1
|
Sheng Zheng Z, Xing-Long Wang K, Millan H, Lee S, Howard M, Rothbart A, Rosario E, Schnakers C. Transcranial direct stimulation over left inferior frontal gyrus improves language production and comprehension in post-stroke aphasia: A double-blind randomized controlled study. BRAIN AND LANGUAGE 2024; 257:105459. [PMID: 39241469 DOI: 10.1016/j.bandl.2024.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Transcranial direct current stimulation (tDCS) targeting Broca's area has shown promise for augmenting language production in post-stroke aphasia (PSA). However, previous research has been limited by small sample sizes and inconsistent outcomes. This study employed a double-blind, parallel, randomized, controlled design to evaluate the efficacy of anodal Broca's tDCS, paired with 20-minute speech and language therapy (SLT) focused primarily on expressive language, across 5 daily sessions in 45 chronic PSA patients. Utilizing the Western Aphasia Battery-Revised, which assesses a spectrum of linguistic abilities, we measured changes in both expressive and receptive language skills before and after intervention. The tDCS group demonstrated significant improvements over sham in aphasia quotient, auditory verbal comprehension, and spontaneous speech. Notably, tDCS improved both expressive and receptive domains, whereas sham only benefited expression. These results underscore the broader linguistic benefits of Broca's area stimulation and support the integration of tDCS with SLT to advance aphasia rehabilitation.
Collapse
Affiliation(s)
- Zhong Sheng Zheng
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA.
| | | | - Henry Millan
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Sharon Lee
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Melissa Howard
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Aaron Rothbart
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Emily Rosario
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| |
Collapse
|
2
|
Rubi-Fessen I, Gerbershagen K, Stenneken P, Willmes K. Early Boost of Linguistic Skills? Individualized Non-Invasive Brain Stimulation in Early Postacute Aphasia. Brain Sci 2024; 14:789. [PMID: 39199482 PMCID: PMC11353206 DOI: 10.3390/brainsci14080789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS), has been shown to increase the outcome of speech and language therapy (SLT) in chronic aphasia. Only a few studies have investigated the effect of add-on tDCS on SLT in the early stage of aphasia; this may be due to methodological reasons, in particular the influence of spontaneous remission and the difficulty of establishing stimulation protocols in clinical routines. Thirty-seven participants with subacute aphasia (PwA) after stroke (23 men, 14 women; mean age 62 ± 12 years; mean duration 49 ± 28 days) were included in two consecutive periods of treatment lasting two weeks each. During the first period (P1) the participants received 10 sessions of SLT, during the second period (P2) the aphasia therapy was supplemented by anodal left hemispheric 2 mA tDCS over the left hemisphere. Severity-specific language tests (Aachen Aphasia Test (AAT), n = 27 and Bielefeld Aphasia Screening-Reha (BIAS-R), n = 10) were administered before P1, between P1 and P2, and after P2. Where information was available, the results were corrected for spontaneous remission (AAT sample), and the therapy outcomes of P1 and P2 were compared. Participants' overall language abilities improved significantly during P1 and P2. However, improvement-as measured by the AAT profile level or the BIAS-R mean percentage value-during P2 (with tDCS) was significantly higher than during P1 (p < 0.001; AAT sample and p = 0.005; BIAS-R sample). Thus, tDCS protocols can be implemented in early aphasia rehabilitation. Despite the limitations of the research design, which are also discussed from an implementation science perspective, this is preliminary evidence that an individually tailored anodal tDCS can have a significant add-on effect on the outcome of behavioral aphasia therapy in subacute aphasia.
Collapse
Affiliation(s)
- Ilona Rubi-Fessen
- Neurological Rehabilitation Hospital, RehaNova Köln, 51109 Cologne, Germany;
- Department of Rehabilitation and Special Education, Faculty of Human Sciences, University of Cologne, 50931 Cologne, Germany;
| | | | - Prisca Stenneken
- Department of Rehabilitation and Special Education, Faculty of Human Sciences, University of Cologne, 50931 Cologne, Germany;
| | - Klaus Willmes
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
3
|
Williams EER, Sghirripa S, Rogasch NC, Hordacre B, Attrill S. Non-invasive brain stimulation in the treatment of post-stroke aphasia: a scoping review. Disabil Rehabil 2024; 46:3802-3826. [PMID: 37828899 DOI: 10.1080/09638288.2023.2259299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Aphasia is an acquired language impairment that commonly results from stroke. Non-invasive brain stimulation (NIBS) might accelerate aphasia recovery trajectories and has seen mounting popularity in recent aphasia rehabilitation research. The present review aimed to: (1) summarise all existing literature on NIBS as a post-stroke aphasia treatment; and (2) provide recommendations for future NIBS-aphasia research. MATERIALS AND METHODS Databases for published and grey literature were searched using scoping review methodology. 278 journal articles, conference abstracts/posters, and books, and 38 items of grey literature, were included for analysis. RESULTS Quantitative analysis revealed that ipsilesional anodal transcranial direct current stimulation and contralesional 1-Hz repetitive transcranial magnetic stimulation were the most widely used forms of NIBS, while qualitative analysis identified four key themes including: the roles of the hemispheres in aphasia recovery and their relationship with NIBS; heterogeneity of individuals but homogeneity of subpopulations; individualisation of stimulation parameters; and much remains under-explored in the NIBS-aphasia literature. CONCLUSIONS Taken together, these results highlighted systemic challenges across the field such as small sample sizes, inter-individual variability, lack of protocol optimisation/standardisation, and inadequate focus on aphasiology. Four key recommendations are outlined herein to guide future research and refine NIBS methods for post-stroke aphasia treatment.
Collapse
Affiliation(s)
- Ellen E R Williams
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Sabrina Sghirripa
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Nigel C Rogasch
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, The University of South Australia, Adelaide, Australia
| | - Stacie Attrill
- Speech Pathology, School of Allied Health Science and Practice, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Ashaie SA, Hernandez-Pavon JC, Houldin E, Cherney LR. Behavioral, Functional Imaging, and Neurophysiological Outcomes of Transcranial Direct Current Stimulation and Speech-Language Therapy in an Individual with Aphasia. Brain Sci 2024; 14:714. [PMID: 39061454 PMCID: PMC11274865 DOI: 10.3390/brainsci14070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Speech-language therapy (SLT) is the most effective technique to improve language performance in persons with aphasia. However, residual language impairments remain even after intensive SLT. Recent studies suggest that combining transcranial direct current stimulation (tDCS) with SLT may improve language performance in persons with aphasia. However, our understanding of how tDCS and SLT impact brain and behavioral relation in aphasia is poorly understood. We investigated the impact of tDCS and SLT on a behavioral measure of scripted conversation and on functional connectivity assessed with multiple methods, both resting-state functional magnetic resonance imaging (rs-fMRI) and resting-state electroencephalography (rs-EEG). An individual with aphasia received 15 sessions of 20-min cathodal tDCS to the right angular gyrus concurrent with 40 min of SLT. Performance during scripted conversation was measured three times at baseline, twice immediately post-treatment, and at 4- and 8-weeks post-treatment. rs-fMRI was measured pre-and post-3-weeks of treatment. rs-EEG was measured on treatment days 1, 5, 10, and 15. Results show that both communication performance and left hemisphere functional connectivity may improve after concurrent tDCS and SLT. Results are in line with aphasia models of language recovery that posit a beneficial role of left hemisphere perilesional areas in language recovery.
Collapse
Affiliation(s)
- Sameer A. Ashaie
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evan Houldin
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leora R. Cherney
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Di Fuccio R, Lardone A, De Luca M, Ali L, Limone P, Marangolo P. Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines 2024; 12:1146. [PMID: 38927353 PMCID: PMC11200721 DOI: 10.3390/biomedicines12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The neurobiological effects of transcranial direct current stimulation (tDCS) have still not been unequivocally clarified. Some studies have suggested that the application of tDCS over the inferior frontal gyrus (IFG) enhances different aspects of cognition in healthy and neurological individuals, exerting neural changes over the target area and its neural surroundings. In this systematic review, randomized sham-controlled trials in healthy and neurological adults were selected through a database search to explore whether tDCS over the IFG combined with cognitive training modulates functional connectivity or neural changes. Twenty studies were finally included, among which twelve measured tDCS effects through functional magnetic resonance (fMRI), two through functional near-infrared spectroscopy (fNIRS), and six through electroencephalography (EEG). Due to the high heterogeneity observed across studies, data were qualitatively described and compared to assess reliability. Overall, studies that combined fMRI and tDCS showed widespread changes in functional connectivity at both local and distant brain regions. The findings also suggested that tDCS may also modulate electrophysiological changes underlying the targeted area. However, these outcomes were not always accompanied by corresponding significant behavioral results. This work raises the question concerning the general efficacy of tDCS, the implications of which extend to the steadily increasing tDCS literature.
