1
|
Schwarb H, Dulas M, Cohen N. The influence of categorical stimuli on relational memory binding. Learn Mem 2024; 31:a054006. [PMID: 39481887 PMCID: PMC11606515 DOI: 10.1101/lm.054006.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024]
Abstract
Binding of arbitrary information into distinct memory representations that can be used to guide behavior is a hallmark of relational memory. What is and is not bound into a memory representation and how those things influence the organization of that representation remain topics of interest. While some information is intentionally and effortfully bound-often the information that is consistent with task goals or expectations about what information may be required later-other information appears to be bound automatically. The present set of experiments sought to investigate whether spatial memory would be systematically influenced by the presence and absence of distinct categories of stimuli on a spatial reconstruction task. In this task, participants must learn multiple item-location bindings and place each item back in its studied location after a short delay. Across three experiments, participants made significantly more within-category errors (i.e., misassigning one item to the location of a different item from the same category) than between-category errors (i.e., misassigning one item to the location of an item from a different category) when categories were perceptually or semantically distinct. These data reveal that category information contributed to the organization of the memory representation and influenced spatial reconstruction performance. Together, these results suggest that categorical information can influence memory organization, and not always to the benefit of overall task performance.
Collapse
Affiliation(s)
- Hillary Schwarb
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Michael Dulas
- Department of Psychology, Binghamton University, Binghamton, New York 13902, USA
| | - Neal Cohen
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| |
Collapse
|
2
|
Attaallah B, Petitet P, Zambellas R, Toniolo S, Maio MR, Ganse-Dumrath A, Irani SR, Manohar SG, Husain M. The role of the human hippocampus in decision-making under uncertainty. Nat Hum Behav 2024; 8:1366-1382. [PMID: 38684870 PMCID: PMC11272595 DOI: 10.1038/s41562-024-01855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
The role of the hippocampus in decision-making is beginning to be more understood. Because of its prospective and inferential functions, we hypothesized that it might be required specifically when decisions involve the evaluation of uncertain values. A group of individuals with autoimmune limbic encephalitis-a condition known to focally affect the hippocampus-were tested on how they evaluate reward against uncertainty compared to reward against another key attribute: physical effort. Across four experiments requiring participants to make trade-offs between reward, uncertainty and effort, patients with acute limbic encephalitis demonstrated blunted sensitivity to reward and effort whenever uncertainty was considered, despite demonstrating intact uncertainty sensitivity. By contrast, the valuation of these two attributes (reward and effort) was intact on uncertainty-free tasks. Reduced sensitivity to changes in reward under uncertainty correlated with the severity of hippocampal damage. Together, these findings provide evidence for a context-sensitive role of the hippocampus in value-based decision-making, apparent specifically under conditions of uncertainty.
Collapse
Affiliation(s)
- Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Pierre Petitet
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Rhea Zambellas
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Akke Ganse-Dumrath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Delgorio PL, Hiscox LV, Daugherty AM, Sanjana F, McIlvain G, Pohlig RT, McGarry MDJ, Martens CR, Schwarb H, Johnson CL. Structure-Function Dissociations of Human Hippocampal Subfield Stiffness and Memory Performance. J Neurosci 2022; 42:7957-7968. [PMID: 36261271 PMCID: PMC9617610 DOI: 10.1523/jneurosci.0592-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aging and neurodegenerative diseases lead to decline in thinking and memory ability. The subfields of the hippocampus (HCsf) play important roles in memory formation and recall. Imaging techniques sensitive to the underlying HCsf tissue microstructure can reveal unique structure-function associations and their vulnerability in aging and disease. The goal of this study was to use magnetic resonance elastography (MRE), a noninvasive MR imaging-based technique that can quantitatively image the viscoelastic mechanical properties of tissue to determine the associations of HCsf stiffness with different cognitive domains across the lifespan. Eighty-eight adult participants completed the study (age 23-81 years, male/female 36/51), in which we aimed to determine which HCsf regions most strongly correlated with different memory performance outcomes and if viscoelasticity of specific HCsf regions mediated the relationship between age and performance. Our results revealed that both interference cost on a verbal memory task and relational memory task performance were significantly related to cornu ammonis 1-2 (CA1-CA2) stiffness (p = 0.018 and p = 0.011, respectively), with CA1-CA2 stiffness significantly mediating the relationship between age and interference cost performance (p = 0.031). There were also significant associations between delayed free verbal recall performance and stiffness of both the dentate gyrus-cornu ammonis 3 (DG-CA3; p = 0.016) and subiculum (SUB; p = 0.032) regions. This further exemplifies the functional specialization of HCsf in declarative memory and the potential use of MRE measures as clinical biomarkers in assessing brain health in aging and disease.SIGNIFICANCE STATEMENT Hippocampal subfields are cytoarchitecturally unique structures involved in distinct aspects of memory processing. Magnetic resonance elastography is a technique that can noninvasively image tissue viscoelastic mechanical properties, potentially serving as sensitive biomarkers of aging and neurodegeneration related to functional outcomes. High-resolution in vivo imaging has invigorated interest in determining subfield functional specialization and their differential vulnerability in aging and disease. Applying MRE to probe subfield-specific cognitive correlates will indicate that measures of subfield stiffness can determine the integrity of structures supporting specific domains of memory performance. These findings will further validate our high-resolution MRE method and support the potential use of subfield stiffness measures as clinical biomarkers in classifying aging and disease states.
