be distributed more equally over the course of a task.
Collapse
Affiliation(s)
- Aviv Emanuel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel
| | - Jasmine Herszage
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Haggai Sharon
- Center for Brain Functions and Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nira Liberman
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Censor
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Xia X, Wang D, Song Y, Zhu M, Li Y, Chen R, Zhang J. Involvement of the primary motor cortex in the early processing stage of the affective stimulus-response compatibility effect in a manikin task. Neuroimage 2020; 225:117485. [PMID: 33132186 DOI: 10.1016/j.neuroimage.2020.117485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022] Open
Abstract
Compatible (positive approaching and negative avoiding) and incompatible (positive avoiding and negative approaching) behavior are of great significance for biological adaptation and survival. Previous research has found that reaction times of compatible behavior are shorter than the incompatible behavior, which is termed the stimulus-response compatibility (SRC) effect. However, the underlying neurophysiological mechanisms of the SRC effect applied to affective stimuli is still unclear. Here, we investigated preparatory activities in both the left and right primary motor cortex (M1) before the execution of an approaching-avoiding behavior using the right index finger in a manikin task based on self-identity. The results showed significantly shorter reaction times for compatible than incompatible behavior. Most importantly, motor-evoked potential (MEP) amplitudes from left M1 stimulation were significantly higher during compatible behavior than incompatible behavior at 150 and 200 ms after stimulus presentation, whereas the reversed was observed for right M1 stimulation with lower MEP amplitude in compatible compared to incompatible behavior at 150 ms. The current findings revealed the compatibility effect at both behavioral and neurophysiological levels, indicating that the affective SRC effect occurs early in the motor cortices during stimulus processing, and MEP modulation at this early processing stage could be a physiological marker of the affective SRC effect.
Collapse
Affiliation(s)
- Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Dandan Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuyu Song
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Mengyan Zhu
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yansong Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
15
|
Willacker L, Roccato M, Can BN, Dieterich M, Taylor PCJ. Reducing variability of perceptual decision making with offline theta-burst TMS of dorsal medial frontal cortex. Brain Stimul 2020; 13:1689-1696. [PMID: 33035723 DOI: 10.1016/j.brs.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Recent evidence suggests that the dorsal medial frontal cortex (dMFC) may make an important contribution to perceptual decision-making, and not only to motor control. OBJECTIVE/HYPOTHESIS By fitting psychometric functions to behavioural data after TMS we tested whether the dMFC is critical specifically for the precision and/or bias of perceptual judgements. Additionally we aimed to disentangle potential roles of the dMFC in dealing with perceptual versus response switching. METHODS A subjective visual vertical task (SVV) was used in which participants weight visual (and other, e.g., vestibular) information to establish whether a line is oriented vertically. To ensure a high perceptual demand (putatively necessary to demonstrate a dMFC involvement) SVV lines were presented inside pop-out targets within a visual search array. Distinct features of perceptual performance were analysed before as compared to following theta-burst TMS stimulation of the dMFC, a control site, or no stimulation, in three groups, each of 20 healthy participants. RESULTS dMFC stimulation improved the precision of verticality judgments. Moreover, dMFC stimulation improved accuracy, selectively when response switches occurred with perceptual repeats. CONCLUSION These findings point to a causal role of the dMFC in establishing the precision of perceptual decision making, demonstrably dissociable from an additional role in motor control in attentionally demanding contexts.
Collapse
Affiliation(s)
- Lina Willacker
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, D-81377, München, Germany; German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, D-81377, München, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University München, D-82152, Planegg, Germany.
| | - Marco Roccato
- Department of General Psychology, University of Padova, I- 35131, Padova, Italy.
| | - Beril Nisa Can
- Department of Psychology, Ludwig-Maximilians-Universität München, D-80802, München, Germany.
| | - Marianne Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, D-81377, München, Germany; German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, D-81377, München, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University München, D-82152, Planegg, Germany; Synergy - Munich Cluster for Systems Neurology, Munich, D-81377, München, Germany.
| | - Paul C J Taylor
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, D-81377, München, Germany; German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, D-81377, München, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University München, D-82152, Planegg, Germany; Department of Psychology, Ludwig-Maximilians-Universität München, D-80802, München, Germany; Faculty of Philosophy and Philosophy of Science, Ludwig-Maximilians-Universität München, München, Germany; Munich Center for Neurosciences, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
16
|
Quoilin C, Dricot L, Genon S, de Timary P, Duque J. Neural bases of inhibitory control: Combining transcranial magnetic stimulation and magnetic resonance imaging in alcohol-use disorder patients. Neuroimage 2020; 224:117435. [PMID: 33039622 DOI: 10.1016/j.neuroimage.2020.117435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022] Open
Abstract
Inhibitory control underlies the ability to inhibit inappropriate responses and involves processes that suppress motor excitability. Such motor modulatory effect has been largely described during action preparation but very little is known about the neural circuit responsible for its implementation. Here, we addressed this point by studying the degree to which the extent of preparatory suppression relates to brain morphometry. We investigated this relationship in patients suffering from severe alcohol use disorder (AUD) because this population displays an inconsistent level of preparatory suppression and major structural brain damage, making it a suitable sample to measure such link. To do so, 45 detoxified patients underwent a structural magnetic resonance imaging (MRI) and performed a transcranial magnetic stimulation (TMS) experiment, in which the degree of preparatory suppression was quantified. Besides, behavioral inhibition and trait impulsivity were evaluated in all participants. Overall, whole-brain analyses revealed that a weaker preparatory suppression was associated with a decrease in cortical thickness of a medial prefrontal cluster, encompassing parts of the anterior cingulate cortex and superior-frontal gyrus. In addition, a negative association was observed between the thickness of the supplementary area (SMA)/pre-SMA and behavioral inhibition abilities. Finally, we did not find any significant correlation between preparatory suppression, behavioral inhibition and trait impulsivity, indicating that they represent different facets of inhibitory control. Altogether, the current study provides important insight on the neural regions underlying preparatory suppression and allows highlighting that the excitability of the motor system represents a valuable read-out of upstream cognitive processes.
Collapse
Affiliation(s)
- Caroline Quoilin
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium.