Collapse
Affiliation(s)
- Raffaele Di Fuccio
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Anna Lardone
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Mariagiovanna De Luca
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Leila Ali
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Pierpaolo Limone
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| |
Collapse
|
6
|
Kim JH, Cust S, Lammers B, Sheppard SM, Keator LM, Tippett DC, Hillis AE, Sebastian R. Cerebellar tDCS Enhances Functional Communication Skills in Chronic Aphasia. APHASIOLOGY 2024; 38:1895-1915. [PMID: 39555327 PMCID: PMC11566018 DOI: 10.1080/02687038.2024.2328874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/25/2024] [Indexed: 11/19/2024]
Abstract
Background Transcranial direct current stimulation (tDCS) has emerged as a possible neuromodulatory tool to augment language therapy in post-stroke aphasia. However, there is limited information on whether tDCS may help to improve everyday functional communication. Aims To investigate whether cerebellar tDCS combined with computerized aphasia treatment improves functional communication skills in individuals with chronic aphasia. Methods and Procedures In a randomized, double-blind, sham-controlled, within-subject crossover study, participants received 15 sessions of anodal (n=14) or cathodal (n=14) cerebellar tDCS plus computerized aphasia treatment then sham plus computerized aphasia treatment, or the opposite order. Linear mixed-effects regression models were performed to evaluate (1) the effect of tDCS treatment on change in functional communication skills on the two dimensions of the American Speech-Language-Hearing Association Functional Assessment of Communication Skills for Adults (ASHA-FACS): Communication Independence (CI) scale and Qualitative Dimension of Communication (QDC) scale, and (2) the relationship between functional communication skills and trained and untrained naming abilities. Outcomes and Results The results showed significant tDCS-induced gains for the overall QDC mean score, but not for the overall CI mean score. Cerebellar stimulation was more effective than sham for the overall QDC mean score immediately post-treatment, 2-weeks post-treatment and 2-months post-treatment. Follow up analysis separated by group showed that the change in the overall QDC mean score (combining both phases) were similar in participants receiving anodal or cathodal stimulation. We also found a significant linear association between ASHA-FACS overall CI mean change scores and trained and untrained naming change scores for the tDCS condition but not sham. Conclusions Our study provides preliminary evidence that cerebellar tDCS coupled with computerized aphasia treatment has the potential to improve the overall qualitative dimensions of functional communication skills in individuals with chronic aphasia.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah Cust
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Becky Lammers
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shannon M. Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Speech & Hearing Sciences, University of Washington, Seattle, WA
| | - Lynsey M. Keator
- Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE
| | - Donna C. Tippett
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Argye E. Hillis
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Alemanno F, Fedeli D, Monti A, Houdayer E, Della Rosa PA, Zangrillo F, Emedoli D, Pelagallo E, Corbo M, Iannaccone S, Abutalebi J. Increased interhemispheric functional connectivity after right anodal tDCS in chronic non-fluent aphasia: preliminary findings. Front Neurosci 2024; 18:1346095. [PMID: 38406588 PMCID: PMC10884287 DOI: 10.3389/fnins.2024.1346095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Anodal transcranial Direct Current Stimulation (tDCS) is a non-invasive, low-cost and environment-friendly brain neuromodulation technique that increases cortical excitability. In post-stroke aphasia, the role of the right hemisphere in language recovery remains debated. In this preliminary study, we aimed to investigate the efficacy of excitatory tDCS on the right hemisphere in chronic aphasic patients. Methods We applied anodal tDCS to the right homologous region of Broca's area in four chronic aphasic patients while performing a one-month naming rehabilitation treatment. Longitudinal data on language assessment and naming performance were collected. Resting-state fMRI images were acquired before and after treatment to measure changes in functional connectivity. Results Results showed enhanced positive functional connectivity of the right Broca homologous with the left middle frontal and middle temporal gyri. Every patient showed improvements in language functions, but no major changes in naming performance. Conclusion These preliminary findings suggest that tDCS applied over the unaffected hemisphere may result in longitudinal inter-hemispheric functional neuroplastic changes that could specifically improve language recovery and could potentially be included in therapeutic neurorehabilitative plans.
Collapse
Affiliation(s)
- Federica Alemanno
- Neuropsychology Service, Department of Rehabilitation and Functional Recovery, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Fedeli
- Centre for Neurolinguistics and Psycholinguistics, Scientific Institute San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Monti
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elise Houdayer
- Neuropsychology Service, Department of Rehabilitation and Functional Recovery, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Federica Zangrillo
- Neuropsychology Service, Department of Rehabilitation and Functional Recovery, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Emedoli
- Neuropsychology Service, Department of Rehabilitation and Functional Recovery, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Pelagallo
- Neuropsychology Service, Department of Rehabilitation and Functional Recovery, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Sandro Iannaccone
- Neuropsychology Service, Department of Rehabilitation and Functional Recovery, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Jubin Abutalebi
- Neuropsychology Service, Department of Rehabilitation and Functional Recovery, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Centre for Neurolinguistics and Psycholinguistics, Scientific Institute San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Stockbridge MD, Faria AV, Fridriksson J, Rorden C, Bonilha L, Hillis AE. Subacute aphasia recovery is associated with resting-state connectivity within and beyond the language network. Ann Clin Transl Neurol 2023; 10:1525-1532. [PMID: 37403712 PMCID: PMC10502663 DOI: 10.1002/acn3.51842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE To examine changes to connectivity after aphasia treatment in the first 3 months after stroke. METHODS Twenty people experiencing aphasia within the first 3 months of stroke completed MRI before and immediately following 15 hours of language treatment. They were classified based on their response to treatment on a naming test of nouns as either high responders (10% improvement or more), or low responders (<10% improvement). Groups were similar in age, gender distribution, education, days since stroke, stroke volume, and baseline severity. Resting-state functional connectivity analysis was limited to the connectivity of the left fusiform gyrus with the bilateral inferior frontal gyrus, supramarginal gyrus, angular gyrus, and superior, middle, and inferior temporal gyrus, based on previous studies showing the importance of left fusiform gyrus in naming performance. RESULTS Baseline ipsilateral connectivity between the left fusiform gyrus and the language network was similar between high and low responders to therapy when controlling for stroke volume. Following therapy, change in connectivity was significantly greater among high responders between the left fusiform gyrus and the ipsilateral and contralateral pars triangularis, ipsilateral pars opercularis and superior temporal gyrus, and contralateral angular gyrus when compared with low responders. INTERPRETATION An account of these findings incorporates primarily proximal connectivity restoration, but also potentially reflects select contralateral compensatory reorganization. The latter is often associated with chronic recovery, reflecting the transitional nature of the subacute period.
Collapse
Affiliation(s)
- Melissa D. Stockbridge
- Department of NeurologyJohns Hopkins University School of MedicineBaltimore21287MarylandUSA
| | - Andreia V. Faria
- Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimore21287MarylandUSA
| | - Julius Fridriksson
- Department of Communication Sciences and DisordersUniversity of South CarolinaColumbia29208South CarolinaUSA
| | - Chris Rorden
- Department of Communication Sciences and DisordersUniversity of South CarolinaColumbia29208South CarolinaUSA
| | - Leonardo Bonilha
- Department of NeurologyEmory University School of MedicineAtlanta30322GeorgiaUSA
| | - Argye E. Hillis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimore21287MarylandUSA
- Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimore21287MarylandUSA
- Department of Cognitive Science, Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimore21218MarylandUSA
| |
Collapse
|
9
|
Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY, Xu JG. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci 2023; 13:brainsci13030451. [PMID: 36979261 PMCID: PMC10046557 DOI: 10.3390/brainsci13030451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zong-Lei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| |
Collapse
|
10
|
Altered Spontaneous Brain Activity in Poststroke Aphasia: A Resting-State fMRI Study. Brain Sci 2023; 13:brainsci13020300. [PMID: 36831843 PMCID: PMC9954170 DOI: 10.3390/brainsci13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE Brain areas frequently implicated in language recovery after stroke comprise perilesional sites in the left hemisphere and homotopic regions in the right hemisphere. However, the neuronal mechanisms underlying language restoration are still largely unclear. METHODS AND MATERIALS In the present study, we investigated the brain function in 15 patients with poststroke aphasia and 30 matched control subjects by combining the regional homogeneity (ReHo) and amplitudes of low-frequency fluctuation (ALFF) analysis methods based on resting-state fMRI. RESULTS Compared to the control subjects, the patients with aphasia exhibited increased ReHo and ALFF values in the ipsilateral perilesional areas and increased ReHo in the contralesional right middle frontal gyrus. CONCLUSIONS The increased spontaneous brain activity in patients with poststroke aphasia during the recovery period, specifically in the ipsilateral perilesional regions and the homologous language regions of the right hemisphere, has potential implications for the treatment of patients with aphasia.
Collapse
|
11
|
You Y, Li Y, Zhang Y, Fan H, Gao Q, Wang L. Long-term effects of transcranial direct current stimulation (tDCS) combined with speech language therapy (SLT) on post-stroke aphasia patients: A systematic review and network meta-analysis of randomized controlled trials. NeuroRehabilitation 2023; 53:285-296. [PMID: 37781820 DOI: 10.3233/nre-230099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation tool for improving language performance in patients with aphasia after stroke. However, it remains unclear whether it has long-term effects. After consulting a large number of relevant studies, it was found that there are no definitive conclusions about the long-term effects of tDCS on post-stroke aphasia patients. OBJECTIVE To determine whether tDCS has long-term effects on post-stroke aphasia patients (PAPs) and which type of tDCS has the most beneficial treatment effects on language performance (especially naming ability). METHODS A network meta-analysis was conducted by searching for randomized controlled trials (RCTs) published until April 2023 in the following databases: Web of Science, Embase, Medline (from OVID and PubMed), PsycInfo and PsycARTICLES (from OVID). We only included RCTs published in English. PAPs treated by tDCS combined with speech-language therapy were selected. Sham tDCS was the control group. Naming ability or other language performance must be assessed at follow-up states. Two reviewers independently used checklists to assess the primary outcome (the long-term effects on naming ability) and the secondary outcome (other language performance, such as communication). Cochrane Collaboration guidelines were used to assess the risk of bias. RESULTS Seven studies with 249 patients were included for data synthesis. For primary outcomes (naming nous), there was no obvious evidence to show a difference between interventions (C-tDCS vs. S-tDCS SMD = 0.06, 95% CI = -1.01, 1.12; A-tDCS vs. S-tDCS SMD = 0.00, 95% CI = -0.66, 0.65; D-tDCS vs. S-tDCS SMD = 0.77, 95% CI = -0.71, 2.24; A-tDCS vs. C-tDCS SMD = -0.06, 95% CI = -1.31,1.19; D-tDCS vs. C-tDCS SMD = 0.71, 95% CI = -1.11,2.53; D-tDCS vs. A-tDCS SMD = 0.77, 95% CI = -0.84, 2.39). In addition, no evidence showed differences in communication ability (C-tDCS vs. S-tDCS SMD = 0.08 95% CI = -1.77, 1.92; A-tDCS vs. S-tDCS SMD = 1.23 95% CI = -1.89, 4.34; D-tDCS vs. S-tDCS SMD = 0.70; 95% CI = -1.93, 3.34; A-tDCS vs. C-tDCS SMD = 1.15 95% CI = -2.48, 4.77; D-tDCS vs. C-tDCS SMD = 0.62 95% CI = -2.59, 3.84; D-tDCS vs. A-tDCS SMD = -0.52 95% CI = -4.60, 3.56). CONCLUSION It seems that tDCS has no long-term effects on post-stroke aphasia patients in naming nouns and communication in terms of the results of our network meta-analysis. However, the results should be interpreted with caution. In the future, more RCTs with long follow-up times should be included in the research to conduct subgroup or meta-regression analyses to obtain a sufficient effect size.