Collapse
Affiliation(s)
- Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Ana M Daugherty
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, Michigan 48202
| | - Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware 19713
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Ryan T Pohlig
- Biostatistics Core Facility, College of Health Sciences, University of Delaware, Newark, Delaware 19713
| | - Matthew D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware 19713
| | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
4
|
Bjornn DK, Van J, Kirwan CB. The contributions of eye gaze fixations and target-lure similarity to behavioral and fMRI indices of pattern separation and pattern completion. Cogn Neurosci 2022; 13:171-181. [PMID: 35410578 DOI: 10.1080/17588928.2022.2060200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pattern separation and pattern completion are generally studied in humans using mnemonic discrimination tasks such as the Mnemonic Similarity Task (MST) where participants identify similar lures and repeated items from a series of images. Failures to correctly discriminate lures are thought to reflect a failure of pattern separation and a propensity toward pattern completion. Recent research has challenged this perspective, suggesting that poor encoding rather than pattern completion accounts for the occurrence of false alarm responses to similar lures. In two experiments, participants completed a continuous recognition task version of the MST while eye movement (Experiments 1 and 2) and fMRI data (Experiment 2) were collected. In Experiment 1, we replicated the result that fixation counts at study predicted accuracy on lure trials (consistent with poor encoding predicting mnemonic discrimination performance), but this effect was not observed in our fMRI task. In both experiments, we found that target-lure similarity was a strong predictor of accuracy on lure trials. Further, we found that fMRI activation changes in the hippocampus were significantly correlated with the number of fixations at study for correct but not incorrect mnemonic discrimination judgments when controlling for target-lure similarity. Our findings indicate that while eye movements during encoding predict subsequent hippocampal activation changes for correct mnemonic discriminations, the predictive power of eye movements for activation changes for incorrect mnemonic discrimination trials was modest at best.
Collapse
Affiliation(s)
- Daniel K Bjornn
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Julie Van
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - C Brock Kirwan
- Department of Psychology, Brigham Young University, Provo, UT, USA.,Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
5
|
Dulas MR, Morrow EL, Schwarb H, Cohen NJ, Duff MC. Temporal order memory impairments in individuals with moderate-severe traumatic brain injury. J Clin Exp Neuropsychol 2022; 44:210-225. [PMID: 35876336 PMCID: PMC9422773 DOI: 10.1080/13803395.2022.2101620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Temporal order memory is a core cognitive function that underlies much of our behavior. The ability to bind together information within and across events, and to reconstruct that sequence of information, critically relies upon the hippocampal relational memory system. Recent work has suggested traumatic brain injury (TBI) may particularly impact hippocampally mediated relational memory. However, it is currently unclear whether such deficits extend to temporal order memory, and whether deficits only arise at large memory loads. The present study assessed temporal order memory in individuals with chronic, moderate-severe TBI across multiple set sizes. METHOD Individuals with TBI and Neurotypical Comparison participants studied sequences of three to nine objects, one a time. At test, all items were re-presented in pseudorandom order, and participants indicated the temporal position (i.e., first, second, etc.) in which each object had appeared. Critically, we assessed both the frequency and the magnitude of errors (i.e., how far from its studied position was an item remembered). RESULTS Individuals with TBI were not impaired for the smallest set size, but showed significant impairments at 5+ items. Group differences in the error frequency did not increase further with larger set sizes, but group differences in error magnitude did increase with larger memory loads. Individuals with TBI showed spared performance for the first object of each list (primacy) but were impaired on the last object (recency), though error frequency was better for last compared to middle items. CONCLUSIONS Our findings demonstrate that TBI results in impaired temporal order memory for lists as small as five items, and that impairments are exacerbated with increasing memory loads. Assessments that test only small set sizes may be insufficient to detect these deficits. Further, these data highlight the importance of additional, sensitive measures in the assessment of cognitive impairments in TBI.
