1
|
Ponce R, Lupiáñez J, González-García C, Casagrande M, Marotta A. Exploring the spatial interference effects elicited by social and non-social targets: A conditional accuracy function approach. Br J Psychol 2024. [PMID: 39267579 DOI: 10.1111/bjop.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Recent studies employing the spatial interference paradigm reveal qualitative differences in congruency effects between gaze and arrow targets. Typically, arrows produce a standard congruency effect (SCE), with faster responses when target direction aligns with its location. Conversely, gaze targets often lead to a reversed congruency effect (RCE), where responses are slower in similar conditions. We explored this dissociation using the Conditional Accuracy Function (CAF) to assess accuracy across reaction time bins. Using a hierarchical linear mixed modelling approach to compare cropped eyes, and full faces as social stimuli, and arrows as non-social stimuli, we synthesized findings from 11 studies, which led to three distinct models. The results showed that with non-social targets, incongruent trials exhibited lower accuracy rates in the first bin than in subsequent bins, while congruent trials maintained stable accuracy throughout the distribution. Conversely, social targets revealed a dissociation within the fastest responses; alongside a general reduction in accuracy for both congruency conditions, congruent trials resulted in even lower accuracy rates than incongruent ones. These results suggest with gaze targets that additional information, perhaps social, in addition to the automatic capture by the irrelevant target location, is being processed during the earlier stages of processing.
Collapse
Affiliation(s)
- Renato Ponce
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Department of Experimental Psychology & Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Juan Lupiáñez
- Department of Experimental Psychology & Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Carlos González-García
- Department of Experimental Psychology & Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Maria Casagrande
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Andrea Marotta
- Department of Experimental Psychology & Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Mann LG, Servant M, Hay KR, Song AK, Trujillo P, Yan B, Kang H, Zald D, Donahue MJ, Logan GD, Claassen DO. The Role of a Dopamine-Dependent Limbic-Motor Network in Sensory Motor Processing in Parkinson Disease. J Cogn Neurosci 2023; 35:1806-1822. [PMID: 37677065 PMCID: PMC10594953 DOI: 10.1162/jocn_a_02048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Limbic and motor integration is enabled by a mesial temporal to motor cortex network. Parkinson disease (PD) is characterized by a loss of dorsal striatal dopamine but relative preservation of mesolimbic dopamine early in disease, along with changes to motor action control. Here, we studied 47 patients with PD using the Simon conflict task and [18F]fallypride PET imaging. Additionally, a cohort of 16 patients participated in a single-blinded dextroamphetamine (dAMPH) study. Task performance was evaluated using the diffusion model for conflict tasks, which allows for an assessment of interpretable action control processes. First, a voxel-wise examination disclosed a negative relationship, such that longer non-decision time is associated with reduced D2-like binding potential (BPND) in the bilateral putamen, left globus pallidus, and right insula. Second, an ROI analysis revealed a positive relationship, such that shorter non-decision time is associated with reduced D2-like BPND in the amygdala and ventromedial OFC. The difference in non-decision time between off-dAMPH and on-dAMPH trials was positively associated with D2-like BPND in the globus pallidus. These findings support the idea that dysfunction of the traditional striatal-motor loop underlies action control deficits but also suggest that a compensatory parallel limbic-motor loop regulates motor output.
Collapse
Affiliation(s)
- Leah G. Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Servant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, 25000 Besançon, France
| | - Kaitlyn R. Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander K. Song
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bailu Yan
- Deparment of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Hakmook Kang
- Deparment of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - David Zald
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gordon D. Logan
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Shiino S, van Wouwe NC, Wylie SA, Claassen DO, McDonell KE. Huntington disease exacerbates action impulses. Front Psychol 2023; 14:1186465. [PMID: 37397312 PMCID: PMC10312388 DOI: 10.3389/fpsyg.2023.1186465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Background Impulsivity is a common clinical feature of Huntington disease (HD), but the underlying cognitive dynamics of impulse control in this population have not been well-studied. Objective To investigate the temporal dynamics of action impulse control in HD patients using an inhibitory action control task. Methods Sixteen motor manifest HD patients and seventeen age-matched healthy controls (HC) completed the action control task. We applied the activation-suppression theoretical model and distributional analytic techniques to differentiate the strength of fast impulses from their top-down suppression. Results Overall, HD patients produced slower and less accurate reactions than HCs. HD patients also exhibited an exacerbated interference effect, as evidenced by a greater slowing of RT on non-corresponding compared to corresponding trials. HD patients made more fast, impulsive errors than HC, evidenced by significantly lower accuracy on their fastest reaction time trials. The slope reduction of interference effects as reactions slowed was similar between HD and controls, indicating preserved impulse suppression. Conclusion Our results indicate that patients with HD show a greater susceptibility to act rapidly on incorrect motor impulses but preserved proficiency of top-down suppression. Further research is needed to determine how these findings relate to clinical behavioral symptoms.
Collapse
Affiliation(s)
- Shuhei Shiino
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Scott A. Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine E. McDonell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Grandjean A, Suarez I, Da Fonseca D, Casini L. Dissociable effects of positive feedback on the capture and inhibition of impulsive behavior in adolescents with ADHD versus typically developing adolescents. Child Neuropsychol 2023; 29:543-568. [PMID: 35980108 DOI: 10.1080/09297049.2022.2100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The present study investigated how enhancing motivation by delivering positive feedback (a smiley) after a successful trial could affect interference control in adolescents with Attention Deficit Hyperactivity Disorder (ADHD) and in their typically developing (TD) peers. By using a Simon task within the theoretical framework of the "activation-suppression" model, we were able to separately investigate the expression and the inhibition of impulsive motor behavior. The experiment included 19 adolescents with ADHD and 20 TD adolescents in order to explore whether data found in adolescents with ADHD were similar to those found in TD adolescents. Participants performed the Simon task in two conditions: a condition with feedback delivered after each successful trial and a condition with no feedback. The main findings were that increasing motivation by delivering positive feedback increased impulsive response in both groups of adolescents. It also improved the efficiency of impulsive motor action inhibition in adolescents with ADHD but deteriorated it in TD adolescents. We suggest that 1/increased motivation could lead adolescents to favor fast responses even if incorrect, and 2/the differential effect of feedback on the selective suppression of impulsive motor action in both groups could be due to different baseline DA levels.
Collapse
Affiliation(s)
- Aurélie Grandjean
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, CNRS, Marseille, France
| | - Isabel Suarez
- Departamento de Psicología, Universidad del Norte, Baranquilla, Colombia
| | - David Da Fonseca
- Service de psychiatrie infanto-juvénile, Hôpital Salvator, Marseille, France
| | - Laurence Casini
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, CNRS, Marseille, France
| |
Collapse
|
5
|
van den Wildenberg WPM, Ridderinkhof KR, Wylie SA. Towards Conceptual Clarification of Proactive Inhibitory Control: A Review. Brain Sci 2022; 12:1638. [PMID: 36552098 PMCID: PMC9776056 DOI: 10.3390/brainsci12121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The aim of this selective review paper is to clarify potential confusion when referring to the term proactive inhibitory control. Illustrated by a concise overview of the literature, we propose defining reactive inhibition as the mechanism underlying stopping an action. On a stop trial, the stop signal initiates the stopping process that races against the ongoing action-related process that is triggered by the go signal. Whichever processes finishes first determines the behavioral outcome of the race. That is, stopping is either successful or unsuccessful in that trial. Conversely, we propose using the term proactive inhibition to explicitly indicate preparatory processes engaged to bias the outcome of the race between stopping and going. More specifically, these proactive processes include either pre-amping the reactive inhibition system (biasing the efficiency of the stopping process) or presetting the action system (biasing the efficiency of the go process). We believe that this distinction helps meaningful comparisons between various outcome measures of proactive inhibitory control that are reported in the literature and extends to experimental research paradigms other than the stop task.