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Jülich Forschungszentrum, Germany
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium; Department of adult psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium
| |
Collapse
|
17
|
Wang L, Chang W, Krebs RM, Boehler CN, Theeuwes J, Zhou X. Neural Dynamics of Reward-Induced Response Activation and Inhibition. Cereb Cortex 2020; 29:3961-3976. [PMID: 30365036 DOI: 10.1093/cercor/bhy275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 11/14/2022] Open
Abstract
Reward-predictive stimuli can increase an automatic response tendency, which needs to be counteracted by effortful response inhibition when this tendency is inappropriate for the current task. Here we investigated how the human brain implements this dynamic process by adopting a reward-modulated Simon task while acquiring EEG and fMRI data in separate sessions. In the Simon task, a lateral target stimulus triggers an automatic response tendency of the spatially corresponding hand, which needs to be overcome if the activated hand is opposite to what the task requires, thereby delaying the response. We associated high or low reward with different targets, the location of which could be congruent or incongruent with the correct response hand. High-reward targets elicited larger Simon effects than low-reward targets, suggesting an increase in the automatic response tendency induced by the stimulus location. This tendency was accompanied by modulations of the lateralized readiness potential over the motor cortex, and was inhibited soon after if the high-reward targets were incongruent with the correct response hand. Moreover, this process was accompanied by enhanced theta oscillations in medial frontal cortex and enhanced activity in a frontobasal ganglia network. With dynamical causal modeling, we further demonstrated that the connection from presupplementary motor area (pre-SMA) to right inferior frontal cortex (rIFC) played a crucial role in modulating the reward-modulated response inhibition. Our results support a dynamic neural model of reward-induced response activation and inhibition, and shed light on the neural communication between reward and cognitive control in generating adaptive behaviors.
Collapse
Affiliation(s)
- Lihui Wang
- School of Psychology and Cognitive Sciences, Peking University, Beijing, China.,Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Experimental Psychology, Institute of Psychology II, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Wenshuo Chang
- School of Psychology and Cognitive Sciences, Peking University, Beijing, China
| | - Ruth M Krebs
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent, Belgium
| | - C Nico Boehler
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent, Belgium
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam, The Netherlands.,Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, The Netherlands
| | - Xiaolin Zhou
- School of Psychology and Cognitive Sciences, Peking University, Beijing, China.,Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.,Beijing Laboratory of Behaviour and Mental Health, Peking University, Beijing, China.,Institute of Psychological and Brain Sciences, Zhejiang Normal University, Zhejiang, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
18
|
Mückschel M, Ziemssen T, Beste C. Properties of lower level processing modulate the actions of the norepinephrine system during response inhibition. Biol Psychol 2020; 152:107862. [PMID: 32032625 DOI: 10.1016/j.biopsycho.2020.107862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/29/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
We ask whether actions of the norepinephrine (NE) system during response inhibition are affected by properties of lower level sensory stimulus processing. We used a somato-sensory Go/Nogo task and combined ERP recordings with pupil diameter recordings as an index of NE system activity. The Go/Nogo task was designed to achieve processing of tactile stimuli predominantly over primary somatosensory (SI) and secondary somatosensory (SII) areas. The data show that response inhibition was better when stimuli were processed via SII, compared to SI areas. This was reflected by variations in the Nogo-N2/P3 associated with anterior cingulate structures. Correlations with the pupil diameter data, indicting modulations of the NE system during inhibitory control processes, were only evident when SI sensory areas were involved. These dissociable modulatory effects were associated with activations in the superior frontal gyrus. Actions of the NE system during response inhibition are modulated by properties of lower level processing.
Collapse
Affiliation(s)
- Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; MS Centre Dresden, Centre of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, TU Dresden, Germany
| | - Tjalf Ziemssen
- MS Centre Dresden, Centre of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
19
|
Tuning the Corticospinal System: How Distributed Brain Circuits Shape Human Actions. Neuroscientist 2020; 26:359-379. [DOI: 10.1177/1073858419896751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interactive behaviors rely on the operation of several processes allowing the control of actions, including their selection, withholding, and cancellation. The corticospinal system provides a unique route through which multiple brain circuits can exert control over bodily motor acts. In humans, the influence of these modulatory circuits on the corticospinal system can be probed using various transcranial magnetic stimulation (TMS) protocols. Here, we review neural data from TMS studies at the basis of our current understanding of how diverse pathways—including intra-cortical, trans-cortical, and subcortico-cortical circuits—contribute to action control by tuning the activity of the corticospinal system. Critically, when doing so, we point out important caveats in the field that arise from the fact that these circuits, and their impact on the corticospinal system, have not been considered equivalently for action selection, withholding, and cancellation. This has led to the misleading view that some circuits or regions are specialized in specific control processes and that they produce particular modulatory changes in corticospinal excitability (e.g., generic vs. specific modulation of corticospinal excitability). Hence, we point to the need for more transversal research approaches in the field of action control.
Collapse
|
20
|
Pineda-Pardo JA, Obeso I, Guida P, Dileone M, Strange BA, Obeso JA, Oliviero A, Foffani G. Static magnetic field stimulation of the supplementary motor area modulates resting-state activity and motor behavior. Commun Biol 2019; 2:397. [PMID: 31701026 PMCID: PMC6823375 DOI: 10.1038/s42003-019-0643-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Focal application of a strong static magnetic field over the human scalp induces measurable local changes in brain function. Whether it also induces distant effects across the brain and how these local and distant effects collectively affect motor behavior remains unclear. Here we applied transcranial static magnetic field stimulation (tSMS) over the supplementary motor area (SMA) in healthy subjects. At a behavioral level, tSMS increased the time to initiate movement while decreasing errors in choice reaction-time tasks. At a functional level, tSMS increased SMA resting-state fMRI activity and bilateral functional connectivity between the SMA and both the paracentral lobule and the lateral frontotemporal cortex, including the inferior frontal gyrus. These results suggest that tSMS over the SMA can induce behavioral aftereffects associated with modulation of both local and distant functionally-connected cortical circuits involved in the control of speed-accuracy tradeoffs, thus offering a promising protocol for cognitive and clinical research.
Collapse
Affiliation(s)
- José A. Pineda-Pardo
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain
| | - Ignacio Obeso
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain
| | - Pasqualina Guida
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain
| | - Michele Dileone
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain
| | - Bryan A. Strange
- Laboratory for Clinical Neuroscience, CTB, Universidad Politecnica de Madrid, Madrid, Spain
- Department of Neuroimaging, Alzheimer’s Disease Research Centre, Reina Sofia-CIEN Foundation, Madrid, Spain
| | - José A. Obeso
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain
- Hospital Nacional de Parapléjicos, Toledo, Spain
| |
Collapse
|
21
|
Derosiere G, Thura D, Cisek P, Duque J. Motor cortex disruption delays motor processes but not deliberation about action choices. J Neurophysiol 2019; 122:1566-1577. [PMID: 31411932 DOI: 10.1152/jn.00163.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Decisions about actions typically involve a period of deliberation that ends with the commitment to a choice and the motor processes overtly expressing that choice. Previous studies have shown that neural activity in sensorimotor areas, including the primary motor cortex (M1), correlates with deliberation features during action selection. However, the causal contribution of these areas to the decision process remains unclear. Here, we investigated whether M1 determines choice commitment or whether it simply reflects decision signals coming from upstream structures and instead mainly contributes to the motor processes that follow commitment. To do so, we tested the impact of a disruption of M1 activity, induced by continuous theta burst stimulation (cTBS), on the behavior of human subjects in 1) a simple reaction time (SRT) task allowing us to estimate the duration of the motor processes and 2) a modified version of the tokens task (Cisek P, Puskas GA, El-Murr S. J Neurosci 29: 11560-11571, 2009), which allowed us to estimate subjects' time of commitment as well as accuracy criterion. The efficiency of cTBS was attested by a reduction in motor evoked potential amplitudes following M1 disruption compared with those following a sham stimulation. Furthermore, M1 cTBS lengthened SRTs, indicating that motor processes were perturbed by the intervention. Importantly, all of the behavioral results in the tokens task were similar following M1 disruption and sham stimulation, suggesting that the contribution of M1 to the deliberation process is potentially negligible. Taken together, these findings favor the view that M1 contribution is downstream of the decision process.NEW & NOTEWORTHY Decisions between actions are ubiquitous in the animal realm. Deliberation during action choices entails changes in the activity of the sensorimotor areas controlling those actions, but the causal role of these areas is still often debated. With the use of continuous theta burst stimulation, we show that disrupting the primary motor cortex (M1) delays the motor processes that follow instructed commitment but does not alter volitional deliberation, suggesting that M1 contribution may be downstream of the decision process.