Collapse
Affiliation(s)
- Yue You
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Li
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Yin Zhang
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Huimin Fan
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Gao
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Zhou K, Zhou Y, Zeng Y, Zhang J, Cai X, Qin J, Li Z, Yan F. Research Hotspots and Global Trends of Transcranial Direct Current Stimulation in Stroke: A Bibliometric Analysis. Neuropsychiatr Dis Treat 2023; 19:601-613. [PMID: 36950717 PMCID: PMC10025138 DOI: 10.2147/ndt.s400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023] Open
Abstract
Purpose Transcranial direct current stimulation has been widely used in the clinical treatment of stroke. The purpose of this study was to perform a bibliometric analysis of scientific literature in this field. Methods Articles and reviews regarding transcranial direct current stimulation in stroke from January 01, 2004 to May 31, 2022 were identified from the Science Citation Index-Expanded of the Web of Science Core Collection database. CiteSpace 6.1.R2, Bibliometrix and the Bibliometric Online Analysis Platform were used to analyze data. Results A total of 905 papers were obtained, with the highest number of publications coming from the USA. The institutions and authors with the most publications were Harvard Medical School and Fregni F respectively. Nitsche MA had the most co-citations, followed by Fregni F. Neurosciences was the most fruitful research area and Brain Stimulation had the highest H-index. The research topics could be divided into three sections: mechanisms of treatment, comparison of efficacy with transcranial magnetic stimulation, clinical application of post-stroke dysfunction. The field of "walking", "strength" and "virtual reality therapy" are the future research hotspots of transcranial direct current stimulation. Conclusion The overall research showed a slow growth trend, and the outstanding contribution of the USA in this field cannot be ignored. Relevant researchers are suggested to focus on international collaboration and actively conduct high-quality randomized controlled clinical trials on research hotspots and frontiers in order to identify the optimal stimulation paradigm for clinical purposes.
Collapse
Affiliation(s)
- Kebing Zhou
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Yu Zhou
- Department of Rehabilitation, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuena Zeng
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Jiahui Zhang
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Xiaoyan Cai
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Jieying Qin
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
- Correspondence: Fengxia Yan; Jiahui Zhang, School of Nursing, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632, People’s Republic of China, Tel +86-20-85225836, Fax +86-20-8522227, Email ;
| |
Collapse
|
13
|
Does Executive Function Training Impact on Communication? A Randomized Controlled tDCS Study on Post-Stroke Aphasia. Brain Sci 2022; 12:brainsci12091265. [PMID: 36139001 PMCID: PMC9497246 DOI: 10.3390/brainsci12091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
New approaches in aphasia rehabilitation have recently identified the crucial role of executive functions (EFs) in language recovery, especially for people with severe aphasia (PWSA). Indeed, EFs include high-order cognitive abilities such as planning and problem solving, which enable humans to adapt to novel situations and are essential for everyday functional communication. In a randomized double-blind crossover design, twenty chronic Italian PWSA underwent ten days of transcranial direct current stimulation (tDCS) (20 min, 2 mA) over the right dorsolateral prefrontal cortex (DLPFC). Two conditions were considered, i.e., anodal and sham, while performing four types of cognitive training (alertness, selective attention, visuo-spatial working memory, and planning), all of which were related to executive functions. After anodal tDCS, a greater improvement in selective attention, visuospatial working memory and planning abilities was found compared to the sham condition; this improvement persisted one month after the intervention. Importantly, a significant improvement was also observed in functional communication, as measured through the Communication Activities of Daily Living Scale, in noun and verb naming, in auditory and written language comprehension tasks and in executive function abilities. This evidence emphasizes, for the first time, that tDCS over the right DLPFC combined with executive training enhances functional communication in severe aphasia.
Collapse
|
14
|
Zhao J, Li Y, Zhang X, Yuan Y, Cheng Y, Hou J, Duan G, Liu B, Wang J, Wu D. Alteration of network connectivity in stroke patients with apraxia of speech after tDCS: A randomized controlled study. Front Neurol 2022; 13:969786. [PMID: 36188376 PMCID: PMC9521848 DOI: 10.3389/fneur.2022.969786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Objective This study aimed to examine the changes in the functional connectivity of the cortical speech articulation network after anodal transcranial direct current stimulation (A-tDCS) over the left lip region of the primary motor cortex (M1) in subacute post-stroke patients with apraxia of speech (AoS), and the effect of A-tDCS on AoS. Methods A total of 24 patients with post-stroke AoS were randomized into two groups and received A-tDCS over the left lip region of M1 (tDCS group)/ sham tDCS (control group) as well as speech and language therapy two times per day for 5 days. Before and after the treatment, the AoS assessments and electroencephalogram (EEG) were evaluated. The cortical interconnections were measured using the EEG non-linear index of cross approximate entropy (C-ApEn). Results The analysis of EEG showed that, after the treatment, the activated connectivity was all in the left hemisphere, and not only regions in the speech articulation network but also in the dorsal lateral prefrontal cortex (DLPFC) in the domain-general network were activated in the tDCS group. In contrast, the connectivity was confined to the right hemisphere and between bilateral DLPFC and bilateral inferior frontal gyrus (IFG) in the control group. In AoS assessments, the tDCS group improved significantly more than the control group in four of the five subtests. The results of multivariate linear regression analyses showed that only the group was significantly associated with the improvement of word repetition (P = 0.002). Conclusion A-tDCS over the left lip region of M1 coupled with speech therapy could upregulate the connectivity of both speech-specific and domain-general networks in the left hemisphere. The improved articulation performance in patients with post-stroke AoS might be related to the enhanced connectivity of networks in the left hemisphere induced by tDCS. Clinical trial registration ChiCTR-TRC-14005072.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Yuanyuan Li
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Xu Zhang
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Ying Yuan
- Department of Rehabilitation, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yinan Cheng
- Department of Rehabilitation, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jun Hou
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Guoping Duan
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jie Wang
- Department of Rehabilitation, Xuanwu Hospital Capital Medical University, Beijing, China
- Jie Wang
| | - Dongyu Wu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Dongyu Wu
| |
Collapse
|
15
|
Ashaie SA, Engel S, Cherney LR. Timing of transcranial direct current stimulation (tDCS) combined with speech and language therapy (SLT) for aphasia: study protocol for a randomized controlled trial. Trials 2022; 23:668. [PMID: 35978374 PMCID: PMC9386930 DOI: 10.1186/s13063-022-06627-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies suggest that language recovery in aphasia may be improved by pairing speech-language therapy with transcranial direct current stimulation. However, results from many studies have been inconclusive regarding the impact transcranial direct current stimulation may have on language recovery in individuals with aphasia. An important factor that may impact the efficacy of transcranial direct current stimulation is its timing relative to speech-language therapy. Namely, online transcranial direct current stimulation (paired with speech-language therapy) and offline transcranial direct current stimulation (prior to or following speech-language therapy) may have differential effects on language recovery in post-stroke aphasia. Transcranial direct current stimulation provided immediately before speech-language therapy may prime the language system whereas stimulation provided immediately after speech-language therapy may aid in memory consolidation. The main aim of this study is to investigate the differential effects of offline and online transcranial direct stimulation on language recovery (i.e., conversation) in post-stroke aphasia. METHODS/DESIGN The study is a randomized, parallel-assignment, double-blind treatment study. Participants will be randomized to one of four treatment conditions and will participate in 15 treatment sessions. All groups receive speech-language therapy in the form of computer-based script practice. Three groups will receive transcranial direct current stimulation: prior to speech-language therapy, concurrent with speech-language therapy, or following speech-language therapy. One group will receive sham stimulation (speech-language therapy only). We aim to include 12 participants per group (48 total). We will use fMRI-guided neuronavigation to determine placement of transcranial direct stimulation electrodes on participants' left angular gyrus. Participants will be assessed blindly at baseline, immediately post-treatment, and at 4 weeks and 8 weeks following treatment. The primary outcome measure is change in the rate and accuracy of the trained conversation script from baseline to post-treatment. DISCUSSION Results from this study will aid in determining the optimum timing to combine transcranial direct current stimulation with speech-language therapy to facilitate better language outcomes for individuals with aphasia. In addition, effect sizes derived from this study may also inform larger clinical trials investigating the impact of transcranial direct current stimulation on functional communication in individuals with aphasia. TRIAL REGISTRATION ClinicalTrials.gov NCT03773406. December 12, 2018.
Collapse
Affiliation(s)
- Sameer A Ashaie
- Center for Aphasia Research and Treatment, Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA.,Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Samantha Engel
- Center for Aphasia Research and Treatment, Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Leora R Cherney
- Center for Aphasia Research and Treatment, Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA. .,Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Ding X, Zhang S, Huang W, Zhang S, Zhang L, Hu J, Li J, Ge Q, Wang Y, Ye X, Zhang J. Comparative efficacy of non-invasive brain stimulation for post-stroke aphasia: a network meta-analysis and meta-regression of moderators. Neurosci Biobehav Rev 2022; 140:104804. [DOI: 10.1016/j.neubiorev.2022.104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
|
17
|
Moein N, Mohamadi R, Rostami R, Nitsche M, Zomorrodi R, Ostadi A. Investigation of the effect of delayed auditory feedback and transcranial direct current stimulation (DAF-tDCS) treatment for the enhancement of speech fluency in adults who stutter: A randomized controlled trial. JOURNAL OF FLUENCY DISORDERS 2022; 72:105907. [PMID: 35689904 DOI: 10.1016/j.jfludis.2022.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Stuttering is a disorder that begins in childhood and can persist into adulthood. In the present study, it was hypothesized that the combined intervention of transcranial direct current stimulation (tDCS) and Delayed Auditory Feedback (DAF) would cause greater improvement in speech fluency in comparison to the intervention with DAF alone. METHODS A randomized, double-blind, sham-controlled clinical trial was conducted to investigate the effects of the combined intervention. Fifty adults with moderate to severe stuttering (25 females, 25 males, Mean age=26.92, SD=6.23) were randomly allocated to the anodal or sham tDCS group. In the anodal tDCS group, participants received DAF combined with anodal tDCS (1 mA), while the sham tDCS group was exposed to sham tDCS simultaneously with DAF. In this study, a 60-ms delay was used for DAF intervention, and tDCS was applied over the left superior temporal gyrus. Each individual participated in six 20-minute intervention sessions (held on six consecutive days). Speech fluency was assessed before and after the intervention. RESULTS In the anodal tDCS group, the scores of the Stuttering Severity Instrument, Overall Assessment of the Speaker's Experience of Stuttering questionnaire, and the percentage of stuttered syllable reduced significantly (from average baseline rates of 8.45%, across three tasks, to 5.36% at the follow-up assessment) after the intervention. CONCLUSION The results of this study suggest that delivery of anodal tDCS when combined with DAF may enhance stuttering reduction effects for six weeks following the intervention.