Collapse
Affiliation(s)
- Wery P. M. van den Wildenberg
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129 B, P.O. Box 15900, 1001 NK Amsterdam, The Netherlands
| | - K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129 B, P.O. Box 15900, 1001 NK Amsterdam, The Netherlands
| | - Scott A. Wylie
- Department of Neurosurgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Kane JM, McDonnell JL, Neimat JS, Hedera P, van den Wildenberg WPM, Phibbs FT, Bradley EB, Wylie SA, van Wouwe NC. Essential tremor impairs the ability to suppress involuntary action impulses. Exp Brain Res 2022; 240:1957-1966. [PMID: 35562536 PMCID: PMC11150918 DOI: 10.1007/s00221-022-06373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
Essential tremor (ET) is a movement disorder characterized primarily by action tremor which affects the regulation of movements. Disruptions in cerebello-thalamocortical networks could interfere with cognitive control over actions in ET, for example, the ability to suppress a strong automatic impulse over a more appropriate action (conflict control). The current study investigated whether ET impacts conflict control proficiency. Forty-one ET patients and 29 age-matched healthy controls (HCs) performed a conflict control task (Simon task). Participants were instructed to give a left or right response to a spatially lateralized arrow (direction of the arrow). When the action signaled by the spatial location and direction of the arrow were non-corresponding (induced conflict), the inappropriate action impulse required suppression. Overall, ET patients responded slower and less accurately compared to HCs. ET patients were especially less accurate on non-corresponding conflict (Nc) versus corresponding (Cs) trials. A focused analysis on fast impulsive response rates (based on the accuracy rate at the fastest reaction times on Nc trials) showed that ET patients made more fast errors compared to HCs. Results suggest impaired conflict control in ET compared to HCs. The increased impulsive errors seen in the ET population may be a symptom of deficiencies in the cerebello-thalamocortical networks, or, be caused by indirect effects on the cortico-striatal pathways. Future studies into the functional networks impacted by ET (cortico-striatal and cerebello-thalamocortical pathways) could advance our understanding of inhibitory control in general and the cognitive deficits in ET.
Collapse
Affiliation(s)
- Jessi M Kane
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
- Department of Psychology, University of Louisville, Louisville, KY, USA
| | | | - Joseph S Neimat
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Peter Hedera
- Department of Neurology, University of Louisville, Louisville, KY, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Fenna T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elise B Bradley
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott A Wylie
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Nelleke C van Wouwe
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Suarez I, De Los Reyes Aragón C, Grandjean A, Barceló E, Mebarak M, Lewis S, Pineda-Alhucema W, Casini L. Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children. Cogn Neuropsychol 2022; 38:349-363. [PMID: 35209797 DOI: 10.1080/02643294.2022.2031944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) present a deficit in inhibitory control. Still, it remains unclear whether it comes from a deficit in reactive inhibition (ability to stop the action in progress), proactive inhibition (ability to exert preparatory control), or both.We compared the performance of 39 children with ADHD and 42 typically developing children performing a Simon choice reaction time task. The Simon task is a conflict task that is well-adapted to dissociate proactive and reactive inhibition. Beyond classical global measures (mean reaction time, accuracy rate, and interference effect), we used more sophisticated dynamic analyses of the interference effect and accuracy rate to investigate reactive inhibition. We studied proactive inhibition through the congruency sequence effect (CSE).Our results showed that children with ADHD had impaired reactive but not proactive inhibition. Moreover, the deficit found in reactive inhibition seems to be due to both a stronger impulse capture and more difficulties in inhibiting impulsive responses. These findings contribute to a better understanding of how ADHD affects inhibitory control in children.
Collapse
Affiliation(s)
- Isabel Suarez
- Department of Psychology, Universidad del Norte, Barranquilla, Colombia.,CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France
| | | | - Aurelie Grandjean
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Universidad de la Costa, Barranquilla, Colombia
| | - Moises Mebarak
- Department of Psychology, Universidad del Norte, Barranquilla, Colombia
| | - Soraya Lewis
- Department of Psychology, Universidad del Norte, Barranquilla, Colombia
| | - Wilmar Pineda-Alhucema
- Programa de Psicología, facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Laurence Casini
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France
| |
Collapse
|
8
|
Chen T, Su H, Wang L, Li X, Wu Q, Zhong N, Du J, Meng Y, Duan C, Zhang C, Shi W, Xu D, Song W, Zhao M, Jiang H. Modulation of Methamphetamine-Related Attention Bias by Intermittent Theta-Burst Stimulation on Left Dorsolateral Prefrontal Cortex. Front Cell Dev Biol 2021; 9:667476. [PMID: 34414178 PMCID: PMC8370756 DOI: 10.3389/fcell.2021.667476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have identified the treatment effect of repetitive transcranial magnetic stimulation (rTMS) on cravings of patients with methamphetamine use disorder (MUD). However, the mechanism underlying the treatment effect remains largely unknown. A potential candidate mechanism could be that rTMS over the dorsolateral prefrontal cortex (DLPFC) modulates the attention bias to methamphetamine-related cues. The purpose of this study is therefore to determine the modulation of rTMS on methamphetamine-related attention bias and the corresponding electrophysiological changes. Methods Forty-nine patients with severe MUD were included for analysis. The subjects were randomized to receive the active intermittent theta-burst stimulation (iTBS) or sham iTBS targeting DLPFC for 20 sessions. Participants performed the Addiction Stroop Task before and after the treatment while being recorded by a 64-channel electroencephalogram. Baseline characteristics were collected through the Addiction Severity Index. Results Post-treatment evaluations showed a reduced error rate in discriminating the color of methamphetamine words in the active iTBS group compared with the sham iTBS group. Following rTMS treatment, we found the significant time-by-group effect for the N1 amplitude (methamphetamine words > neutral words) and P3 latency (methamphetamine words > neutral words). The change of N1 amplitude was positively correlated with cravings in the active group. Moreover, reduced power of neural oscillation in the beta band, manifesting at frontal central areas, was also found in the active group. Conclusion This study suggests that attention bias and the beta oscillation during the attentional processing of methamphetamine words in patients with MUD could be modulated by iTBS applied to left DLPFC.