Collapse
Affiliation(s)
- Gerard Derosiere
- Laboratory of Neurophysiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - David Thura
- Lyon Neuroscience Research Center - IMPACT Team, INSERM U1028 - CNRS UMR 5292, Bron, France
| | - Paul Cisek
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Julie Duque
- Laboratory of Neurophysiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
22
|
Visuomotor Correlates of Conflict Expectation in the Context of Motor Decisions. J Neurosci 2018; 38:9486-9504. [PMID: 30201772 DOI: 10.1523/jneurosci.0623-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/28/2018] [Accepted: 09/01/2018] [Indexed: 01/18/2023] Open
Abstract
Many behaviors require choosing between conflicting options competing against each other in visuomotor areas. Such choices can benefit from top-down control processes engaging frontal areas in advance of conflict when it is anticipated. Yet, very little is known about how this proactive control system shapes the visuomotor competition. Here, we used electroencephalography in human subjects (male and female) to identify the visual and motor correlates of conflict expectation in a version of the Eriksen Flanker task that required left or right responses according to the direction of a central target arrow surrounded by congruent or incongruent (conflicting) flankers. Visual conflict was either highly expected (it occurred in 80% of trials; mostly incongruent blocks) or very unlikely (20% of trials; mostly congruent blocks). We evaluated selective attention in the visual cortex by recording target- and flanker-related steady-state visual-evoked potentials (SSVEPs) and probed action selection by measuring response-locked potentials (RLPs) in the motor cortex. Conflict expectation enhanced accuracy in incongruent trials, but this improvement occurred at the cost of speed in congruent trials. Intriguingly, this behavioral adjustment occurred while visuomotor activity was less finely tuned: target-related SSVEPs were smaller while flanker-related SSVEPs were higher in mostly incongruent blocks than in mostly congruent blocks, and incongruent trials were associated with larger RLPs in the ipsilateral (nonselected) motor cortex. Hence, our data suggest that conflict expectation recruits control processes that augment the tolerance for inappropriate visuomotor activations (rather than processes that downregulate their amplitude), allowing for overflow activity to occur without having it turn into the selection of an incorrect response.SIGNIFICANCE STATEMENT Motor choices made in front of discordant visual information are more accurate when conflict can be anticipated, probably due to the engagement of top-down control from frontal areas. How this control system modulates activity within visual and motor areas is unknown. Here, we show that, when control processes are recruited in anticipation of conflict, as evidenced by higher midfrontal theta activity, visuomotor activity is less finely tuned: visual processing of the goal-relevant location was reduced and the motor cortex displayed more inappropriate activations, compared with when conflict was unlikely. We argue that conflict expectation is associated with an expansion of the distance-to-selection threshold, improving accuracy while the need for online control of visuomotor activity is reduced.
Collapse
|
23
|
Reeve J, Lee W. A neuroscientific perspective on basic psychological needs. J Pers 2018; 87:102-114. [PMID: 29626342 DOI: 10.1111/jopy.12390] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Self-determination theory's (SDT) most basic propositions are, first, that all people possess an inherent set of psychological needs and, second, that autonomy, competence, and relatedness are the three critical psychological satisfactions needed to maintain and promote personal growth and well-being. In this article, we identify the neural basis of the psychological needs and, in doing so, seek to advance the integration of SDT and neuroscience. METHOD We examine the neural underpinnings of SDT-based motivational states and traits for autonomy, competence, and relatedness. To study motivational states, participants are exposed to situational conditions known to affect their psychological needs, and neuroscience methods (e.g., fMRI) are used to examine changes in their brain activity. To study motivational traits, participants complete self-report trait measures that are then correlated with their brain activity observed during need-satisfying activities. RESULTS For both motivational states and traits and across all three needs, intrinsic satisfaction is associated with striatum-based reward processing, anterior insula-based subjective feelings, and the integration of these subjective feelings with reward-based processing. CONCLUSIONS Psychological need satisfaction is associated with striatum activity, anterior insula activity, and the functional coactivation between these two brain areas. Given these findings, it is now clear that several opportunities exist to integrate SDT motivational constructs with neuroscientific study, so we suggest eight new questions for future research.
Collapse
Affiliation(s)
- Johnmarshall Reeve
- Department of Education, Brain and Motivation Research Institute, Korea University
| | - Woogul Lee
- Department of Education, Korea National University of Education
| |
Collapse
|
24
|
Vassiliadis P, Grandjean J, Derosiere G, de Wilde Y, Quemener L, Duque J. Using a Double-Coil TMS Protocol to Assess Preparatory Inhibition Bilaterally. Front Neurosci 2018; 12:139. [PMID: 29568258 PMCID: PMC5852071 DOI: 10.3389/fnins.2018.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/21/2018] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), elicits motor-evoked potentials (MEPs) in contralateral limb muscles which are valuable indicators of corticospinal excitability (CSE) at the time of stimulation. So far, most studies have used single-coil TMS over one M1, yielding MEPs in muscles of a single limb-usually the hand. However, tracking CSE in the two hands simultaneously would be useful in many contexts. We recently showed that, in the resting state, double-coil stimulation of the two M1 with a 1 ms inter-pulse interval (double-coil1 ms TMS) elicits MEPs in both hands that are comparable to MEPs obtained using single-coil TMS. To further evaluate this new technique, we considered the MEPs elicited by double-coil1 ms TMS in an instructed-delay choice reaction time task where a prepared response has to be withheld until an imperative signal is displayed. Single-coil TMS studies have repetitively shown that in this type of task, the motor system is transiently inhibited during the delay period, as evident from the broad suppression of MEP amplitudes. Here, we aimed at investigating whether a comparable inhibitory effect can be observed with MEPs elicited using double-coil1 ms TMS. To do so, we compared the amplitude as well as the coefficient of variation (CV) of MEPs produced by double-coil1 ms or single-coil TMS during action preparation. We observed that MEPs were suppressed (smaller amplitude) and often less variable (smaller CV) during the delay period compared to baseline. Importantly, these effects were equivalent whether single-coil or double-coil1 ms TMS was used. This suggests that double-coil1 ms TMS is a reliable tool to assess CSE, not only when subjects are at rest, but also when they are involved in a task, opening new research horizons for scientists interested in the corticospinal correlates of human behavior.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Grandjean
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Ysaline de Wilde
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Louise Quemener
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
25
|
van Campen AD, Kunert R, van den Wildenberg WPM, Ridderinkhof KR. Repetitive transcranial magnetic stimulation over inferior frontal cortex impairs the suppression (but not expression) of action impulses during action conflict. Psychophysiology 2017; 55. [DOI: 10.1111/psyp.13003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/10/2017] [Accepted: 07/06/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A. Dilene van Campen
- Department of Psychology; University of Amsterdam; Amsterdam The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam; Amsterdam The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University; Nijmegen The Netherlands
| | - Richard Kunert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University; Nijmegen The Netherlands
- Max Planck Institut für Psycholinguistik; Nijmegen The Netherlands
| | - Wery P. M. van den Wildenberg
- Department of Psychology; University of Amsterdam; Amsterdam The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam; Amsterdam The Netherlands
| | - K. Richard Ridderinkhof
- Department of Psychology; University of Amsterdam; Amsterdam The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
26
|
Derosiere G, Vassiliadis P, Demaret S, Zénon A, Duque J. Learning stage-dependent effect of M1 disruption on value-based motor decisions. Neuroimage 2017; 162:173-185. [PMID: 28882634 DOI: 10.1016/j.neuroimage.2017.08.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/10/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022] Open
Abstract
The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBSLearning group) or after consolidation of the implicit rule, during decision-making (cTBSDecision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions.