Collapse
Affiliation(s)
- Narges Moein
- Department of Speech-Language Pathology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Madadkaran St., Shahnazari Ave., Mirdamad Blvd., Madar Sq., Tehran, Iran.
| | - Reyhane Mohamadi
- Department of Speech-Language Pathology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Rehabilitationresearch Center, Iran University of Medical Sciences, Madadkaran St., Shahnazari Ave., Mirdamad Blvd., Madar Sq., Tehran, Iran.
| | - Reza Rostami
- Faculty of Psychology and Education, University of Tehran, Dr. Kardan St., Jalal-Al-e-Ahmed Ave., Chamran Hwy., Tehran, Iran.
| | - Michael Nitsche
- Department of psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund, Germany.
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, University of Toronto, Russell St., Toronto, Ontario, Canada.
| | - Amir Ostadi
- University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
18
|
Sheppard SM. Noninvasive brain stimulation to augment language therapy for primary progressive aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:251-260. [PMID: 35078603 DOI: 10.1016/b978-0-12-823384-9.00018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Primary progressive aphasia (PPA) is a debilitating disorder characterized by the gradual loss of language functioning resulting from neurodegenerative diseases including frontotemporal lobar degeneration or Alzheimer's disease pathology. There is a dearth of research investigating language therapy in PPA. Unlike individuals with poststroke aphasia, language skills are expected to decline over time, so the goal of treatment is often to preserve existing language functioning. There has been an increasing interest in using non-invasive brain stimulation including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to augment traditional behavioral therapy in PPA. Research is promising and suggests neuromodulation can lead to generalization and maintenance of treatment effects for a longer period compared to behavioral therapy alone. Emerging research is also beginning to identify predictors of treatment response. Yet there is still much to learn regarding how neuromodulation factors (e.g., type of stimulation, stimulation intensity), participant factors (e.g., demographics, extent and location of atrophy), and treatment factors (e.g., type of language therapy, and dosage) will interact to predict treatment response. We are moving toward a promising future where individuals with PPA will benefit from individualized therapy protocols pairing traditional language therapy with neuromodulation.
Collapse
Affiliation(s)
- Shannon M Sheppard
- Department of Communication Sciences & Disorders, Chapman University, Irvine, CA, United States.
| |
Collapse
|
19
|
Meier EL. The role of disrupted functional connectivity in aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:99-119. [PMID: 35078613 DOI: 10.1016/b978-0-12-823384-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Language is one of the most complex and specialized higher cognitive processes. Brain damage to the distributed, primarily left-lateralized language network can result in aphasia, a neurologic disorder characterized by receptive and/or expressive deficits in spoken and/or written language. Most often, aphasia is the consequence of stroke-termed poststroke aphasia (PSA)-yet, aphasia can also manifest due to neurodegenerative disease, specifically, a disorder called primary progressive aphasia (PPA). In recent years, functional connectivity neuroimaging studies have provided emerging evidence supporting theories regarding the relationships between language impairments, structural brain damage, and functional network properties in these two disorders. This chapter reviews the current evidence for the "network phenotype of stroke injury" hypothesis (Siegel et al., 2016) as it pertains to PSA and the "network degeneration hypothesis" (Seeley et al., 2009) as it pertains to PPA. Methodologic considerations for functional connectivity studies, limitations of the current functional connectivity literature in aphasia, and future directions are also discussed.
Collapse
Affiliation(s)
- Erin L Meier
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States.
| |
Collapse
|
20
|
Stockbridge MD, Fridriksson J, Sen S, Bonilha L, Hillis AE. Protocol for Escitalopram and Language Intervention for Subacute Aphasia (ELISA): A randomized, double blind, placebo-controlled trial. PLoS One 2021; 16:e0261474. [PMID: 34941929 PMCID: PMC8699636 DOI: 10.1371/journal.pone.0261474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
In this forthcoming multicenter, prospective, randomized, double-blind placebo-controlled trial, we will investigate the augmentative effects of a selective serotonin reuptake inhibitor, escitalopram, on language therapy in individuals with post-stroke aphasia. We hypothesize that, when combined with language therapy, daily escitalopram will result in greater improvement than placebo in an untrained picture naming task (Philadelphia Naming Test short form) administered one week after the end of language therapy. We also will examine whether escitalopram's effect on language is independent of its effect on depression, varies with lesion location, or is associated with increased functional connectivity within the left hemisphere. Finally, we will examine whether individuals with BDNF met alleles show reduced response to treatment and reduced changes in connectivity. We expect to enroll 88 participants over four years. Participants are given escitalopram or placebo within one week of their stroke for 90 days and receive fifteen 45-minute computer-delivered sessions of language treatment beginning 60 days from the start of drug therapy. Patients then complete a comprehensive assessment of language at one, five, and twenty weeks after the last language therapy session. ELISA is the first randomized, controlled trial evaluating the effect of a selective serotonin reuptake inhibitor on the improvement of language in people with aphasia undergoing language treatment during the acute to subacute post-stroke period. Trial registration: The trial is registered with ClinicalTrials.gov NCT03843463.
Collapse
Affiliation(s)
- Melissa D. Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina, United States of America
| | - Souvik Sen
- Department of Neurology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
21
|
Zettin M, Bondesan C, Nada G, Varini M, Dimitri D. Transcranial Direct-Current Stimulation and Behavioral Training, a Promising Tool for a Tailor-Made Post-stroke Aphasia Rehabilitation: A Review. Front Hum Neurosci 2021; 15:742136. [PMID: 34987366 PMCID: PMC8722401 DOI: 10.3389/fnhum.2021.742136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Aphasia is an acquired language disorder resulting from damage to portions of the brain which are responsible for language comprehension and formulation. This disorder can involve different levels of language processing with impairments in both oral and written comprehension and production. Over the last years, different rehabilitation and therapeutic interventions have been developed, especially non-invasive brain stimulation (NIBS) techniques. One of the most used NIBS techniques in aphasia rehabilitation is the Transcranial Direct-Current Stimulation (tDCS). It has been proven to be effective in promoting a successful recovery both in the short and the long term after a brain injury. The main strength of tDCS is its feasibility associated with relatively minor side effects, if safely and properly administered. TDCS requires two electrodes, an anode and a cathode, which are generally placed on the scalp. The electrode montage can be either unipolar or bipolar. The main aim of this review is to give an overview of the state of the art of tDCS for the treatment of aphasia. The studies described included patients with different types of language impairments, especially with non-fluent aphasia and in several cases anomia. The effects of tDCS are variable and depend on several factors, such as electrode size and montage, duration of the stimulation, current density and characteristics of the brain tissue underneath the electrodes. Generally, tDCS has led to promising results in rehabilitating patients with acquired aphasia, especially if combined with different language and communication therapies. The selection of the appropriate approach depends on the patients treated and their impaired language function. When used in combination with treatments such as Speech and Language Therapy, Constraint Induced Aphasia Therapy or Intensive Action Treatment, tDCS has generally promoted a better recovery of the impaired functions. In addition to these rehabilitation protocols, Action Observation Therapy, such as IMITAF, appeared to contribute to the reduction of post-stroke anomia. The potential of combining such techniques with tDCS would would therefore be a possibility for further improvement, also providing the clinician with a new action and intervention tool. The association of a tDCS protocol with a dedicated rehabilitation training would favor a generalized long-term improvement of the different components of language.
Collapse
Affiliation(s)
- Marina Zettin
- Centro Puzzle, Turin, Italy
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Giulia Nada
- Department of Psychology, University of Turin, Turin, Italy
| | - Matteo Varini
- Department of Psychology, University of Turin, Turin, Italy
| | - Danilo Dimitri
- Centro Puzzle, Turin, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
22
|
Johnson JP, Meier EL, Pan Y, Kiran S. Abnormally weak functional connections get stronger in chronic stroke patients who benefit from naming therapy. BRAIN AND LANGUAGE 2021; 223:105042. [PMID: 34695614 PMCID: PMC8638784 DOI: 10.1016/j.bandl.2021.105042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 06/03/2023]
Abstract
Language recovery in aphasia is likely supported by a network of brain regions, but few studies have investigated treatment-related changes in functional connectivity while controlling for the absence of treatment. We examined functional connectivity in a 38-region picture-naming network in 30 patients with chronic aphasia who did or did not receive naming therapy. Compared to healthy controls, patients had abnormally low connectivity in a subset of connections from the naming network. Linear mixed models showed that the connectivity of abnormal connections increased significantly in patients who benefited from therapy, but not in those who did not benefit from or receive therapy. Changes in responders were specific to abnormal connections and did not extend to the larger network. Thus, successful naming therapy was associated with increased connectivity in connections that were abnormal prior to treatment. The potential to strengthen such connections may be a prerequisite for a successful treatment response.