Collapse
Affiliation(s)
- Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihui Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianying Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Meng
- Yunnan Institute on Drug Dependence, Kunming, China
| | - Chunmei Duan
- Yunnan Institute on Drug Dependence, Kunming, China
| | | | - Wen Shi
- Shanghai Female Compulsory Rehabilitation Center, Shanghai, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Weidong Song
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Grandjean A, Suarez I, Miquée A, Da Fonseca D, Casini L. [Improvement of the impulsive control in adolescents with attention deficit hyperactivity disorder (ADHD) after a cognitive behavioral therapy]. Encephale 2021; 48:148-154. [PMID: 33994155 DOI: 10.1016/j.encep.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
AIM MPH is the more often prescribed stimulant for Attention Deficit Hyperactivity Disorder (ADHD), but it has been estimated that 30% of patients do not adequately respond or cannot tolerate it. Therefore, some other therapies are needed, such as cognitive behavioral therapy. Cognitive behavioral therapy is an intervention proposed over several sessions and aimed at modifying behavior by teaching different techniques that participants can re-use to control their symptoms. In our Institute, we used a program centered on attentional and metacognitive functions. It consists of a series of workshops performed in group at the rate of one workshop of 90minutes per week for 12 weeks. Positive effects on the behavior of adolescents with ADHD have been reported by parents and educators, but the effects of the program on specific cognitive processes have never been precisely investigated. METHOD In the present study, we evaluated the impact of the program on impulsive control in adolescents with ADHD who are known to present impaired impulsive control. Impulsive control is required each time there is a conflict between an inappropriate prepotent action and a goal-directed action. At an experimental level, impulsive control can be studied with conflict tasks, such as the Simon reaction time task. Interpreted within the theoretical framework of the so-called « Dual-process activation suppression » (DPAS) model, this task is a powerful conceptual and experimental tool to separately investigate the activation and inhibition of impulsive actions, which is almost never done in studies about impulsive control. Twenty adolescents followed the program and were tested before and at the end of the program by using dynamic analyses of performance associated with DPAS model. RESULTS The results have shown an improvement of the impulsive control after three months of cognitive behavioral therapy, and this improvement was due to both a decrease of the propensity to trigger impulsive actions and an improvement of inhibitory processes efficiency. CONCLUSION This program could be a relevant alternative to the stimulant medication, more particularly when parents are reluctant with medication or when the adolescent suffers from important side effects.
Collapse
Affiliation(s)
- A Grandjean
- Laboratoire de neurosciences cognitives, FR 3C, Aix-Marseille Université, CNRS, Marseille, France
| | - I Suarez
- Laboratoire de neurosciences cognitives, FR 3C, Aix-Marseille Université, CNRS, Marseille, France
| | - A Miquée
- Service de Psychiatrie infanto-juvénile, Hôpital Salvator, Marseille, France
| | - D Da Fonseca
- Service de Psychiatrie infanto-juvénile, Hôpital Salvator, Marseille, France
| | - L Casini
- Laboratoire de neurosciences cognitives, FR 3C, Aix-Marseille Université, CNRS, Marseille, France.
| |
Collapse
|
10
|
Ruitenberg MFL, van Wouwe NC, Wylie SA, Abrahamse EL. The role of dopamine in action control: Insights from medication effects in Parkinson's disease. Neurosci Biobehav Rev 2021; 127:158-170. [PMID: 33905788 DOI: 10.1016/j.neubiorev.2021.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/26/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder associated primarily with overt motor symptoms. Several studies show that PD is additionally accompanied by impairments in covert cognitive processes underlying goal-directed motor functioning (e.g., action planning, conflict adaptation, inhibition), and that dopaminergic medication may modulate these action control components. In this review we aim to leverage findings from studies in this domain to elucidate the role of dopamine (DA) in action control. A qualitative review of studies that investigated the effects of medication status (on vs. off) on action control in PD suggests a component-specific role for DA in action control, although the expression of medication effects depends on characteristics of both the patients and experimental tasks used to measure action control. We discuss these results in the light of findings from other research lines examining the role of DA in action control (e.g., animal research, pharmacology), and recommend that future studies use multi-method, within-subject approaches to model DA effects on action control across different components as well as underlying striatal pathways (ventral vs. dorsal).
Collapse
Affiliation(s)
- M F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| | - N C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - S A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - E L Abrahamse
- Department of Communication and Cognition, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
11
|
Grandjean A, Suarez I, Miquee A, Da Fonseca D, Casini L. Differential response to pharmacological intervention in ADHD furthers our understanding of the mechanisms of interference control. Cogn Neuropsychol 2021; 38:138-152. [PMID: 33840374 DOI: 10.1080/02643294.2021.1908979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The deficit in "interference control" found in children with Attention Deficit Hyperactivity Disorder (ADHD) could be due to two distinct processes, which are not disentangled in most studies: a larger susceptibility to activating prepotent response impulses and a deficit in suppressing them. Here, we investigated the effect of 1/ADHD and 2/ methylphenidate (MPH), on these two components of interference control. We compared interference control between untreated children with ADHD, children with ADHD under MPH, and typically developing children performing a Simon task. The main findings were that 1/ children with ADHD were more susceptible to reacting impulsively and less efficient at suppressing impulsive actions, and 2/ MPH improved the selective inhibition of impulsive actions but did not modify the strength of response impulse. This work provides an example of how pharmacological interventions and selective responses to them can be used to investigate and further our understanding of cognitive processing.
Collapse
Affiliation(s)
- Aurélie Grandjean
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France.,CNRS, FR 3C, Aix Marseille Univ, Marseille, France
| | - Isabel Suarez
- Departamento de Psicología, Universidad del Norte, Barranquilla, Colombia
| | - Aline Miquee
- Child and Adolescent Psychiatry Unit, Hôpital Salvator, Marseille, France
| | - David Da Fonseca
- Child and Adolescent Psychiatry Unit, Hôpital Salvator, Marseille, France
| | - Laurence Casini
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France.,CNRS, FR 3C, Aix Marseille Univ, Marseille, France
| |
Collapse
|
12
|
Ridderinkhof KR, Wylie SA, van den Wildenberg WPM, Bashore TR, van der Molen MW. The arrow of time: Advancing insights into action control from the arrow version of the Eriksen flanker task. Atten Percept Psychophys 2021; 83:700-721. [PMID: 33099719 PMCID: PMC7884358 DOI: 10.3758/s13414-020-02167-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
Since its introduction by B. A. Eriksen and C. W. Eriksen (Perception & Psychophysics, 16, 143-49, 1974), the flanker task has emerged as one of the most important experimental tasks in the history of cognitive psychology. The impact of a seemingly simple task design involving a target stimulus flanked on each side by a few task-irrelevant stimuli is astounding. It has inspired research across the fields of cognitive neuroscience, psychophysiology, neurology, psychiatry, and sports science. In our tribute to Charles W. ("Erik") Eriksen, we (1) review the seminal papers originating from his lab in the 1970s that launched the paradigmatic task and laid the foundation for studies of action control, (2) describe the inception of the arrow version of the Eriksen flanker task, (3) articulate the conceptual and neural models of action control that emerged from studies of the arrows flanker task, and (4) illustrate the influential role of the arrows flanker task in disclosing developmental trends in action control, fundamental deficits in action control due to neuropsychiatric disorders, and enhanced action control among elite athletes.