Collapse
Affiliation(s)
- Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium.
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Sophie Demaret
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Alexandre Zénon
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
27
|
Bender AD, Filmer HL, Dux PE. Transcranial direct current stimulation of superior medial frontal cortex disrupts response selection during proactive response inhibition. Neuroimage 2017; 158:455-465. [DOI: 10.1016/j.neuroimage.2016.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 11/30/2022] Open
|
28
|
Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks. J Neurosci 2017; 37:839-853. [PMID: 28123020 DOI: 10.1523/jneurosci.1672-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 11/21/2022] Open
Abstract
Cognitive functions arise from the coordination of large-scale brain networks. However, the principles governing interareal functional connectivity dynamics (FCD) remain elusive. Here, we tested the hypothesis that human executive functions arise from the dynamic interplay of multiple networks. To do so, we investigated FCD mediating a key executing function, known as arbitrary visuomotor mapping, using brain connectivity analyses of high-gamma activity recorded using MEG and intracranial EEG. Visuomotor mapping was found to arise from the dynamic interplay of three partly overlapping cortico-cortical and cortico-subcortical functional connectivity (FC) networks. First, visual and parietal regions coordinated with sensorimotor and premotor areas. Second, the dorsal frontoparietal circuit together with the sensorimotor and associative frontostriatal networks took the lead. Finally, cortico-cortical interhemispheric coordination among bilateral sensorimotor regions coupled with the left frontoparietal network and visual areas. We suggest that these networks reflect the processing of visual information, the emergence of visuomotor plans, and the processing of somatosensory reafference or action's outcomes, respectively. We thus demonstrated that visuomotor integration resides in the dynamic reconfiguration of multiple cortico-cortical and cortico-subcortical FC networks. More generally, we showed that visuomotor-related FC is nonstationary and displays switching dynamics and areal flexibility over timescales relevant for task performance. In addition, visuomotor-related FC is characterized by sparse connectivity with density <10%. To conclude, our results elucidate the relation between dynamic network reconfiguration and executive functions over short timescales and provide a candidate entry point toward a better understanding of cognitive architectures. SIGNIFICANCE STATEMENT Executive functions are supported by the dynamic coordination of neural activity over large-scale networks. The properties of large-scale brain coordination processes, however, remain unclear. Using tools combining MEG and intracranial EEG with brain connectivity analyses, we provide evidence that visuomotor behaviors, a hallmark of executive functions, are mediated by the interplay of multiple and spatially overlapping subnetworks. These subnetworks span visuomotor-related areas, the cortico-cortical and cortico-subcortical interactions of which evolve rapidly and reconfigure over timescales relevant for behavior. Visuomotor-related functional connectivity dynamics are characterized by sparse connections, nonstationarity, switching dynamics, and areal flexibility. We suggest that these properties represent key aspects of large-scale functional networks and cognitive architectures.
Collapse
|
29
|
Duque J, Greenhouse I, Labruna L, Ivry RB. Physiological Markers of Motor Inhibition during Human Behavior. Trends Neurosci 2017; 40:219-236. [PMID: 28341235 DOI: 10.1016/j.tins.2017.02.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/25/2023]
Abstract
Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another.
Collapse
Affiliation(s)
- Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Ian Greenhouse
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Ludovica Labruna
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
30
|
Duque J, Petitjean C, Swinnen SP. Effect of Aging on Motor Inhibition during Action Preparation under Sensory Conflict. Front Aging Neurosci 2016; 8:322. [PMID: 28082896 PMCID: PMC5186800 DOI: 10.3389/fnagi.2016.00322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
Motor behaviors often require refraining from selecting options that may be part of the repertoire of natural response tendencies but that are in conflict with ongoing goals. The presence of sensory conflict has a behavioral cost but the latter can be attenuated in contexts where control processes are recruited because conflict is expected in advance, producing a behavioral gain compared to contexts where conflict occurs in a less predictable way. In the present study, we investigated the corticospinal correlates of these behavioral effects (both conflict-driven cost and context-related gain). To do so, we measured motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) of young and healthy older adults performing the Eriksen Flanker Task. Subjects performed button-presses according to a central arrow, flanked by irrelevant arrows pointing in the same (congruent trial) or opposite direction (incongruent trial). Conflict expectation was manipulated by changing the probability of congruent and incongruent trials in a given block. It was either high (mostly incongruent blocks, MIB, 80% incongruent trials) or low (mostly congruent blocks, MCB, 80% congruent). The MEP data indicate that the conflict-driven behavioral cost is associated with a strong increase in inappropriate motor activity regardless of the age of individuals, as revealed by larger MEPs in the non-responding muscle in incongruent than in congruent trials. However, this aberrant facilitation disappeared in both groups of subjects when conflict could be anticipated (i.e., in the MIBs) compared to when it occurred in a less predictably way (MCBs), probably allowing the behavioral gain observed in both the young and the older individuals. Hence, the ability to overcome and anticipate conflict was surprisingly preserved in the older adults. Nevertheless, some control processes are likely to evolve with age because the behavioral gain observed in the MIB context was associated with an attenuated suppression of MEPs at the time of the imperative signal (i.e., before conflict is actually detected) in older individuals, suggesting altered motor inhibition, compared to young individuals. In addition, the behavioral analysis suggests that young and older adults rely on different strategies to cope with conflict, including a change in speed-accuracy tradeoff.