Collapse
Affiliation(s)
- Jeffrey P Johnson
- Aphasia Research Laboratory, Department of Speech, Language, & Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, USA.
| | - Erin L Meier
- Aphasia Research Laboratory, Department of Speech, Language, & Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, USA
| | - Yue Pan
- Aphasia Research Laboratory, Department of Speech, Language, & Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, USA
| | - Swathi Kiran
- Aphasia Research Laboratory, Department of Speech, Language, & Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, USA
| |
Collapse
|
23
|
Masson-Trottier M, Sontheimer A, Durand E, Ansaldo AI. Resting-State Functional Connectivity following Phonological Component Analysis: The Combined Action of Phonology and Visual Orthographic Cues. Brain Sci 2021; 11:1458. [PMID: 34827457 PMCID: PMC8615968 DOI: 10.3390/brainsci11111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Anomia is the most frequent and pervasive symptom for people with aphasia (PWA). Phonological component analysis (PCA) is a therapy incorporating phonological cues to treat anomia. Investigations of neural correlates supporting improvements following PCA remain scarce. Resting-state functional connectivity (rsFC) as a marker of therapy-induced neuroplasticity has been reported by our team. The present study explores the efficacy of PCA in French and associated therapy-induced neuroplasticity using whole-brain rsFC analysis. Ten PWA participated in a pre-/post-PCA fMRI study with cognitive linguistic assessments. PCA was delivered in French following the standard procedure. PCA led to significant improvement with trained and untrained items. PCA also led to changes in rsFC between distributed ROIs in the semantic network, visual network, and sub-cortical areas. Changes in rsFC can be interpreted within the frame of the visual and phonological nature of PCA. Behavioral and rsFC data changes associated with PCA in French highlight its efficacy and point to the importance of phonological and orthographic cues to consolidate the word-retrieval strategy, contributing to generalization to untrained words.
Collapse
Affiliation(s)
- Michèle Masson-Trottier
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada;
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Anna Sontheimer
- Centre National de la Recherche Scientifique, Institut National Polytechnique-Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Centre Hospitalier Universitaire de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Edith Durand
- U.F.R. Lettres, Cultures et Sciences Humaines, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Ana Inés Ansaldo
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada;
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
24
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
DUAL-tDCS Treatment over the Temporo-Parietal Cortex Enhances Writing Skills: First Evidence from Chronic Post-Stroke Aphasia. Life (Basel) 2021; 11:life11040343. [PMID: 33919714 PMCID: PMC8070712 DOI: 10.3390/life11040343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The learning of writing skills involves the re-engagement of previously established independent procedures. Indeed, the writing deficit an adult may acquire after left hemispheric brain injury is caused by either an impairment to the lexical route, which processes words as a whole, to the sublexical procedure based on phoneme-to-grapheme conversion rules, or to both procedures. To date, several approaches have been proposed for writing disorders, among which, interventions aimed at restoring the sub-lexical procedure were successful in cases of severe agraphia. In a randomized double-blind crossover design, fourteen chronic Italian post-stroke aphasics underwent dual transcranial direct current stimulation (tDCS) (20 min, 2 mA) with anodal and cathodal current simultaneously placed over the left and right temporo-parietal cortex, respectively. Two different conditions were considered: (1) real, and (2) sham, while performing a writing task. Each experimental condition was performed for ten workdays over two weeks. After real stimulation, a greater amelioration in writing with respect to the sham was found. Relevantly, these effects generalized to different language tasks not directly treated. This evidence suggests, for the first time, that dual tDCS associated with training is efficacious for severe agraphia. Our results confirm the critical role of the temporo-parietal cortex in writing skills.
Collapse
|
26
|
Chan MMY, Yau SSY, Han YMY. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci Biobehav Rev 2021; 125:392-416. [PMID: 33662444 DOI: 10.1016/j.neubiorev.2021.02.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The neurobiological mechanisms underlying prefrontal transcranial direct current stimulation (tDCS) remain elusive. Randomized, sham-controlled trials in humans and rodents applying in vivo prefrontal tDCS were included to explore whether prefrontal tDCS modulates resting-state and event-related functional connectivity, neural oscillation and synaptic plasticity. Fifty studies were included in the systematic review and 32 in the meta-analyses. Neuroimaging meta-analysis indicated anodal prefrontal tDCS significantly enhanced bilateral median cingulate activity [familywise error (FWE)-corrected p < .005]; meta-regression revealed a positive relationship between changes in median cingulate activity after tDCS and current density (FWE-corrected p < .005) as well as electric current strength (FWE-corrected p < .05). Meta-analyses of electroencephalography and magnetoencephalography data revealed nonsignificant changes (ps > .1) in both resting-state and event-related oscillatory power across all frequency bands. Applying anodal tDCS over the rodent hippocampus/prefrontal cortex enhanced long-term potentiation and brain-derived neurotrophic factor expression in the stimulated brain regions (ps <.005). Evidence supporting prefrontal tDCS administration is preliminary; more methodologically consistent studies evaluating its effects on cognitive function that include brain activity measurements are needed.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
27
|
Sheppard SM, Sebastian R. Diagnosing and managing post-stroke aphasia. Expert Rev Neurother 2021; 21:221-234. [PMID: 33231117 PMCID: PMC7880889 DOI: 10.1080/14737175.2020.1855976] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Introduction: Aphasia is a debilitating language disorder and even mild forms of aphasia can negatively affect functional outcomes, mood, quality of life, social participation, and the ability to return to work. Language deficits after post-stroke aphasia are heterogeneous. Areas covered: The first part of this manuscript reviews the traditional syndrome-based classification approach as well as recent advances in aphasia classification that incorporate automatic speech recognition for aphasia classification. The second part of this manuscript reviews the behavioral approaches to aphasia treatment and recent advances such as noninvasive brain stimulation techniques and pharmacotherapy options to augment the effectiveness of behavioral therapy. Expert opinion: Aphasia diagnosis has largely evolved beyond the traditional approach of classifying patients into specific syndromes and instead focuses on individualized patient profiles. In the future, there is a great need for more large scale randomized, double-blind, placebo-controlled clinical trials of behavioral treatments, noninvasive brain stimulation, and medications to boost aphasia recovery.
Collapse
Affiliation(s)
- Shannon M. Sheppard
- Department of Communication Sciences and Disorder, Chapman University, Irvine, CA, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Adjunctive Approaches to Aphasia Rehabilitation: A Review on Efficacy and Safety. Brain Sci 2021; 11:brainsci11010041. [PMID: 33401678 PMCID: PMC7823462 DOI: 10.3390/brainsci11010041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Aphasia is one of the most socially disabling post-stroke deficits. Although traditional therapies have been shown to induce adequate clinical improvement, aphasic symptoms often persist. Therefore, unconventional rehabilitation techniques which act as a substitute or as an adjunct to traditional approaches are urgently needed. The present review provides an overview of the efficacy and safety of the principal approaches which have been proposed over the last twenty years. First, we examined the effectiveness of the pharmacological approach, principally used as an adjunct to language therapy, reporting the mechanism of action of each single drug for the recovery of aphasia. Results are conflicting but promising. Secondly, we discussed the application of Virtual Reality (VR) which has been proven to be useful since it potentiates the ecological validity of the language therapy by using virtual contexts which simulate real-life everyday contexts. Finally, we focused on the use of Transcranial Direct Current Stimulation (tDCS), both discussing its applications at the cortical level and highlighting a new perspective, which considers the possibility to extend the use of tDCS over the motor regions. Although the review reveals an extraordinary variability among the different studies, substantial agreement has been reached on some general principles, such as the necessity to consider tDCS only as an adjunct to traditional language therapy.
Collapse
|
29
|
Chan MMY, Han YMY. The Effect of Transcranial Direct Current Stimulation in Changing Resting-State Functional Connectivity in Patients With Neurological Disorders: A Systematic Review. J Cent Nerv Syst Dis 2020; 12:1179573520976832. [PMID: 33402860 PMCID: PMC7745554 DOI: 10.1177/1179573520976832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND People with neurological disorders are found to have abnormal resting-state functional connectivity (rsFC), which is associated with the persistent functional impairment found in these patients. Recently, transcranial direct current stimulation (tDCS) has been shown to improve rsFC, although the results are inconsistent. OBJECTIVE We hope to explore whether tDCS induces rsFC changes among patients with neurological disorders, whether rsFC is clinically relevant and how different tDCS parameters affect rsFC outcome among these individuals. METHODS A systematic review was conducted according to PRISMA guidelines (systematic review registration number: CRD42020168654). Randomized controlled trials that studied the tDCS effects on rsFC between the experimental and sham-controlled groups using either electrophysiological or neuroimaging methods were included. RESULTS Active tDCS can induce changes in both localized (ie, brain regions under the transcranial electrodes) and diffused (ie, brain regions not directly influenced by the transcranial electrodes) rsFC. Interestingly, fMRI studies showed that the default mode network was enhanced regardless of patients' diagnoses, the stimulation paradigms used or the rsFC analytical methods employed. Second, stimulation intensity, but not total stimulation time, appeared to positively influence the effect of tDCS on rsFC. LIMITATIONS AND CONCLUSION Due to the inherent heterogeneity in rsFC analytical methods and tDCS protocols, meta-analysis was not conducted. We recommend that future studies may investigate the effect of tDCS on rsFC for repeated cathodal stimulation. For clinicians, we suggest anodal stimulation at a higher stimulation intensity within the safety limit may maximize tDCS effects in modulating aberrant functional connectivity of patients with neurological disorders.
Collapse
Affiliation(s)
- Melody MY Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne MY Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
30
|
Pisano F, Caltagirone C, Incoccia C, Marangolo P. Spinal or cortical direct current stimulation: Which is the best? Evidence from apraxia of speech in post-stroke aphasia. Behav Brain Res 2020; 399:113019. [PMID: 33207242 DOI: 10.1016/j.bbr.2020.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/04/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
To date, new advances in technology have already shown the effectiveness of non-invasive brain stimulation and, in particular, of transcranial direct current stimulation (tDCS), in enhancing language recovery in post-stroke aphasia. More recently, it has been suggested that the stimulation over the spinal cord improves the production of words associated to sensorimotor schemata, such as action verbs. Here, for the first time, we present evidence that transpinal direct current stimulation (tsDCS) combined with a language training is efficacious for the recovery from speech apraxia, a motor speech disorder which might co-occur with aphasia. In a randomized-double blind experiment, ten aphasics underwent five days of tsDCS with concomitant treatment for their articulatory deficits in two different conditions: anodal and sham. In all patients, language measures were collected before (T0), at the end (T5) and one week after the end of treatment (F/U). Results showed that only after anodal tsDCS patients exhibited a better accuracy in repeating the treated items. Moreover, these effects persisted at F/U and generalized to other oral language tasks (i.e. picture description, noun and verb naming, word repetition and reading). A further analysis, which compared the tsDCS results with those collected in a matched group of patients who underwent the same language treatment but combined with tDCS, revealed no differences between the two groups. Given the persistency and severity of articulatory deficits in aphasia and the ease of use of tsDCS, we believe that spinal stimulation might result a new innovative approach for language rehabilitation.