Collapse
Affiliation(s)
- Michael R. Dulas
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (IL)
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Emily L. Morrow
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville (TN)
| | - Hillary Schwarb
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (IL)
- Interdisciplinary Health Sciences Institutes, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Neal J. Cohen
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana (IL)
- Interdisciplinary Health Sciences Institutes, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville (TN)
| |
Collapse
|
6
|
Pollmann S, Schneider WX. Working memory and active sampling of the environment: Medial temporal contributions. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:339-357. [PMID: 35964982 DOI: 10.1016/b978-0-12-823493-8.00029-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Working memory (WM) refers to the ability to maintain and actively process information-either derived from perception or long-term memory (LTM)-for intelligent thought and action. This chapter focuses on the contributions of the temporal lobe, particularly medial temporal lobe (MTL) to WM. First, neuropsychological evidence for the involvement of MTL in WM maintenance is reviewed, arguing for a crucial role in the case of retaining complex relational bindings between memorized features. Next, MTL contributions at the level of neural mechanisms are covered-with a focus on WM encoding and maintenance, including interactions with ventral temporal cortex. Among WM use processes, we focus on active sampling of environmental information, a key input source to capacity-limited WM. MTL contributions to the bidirectional relationship between active sampling and memory are highlighted-WM control of active sampling and sampling as a way of selecting input to WM. Memory-based sampling studies relying on scene and object inspection, visual-based exploration behavior (e.g., vicarious behavior), and memory-guided visual search are reviewed. The conclusion is that MTL serves an important function in the selection of information from perception and transfer from LTM to capacity-limited WM.
Collapse
Affiliation(s)
- Stefan Pollmann
- Department of Psychology and Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany.
| | - Werner X Schneider
- Department of Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Smith ES, Crawford TJ. Memory-Guided Saccades in Psychosis: Effects of Medication and Stimulus Location. Brain Sci 2021; 11:1071. [PMID: 34439693 PMCID: PMC8393375 DOI: 10.3390/brainsci11081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
The memory-guided saccade task requires the remembrance of a peripheral target location, whilst inhibiting the urge to make a saccade ahead of an auditory cue. The literature has explored the endophenotypic deficits associated with differences in target laterality, but less is known about target amplitude. The data presented came from Crawford et al. (1995), employing a memory-guided saccade task among neuroleptically medicated and non-medicated patients with schizophrenia (n = 31, n = 12), neuroleptically medicated and non-medicated bipolar affective disorder (n = 12, n = 17), and neurotypical controls (n = 30). The current analyses explore the relationships between memory-guided saccades toward targets with different eccentricities (7.5° and 15°), the discernible behaviour exhibited amongst diagnostic groups, and cohorts distinguished based on psychotic symptomatology. Saccade gain control and final eye position were reduced among medicated-schizophrenia patients. These metrics were reduced further among targets with greater amplitudes (15°), indicating greater deficit. The medicated cohort exhibited reduced gain control and final eye positions in both amplitudes compared to the non-medicated cohort, with deficits markedly observed for the furthest targets. No group differences in symptomatology (positive and negative) were reported, however, a greater deficit was observed toward the larger amplitude. This suggests that within the memory-guided saccade paradigm, diagnostic classification is more prominent in characterising disparities in saccade performance than symptomatology.