Collapse
Affiliation(s)
- Julie Duque
- Institute of Neuroscience, Université catholique de Louvain Brussels, Belgium
| | - Charlotte Petitjean
- Institute of Neuroscience, Université catholique de Louvain Brussels, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
31
|
Derosiere G, Zénon A, Alamia A, Duque J. Primary motor cortex contributes to the implementation of implicit value-based rules during motor decisions. Neuroimage 2016; 146:1115-1127. [PMID: 27742597 DOI: 10.1016/j.neuroimage.2016.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
In the present study, we investigated the functional contribution of the human primary motor cortex (M1) to motor decisions. Continuous theta burst stimulation (cTBS) was used to alter M1 activity while participants performed a decision-making task in which the reward associated with the subjects' responses (right hand finger movements) depended on explicit and implicit value-based rules. Subjects performed the task over two consecutive days and cTBS occurred in the middle of Day 2, once the subjects were just about to implement implicit rules, in addition to the explicit instructions, to choose their responses, as evident in the control group (cTBS over the right somatosensory cortex). Interestingly, cTBS over the left M1 prevented subjects from implementing the implicit value-based rule while its implementation was enhanced in the group receiving cTBS over the right M1. Hence, cTBS had opposite effects depending on whether it was applied on the contralateral or ipsilateral M1. The use of the explicit value-based rule was unaffected by cTBS in the three groups of subject. Overall, the present study provides evidence for a functional contribution of M1 to the implementation of freshly acquired implicit rules, possibly through its involvement in a cortico-subcortical network controlling value-based motor decisions.
Collapse
Affiliation(s)
- Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Alexandre Zénon
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Andrea Alamia
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
32
|
Chiau HY, Muggleton NG, Juan CH. Exploring the contributions of the supplementary eye field to subliminal inhibition using double-pulse transcranial magnetic stimulation. Hum Brain Mapp 2016; 38:339-351. [PMID: 27611342 DOI: 10.1002/hbm.23364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022] Open
Abstract
It is widely accepted that the supplementary eye fields (SEF) are involved in the control of voluntary eye movements. However, recent evidence suggests that SEF may also be important for unconscious and involuntary motor processes. Indeed, Sumner et al. ([2007]: Neuron 54:697-711) showed that patients with micro-lesions of the SEF demonstrated an absence of subliminal inhibition as evoked by masked-prime stimuli. Here, we used double-pulse transcranial magnetic stimulation (TMS) in healthy volunteers to investigate the role of SEF in subliminal priming. We applied double-pulse TMS at two time windows in a masked-prime task: the first during an early phase, 20-70 ms after the onset of the mask but before target presentation, during which subliminal inhibition is present; and the second during a late phase, 20-70 ms after target onset, during which the saccade is being prepared. We found no effect of TMS with the early time window of stimulation, whereas a reduction in the benefit of an incompatible subliminal prime stimulus was found when SEF TMS was applied at the late time window. These findings suggest that there is a role for SEF related to the effects of subliminal primes on eye movements, but the results do not support a role in inhibiting the primed tendency. Hum Brain Mapp 38:339-351, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui-Yan Chiau
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Department of Psychology, Goldsmiths, University of London, New Cross, London, United Kingdom
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| |
Collapse
|
33
|
Burle B, van den Wildenberg WPM, Spieser L, Ridderinkhof KR. Preventing (impulsive) errors: Electrophysiological evidence for online inhibitory control over incorrect responses. Psychophysiology 2016; 53:1008-19. [PMID: 27005956 PMCID: PMC4949675 DOI: 10.1111/psyp.12647] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 11/21/2015] [Indexed: 01/20/2023]
Abstract
In a rich environment, with multiple action affordances, selective action inhibition is critical in preventing the execution of inappropriate responses. Here, we studied the origin and the dynamics of incorrect response inhibition and how it can be modulated by task demands. We used EEG in a conflict task where the probability of compatible and incompatible trials was varied. This allowed us to modulate the strength of the prepotent response, and hence to increase the risk of errors, while keeping the probability of the two responses equal. The correct response activation and execution was not affected by compatibility or by probability. In contrast, incorrect response inhibition in the primary motor cortex ipsilateral to the correct response was more pronounced on incompatible trials, especially in the condition where most of the trials were compatible, indicating a modulation of inhibitory strength within the course of the action. Two prefrontal activities, one medial and one lateral, were also observed before the response, and their potential links with the observed inhibitory pattern observed are discussed.
Collapse
Affiliation(s)
- Borís Burle
- Aix-Marseille Université, CNRS, LNC UMR 7291, Marseille, France
| | - Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Laure Spieser
- Aix-Marseille Université, CNRS, LNC UMR 7291, Marseille, France
| | - K Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev 2016; 68:602-610. [PMID: 27343998 DOI: 10.1016/j.neubiorev.2016.06.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Susanne Dietrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
35
|
Soutschek A, Taylor PCJ, Schubert T. The role of the dorsal medial frontal cortex in central processing limitation: a transcranial magnetic stimulation study. Exp Brain Res 2016; 234:2447-55. [PMID: 27083589 DOI: 10.1007/s00221-016-4649-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
When humans perform two tasks simultaneously, responses to the second task are increasingly delayed as the interval between the two tasks decreases (psychological refractory period). This delay of the second task is thought to reflect a central processing limitation at the response selection stage. However, the neural mechanisms underlying this central processing limitation remain unclear. Using transcranial magnetic stimulation (TMS), we examined the role of the dorsal medial frontal cortex (dMFC) in a dual-task paradigm in which participants performed an auditory task 1 and a visual task 2. We found that dMFC TMS, relative to control conditions, reduced the psychological refractory period for task 2 processing, whereas we observed no dMFC TMS effects on task 1 processing. This suggests a causal role of the dMFC in coordinating response selection processes at the central bottleneck.
Collapse
Affiliation(s)
- Alexander Soutschek
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany. .,Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Blumlisalpstrasse 10, 8006, Zurich, Switzerland.