Collapse
Affiliation(s)
| | - Scott A Wylie
- Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | |
Collapse
|
13
|
Control of response interference: caudate nucleus contributes to selective inhibition. Sci Rep 2020; 10:20977. [PMID: 33262369 PMCID: PMC7708449 DOI: 10.1038/s41598-020-77744-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
While the role of cortical regions in cognitive control processes is well accepted, the contribution of subcortical structures (e.g., the striatum), especially to the control of response interference, remains controversial. Therefore, the present study aimed to investigate the cortical and particularly subcortical neural mechanisms of response interference control (including selective inhibition). Thirteen healthy young participants underwent event-related functional magnetic resonance imaging while performing a unimanual version of the Simon task. In this task, successful performance required the resolution of stimulus–response conflicts in incongruent trials by selectively inhibiting interfering response tendencies. The behavioral results show an asymmetrical Simon effect that was more pronounced in the contralateral hemifield. Contrasting incongruent trials with congruent trials (i.e., the overall Simon effect) significantly activated clusters in the right anterior cingulate cortex, the right posterior insula, and the caudate nucleus bilaterally. Furthermore, a region of interest analysis based on previous patient studies revealed that activation in the bilateral caudate nucleus significantly co-varied with a parameter of selective inhibition derived from distributional analyses of response times. Our results corroborate the notion that the cognitive control of response interference is supported by a fronto-striatal circuitry, with a functional contribution of the caudate nucleus to the selective inhibition of interfering response tendencies.
Collapse
|
14
|
Abstract
We elaborated an index, the Interference Distribution Index, which allows quantifying the relation between response times and the size of the interference effect. This index is associated with an intuitive graphical representation, the Lorenz-interference plot. We show that this index has some convenient properties in terms of sensitivity to changes in the distribution of the interference effect and to aggregation of individual data. Moreover, it turns out that this index is the only one (up to an arbitrary increasing transformation) possessing these properties. The relevance of this index is illustrated through simulations of a cognitive model of interference effects and reanalysis of experimental data.
Collapse
|
15
|
Pickering JS, Leroi I, McBride J, Poliakoff E. Continuous force measurements reveal no inhibitory control deficits in Parkinson's disease. Exp Brain Res 2020; 238:1119-1132. [PMID: 32222777 PMCID: PMC7237404 DOI: 10.1007/s00221-020-05768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/03/2020] [Indexed: 11/26/2022]
Abstract
Suppression of unwanted motor responses can be disrupted by Parkinson's disease. People with Parkinson's (PwP) can show maladaptive reward-driven behaviours in the form of impulse control behaviours, which are associated with the use of the dopaminergic treatments used to alleviate the motor symptoms of the disease. However, the effects of Parkinson's itself on impulsive behaviour and control are unclear-empirical studies have yielded mixed findings, and some imaging studies have shown a functional deficit in the absence of a measurable change in behaviour. Here, we investigated the effects of Parkinson's on response activation and control by studying the dynamics of response in standard inhibitory control tasks-the Stop Signal and Simon tasks-using a continuous measure of response force. Our results are largely in favour of the conclusion that response inhibition appears to be intact in PwP, even when using a more sensitive measure of behavioural control relative to traditional button-press measures. Our findings provide some clarity as to the effects of Parkinson's on response inhibition and show continuous response force measurement can provide a sensitive means of detecting erroneous response activity in PwP, which could also be generalised to studying related processes in other populations.
Collapse
Affiliation(s)
- Jade S Pickering
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK
| | - Iracema Leroi
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK
- Global Brain Health Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer McBride
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK
| | - Ellen Poliakoff
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
16
|
Slowed Movement Stopping in Parkinson's Disease and Focal Dystonia is Improved by Standard Treatment. Sci Rep 2019; 9:19504. [PMID: 31862983 PMCID: PMC6925208 DOI: 10.1038/s41598-019-55321-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022] Open
Abstract
Patients with Parkinson’s disease and focal dystonia have difficulty in generating and preventing movement. Reaction time (RT) and stop signal reaction time (SSRT) measure the speed to initiate and stop a movement respectively. We developed a portable device to assess RT and SSRT. This incorporated a novel analysis to measure SSRT more efficiently (optimal combination SSRT, ocSSRT). After validation ocSSRT was measured in Parkinson’s disease patients without dyskinesia (PD), cervical dystonia (CD) and writer’s cramp. We also assessed how ocSSRT responded to L-dopa in PD patients and botulinum toxin injections in CD patients. Participants were instructed to release a button following a green LED flash on the device. On 25% of trials, a red LED flashed 5–195 ms after the green LED; participations were instructed to abort the button release on these trials. ocSSRT and RT were significantly prolonged in patients with Parkinson’s disease and focal dystonia (one-way ANOVA p < 0.001). Administration of L-dopa significantly improved ocSSRT and RT in PD patients (p < 0.001). Administration of botulinum toxin significantly improved ocSSRT, but not RT, in CD patients (p < 0.05). ocSSRT is an easily-administered bedside neuro-physiological tool; significantly prolonged ocSSRT is associated with PD and focal dystonia.
Collapse
|
17
|
van Maanen L, Katsimpokis D, van Campen AD. Fast and slow errors: Logistic regression to identify patterns in accuracy-response time relationships. Behav Res Methods 2019; 51:2378-2389. [PMID: 30187434 PMCID: PMC6797658 DOI: 10.3758/s13428-018-1110-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding error and response time patterns is essential for making inferences in several domains of cognitive psychology. Crucial insights on cognitive performance and typical behavioral patterns are disclosed by using distributional analyses such as conditional accuracy functions (CAFs) instead of mean statistics. Several common behavioral error patterns revealed by CAFs are frequently described in the literature: response capture (associated with relatively fast errors), time pressure or urgency paradigms (slow errors), or cue-induced speed-accuracy trade-off (evenly distributed errors). Unfortunately, the standard way of computing CAFs is problematic, because accuracy is averaged in RT bins. Here we present a novel way of analyzing accuracy-RT relationships on the basis of nonlinear logistic regression, to handle these problematic aspects of RT binning. First we evaluate the parametric robustness of the logistic regression CAF through parameter recovery. Second, we apply the function to three existing data sets showing that specific parametric changes in the logistic regression CAF can consistently describe common behavioral patterns (such as response capture, time pressure, and speed-accuracy trade-off). Finally, we discuss potential modifications for future research.
Collapse
Affiliation(s)
- Leendert van Maanen
- Department of Psychology, University of Amsterdam, P.O. Box 15906, 1001 NK, Amsterdam, Netherlands.