Collapse
Affiliation(s)
- Francesca Pisano
- Department of Humanities studies - University Federico II, Naples, Italy
| | | | | | - Paola Marangolo
- Department of Humanities studies - University Federico II, Naples, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
31
|
High definition transcranial direct current stimulation modulates abnormal neurophysiological activity in post-stroke aphasia. Sci Rep 2020; 10:19625. [PMID: 33184382 PMCID: PMC7665190 DOI: 10.1038/s41598-020-76533-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Recent findings indicate that measures derived from resting-state magnetoencephalography (rsMEG) are sensitive to cortical dysfunction in post-stroke aphasia. Spectral power and multiscale entropy (MSE) measures show that left-hemispheric areas surrounding the stroke lesion (perilesional) exhibit pathological oscillatory slowing and alterations in signal complexity. In the current study, we tested whether individually-targeted high-definition transcranial direct current stimulation (HD-tDCS) can reduce MEG abnormalities and transiently improve language performance. In eleven chronic aphasia survivors, we devised a method to localize perilesional areas exhibiting peak MSE abnormalities, and subsequently targeted these areas with excitatory/anodal-tDCS, or targeted the contralateral homolog areas with inhibitory/cathodal-tDCS, based on prominent theories of stroke recovery. Pathological MEG slowing in these patients was correlated with aphasia severity. Sentence/phrase repetition accuracy was assessed before and after tDCS. A delayed word reading task was administered inside MEG to assess tDCS-induced neurophysiological changes in relative power and MSE computed on the pre-stimulus and delay task time windows. Results indicated increases in repetition accuracy, decreases in contralateral theta (4–7 Hz) and coarse-scale MSE (slow activity), and increases in perilesional low-gamma (25–50 Hz) and fine-scale MSE (fast activity) after anodal-tDCS, indicating reversal of pathological abnormalities. RsMEG may be a sensitive measure for guiding therapeutic tDCS.
Collapse
|
32
|
Buchwald A, Khosa N, Rimikis S, Duncan ES. Behavioral and neurological effects of tDCS on speech motor recovery: A single-subject intervention study. BRAIN AND LANGUAGE 2020; 210:104849. [PMID: 32905863 PMCID: PMC7554139 DOI: 10.1016/j.bandl.2020.104849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
This paper reports a feasibility study designed to evaluate the behavioral and neurological effects of using transcranial direct current stimulation (tDCS) in conjunction with speech motor learning treatment for individuals with acquired speech impairment subsequent to stroke. Most of the research using tDCS to enhance treatment outcomes in stroke recovery has focused on either limb motor control or aphasia treatment. Using a multiple-baseline multiple-probe crossover design, we compared both behavioral and brain connectivity-based outcomes following speech motor learning treatment with both Active tDCS and Sham tDCS. We observed that both treatment phases led to improvement in short-term maintenance, but that Active tDCS was associated with greater long-term maintenance improvement. Active tDCS was also associated with an increase in functional connectivity in the left hemisphere and interhemispherically in an ROI-based network analysis examining correlations among areas associated with speech production and acquired speech impairment. This report supports the possibility that tDCS may enhance both behavioral and neurological outcomes and indicates the importance of additional work in this area, although replication is required to confirm the extent and consistency of tDCS benefits on speech motor learning treatment outcomes.
Collapse
Affiliation(s)
- Adam Buchwald
- New York University, Department of Communicative Sciences and Disorders, 665 Broadway Suite 900, New York, NY 10012, USA.
| | - Nicolette Khosa
- New York University, Department of Communicative Sciences and Disorders, 665 Broadway Suite 900, New York, NY 10012, USA
| | - Stacey Rimikis
- New York University, Department of Communicative Sciences and Disorders, 665 Broadway Suite 900, New York, NY 10012, USA
| | - E Susan Duncan
- Louisiana State University, Department of Communication Sciences and Disorders, 68 Hatcher Hall, Baton Rouge, LA 70803, USA
| |
Collapse
|
33
|
Tao Y, Rapp B. How functional network connectivity changes as a result of lesion and recovery: An investigation of the network phenotype of stroke. Cortex 2020; 131:17-41. [PMID: 32781259 PMCID: PMC9088558 DOI: 10.1016/j.cortex.2020.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 03/15/2020] [Accepted: 06/02/2020] [Indexed: 11/28/2022]
Abstract
This study, through a series of univariate and multivariate (classification) analyses, investigated fMRI task-based functional connectivity (FC) at pre- and post-treatment time-points in 18 individuals with chronic post-stroke dysgraphia. The investigation examined the effects of lesion and treatment-based recovery on functional organization, focusing on both inter-hemispheric (homotopic) and intra-hemispheric connectivity. The work confirmed, in the chronic stage, the "network phenotype of stroke injury" proposed by Siegel et al. (2016) consisting of abnormally low inter-hemispheric connectivity as well as abnormally high intra-hemispheric (ipsilesional) connectivity. In terms of recovery-based changes in FC, this study found overall hyper-normalization of these abnormal inter and intra-hemispheric connectivity patterns, suggestive of over-correction. Specifically, treatment-related homotopic FC increases were observed between left and right dorsal frontal-parietal regions. With regard to intra-hemispheric connections, recovery was dominated by increased ipsilateral connectivity between frontal and parietal regions along with decreased connectivity between the frontal regions and posterior parietal-occipital-temporal areas. Both inter and intra-hemispheric changes were associated with treatment-driven improvements in spelling performance. We suggest an interpretation according to which, with treatment, as posterior orthographic processing areas become more effective, executive control from frontal-parietal networks becomes less necessary.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, USA.
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, USA; Department of Neuroscience, Johns Hopkins University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
34
|
Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res 2020; 7:30. [PMID: 32527334 PMCID: PMC7288425 DOI: 10.1186/s40779-020-00259-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Neuronal networks, especially those in the central nervous system (CNS), evolved to support extensive functional capabilities while ensuring stability. Several physiological "brakes" that maintain the stability of the neuronal networks in a healthy state quickly become a hinderance postinjury. These "brakes" include inhibition from the extracellular environment, intrinsic factors of neurons and the control of neuronal plasticity. There are distinct differences between the neuronal networks in the peripheral nervous system (PNS) and the CNS. Underpinning these differences is the trade-off between reduced functional capabilities with increased adaptability through the formation of new connections and new neurons. The PNS has "facilitators" that stimulate neuroregeneration and plasticity, while the CNS has "brakes" that limit them. By studying how these "facilitators" and "brakes" work and identifying the key processes and molecules involved, we can attempt to apply these theories to the neuronal networks of the CNS to increase its adaptability. The difference in adaptability between the CNS and PNS leads to a difference in neuroregenerative properties and plasticity. Plasticity ensures quick functional recovery of abilities in the short and medium term. Neuroregeneration involves synthesizing new neurons and connections, providing extra resources in the long term to replace those damaged by the injury, and achieving a lasting functional recovery. Therefore, by understanding the factors that affect neuroregeneration and plasticity, we can combine their advantages and develop rehabilitation techniques. Rehabilitation training methods, coordinated with pharmacological interventions and/or electrical stimulation, contributes to a precise, holistic treatment plan that achieves functional recovery from nervous system injuries. Furthermore, these techniques are not limited to limb movement, as other functions lost as a result of brain injury, such as speech, can also be recovered with an appropriate training program.
Collapse
Affiliation(s)
| | - Hong Chen
- Shengli Clinical College of Fujian Medical University; Department of Neurology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
35
|
Breining BL, Sebastian R. Neuromodulation in post-stroke aphasia treatment. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:44-56. [PMID: 33344066 PMCID: PMC7748105 DOI: 10.1007/s40141-020-00257-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW This paper aims to review non-invasive brain stimulation (NIBS) methods to augment speech and language therapy (SLT) for patients with post-stroke aphasia. RECENT FINDINGS In the past five years there have been more than 30 published studies assessing the effect of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) for improving aphasia in people who have had a stroke. Different approaches to NIBS treatment have been used in post-stroke aphasia treatment including different stimulation locations, stimulation intensity, number of treatment sessions, outcome measures, type of aphasia treatment, and time post-stroke. SUMMARY This review of NIBS for post-stroke aphasia shows that both tDCS and TMS can be beneficial for improving speech and language outcomes for patients with stroke. Prior to translating NIBS to clinical practice, further studies are needed to determine optimal tDCS and TMS parameters as well as the mechanisms underlying tDCS and TMS treatment outcomes.
Collapse
Affiliation(s)
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine
| |
Collapse
|
36
|
Marangolo P. The potential effects of transcranial direct current stimulation (tDCS) on language functioning: Combining neuromodulation and behavioral intervention in aphasia. Neurosci Lett 2020; 719:133329. [DOI: 10.1016/j.neulet.2017.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 02/08/2023]
|
37
|
Impact of Combined Transcranial Direct Current Stimulation and Speech-language Therapy on Spontaneous Speech in Aphasia: A Randomized Controlled Double-blind Study. J Int Neuropsychol Soc 2020; 26:7-18. [PMID: 31983371 DOI: 10.1017/s1355617719001036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Aphasia recovery depends on neural reorganization, which can be enhanced by speech-language therapy and noninvasive brain stimulation. Several studies suggested that transcranial direct current stimulation (tDCS) associated with speech-language therapy may improve verbal performance evaluated by analytic tests, but none focused on spontaneous speech. We explored the effect of bihemispheric tDCS on spontaneous speech in patients with poststroke aphasia. METHODS In this multicentric controlled randomized cross-over double-blind study, we included 10 patients with poststroke aphasia (4 had aphasia >6 months and 6 with aphasia <6 months). We combined the sessions of speech-language therapy and bihemispheric tDCS (2 mA, 20 min). After three baseline speech evaluations (1/week), two different conditions were randomly consecutively proposed: active and sham tDCS over 3 weeks with 1 week of washout in between. The main outcome measure was the number of different nouns used in 2 min to answer the question "what is your job." RESULTS There was no significant difference between conditions concerning the main outcome measure (p = .47) nor in the number of verbs, adjectives, adverbs, pronouns, repetitions, blank ideas, ideas, utterances with grammatical errors or paraphasias used. Other cognitive functions (verbal working memory, neglect, or verbal fluency) were not significantly improved in the tDCS group. No adverse events occurred. CONCLUSION Our results differed from previous studies using tDCS to improve naming in patients with poststroke aphasia possibly due to bihemispheric stimulation, rarely used previously. The duration of the rehabilitation period was short given the linguistic complexity of the measure. This negative result should be confirmed by larger studies with ecological measures.