| | - Paul C J Taylor
- German Center of Vertigo and Balance Disorders, Klinikum Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Torsten Schubert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
36
|
|
37
|
Wilhelm E, Quoilin C, Petitjean C, Duque J. A Double-Coil TMS Method to Assess Corticospinal Excitability Changes at a Near-Simultaneous Time in the Two Hands during Movement Preparation. Front Hum Neurosci 2016; 10:88. [PMID: 27014020 PMCID: PMC4779885 DOI: 10.3389/fnhum.2016.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/19/2016] [Indexed: 12/28/2022] Open
Abstract
Background: Many previous transcranial magnetic stimulation (TMS) studies have investigated corticospinal excitability changes occurring when choosing which hand to use for an action, one of the most frequent decision people make in daily life. So far, these studies have applied single-pulse TMS eliciting motor-evoked potential (MEP) in one hand when this hand is either selected or non-selected. Using such method, hand choices were shown to entail the operation of two inhibitory mechanisms, suppressing MEPs in the targeted hand either when it is non-selected (competition resolution, CR) or selected (impulse control, IC). However, an important limitation of this “Single-Coil” method is that MEPs are elicited in selected and non-selected conditions during separate trials and thus those two settings may not be completely comparable. Moreover, a more important problem is that MEPs are computed in relation to the movement of different hands. The goal of the present study was to test a “Double-Coil” method to evaluate IC and CR preceding the same hand responses by applying Double-Coil TMS over the two primary motor cortices (M1) at a near-simultaneous time (1 ms inter-pulse interval). Methods: MEPs were obtained in the left (MEPLEFT) and right (MEPRIGHT) hands while subjects chose between left and right hand key-presses in blocks using a Single-Coil or a Double-Coil method; in the latter blocks, TMS was either applied over left M1 first (TMSLRM1 group, n = 12) or right M1 first (TMSRLM1 group, n = 12). Results: MEPLEFT were suppressed preceding both left (IC) and right (CR) hand responses whereas MEPRIGHT were only suppressed preceding left (CR) but not right (IC) hand responses. This result was observed regardless of whether Single-Coil or Double-Coil TMS was applied in the two subject groups. However, in the TMSLRM1 group, the MEP suppression was attenuated in Double-Coil compared to Single-Coil blocks for both IC and CR, when probed with MEPLEFT (elicited by the second pulse). Conclusions: Although Double-Coil TMS may be a reliable method to assess bilateral motor excitability provided that a RM1-LM1 pulse order is used, further experiments are required to understand the reduced MEPLEFT changes in Double-Coil blocks when the LM1-RM1 pulse order was used.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Caroline Quoilin
- Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Charlotte Petitjean
- Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| |
Collapse
|
38
|
Klein PA, Duque J, Labruna L, Ivry RB. Comparison of the two cerebral hemispheres in inhibitory processes operative during movement preparation. Neuroimage 2015; 125:220-232. [PMID: 26458519 DOI: 10.1016/j.neuroimage.2015.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 11/17/2022] Open
Abstract
Neuroimaging and neuropsychological studies suggest that in right-handed individuals, the left hemisphere plays a dominant role in praxis, relative to the right hemisphere. However hemispheric asymmetries assessed with transcranial magnetic stimulation (TMS) has not shown consistent differences in corticospinal (CS) excitability of the two hemispheres during movements. In the current study, we systematically explored hemispheric asymmetries in inhibitory processes that are manifest during movement preparation and initiation. Single-pulse TMS was applied over the left or right primary motor cortex (M1LEFT and M1RIGHT, respectively) to elicit motor-evoked potentials (MEPs) in the contralateral hand while participants performed a two-choice reaction time task requiring a cued movement of the left or right index finger. In Experiments 1 and 2, TMS probes were obtained during a delay period following the presentation of the preparatory cue that provided partial or full information about the required response. MEPs were suppressed relative to baseline regardless of whether they were elicited in a cued or uncued hand. Importantly, the magnitude of these inhibitory changes in CS excitability was similar when TMS was applied over M1LEFT or M1RIGHT, irrespective of the amount of information carried by the preparatory cue. In Experiment 3, there was no preparatory cue and TMS was applied at various time points after the imperative signal. When CS excitability was probed in the cued effector, MEPs were initially inhibited and then rose across the reaction time interval. This function was similar for M1LEFT and M1RIGHT TMS. When CS excitability was probed in the uncued effector, MEPs remained inhibited throughout the RT interval. However, MEPs in right FDI became more inhibited during selection and initiation of a left hand movement, whereas MEPs in left FDI remained relatively invariant across RT interval for the right hand. In addition to these task-specific effects, there was a global difference in CS excitability across experiments between the two hemispheres. When the intensity of stimulation was set to 115% of the resting threshold, MEPs were larger when the TMS probe was applied over the M1LEFT than over M1RIGHT. In summary, while the latter result suggests that M1LEFT is more excitable than M1RIGHT, the recruitment of preparatory inhibitory mechanisms is similar within the two cerebral hemispheres.
Collapse
Affiliation(s)
- Pierre-Alexandre Klein
- Department of Psychology, University of CA, Berkeley, USA; Helen Wills Neuroscience Institute, University of CA, Berkeley, USA; Institute of Neuroscience, Cognition and Actions Lab, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Cognition and Actions Lab, Université catholique de Louvain, Brussels, Belgium.
| | - Ludovica Labruna
- Department of Psychology, University of CA, Berkeley, USA; Helen Wills Neuroscience Institute, University of CA, Berkeley, USA
| | - Richard B Ivry
- Department of Psychology, University of CA, Berkeley, USA; Helen Wills Neuroscience Institute, University of CA, Berkeley, USA
| |
Collapse
|
39
|
Adam JJ, Jennings S, Bovend'Eerdt TJ, Hurks PP, Van Gerven PW. Switch hands! Mapping temporal dynamics of proactive manual control with anticues. Acta Psychol (Amst) 2015; 161:137-44. [PMID: 26386782 DOI: 10.1016/j.actpsy.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/14/2015] [Accepted: 09/06/2015] [Indexed: 10/23/2022] Open
Abstract
This study uses a novel behavioral paradigm-the anticue task-to investigate the temporal dynamics of proactive control aimed at the resolution of response conflict in the manual motor system. The anticue task is a 4-choice reaction time (RT) task, with left and right anticues indicating mirror-symmetrical response hands. In particular, anticues require participants to prepare fingers on the hand opposite to the side of the cue (counter-corresponding mapping), which contrasts with the more standard procues that prompt participants to prepare fingers on the hand spatially in line with the cue (corresponding mapping). In Experiment 1, we examined the effects of anticues and procues as a function of cue-target interval (range: 100-850ms). Results showed that procues produced RT benefits (relative to neutral cues), which increased with longer cue-target intervals. Anticues, however, produced RT costs with short cue-target intervals and RT benefits with longer cue-target intervals. These findings support the view that anticues are mediated by a time-consuming, proactive control process that, using inhibition and activation, redirects the initial but wrong activation of the ipsilateral hand to the correct contralateral hand. In Experiment 2, we used a simple detection response to test, and reject, an alternative (attentional) account of these findings. Theoretical and practical implications are discussed in the context of dual-route models of response selection, the activation-suppression model, and related experimental protocols such as antisaccade, Simon, Stroop, Eriksen flanker, and task switching paradigms.
Collapse
|
40
|
Non-invasive Human Brain Stimulation in Cognitive Neuroscience: A Primer. Neuron 2015; 87:932-45. [DOI: 10.1016/j.neuron.2015.07.032] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/07/2015] [Accepted: 07/16/2015] [Indexed: 11/21/2022]
|
41
|
Abstract
The perception of physical effort is relatively unaffected by the suppression of sensory afferences, indicating that this function relies mostly on the processing of the central motor command. Neural signals in the supplementary motor area (SMA) correlate with the intensity of effort, suggesting that the motor signal involved in effort perception could originate from this area, but experimental evidence supporting this view is still lacking. Here, we tested this hypothesis by disrupting neural activity in SMA, in primary motor cortex (M1), or in a control site by means of continuous theta-burst transcranial magnetic stimulation, while measuring effort perception during grip forces of different intensities. After each grip force exertion, participants had the opportunity to either accept or refuse to replicate the same effort for varying amounts of reward. In addition to the subjective rating of perceived exertion, effort perception was estimated on the basis of the acceptance rate, the effort replication accuracy, the influence of the effort exerted in trial t on trial t+1, and pupil dilation. We found that disruption of SMA activity, but not of M1, led to a consistent decrease in effort perception, whatever the measure used to assess it. Accordingly, we modeled effort perception in a structural equation model and found that only SMA disruption led to a significant alteration of effort perception. These findings indicate that effort perception relies on the processing of a signal originating from motor-related neural circuits upstream of M1 and that SMA is a key node of this network.