| | - Dimitris Katsimpokis
- Department of Psychology, University of Amsterdam, P.O. Box 15906, 1001 NK, Amsterdam, Netherlands
| | - A Dilene van Campen
- Department of Psychology, University of Amsterdam, P.O. Box 15906, 1001 NK, Amsterdam, Netherlands
- Donders Center for Brain and Cognition, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
18
|
Fallon SJ, Kienast A, Muhammed K, Ang YS, Manohar SG, Husain M. Dopamine D2 receptor stimulation modulates the balance between ignoring and updating according to baseline working memory ability. J Psychopharmacol 2019; 33:1254-1263. [PMID: 31526206 DOI: 10.1177/0269881119872190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Working memory (WM) deficits in neuropsychiatric disorders have often been attributed to altered dopaminergic signalling. Specifically, D2 receptor stimulation is thought to affect the ease with which items can be gated into and out of WM. In addition, this effect has been hypothesised to vary according to baseline WM ability, a putative index of dopamine synthesis levels. Moreover, whether D2 stimulation affects WM vicariously through modulating relatively WM-free cognitive control processes has not been explored. AIMS We examined the effect of administering a dopamine agonist on the ability to ignore or update information in WM. METHOD A single dose of cabergoline (1 mg) was administered to healthy older adult humans in a within-subject, double-blind, placebo-controlled study. In addition, we obtained measures of baseline WM ability and relatively WM-free cognitive control (overcoming response conflict). RESULTS Consistent with predictions, baseline WM ability significantly modulated the effect that drug administration had on the proficiency of ignoring and updating. High-WM individuals were relatively better at ignoring compared to updating after drug administration. Whereas the opposite occurred in low-WM individuals. Although the ability to overcome response conflict was not affected by cabergoline, a negative relationship between the effect the drug had on response conflict performance and ignoring was observed. Thus, both response conflict and ignoring are coupled to dopaminergic stimulation levels. CONCLUSIONS Cumulatively, these results provide evidence that dopamine affects subcomponents of cognitive control in a diverse, antagonistic fashion and that the direction of these effects is dependent upon baseline WM.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Kinan Muhammed
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yuen-Siang Ang
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Trujillo P, van Wouwe NC, Lin YC, Stark AJ, Petersen KJ, Kang H, Zald DH, Donahue MJ, Claassen DO. Dopamine effects on frontal cortical blood flow and motor inhibition in Parkinson's disease. Cortex 2019; 115:99-111. [PMID: 30776736 DOI: 10.1016/j.cortex.2019.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is characterized by dysfunction in frontal cortical and striatal networks that regulate action control. We investigated the pharmacological effect of dopamine agonist replacement therapy on frontal cortical activity and motor inhibition. Using Arterial Spin Labeling MRI, we examined 26 PD patients in the off- and on-dopamine agonist medication states to assess the effect of dopamine agonists on frontal cortical regional cerebral blood flow. Motor inhibition was measured by the Simon task in both medication states. We applied the dual process activation suppression model to dissociate fast response impulses from motor inhibition of incorrect responses. General linear regression model analyses determined the medication effect on regional cerebral blood flow and motor inhibition, and the relationship between regional cerebral blood flow and motor inhibitory proficiency. We show that dopamine agonist administration increases frontal cerebral blood flow, particularly in the pre-supplementary motor area (pre-SMA) and the dorsolateral prefrontal cortex (DLPFC). Higher regional blood flow in the pre-SMA, DLPFC and motor cortex was associated with better inhibitory control, suggesting that treatments which improve frontal cortical activity could ameliorate motor inhibition deficiency in PD patients.
Collapse
Affiliation(s)
- Paula Trujillo
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Ya-Chen Lin
- Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam J Stark
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kalen J Petersen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakmook Kang
- Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David H Zald
- Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
20
|
Fallon SJ, Muhammed K, Drew DS, Ang YS, Manohar SG, Husain M. Dopamine guides competition for cognitive control: Common effects of haloperidol on working memory and response conflict. Cortex 2018; 113:156-168. [PMID: 30660954 DOI: 10.1016/j.cortex.2018.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/10/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023]
Abstract
Several lines of evidence suggest that dopamine modulates working memory (the ability to faithfully maintain and efficiently manipulate information over time) but its specific role has not been fully defined. Nor is it clear whether any effects of dopamine are specific to memory processes or whether they reflect more general cognitive mechanisms that extend beyond the working memory domain. Here, we examine the effect of haloperidol, principally a dopamine D2 receptor antagonist, on the ability of humans to ignore distracting information or update working memory contents. We compare these effects to performance on an independent measure of cognitive control (response conflict) which has minimal memory requirements. Haloperidol did not selectively affect the ability to ignore or update, but instead reduced the overall quality of recall. In addition, it impaired the ability to overcome response conflict. The deleterious effect of haloperidol on response conflict was selectively associated with the negative effect of the drug on ignoring - but not updating - suggesting that dopamine affects protection of working memory contents and inhibition in response conflict through a common mechanism. These findings provide new insights into the role of dopamine D2 receptors on human cognition. They suggest that D2 receptor effects on protecting the memory contents from distraction might be related to a more general process that supports inhibitory control in contexts that do not require working memory.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Kinan Muhammed
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniel S Drew
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Yuen-Siang Ang
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
21
|
Bashore TR, Ally B, van Wouwe NC, Neimat JS, van den Wildenberg WPM, Wylie SA. Exposing an "Intangible" Cognitive Skill Among Collegiate Football Players: II. Enhanced Response Impulse Control. Front Psychol 2018; 9:1496. [PMID: 30186200 PMCID: PMC6113713 DOI: 10.3389/fpsyg.2018.01496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
American football is played in a dynamic environment that places considerable demands on a player’s ability to make fast, precise reactions while controlling premature, impulsive reactions to spatial misinformation. We investigated the hypothesis that collegiate football players are more proficient than their non-athlete counterparts at controlling impulsive motor actions. National Collegiate Athletic Association (NCAA) Division I football players (n = 280) and non-athlete controls (n = 32) completed a variant of the Simon conflict task, which quantifies choice reaction speed and the proficiency of controlling spatially driven response impulses. Overall, the choice reaction times (RTs) and accuracy rates of football players and controls were equivalent. Similarly, football players and controls were equally susceptible to producing incorrect impulsive motor responses. However, the slowing of RT attributed to the activation and successful inhibition of these impulses (i.e., the Simon effect) was reduced significantly among football players compared to controls. Moreover, differences in impulse control varied by position among the players, with the reduction being greater for offensive than for defensive players. Among offensive players, running backs, wide receivers, and offensive linemen had greater impulse control than did controls, whereas among defensive players only linebackers had greater control. Notably, the Simon effect was reduced by 60% in running backs compared to controls. These results contribute to emerging evidence that elite football players possess more proficient executive control over their motor systems than their age counterparts and suggest that the speed of controlling impulsive motor reactions may represent an enhanced cognitive “intangible” among football players.
Collapse
Affiliation(s)
- Theodore R Bashore
- Department of Neurosurgery, University of Louisville, Louisville, KY, United States.,Department of Psychology, University of Northern Colorado, Greeley, CO, United States
| | - Brandon Ally
- Department of Neurosurgery, University of Louisville, Louisville, KY, United States
| | - Nelleke C van Wouwe
- Department of Neurosurgery, University of Louisville, Louisville, KY, United States
| | - Joseph S Neimat
- Department of Neurosurgery, University of Louisville, Louisville, KY, United States
| | | | - Scott A Wylie
- Department of Neurosurgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
22
|
Servant M, van Wouwe N, Wylie SA, Logan GD. A model-based quantification of action control deficits in Parkinson's disease. Neuropsychologia 2018; 111:26-35. [PMID: 29360609 PMCID: PMC5916758 DOI: 10.1016/j.neuropsychologia.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 11/29/2022]
Abstract
Basal ganglia dysfunction in Parkinson's disease (PD) is thought to generate deficits in action control, but the characterization of these deficits have been qualitative rather than quantitative. Patients with PD typically show prolonged response times on tasks that instantiate a conflict between goal-directed processing and automatic response tendencies. In the Simon task, for example, the irrelevant location of the stimulus automatically activates a corresponding lateralized response, generating a potential conflict with goal-directed choices. We applied a new computational model of conflict processing to two sets of behavioral data from the Simon task to quantify the effects of PD and dopaminergic (DA) medication on action control mechanisms. Compared to healthy controls (HC) matched in age gender and education, patients with PD showed a deficit in goal-directed processing, and the magnitude of this deficit positively correlated with cognitive symptoms. Analyses of the time-course of the location-based automatic activation yielded mixed findings. In both datasets, we found that the peak amplitude of the automatic activation was similar between PD and HC, demonstrating a similar degree of response capture. However, PD patients showed a prolonged automatic activation in only one dataset. This discrepancy was resolved by theoretical analyses of conflict resolution in the Simon task. The reduction of interference generated by the automatic activation appears to be driven by a mixture of passive decay and top-down inhibitory control, the contribution of each component being modulated by task demands. Our results suggest that PD selectively impairs the inhibitory control component, a deficit likely remediated by DA medication. This work advances our understanding of action control deficits in PD, and illustrates the benefit of using computational models to quantitatively measure cognitive processes in clinical populations.