Collapse
Affiliation(s)
- Eleanor S. Smith
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Trevor J. Crawford
- Department of Psychology, Centre for Ageing Research, Lancaster University, Lancaster LA1 4YF, UK;
| |
Collapse
|
8
|
Sakon JJ, Suzuki WA. Neural evidence for recognition of naturalistic videos in monkey hippocampus. Hippocampus 2021; 31:916-932. [PMID: 34021646 DOI: 10.1002/hipo.23335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/26/2021] [Accepted: 04/17/2021] [Indexed: 11/11/2022]
Abstract
The role of the hippocampus in recognition memory has long been a source of debate. Tasks used to study recognition that typically require an explicit probe, where the participant must make a response to prove they remember, yield mixed results on hippocampal involvement. Here, we tasked monkeys to freely view naturalistic videos, and only tested their memory via looking times for two separate novel versus repeat video conditions on each trial. Notably, a large proportion (>30%) of hippocampal neurons differentiated these videos via changes in firing rates time-locked to the duration of their presentation on screen, and not during the delay period between them as would be expected for working memory. Many of these single neurons (>15%) contributed to both retrieval conditions, and differentiated novel from repeat videos across trials with trial-unique content, suggesting they detect familiarity. The majority of neurons contributing to the classifier showed an enhancement in firing rate on repeat compared with novel videos, a pattern which has not previously been shown in hippocampus. These results suggest the hippocampus contributes to recognition memory via familiarity during free-viewing.
Collapse
Affiliation(s)
- John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wendy A Suzuki
- Center for Neural Science, New York University, New York, New York, USA
| |
Collapse
|
9
|
Should context hold a special place in hippocampal memory? PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Suh DY, Vandekar SN, Heckers S, Avery SN. Visual exploration differences during relational memory encoding in early psychosis. Psychiatry Res 2020; 287:112910. [PMID: 32200141 PMCID: PMC7176542 DOI: 10.1016/j.psychres.2020.112910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/17/2023]
Abstract
Relational memory, or the ability to form contextual associations among items encountered closely in time, is impaired in schizophrenia. The ability to bind items into a relational memory is dependent on the hippocampus, a region that is abnormal in schizophrenia. However, the hippocampus is also involved in exploratory behavior, leaving open the question whether relational memory deficits in schizophrenia are due to failure of relational binding or diminished visual exploration of individual items during encoding. We studied visual exploration patterns during the encoding of face-scene pairs in 66 healthy control subjects and 69 early psychosis patients, to test the hypothesis that differences in visual exploration during the encoding phase can explain task accuracy differences between the two groups. Psychosis patients had lower explicit test accuracy and were less likely to transition from mouth to eyes during encoding. The visual exploration pattern differences between groups did not mediate the relationship between group and explicit test accuracy. We conclude that early psychosis patients have an abnormal pattern of binding items together during encoding that warrants further research.
Collapse
Affiliation(s)
- David Y Suh
- Vanderbilt University School of Medicine, Nashville, TN USA
| | - Simon N Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA.
| |
Collapse
|
11
|
Kragel JE, VanHaerents S, Templer JW, Schuele S, Rosenow JM, Nilakantan AS, Bridge DJ. Hippocampal theta coordinates memory processing during visual exploration. eLife 2020; 9:e52108. [PMID: 32167468 PMCID: PMC7069726 DOI: 10.7554/elife.52108] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
The hippocampus supports memory encoding and retrieval, which may occur at distinct phases of the theta cycle. These processes dynamically interact over rapid timescales, especially when sensory information conflicts with memory. The ability to link hippocampal dynamics to memory-guided behaviors has been limited by experiments that lack the temporal resolution to segregate encoding and retrieval. Here, we simultaneously tracked eye movements and hippocampal field potentials while neurosurgical patients performed a spatial memory task. Phase-locking at the peak of theta preceded fixations to retrieved locations, indicating that the hippocampus coordinates memory-guided eye movements. In contrast, phase-locking at the trough of theta followed fixations to novel object-locations and predicted intact memory of the original location. Theta-gamma phase amplitude coupling increased during fixations to conflicting visual content, but predicted memory updating. Hippocampal theta thus supports learning through two interleaved processes: strengthening encoding of novel information and guiding exploration based on prior experience.