Collapse
|
42
|
Abstract
Preparing actions requires the operation of several cognitive control processes that influence the state of the motor system to ensure that the appropriate behavior is ultimately selected and executed. For example, some form of competition resolution ensures that the right action is chosen among alternatives, often in the presence of conflict; at the same time, impulse control ought to be deployed to prevent premature responses. Here we review how state-changes in the human motor system during action preparation can be studied through motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the contralateral primary motor cortex (M1). We discuss how the physiological fingerprints afforded by MEPs have helped to decompose some of the dynamic and effector-specific influences on the motor system during action preparation. We focus on competition resolution, conflict and impulse control, as well as on the influence of higher cognitive decision–related variables. The selected examples demonstrate the usefulness of MEPs as physiological readouts for decomposing the influence of distinct, but often overlapping, control processes on the human motor system during action preparation.
Collapse
Affiliation(s)
- Sven Bestmann
- Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
43
|
Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task. J Neurosci 2015; 35:4813-23. [PMID: 25810512 DOI: 10.1523/jneurosci.3761-14.2015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stop-signal task (SST) has been a key paradigm for probing human brain mechanisms underlying response inhibition, and the inhibition observed in SST is now considered to largely depend on a fronto basal ganglia network consisting mainly of right inferior frontal cortex, pre-supplementary motor area (pre-SMA), and basal ganglia, including subthalamic nucleus, striatum (STR), and globus pallidus pars interna (GPi). However, causal relationships between these frontal regions and basal ganglia are not fully understood in humans. Here, we partly examined these causal links by measuring human fMRI activity during SST before and after excitatory/inhibitory repetitive transcranial magnetic stimulation (rTMS) of pre-SMA. We first confirmed that the behavioral performance of SST was improved by excitatory rTMS and impaired by inhibitory rTMS. Afterward, we found that these behavioral changes were well predicted by rTMS-induced modulation of brain activity in pre-SMA, STR, and GPi during SST. Moreover, by examining the effects of the rTMS on resting-state functional connectivity between these three regions, we showed that the magnetic stimulation of pre-SMA significantly affected intrinsic connectivity between pre-SMA and STR, and between STR and GPi. Furthermore, the magnitudes of changes in resting-state connectivity were also correlated with the behavioral changes seen in SST. These results suggest a causal relationship between pre-SMA and GPi via STR during response inhibition, and add direct evidence that the fronto basal ganglia network for response inhibition consists of multiple top-down regulation pathways in humans.
Collapse
|
44
|
Angelini M, Calbi M, Ferrari A, Sbriscia-Fioretti B, Franca M, Gallese V, Umiltà MA. Motor Inhibition during Overt and Covert Actions: An Electrical Neuroimaging Study. PLoS One 2015; 10:e0126800. [PMID: 26000451 PMCID: PMC4441499 DOI: 10.1371/journal.pone.0126800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
Given ample evidence for shared cortical structures involved in encoding actions, whether or not subsequently executed, a still unsolved problem is the identification of neural mechanisms of motor inhibition, preventing “covert actions” as motor imagery from being performed, in spite of the activation of the motor system. The principal aims of the present study were the evaluation of: 1) the presence in covert actions as motor imagery of putative motor inhibitory mechanisms; 2) their underlying cerebral sources; 3) their differences or similarities with respect to cerebral networks underpinning the inhibition of overt actions during a Go/NoGo task. For these purposes, we performed a high density EEG study evaluating the cerebral microstates and their related sources elicited during two types of Go/NoGo tasks, requiring the execution or withholding of an overt or a covert imagined action, respectively. Our results show for the first time the engagement during motor imagery of key nodes of a putative inhibitory network (including pre-supplementary motor area and right inferior frontal gyrus) partially overlapping with those activated for the inhibition of an overt action during the overt NoGo condition. At the same time, different patterns of temporal recruitment in these shared neural inhibitory substrates are shown, in accord with the intended overt or covert modality of action performance. The evidence that apparently divergent mechanisms such as controlled inhibition of overt actions and contingent automatic inhibition of covert actions do indeed share partially overlapping neural substrates, further challenges the rigid dichotomy between conscious, explicit, flexible and unconscious, implicit, inflexible forms of motor behavioral control.
Collapse
Affiliation(s)
- Monica Angelini
- Department of Neuroscience, Unit of Physiology, University of Parma, Parma, Italy
- * E-mail:
| | - Marta Calbi
- Department of Neuroscience, Unit of Physiology, University of Parma, Parma, Italy
| | - Annachiara Ferrari
- Department of Neuroscience, Unit of Physiology, University of Parma, Parma, Italy
| | | | - Michele Franca
- Department of Neuroscience, Unit of Physiology, University of Parma, Parma, Italy
| | - Vittorio Gallese
- Department of Neuroscience, Unit of Physiology, University of Parma, Parma, Italy
| | | |
Collapse
|
45
|
Controlling your impulses: electrical stimulation of the human supplementary motor complex prevents impulsive errors. J Neurosci 2015; 35:3010-5. [PMID: 25698738 DOI: 10.1523/jneurosci.1642-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy humans leaves action urges unchanged but prevents them from turning into overt errors. Subjects performed a choice reaction-time task known to trigger impulsive responses, leading to fast errors that can be revealed by analyzing accuracy as a function of poststimulus time. Yet, such fast errors are only the tip of the iceberg: electromyography (EMG) revealed fast subthreshold muscle activation in the incorrect response hand in an even larger proportion of overtly correct trials, revealing covert response impulses not discernible in overt behavior. Analyzing both overt and covert response tendencies enables to gauge the ability to prevent these incorrect impulses from turning into overt action errors. Hyperpolarizing the supplementary motor complex using transcranial direct current stimulation (tDCS) preserves action impulses but prevents their behavioral expression. This new combination of detailed behavioral, EMG, and tDCS techniques clarifies the neurophysiology of impulse control, and may point to avenues for improving impulse control deficits in various neurologic and psychiatric disorders.