Collapse
Affiliation(s)
- Mathieu Servant
- Department of Psychological Sciences, Vanderbilt University, United States.
| | | | - Scott A Wylie
- Department of Neurosurgery, University of Louisville, United States
| | - Gordon D Logan
- Department of Psychological Sciences, Vanderbilt University, United States
| |
Collapse
|
23
|
Manza P, Schwartz G, Masson M, Kann S, Volkow ND, Li CSR, Leung HC. Levodopa improves response inhibition and enhances striatal activation in early-stage Parkinson's disease. Neurobiol Aging 2018; 66:12-22. [PMID: 29501966 DOI: 10.1016/j.neurobiolaging.2018.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 11/26/2022]
Abstract
Dopaminergic medications improve the motor symptoms of Parkinson's disease (PD), but their effect on response inhibition, a critical executive function, remains unclear. Previous studies primarily enrolled patients in more advanced stages of PD, when dopaminergic medication loses efficacy, and patients were typically on multiple medications. Here, we recruited 21 patients in early-stage PD on levodopa monotherapy and 37 age-matched controls to perform the stop-signal task during functional magnetic resonance imaging. In contrast to previous studies reporting null effects in more advanced PD, levodopa significantly improved response inhibition performance in our sample. No significant group differences were found in brain activations to pure motor inhibition or error processing (stop success vs. error trials). However, relative to controls, the PD group showed weaker striatal activations to salient events (infrequent vs. frequent events: stop vs. go trials) and fronto-striatal task-residual functional connectivity; both were restored with levodopa. Thus, levodopa appears to improve an important executive function in early-stage PD via enhanced salient signal processing, shedding new light on the role of dopaminergic signaling in response inhibition.
Collapse
Affiliation(s)
- Peter Manza
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY, USA.
| | - Guy Schwartz
- Department of Neurology, Stony Brook University, Stony Brook, NY, USA
| | - Mala Masson
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY, USA
| | - Sarah Kann
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY, USA
| | - Nora D Volkow
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Beijing Huilongguan Hospital, Beijing, China
| | - Hoi-Chung Leung
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
24
|
White CN, Servant M, Logan GD. Testing the validity of conflict drift-diffusion models for use in estimating cognitive processes: A parameter-recovery study. Psychon Bull Rev 2018; 25:286-301. [PMID: 28357629 PMCID: PMC5788738 DOI: 10.3758/s13423-017-1271-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Researchers and clinicians are interested in estimating individual differences in the ability to process conflicting information. Conflict processing is typically assessed by comparing behavioral measures like RTs or error rates from conflict tasks. However, these measures are hard to interpret because they can be influenced by additional processes like response caution or bias. This limitation can be circumvented by employing cognitive models to decompose behavioral data into components of underlying decision processes, providing better specificity for investigating individual differences. A new class of drift-diffusion models has been developed for conflict tasks, presenting a potential tool to improve analysis of individual differences in conflict processing. However, measures from these models have not been validated for use in experiments with limited data collection. The present study assessed the validity of these models with a parameter-recovery study to determine whether and under what circumstances the models provide valid measures of cognitive processing. Three models were tested: the dual-stage two-phase model (Hübner, Steinhauser, & Lehle, Psychological Review, 117(3), 759-784, 2010), the shrinking spotlight model (White, Ratcliff, & Starns, Cognitive Psychology, 63(4), 210-238, 2011), and the diffusion model for conflict tasks (Ulrich, Schröter, Leuthold, & Birngruber, Cogntive Psychology, 78, 148-174, 2015). The validity of the model parameters was assessed using different methods of fitting the data and different numbers of trials. The results show that each model has limitations in recovering valid parameters, but they can be mitigated by adding constraints to the model. Practical recommendations are provided for when and how each model can be used to analyze data and provide measures of processing in conflict tasks.
Collapse
Affiliation(s)
- Corey N White
- Department of Psychology, Syracuse University, 409 Huntington Hall, Syracuse, NY, 13244, USA.
| | - Mathieu Servant
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Gordon D Logan
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
25
|
Abstract
OBJECTIVES We investigated how broad motivational tendencies are related to the expression and suppression of action impulses in Parkinson's disease (PD). METHODS Sixty-nine participants with PD completed a Simon response conflict task and Behavioral Inhibition System (BIS) and Behavioral Activation System (BAS) scales based on Gray's (1987) reinforcement sensitivity theory. Analyses determined relationships between BIS, BAS, and the susceptibility to making impulsive action errors and the proficiency of inhibiting interference from action impulses. RESULTS BIS scores correlated positively with rates of impulsive action errors, indicating that participants endorsing low BIS tendencies were much more susceptible to acting on strong motor impulses. Analyses of subgroups with high versus low BIS scores confirmed this pattern and ruled out alternative explanations in terms of group differences in speed-accuracy tradeoffs. None of the scores on the BIS or BAS scales correlated with reactive inhibitory control. CONCLUSIONS PD participants who endorse diminished predilection toward monitoring and avoiding aversive experiences (low BIS) show much greater difficulty restraining fast, impulsive motor errors. Establishing relationships between motivational sensitivities and cognitive control processes may have important implications for treatment strategies and positive health outcomes in participants with PD, particularly those at risk for falling and driving difficulties related to impulsive reactions. (JINS, 2018, 24, 128-138).
Collapse
|
26
|
Dopaminergic medication shifts the balance between going and stopping in Parkinson's disease. Neuropsychologia 2018; 109:262-269. [DOI: 10.1016/j.neuropsychologia.2017.12.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 11/17/2022]
|
27
|
Duprez J, Houvenaghel JF, Drapier S, Auffret M, Drapier D, Robert G, Vérin M, Sauleau P. Continuous subcutaneous apomorphine infusion does not impair the dynamics of cognitive action control in mild to moderate Parkinson's disease. J Neurol 2017; 265:471-477. [PMID: 29285653 DOI: 10.1007/s00415-017-8721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Continuous subcutaneous apomorphine infusion (CSAI) is increasingly used in Parkinson's disease (PD), notably in patients contraindicated for subthalamic deep brain stimulation. Although it has been suggested that CSAI is safe regarding cognition, few studies have actually investigated its effect, especially on cognitive control which is a crucial process for goal-directed behavior. More specifically, its impact on the dynamics of cognitive action control, as reflected by the activation and suppression of impulsive responses, has yet to be investigated, which is the objective of the present study. METHODS We compared cognitive action control between baseline (M0) and 6 months (M6) after the start of add-on CSAI by administering an oculomotor Simon task to 20 patients with mild to moderate PD. We used the activation-suppression model to determine whether CSAI had an effect on either the impulsive errors made in conflict situations or the suppression of these responses. RESULTS We found no difference between M0 and M6 in the congruence effect regarding either reaction time or accuracy, indicating that overall conflict resolution was not influenced by CSAI. Furthermore, the rate of fast errors in the conflict situation and the last slope of the delta plots (reflecting the strength of impulsive response suppression) were unaffected by the treatment. The 95% confidence intervals calculated for the treatment effect on both of these measures fell below the range of usual meaningful effects. CONCLUSION We found no difference between M0 and M6, which strongly suggests that CSAI does not impair the dynamics of cognitive action control.