Collapse
Affiliation(s)
- James E Kragel
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Stephen VanHaerents
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Aneesha S Nilakantan
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Donna J Bridge
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
12
|
Ryan JD, Shen K, Liu Z. The intersection between the oculomotor and hippocampal memory systems: empirical developments and clinical implications. Ann N Y Acad Sci 2020; 1464:115-141. [PMID: 31617589 PMCID: PMC7154681 DOI: 10.1111/nyas.14256] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Decades of cognitive neuroscience research has shown that where we look is intimately connected to what we remember. In this article, we review findings from human and nonhuman animals, using behavioral, neuropsychological, neuroimaging, and computational modeling methods, to show that the oculomotor and hippocampal memory systems interact in a reciprocal manner, on a moment-to-moment basis, mediated by a vast structural and functional network. Visual exploration serves to efficiently gather information from the environment for the purpose of creating new memories, updating existing memories, and reconstructing the rich, vivid details from memory. Conversely, memory increases the efficiency of visual exploration. We call for models of oculomotor control to consider the influence of the hippocampal memory system on the cognitive control of eye movements, and for models of hippocampal and broader medial temporal lobe function to consider the influence of the oculomotor system on the development and expression of memory. We describe eye movement-based applications for the detection of neurodegeneration and delivery of therapeutic interventions for mental health disorders for which the hippocampus is implicated and memory dysfunctions are at the forefront.
Collapse
Affiliation(s)
- Jennifer D. Ryan
- Rotman Research InstituteBaycrestTorontoOntarioCanada
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Kelly Shen
- Rotman Research InstituteBaycrestTorontoOntarioCanada
| | - Zhong‐Xu Liu
- Department of Behavioral SciencesUniversity of Michigan‐DearbornDearbornMichigan
| |
Collapse
|
13
|
Duff MC, Covington NV, Hilverman C, Cohen NJ. Semantic Memory and the Hippocampus: Revisiting, Reaffirming, and Extending the Reach of Their Critical Relationship. Front Hum Neurosci 2020; 13:471. [PMID: 32038203 PMCID: PMC6993580 DOI: 10.3389/fnhum.2019.00471] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022] Open
Abstract
Since Tulving proposed a distinction in memory between semantic and episodic memory, considerable effort has been directed towards understanding their similar and unique features. Of particular interest has been the extent to which semantic and episodic memory have a shared dependence on the hippocampus. In contrast to the definitive evidence for the link between hippocampus and episodic memory, the role of the hippocampus in semantic memory has been a topic of considerable debate. This debate stems, in part, from highly variable reports of new semantic memory learning in amnesia ranging from profound impairment to full preservation, and various degrees of deficit and ability in between. More recently, a number of significant advances in experimental methods have occurred, alongside new provocative data on the role of the hippocampus in semantic memory, making this an ideal moment to revisit this debate, to re-evaluate data, methods, and theories, and to synthesize new findings. In line with these advances, this review has two primary goals. First, we provide a historical lens with which to reevaluate and contextualize the literature on semantic memory and the hippocampus. The second goal of this review is to provide a synthesis of new findings on the role of the hippocampus and semantic memory. With the perspective of time and this critical review, we arrive at the interpretation that the hippocampus does indeed make necessary contributions to semantic memory. We argue that semantic memory, like episodic memory, is a highly flexible, (re)constructive, relational and multimodal system, and that there is value in developing methods and materials that fully capture this depth and richness to facilitate comparisons to episodic memory. Such efforts will be critical in addressing questions regarding the cognitive and neural (inter)dependencies among forms of memory, and the role that these forms of memory play in support of cognition more broadly. Such efforts also promise to advance our understanding of how words, concepts, and meaning, as well as episodes and events, are instantiated and maintained in memory and will yield new insights into our two most quintessentially human abilities: memory and language.