Collapse
|
46
|
Roberts RE, Husain M. A dissociation between stopping and switching actions following a lesion of the pre-supplementary motor area. Cortex 2014; 63:184-95. [PMID: 25282056 PMCID: PMC4317195 DOI: 10.1016/j.cortex.2014.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022]
Abstract
Introduction Although the pre-supplementary motor area (pre-SMA) is one of the most frequently reported areas of activation in functional imaging studies, the role of this brain region in cognition is still a matter of intense debate. Here we present a patient with a focal lesion of caudal pre-SMA who displays a selective deficit in updating a response plan to switch actions, but shows no impairment when required to withhold a response – stopping. Materials & methods The patient and a control group underwent three tasks designed to measure different aspects of cognitive control and executive function. Results The pre-SMA patient displayed no impairment when responding in the face of distracting stimuli (Eriksen flanker paradigm), or when required to halt an on-going response (STOP task). However, a specific deficit was observed when she was required to rapidly switch between response plans (CHANGE task). Conclusions These findings suggest that the caudal pre-SMA may have a particularly important role in a network of brain regions required for rapidly updating and implementing response plans. The lack of any significant impairment on other measures of cognitive control suggests that this is not likely due to a global deficit in cognitive control. We discuss the implications of these results in the context of current theories of pre-SMA function.
Collapse
Affiliation(s)
- R Edward Roberts
- Academic Department of Neuro-otology, Division of Brain Sciences, Imperial College London, London, UK.
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Ma H, Hu J, Xi J, Shen W, Ge J, Geng F, Wu Y, Guo J, Yao D. Bilingual cognitive control in language switching: an fMRI study of English-Chinese late bilinguals. PLoS One 2014; 9:e106468. [PMID: 25180974 PMCID: PMC4152243 DOI: 10.1371/journal.pone.0106468] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022] Open
Abstract
The present study explored the bilingual cognitive control mechanism by comparing Chinese-English bilinguals’ language switching in a blocked picture naming paradigm against three baseline conditions, namely the control condition (a fixation cross, low-level baseline), single L1 production (Chinese naming, high-level baseline), and single L2 production (English naming, high-level baseline). Different activation patterns were observed for language switching against different baseline conditions. These results indicate that different script bilingual language control involves a fronto-parietal-subcortical network that extends to the precentral gyrus, the Supplementary Motor Area, the Supra Marginal Gyrus, and the fusiform. The different neural correlates identified across different comparisons supported that bilingual language switching involves high-level cognitive processes that are not specific to language processing. Future studies adopting a network approach are crucial in identifying the functional connectivity among regions subserving language control.
Collapse
Affiliation(s)
- Hengfen Ma
- School of Foreign Languages, Civil Aviation University of China, Tianjin, China
| | - Jiehui Hu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail:
| | - Jie Xi
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| | - Jianqiao Ge
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Feng Geng
- School of Foreign Languages, Civil Aviation University of China, Tianjin, China
| | - Yuntao Wu
- School of Foreign Languages, Civil Aviation University of China, Tianjin, China
| | - Jinjin Guo
- School of Foreign Languages, Civil Aviation University of China, Tianjin, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
48
|
Duque J, Labruna L, Cazares C, Ivry RB. Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation. Neuropsychologia 2014; 65:287-96. [PMID: 25128431 DOI: 10.1016/j.neuropsychologia.2014.08.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signalled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process.
Collapse
Affiliation(s)
- Julie Duque
- Cognition and Actions Laboratory, Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53, Bte B1.53.04, 1200 Brussels, Belgium.
| | - Ludovica Labruna
- Department of Psychology, University of California, Berkeley, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Christian Cazares
- Department of Psychology, University of California, Berkeley, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| |
Collapse
|
49
|
Albares M, Lio G, Criaud M, Anton JL, Desmurget M, Boulinguez P. The dorsal medial frontal cortex mediates automatic motor inhibition in uncertain contexts: evidence from combined fMRI and EEG studies. Hum Brain Mapp 2014; 35:5517-31. [PMID: 24954611 DOI: 10.1002/hbm.22567] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 05/01/2014] [Accepted: 06/03/2014] [Indexed: 11/09/2022] Open
Abstract
Response inhibition is commonly thought to rely on voluntary, reactive, selective, and relatively slow prefrontal mechanisms. In contrast, we suggest here that response inhibition is achieved automatically, nonselectively, within very short delays in uncertain environments. We modified a classical go/nogo protocol to probe context-dependent inhibitory mechanisms. Because no single neuroimaging method can definitely disentangle neural excitation and inhibition, we combined fMRI and EEG recordings in healthy humans. Any stimulus (go or nogo) presented in an uncertain context requiring action restraint was found to evoke activity changes in the supplementary motor complex (SMC) with respect to a control condition in which no response inhibition was required. These changes included: (1) An increase in event-related BOLD activity, (2) an attenuation of the early (170 ms) event related potential generated by a single, consistent source isolated by advanced blind source separation, and (3) an increase in the evoked-EEG Alpha power of this source. Considered together, these results suggest that the BOLD signal evoked by any stimulus in the SMC when the situation is unpredictable can be driven by automatic, nonselective, context-dependent inhibitory activities. This finding reveals the paradoxical mechanisms by which voluntary control of action may be achieved. The ability to provide controlled responses in unpredictable environments would require setting-up the automatic self-inhibitory circuitry within the SMC. Conversely, enabling automatic behavior when the environment becomes predictable would require top-down control to deactivate anticipatorily and temporarily the inhibitory set.
Collapse
Affiliation(s)
- Marion Albares
- Université de Lyon, 69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS UMR5229, Centre de Neuroscience Cognitive, Bron, France
| | | | | | | | | | | |
Collapse
|
50
|
Rae CL, Hughes LE, Weaver C, Anderson MC, Rowe JB. Selection and stopping in voluntary action: a meta-analysis and combined fMRI study. Neuroimage 2014; 86:381-91. [PMID: 24128740 PMCID: PMC3898966 DOI: 10.1016/j.neuroimage.2013.10.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/20/2013] [Accepted: 10/07/2013] [Indexed: 02/02/2023] Open
Abstract
Voluntary action control requires selection of appropriate responses and stopping of inappropriate responses. Selection and stopping are often investigated separately, but they appear to recruit similar brain regions, including the pre-supplementary motor area (preSMA) and inferior frontal gyrus. We therefore examined the evidence for overlap of selection and stopping using two approaches: a meta-analysis of existing studies of selection and stopping, and a novel within-subject fMRI study in which action selection and a stop signal task were combined factorially. The novel fMRI study also permitted us to investigate hypotheses regarding a common mechanism for selection and stopping. The preSMA was identified by both methods as common to selection and stopping. However, stopping a selected action did not recruit preSMA more than stopping a specified action, nor did stop signal reaction times differ significantly across the two conditions. These findings suggest that the preSMA supports both action selection and stopping, but the two processes may not require access to a common inhibition mechanism. Instead, the preSMA might represent information about potential actions that is used in both action selection and stopping in order to resolve conflict between competing available responses.
Collapse
Affiliation(s)
- Charlotte L. Rae
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK,Corresponding author at: MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK. Fax: + 44 1223 359062.
| | - Laura E. Hughes
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK,Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Chelan Weaver
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Michael C. Anderson
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - James B. Rowe
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK,Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2QQ, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|