Collapse
Affiliation(s)
- Joan Duprez
- "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000, Rennes, France.
| | - Jean-François Houvenaghel
- "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000, Rennes, France.,Department of Neurology, Rennes University Hospital, rue Henri Le Guilloux, 35033, Rennes, France
| | - Sophie Drapier
- "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000, Rennes, France.,Department of Neurology, Rennes University Hospital, rue Henri Le Guilloux, 35033, Rennes, France
| | - Manon Auffret
- "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000, Rennes, France
| | - Dominique Drapier
- "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000, Rennes, France.,Department of Psychiatry, Rennes University Hospital, 108 Avenue du Général Leclerc, 35703, Rennes, France
| | - Gabriel Robert
- "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000, Rennes, France.,Department of Psychiatry, Rennes University Hospital, 108 Avenue du Général Leclerc, 35703, Rennes, France
| | - Marc Vérin
- "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000, Rennes, France.,Department of Neurology, Rennes University Hospital, rue Henri Le Guilloux, 35033, Rennes, France
| | - Paul Sauleau
- "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000, Rennes, France.,Department of Neurophysiology, Rennes University Hospital, rue Henri Le Guilloux, 35033, Rennes, France
| |
Collapse
|
28
|
Abstract
Response capture is a widespread and extensively studied phenomenon, in particular in decision tasks involving response conflict. Its intensity is routinely quantified by conditional accuracy function (CAF). We argue that this method might be misleading, and propose an alternative approach, the error location function (ELF). While CAF provides the error rate by bins of reaction time (RT), ELF represents the share of total errors below each quantile of RT. We derive from ELF an index of response capture, the error location index (ELI), which represents the area below the ELF. Using simulations of computational models, we show that ELF and ELI specifically quantify variations in response capture. Finally, we illustrate the usefulness of ELF and ELI through experimental data and show that ELF and CAF can yield to contradictory conclusions.
Collapse
|
29
|
Manza P, Amandola M, Tatineni V, Li CSR, Leung HC. Response inhibition in Parkinson's disease: a meta-analysis of dopaminergic medication and disease duration effects. NPJ Parkinsons Dis 2017; 3:23. [PMID: 28702504 PMCID: PMC5501877 DOI: 10.1038/s41531-017-0024-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/07/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder involving the basal ganglia that results in a host of motor and cognitive deficits. Dopamine-replacement therapy ameliorates some of the hallmark motor symptoms of Parkinson's disease, but whether these medications improve deficits in response inhibition, a critical executive function for behavioral control, has been questioned. Several studies of Parkinson's disease patients "on" and "off" (12-h withdrawal) dopaminergic medications suggested that dopamine-replacement therapy did not provide significant response inhibition benefits. However, these studies tended to include patients with moderate-to-advanced Parkinson's disease, when the efficacy of dopaminergic drugs is reduced compared to early-stage Parkinson's disease. In contrast, a few recent studies in early-stage Parkinson's disease report that dopaminergic drugs do improve response inhibition deficits. Based on these findings, we hypothesized that Parkinson's disease duration interacts with medication status to produce changes in cognitive function. To investigate this issue, we conducted a meta-analysis of studies comparing patients with Parkinson's disease and healthy controls on tests of response inhibition (50 comparisons from 42 studies). The findings supported the hypothesis; medication benefited response inhibition in patients with shorter disease duration, whereas "off" medication, moderate deficits were present that were relatively unaffected by disease duration. These findings support the role of dopamine in response inhibition and suggest the need to consider disease duration in research of the efficacy of dopamine-replacement therapy on cognitive function in Parkinson's disease.
Collapse
Affiliation(s)
- Peter Manza
- Department of Psychology, Stony Brook University, Stony Brook, NY 11790 USA
| | - Matthew Amandola
- Department of Psychology, Stony Brook University, Stony Brook, NY 11790 USA
| | | | - Chiang-shan R. Li
- Department of Psychiatry, Yale University, New Haven, CT 06519 USA
- Department of Neuroscience, Yale University, New Haven, CT 06520 USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520 USA
- Beijing Huilongguan Hospital, Beijing, China
| | - Hoi-Chung Leung
- Department of Psychology, Stony Brook University, Stony Brook, NY 11790 USA
| |
Collapse
|
30
|
Levin DT, van Wouwe NC. Ideas for expanding models of event perception to support intervention. JOURNAL OF APPLIED RESEARCH IN MEMORY AND COGNITION 2017. [DOI: 10.1016/j.jarmac.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
van Wouwe NC, Pallavaram S, Phibbs FT, Martinez-Ramirez D, Neimat JS, Dawant BM, D'Haese PF, Kanoff KE, van den Wildenberg WPM, Okun MS, Wylie SA. Focused stimulation of dorsal subthalamic nucleus improves reactive inhibitory control of action impulses. Neuropsychologia 2017; 99:37-47. [PMID: 28237741 PMCID: PMC5493526 DOI: 10.1016/j.neuropsychologia.2017.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 01/23/2023]
Abstract
Frontal-basal ganglia circuitry dysfunction caused by Parkinson's disease impairs important executive cognitive processes, such as the ability to inhibit impulsive action tendencies. Subthalamic Nucleus Deep Brain Stimulation in Parkinson's disease improves the reactive inhibition of impulsive actions that interfere with goal-directed behavior. An unresolved question is whether this effect depends on stimulation of a particular Subthalamic Nucleus subregion. The current study aimed to 1) replicate previous findings and additionally investigate the effect of chronic versus acute Subthalamic Nucleus stimulation on inhibitory control in Parkinson's disease patients off dopaminergic medication 2) test whether stimulating Subthalamic Nucleus subregions differentially modulate proactive response control and the proficiency of reactive inhibitory control. In the first experiment, twelve Parkinson's disease patients completed three sessions of the Simon task, Off Deep brain stimulation and medication, on acute Deep Brain Stimulation and on chronic Deep Brain Stimulation. Experiment 2 consisted of 11 Parkinson's disease patients with Subthalamic Nucleus Deep Brain Stimulation (off medication) who completed two testing sessions involving of a Simon task either with stimulation of the dorsal or the ventral contact in the Subthalamic Nucleus. Our findings show that Deep Brain Stimulation improves reactive inhibitory control, regardless of medication and regardless of whether it concerns chronic or acute Subthalamic Nucleus stimulation. More importantly, selective stimulation of dorsal and ventral subregions of the Subthalamic Nucleus indicates that especially the dorsal Subthalamic Nucleus circuitries are crucial for modulating the reactive inhibitory control of motor actions.