Collapse
|
38
|
Vila-Nova C, Lucena PH, Lucena R, Armani-Franceschi G, Campbell FQ. Effect of Anodal tDCS on Articulatory Accuracy, Word Production, and Syllable Repetition in Subjects with Aphasia: A Crossover, Double-Blinded, Sham-Controlled Trial. Neurol Ther 2019; 8:411-424. [PMID: 31432434 PMCID: PMC6858895 DOI: 10.1007/s40120-019-00149-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Transcranial direct-current stimulation (tDCS) has been used to modulate and induce changes in brain function and excitability. tDCS is a promising tool for the treatment of aphasia. OBJECTIVE To evaluate whether tDCS improves articulatory accuracy and speech production in patients with aphasia after stroke. METHODS AND RESULTS Twelve right-handed subjects participated in a double-blind, sham-controlled, crossover offline trial. We assessed (1) articulatory accuracy at a naming task, (2) number of words correctly produced, (3) number of syllables repeated correctly, and (4) qualitative assessment of speech. Articulatory accuracy improved when using tDCS over Broca's area in subjects with aphasia post-stroke (p ≤ 0.05). Qualitative improvement in the naming and syllable repetition tasks was observed, but the difference was not statistically significant (respectively, p = 0.15 and p = 0.79). CONCLUSION The current results corroborate the potential of tDCS to be used as an alternative and complementary treatment for individuals with aphasia.
Collapse
Affiliation(s)
- Camila Vila-Nova
- União Metropolitana de Educação e Cultura-UNIME, Kroton and University of the State of Bahia, Avenida Luis Tarquínio Pontes, 600, Lauro de Freitas, BA, Brazil.
| | - Pedro H Lucena
- Bahiana School of Medicine and Public Health, Av. Dom João VI, 275, Brotas, Salvador, BA, Brazil
| | - Rita Lucena
- School of Medicine of Bahia, Federal University of Bahia, Av. Luis Viana Filho S/N, Canela, Salvador, BA, Brazil
| | | | - Fernanda Q Campbell
- The Heller School for Social Policy and Management, Brandeis University, 415 South Street, Waltham, MA, USA
| |
Collapse
|
39
|
Affiliation(s)
- Shauna Berube
- From the Departments of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Argye E Hillis
- From the Departments of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Tao Y, Rapp B. The effects of lesion and treatment-related recovery on functional network modularity in post-stroke dysgraphia. NEUROIMAGE-CLINICAL 2019; 23:101865. [PMID: 31146116 PMCID: PMC6538967 DOI: 10.1016/j.nicl.2019.101865] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/22/2019] [Accepted: 05/19/2019] [Indexed: 01/21/2023]
Abstract
A better understanding of the neural network properties that support cognitive recovery after a brain lesion is important for our understanding of human neuroplasticity and may have valuable clinical implications. In fifteen individuals with chronic, acquired written language deficits subsequent to left-hemisphere stroke, we used task-based functional connectivity to evaluate the relationship between the graph-theoretic measures (modularity, participation coefficient and within-module degree z-score) and written language production accuracy before and after behavioral treatment. A reference modular structure and local and global hubs identified from healthy controls formed the basis of the analyses. Overall, the investigation revealed that less modular networks with greater global and lower local integration were associated with greater deficit severity and lower response to treatment. Furthermore, we found treatment-induced increases in modularity and local integration measures. In particular, local integration within intact ventral occipital-temporal regions of the spelling network showed the greatest increase in local integration following treatment. This investigation significantly extends previous research by using task-based (rather than resting-state) functional connectivity to examine a larger set of network characteristics in the evaluation of treatment-induced recovery and by including comparisons with control participants. The findings demonstrate the relevance of network modularity for understanding the neuroplasticity supporting functional neural reorganization.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, USA.
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, USA; Department of Neuroscience, Johns Hopkins University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
41
|
Feil S, Eisenhut P, Strakeljahn F, Müller S, Nauer C, Bansi J, Weber S, Liebs A, Lefaucheur JP, Kesselring J, Gonzenbach R, Mylius V. Left Shifting of Language Related Activity Induced by Bihemispheric tDCS in Postacute Aphasia Following Stroke. Front Neurosci 2019; 13:295. [PMID: 31105510 PMCID: PMC6498872 DOI: 10.3389/fnins.2019.00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/13/2019] [Indexed: 12/02/2022] Open
Abstract
Both anodal transcranial direct current stimulation (tDCS) of the left IFG and cathodal stimulation of the right IFG were shown to improve rehabilitation of stroke patients with Broca’s aphasia. The study aimed at assessing the impact of a bihemispheric IFG stimulation compared to sham on postacute non-fluent aphasia. Twelve patients with non-fluent aphasia were included at least 4 weeks following cerebral stroke. Ten daily sessions of 2 mA bihemispheric verum or sham tDCS (anode on left IFG and cathode on right IFG) were performed concomitantly with individual language therapy in a double-blinded randomized controlled study with parallel group design. Language functions [i.e., communication (ANELT), picture naming and the Aachen aphasia test (AAT)] were assessed up to 1 month following tDCS. The picture naming task significantly improved (increased number of nouns) at the end of the tDCS procedure in the verum but not sham group. Improvements in the picture naming task and the communication task of the AAT at 4 weeks after tDCS procedure were only seen in the verum group. In patients with postacute cerebral stroke, repeated sessions of tDCS applied on both IFG concomitantly with language therapy were able to induce immediate effects on picture naming presumably due to an early left shift of language-associated function that maintained for 4 weeks. Effects on clinically relevant communicative abilities are likely.
Collapse
Affiliation(s)
- Sarah Feil
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland.,Schweizer Hochschule für Logopädie Rorschach, Rorschach, Switzerland
| | - Peter Eisenhut
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Frauke Strakeljahn
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Sarah Müller
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Claude Nauer
- Department of Radiology, Kantonsspital Graubünden, Chur, Switzerland
| | - Jens Bansi
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Stefan Weber
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Alexandra Liebs
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Jean-Pascal Lefaucheur
- Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri-Mondor AP-HP, Université Paris-Est Créteil, Créteil, France
| | - Jürg Kesselring
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Roman Gonzenbach
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Veit Mylius
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland.,Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Neurology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
42
|
Resting-state functional connectivity: An emerging method for the study of language networks in post-stroke aphasia. Brain Cogn 2019; 131:22-33. [DOI: 10.1016/j.bandc.2017.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/15/2022]
|
43
|
Monaco E, Jost LB, Gygax PM, Annoni JM. Embodied Semantics in a Second Language: Critical Review and Clinical Implications. Front Hum Neurosci 2019; 13:110. [PMID: 30983983 PMCID: PMC6449436 DOI: 10.3389/fnhum.2019.00110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The role of the sensorimotor system in second language (L2) semantic processing as well as its clinical implications for bilingual patients has hitherto been neglected. We offer an overview of the issues at stake in this under-investigated field, presenting the theoretical and clinical relevance of studying L2 embodiment and reviewing the few studies on this topic. We highlight that (a) the sensorimotor network is involved in L2 processing, and that (b) in most studies, L2 is differently embodied than L1, reflected in a lower degree or in a different pattern of L2 embodiment. Importantly, we outline critical issues to be addressed in order to guide future research. We also delineate the subsequent steps needed to confirm or dismiss the value of language therapeutic approaches based on embodiment theories as a complement of speech and language therapies in adult bilinguals.
Collapse
Affiliation(s)
- Elisa Monaco
- Laboratory for Cognitive and Neurological Sciences, Neurology Unit, Medicine Section, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Lea B. Jost
- Laboratory for Cognitive and Neurological Sciences, Neurology Unit, Medicine Section, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Pascal M. Gygax
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Marie Annoni
- Laboratory for Cognitive and Neurological Sciences, Neurology Unit, Medicine Section, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Neurology Unit, Fribourg Cantonal Hospital, Fribourg, Switzerland
| |
Collapse
|
44
|
Ficek BN, Wang Z, Zhao Y, Webster KT, Desmond JE, Hillis AE, Frangakis C, Faria AV, Caffo B, Tsapkini K. "The effect of tDCS on functional connectivity in primary progressive aphasia" NeuroImage: Clinical, volume 19 (2018), pages 703-715. NEUROIMAGE-CLINICAL 2019; 22:101734. [PMID: 30878405 PMCID: PMC6543522 DOI: 10.1016/j.nicl.2019.101734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is an innovative technique recently shown to improve language outcomes even in neurodegenerative conditions such as primary progressive aphasia (PPA), but the underlying brain mechanisms are not known. The present study tested whether the additional language gains with repetitive tDCS (over sham) in PPA are caused by changes in functional connectivity between the stimulated area (the left inferior frontal gyrus (IFG)) and the rest of the language network. We scanned 24 PPA participants (11 female) before and after language intervention (written naming/spelling) with a resting-state fMRI sequence and compared changes before and after three weeks of tDCS or sham coupled with language therapy. We correlated changes in the language network as well as in the default mode network (DMN) with language therapy outcome measures (letter accuracy in written naming). Significant tDCS effects in functional connectivity were observed between the stimulated area and other language network areas and between the language network and the DMN. TDCS over the left IFG lowered the connectivity between the above pairs. Changes in functional connectivity correlated with improvement in language scores (letter accuracy as a proxy for written naming) evaluated before and after therapy. These results suggest that one mechanism for anodal tDCS over the left IFG in PPA is a decrease in functional connectivity (compared to sham) between the stimulated site and other posterior areas of the language network. These results are in line with similar decreases in connectivity observed after tDCS over the left IFG in aging and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Bronte N Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA
| | - Yi Zhao
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA
| | - Kimberly T Webster
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John E Desmond
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Constantine Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA; Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
45
|
Fiori V, Nitsche MA, Cucuzza G, Caltagirone C, Marangolo P. High-Definition Transcranial Direct Current Stimulation Improves Verb Recovery in Aphasic Patients Depending on Current Intensity. Neuroscience 2019; 406:159-166. [PMID: 30876982 DOI: 10.1016/j.neuroscience.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/24/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) is a variant of tDCS, which produces more focal stimulation, delimiting brain current flow to a defined region compared to conventional tDCS. To date, only one study has been conducted to investigate HD-tDCS effects on language recovery in aphasia. Here, we aimed to assess the effects of cathodal HD-tDCS on verb naming by comparing two current intensities: 1 vs 2 mA. In a double-blinded cross over study, two groups of 10 aphasic individuals were submitted to active cathodal HD-tDCS and sham stimulation over the right homolog of Broca's area, while performing a verb naming task. Indeed, we reasoned that, by applying inhibitory current over the right Broca's area, we would decrease the inhibitory impact from the right hemisphere to the left perilesional cortex, thus boosting language recovery. The groups differed in the intensity of the active stimulation (1 mA or 2 mA). In both groups, each condition was carried out in five consecutive daily sessions with one week of interval between the two experimental conditions. A significant improvement in verb naming was found only after cathodal HD-tDCS at 2 mA, which endured one week after the end of treatment. The improvement was not observed on the group receiving cathodal HD-tDCS at 1 mA. Our findings showed that HD-tDCS applied to the right intact hemisphere are efficacious for language recovery. These results indicate that HD-tDCS represents a promising new technique for language rehabilitation. However, systematic determination of stimulation intensity appears to be crucial for obtaining relevant effects.