Collapse
Affiliation(s)
- N C van Wouwe
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - S Pallavaram
- Department of Engineering, Vanderbilt University, Nashville, TN, USA
| | - F T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - D Martinez-Ramirez
- Department of Neurology, University of Florida Medical Center, Gainesville, Florida, USA
| | - J S Neimat
- Department of Neurosurgery, University of Louisville Medical Center, Louisville, KY, USA
| | - B M Dawant
- Department of Engineering, Vanderbilt University, Nashville, TN, USA
| | - P F D'Haese
- Department of Engineering, Vanderbilt University, Nashville, TN, USA
| | - K E Kanoff
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W P M van den Wildenberg
- Cognitive Science Center Amsterdam and Psychology Department, University of Amsterdam, Amsterdam, The Netherlands
| | - M S Okun
- Department of Neurology, University of Florida Medical Center, Gainesville, Florida, USA
| | - S A Wylie
- Department of Neurosurgery, University of Louisville Medical Center, Louisville, KY, USA
| |
Collapse
|
32
|
A tantalum electrode coated with graphene nanowalls for simultaneous voltammetric determination of dopamine, uric acid, L-tyrosine, and hydrochlorothiazide. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2154-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Duprez J, Houvenaghel JF, Argaud S, Naudet F, Robert G, Drapier D, Vérin M, Sauleau P. Impulsive oculomotor action selection in Parkinson's disease. Neuropsychologia 2016; 95:250-258. [PMID: 28039058 DOI: 10.1016/j.neuropsychologia.2016.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022]
Abstract
The effects of Parkinson's disease (PD) on the dynamics of impulsive action selection and suppression have recently been studied using distributional analyses, but with mixed results, especially for selection. Furthermore, some authors have suggested that impulsivity, regarded as a personality trait, shares common features with behavioral tasks' measures. The current study was designed to clarify the impact of PD on impulsive action selection and suppression, and investigate the link between cognitive action control and self-reported impulsivity. We administered an oculomotor version of the Simon task to 32 patients with PD and 32 matched healthy controls (HC), and conducted distributional analyses in accordance with the activation-suppression model. Patients and HC also filled out the Barratt Impulsiveness Scale (BIS) questionnaire. Results showed that patients with PD were faster overall and exhibited a greater congruence effect than HC. They also displayed enhanced impulsive action selection. By contrast, the suppression of impulsive responses was similar across both groups. Furthermore, patients had higher impulsivity scores, which were correlated with higher impulsive action selection and higher suppression. Our study yielded two interesting findings. First, PD resulted in a higher number of fast errors. The activation-suppression model suggests that patients with PD are more susceptible to the impulsive action selection induced by the irrelevant stimulus dimension. Second, impulsive action selection and suppression were both associated with trait impulsivity, as measured by the BIS, indicating that these two aspects of impulsivity share common features.
Collapse
Affiliation(s)
- Joan Duprez
- "Behavior and Basal Ganglia" research unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000 Rennes, France.
| | - Jean-François Houvenaghel
- "Behavior and Basal Ganglia" research unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000 Rennes, France; Department of Neurology, Rennes University Hospital, Rue Henri Le Guilloux, 35033 Rennes, France
| | - Soizic Argaud
- "Behavior and Basal Ganglia" research unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000 Rennes, France; "Neuroscience of Emotion and Affective Dynamics" Lab, Swiss Center for Affective Sciences, 40 boulevard du Pont d'Arve, 1205 Geneva, Switzerland
| | - Florian Naudet
- "Behavior and Basal Ganglia" research unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000 Rennes, France; Department of Psychiatry, Rennes University Hospital, 108 Avenue du Général Leclerc, 35703 Rennes, France; Clinical Investigation Center (INSERM 0203), Department of Pharmacology, Rennes University Hospital, Rue Henri Le Guilloux, 35033 Rennes, France
| | - Gabriel Robert
- "Behavior and Basal Ganglia" research unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000 Rennes, France; Department of Psychiatry, Rennes University Hospital, 108 Avenue du Général Leclerc, 35703 Rennes, France
| | - Dominique Drapier
- "Behavior and Basal Ganglia" research unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000 Rennes, France; Department of Psychiatry, Rennes University Hospital, 108 Avenue du Général Leclerc, 35703 Rennes, France
| | - Marc Vérin
- "Behavior and Basal Ganglia" research unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000 Rennes, France; Department of Neurology, Rennes University Hospital, Rue Henri Le Guilloux, 35033 Rennes, France
| | - Paul Sauleau
- "Behavior and Basal Ganglia" research unit (EA 4712), University of Rennes 1, Avenue du Professeur Léon Bernard, 35000 Rennes, France; Department of Neurophysiology, Rennes University Hospital, Rue Henri Le Guilloux, 35033 Rennes, France
| |
Collapse
|
34
|
Yang XQ, Glizer D, Vo A, Seergobin KN, MacDonald PA. Pramipexole Increases Go Timeouts but Not No-go Errors in Healthy Volunteers. Front Hum Neurosci 2016; 10:523. [PMID: 27803657 PMCID: PMC5067488 DOI: 10.3389/fnhum.2016.00523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/03/2016] [Indexed: 12/03/2022] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms, such as resting tremor, bradykinesia and rigidity, but also features non-motor complications. PD patients taking dopaminergic therapy, such as levodopa but especially dopamine agonists (DAs), evidence an increase in impulse control disorders (ICDs), suggesting a link between dopaminergic therapy and impulsive pursuit of pleasurable activities. However, impulsivity is a multifaceted construct. Motor impulsivity refers to the inability to overcome automatic responses or cancel pre-potent responses. Previous research has suggested that PD patients, on dopaminergic medications, have decreased motor impulsivity. Whether effects on impulsivity are main effects of dopaminergic therapies or are specific to PD is unclear. Using a Go No-go task, we investigated the effect of a single dose of the DA pramipexole on motor impulsivity in healthy participants. The Go No-go task consisted of Go trials, for which keystroke responses were made as quickly as possible, and lesser frequency No-go trials, on which motor responses were to be inhibited. We hypothesized that pramipexole would decrease motor impulsivity. This would manifest as: (a) fewer No-go errors (i.e., fewer responses on trials in which a response ought to have been inhibited); and (b) more timed-out Go trials (i.e., more trials on which the deadline elapsed before a decision to make a keystroke occurred). Healthy volunteers were treated with either 0.5 mg of pramipexole or a standard placebo (randomly determined). During the 2-h wait period, they completed demographic, cognitive, physiological and affective measures. The pramipexole group had significantly more Go timeouts (p < 0.05) compared to the placebo group though they did not differ in percent of No-go errors. In contrast to its effect on pursuit of pleasurable activities, pramipexole did not increase motor impulsivity. In fact, in line with findings in PD and addiction, dopaminergic therapy might increase motor impulse control. In these patient groups, by enhancing function of the dorsal striatum (DS) of the basal ganglia in contrast to its effect on impulsive pursuit of pleasurable activities. These findings have implications for use and effects of pramipexole in PD as well as in other conditions (e.g., restless leg, dystonia, depression, addiction-related problems).
Collapse
Affiliation(s)
- Xue Qing Yang
- MacDonald Lab, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Daniel Glizer
- MacDonald Lab, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Andrew Vo
- MacDonald Lab, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Ken N. Seergobin
- MacDonald Lab, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Penny A. MacDonald
- MacDonald Lab, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| |
Collapse
|