Collapse
Affiliation(s)
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Carlo Caltagirone
- IRCCS, Fondazione Santa Lucia, Rome, Italy; Università degli Studi di Tor Vergata, Rome, Italy
| | - Paola Marangolo
- IRCCS, Fondazione Santa Lucia, Rome, Italy; Università Federico II, Naples, Italy.
| |
Collapse
|
46
|
Transcranial direct current stimulation in post-stroke aphasia rehabilitation: A systematic review. Ann Phys Rehabil Med 2019; 62:104-121. [DOI: 10.1016/j.rehab.2019.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 01/30/2023]
|
47
|
Baldassarre A, Metcalf NV, Shulman GL, Corbetta M. Brain networks' functional connectivity separates aphasic deficits in stroke. Neurology 2018; 92:e125-e135. [PMID: 30518552 DOI: 10.1212/wnl.0000000000006738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/11/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate whether different language deficits are distinguished by the relative strengths of their association with the functional connectivity (FC) at rest of the language network (LN) and cingulo-opercular network (CON) after aphasic stroke. METHODS In a group of patients with acute stroke and left-hemisphere damage, we identified 3 distinct, yet correlated, clusters of deficits including comprehension/lexical semantic, grapheme-phoneme knowledge, and verbal executive functions. We computed partial correlations in which the contributions of a behavioral cluster and network FC of no interest were statistically regressed out. RESULTS We observed a double dissociation such that impairment of grapheme-phoneme knowledge was more associated with lower FC of the LN within the left hemisphere than lower FC of the CON, whereas verbal executive deficits were more related to lower FC of the CON than the LN in the left hemisphere. Furthermore, the specific association between language deficits and FC was independent of the amount of structural damage to the LN and CON. CONCLUSION These findings indicate that after a left-hemisphere lesion, the type of language impairment is related to the abnormal pattern of correlated activity in different networks. Accordingly, they extend the concept of a neuropsychological double dissociation from structural damage to functional network abnormalities. Finally, current results strongly argue in favor of the behavioral specificity of intrinsic brain activity after focal structural damage.
Collapse
Affiliation(s)
- Antonello Baldassarre
- From IRCCS NEUROMED (A.B.), Pozzilli, IS, Italy; Departments of Neurology (N.V.M., G.L.S., M.C.), Radiology (M.C.), Anatomy & Neurobiology (M.C.), and Bioengineering (M.C.), Washington University in St. Louis School of Medicine, MO; Department of Neuroscience (M.C.), University of Padua; and Padua Neuroscience Center (M.C.), Italy.
| | - Nicholas V Metcalf
- From IRCCS NEUROMED (A.B.), Pozzilli, IS, Italy; Departments of Neurology (N.V.M., G.L.S., M.C.), Radiology (M.C.), Anatomy & Neurobiology (M.C.), and Bioengineering (M.C.), Washington University in St. Louis School of Medicine, MO; Department of Neuroscience (M.C.), University of Padua; and Padua Neuroscience Center (M.C.), Italy
| | - Gordon L Shulman
- From IRCCS NEUROMED (A.B.), Pozzilli, IS, Italy; Departments of Neurology (N.V.M., G.L.S., M.C.), Radiology (M.C.), Anatomy & Neurobiology (M.C.), and Bioengineering (M.C.), Washington University in St. Louis School of Medicine, MO; Department of Neuroscience (M.C.), University of Padua; and Padua Neuroscience Center (M.C.), Italy
| | - Maurizio Corbetta
- From IRCCS NEUROMED (A.B.), Pozzilli, IS, Italy; Departments of Neurology (N.V.M., G.L.S., M.C.), Radiology (M.C.), Anatomy & Neurobiology (M.C.), and Bioengineering (M.C.), Washington University in St. Louis School of Medicine, MO; Department of Neuroscience (M.C.), University of Padua; and Padua Neuroscience Center (M.C.), Italy
| |
Collapse
|
48
|
Cao J, Wang X, Liu H, Alexandrakis G. Directional changes in information flow between human brain cortical regions after application of anodal transcranial direct current stimulation (tDCS) over Broca's area. BIOMEDICAL OPTICS EXPRESS 2018; 9:5296-5317. [PMID: 30460129 PMCID: PMC6238934 DOI: 10.1364/boe.9.005296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 05/05/2023]
Abstract
Little work has been done on the information flow in functional brain imaging and none so far in fNIRS. In this work, alterations in the directionality of net information flow induced by a short-duration, low-current (2 min 40 s; 0.5 mA) and a longer-duration, high-current (8 min; 1 mA) anodal tDCS applied over the Broca's area of the dominant language hemisphere were studied by fNIRS. The tDCS-induced patterns of information flow, quantified by a novel directed phase transfer entropy (dPTE) analysis, were distinct for different hemodynamic frequency bands and were qualitatively similar between low and high-current tDCS. In the endothelial band (0.003-0.02 Hz), the stimulated Broca's area became the strongest hub of outgoing information flow, whereas in the neurogenic band (0.02-0.04 Hz) the contralateral homologous area became the strongest information outflow source. In the myogenic band (0.04-0.15 Hz), only global patterns were seen, independent of tDCS stimulation that were interpreted as Mayer waves. These findings showcase dPTE analysis in fNIRS as a novel, complementary tool for studying cortical activity reorganization after an intervention.
Collapse
|
49
|
Malyutina S, Zelenkova V, Buivolova O, Oosterhuis EJ, Zmanovsky N, Feurra M. Modulating the interhemispheric balance in healthy participants with transcranial direct current stimulation: No significant effects on word or sentence processing. BRAIN AND LANGUAGE 2018; 186:60-66. [PMID: 30286319 DOI: 10.1016/j.bandl.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/07/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Patient studies and brain stimulation evidence suggest that language processing can be enhanced by altering the interhemispheric balance: namely, preferentially enhancing left-hemisphere activity while suppressing right-hemisphere activity. To our knowledge, no study has yet compared the effects of such bilateral brain stimulation to both logically necessary control conditions (separate left- and right-hemisphere stimulation). This study did so in a between-group sham-controlled design, applying transcranial direct current stimulation over Broca's area and/or its homologue in 72 healthy participants. The effects were measured not only in a single-word-level task but also in a sentence-level task, rarely tested previously. We did not find either any significant overall effects of stimulation or greater stimulation effects in the bilateral compared to control groups. This null result, obtained in a large sample, contributes to the debate on whether tDCS can modulate language processing in healthy individuals.
Collapse
Affiliation(s)
- Svetlana Malyutina
- National Research University Higher School of Economics, Moscow, Russian Federation.
| | - Valeriya Zelenkova
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Olga Buivolova
- National Research University Higher School of Economics, Moscow, Russian Federation
| | | | - Nikita Zmanovsky
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Matteo Feurra
- National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
50
|
Lucchiari C, Sala PM, Vanutelli ME. Promoting Creativity Through Transcranial Direct Current Stimulation (tDCS). A Critical Review. Front Behav Neurosci 2018; 12:167. [PMID: 30116184 PMCID: PMC6082949 DOI: 10.3389/fnbeh.2018.00167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Creativity, meant as the ability to produce novel, original and suitable ideas, has received increased attention by research in the last years, especially from neuroaesthetics and social neuroscience. Besides the research conducted on the neural correlates of such capacities, previous work tried to answer the question of whether it is possible to enhance creativity through cognitive and neural stimulation. In particular, transcranial direct current stimulation (tDCS) has been applied to increase neuronal excitability in those areas related to creativity. However, being a complex construct that applies to a huge variety of situations, available results are often confusing and inconsistent. Thus, in the present critical review, after selecting original research articles investigating creativity with tDCS, results will be reviewed and framed according to the different effects of tDCS and its underlying mechanisms, which can be defined as follows: the promotion of self-focused attention; the disruption of inhibiting mechanisms; the enhancement of creative thinking; the promotion of artistic enactment. Finally, a theoretical perspective, the creative on/off model, will be provided to integrate the reported evidence with respect to both anatomical and functional issues and propose a cognitive explanation of the emergence of creative thinking.
Collapse
Affiliation(s)
- Claudio Lucchiari
- Department of Philosophy, Università degli Studi di Milano, Milan, Italy
| | - Paola Maria Sala
- Department of Philosophy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|