Collapse
Affiliation(s)
- Melissa C Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Natalie V Covington
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Caitlin Hilverman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Neal J Cohen
- Department of Psychology, Beckman Institute, University of Illinois, Champaign, IL, United States
| |
Collapse
|
14
|
Cutler RA, Duff MC, Polyn SM. Searching for Semantic Knowledge: A Vector Space Semantic Analysis of the Feature Generation Task. Front Hum Neurosci 2019; 13:341. [PMID: 31680903 PMCID: PMC6797818 DOI: 10.3389/fnhum.2019.00341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
A recent neuropsychological study found that amnesic patients with hippocampal damage (HP) and severe declarative memory impairment produce markedly fewer responses than healthy comparison (CO) participants in a semantic feature generation task (Klooster and Duff, 2015), consistent with the idea that hippocampal damage is associated with semantic cognitive deficits. Participants were presented with a target word and asked to produce as many features of that word as possible (e.g., for target word "book," "read words on a page"). Here, we use the response sequences collected by Klooster and Duff (2015) to develop a vector space model of semantic search. We use this model to characterize the dynamics of semantic feature generation and consider the role of the hippocampus in this search process. Both HP and CO groups tended to initiate the search process with features close in semantic space to the target word, with a gradual decline in similarity to the target word over the first several responses. Adjacent features in the response sequence showed stronger similarity to each other than to non-adjacent features, suggesting that the search process follows a local trajectory in semantic space. Overall, HP patients generated features that were closer in semantic space to the representation of the target word, as compared to the features generated by the CO group, which ranged more widely in semantic space. These results are consistent with a model in which a compound retrieval cue (containing a representation of the target word and a representation of the previous response) is used to probe semantic memory. The model suggests that the HP group's search process is restricted from ranging as far in semantic space from the target word, relative to the CO group. These results place strong constraints on the structure of models of semantic memory search, and on the role of hippocampus in probing semantic memory.
Collapse
Affiliation(s)
- Rebecca A. Cutler
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sean M. Polyn
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Robin J, Olsen RK. Scenes facilitate associative memory and integration. ACTA ACUST UNITED AC 2019; 26:252-261. [PMID: 31209120 PMCID: PMC6581001 DOI: 10.1101/lm.049486.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 01/22/2023]
Abstract
How do we form mental links between related items? Forming associations between representations is a key feature of episodic memory and provides the foundation for learning and guiding behavior. Theories suggest that spatial context plays a supportive role in episodic memory, providing a scaffold on which to form associations, but this has mostly been tested in the context of autobiographical memory. We examined the memory boosting effect of spatial stimuli in memory using an associative inference paradigm combined with eye-tracking. Across two experiments, we found that memory was better for associations that included scenes, even indirectly, compared to objects and faces. Eye-tracking measures indicated that these effects may be partly mediated by greater fixations to scenes compared to objects, but did not explain the differences between scenes and faces. These results suggest that scenes facilitate associative memory and integration across memories, demonstrating evidence in support of theories of scenes as a spatial scaffold for episodic memory. A shared spatial context may promote learning and could potentially be leveraged to improve learning and memory in educational settings or for memory-impaired populations.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada
| | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| |
Collapse
|
16
|
Bicanski A, Burgess N. A Computational Model of Visual Recognition Memory via Grid Cells. Curr Biol 2019; 29:979-990.e4. [PMID: 30853437 PMCID: PMC6428694 DOI: 10.1016/j.cub.2019.01.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/23/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Models of face, object, and scene recognition traditionally focus on massively parallel processing of low-level features, with higher-order representations emerging at later processing stages. However, visual perception is tightly coupled to eye movements, which are necessarily sequential. Recently, neurons in entorhinal cortex have been reported with grid cell-like firing in response to eye movements, i.e., in visual space. Following the presumed role of grid cells in vector navigation, we propose a model of recognition memory for familiar faces, objects, and scenes, in which grid cells encode translation vectors between salient stimulus features. A sequence of saccadic eye-movement vectors, moving from one salient feature to the expected location of the next, potentially confirms an initial hypothesis (accumulating evidence toward a threshold) about stimulus identity, based on the relative feature layout (i.e., going beyond recognition of individual features). The model provides an explicit neural mechanism for the long-held view that directed saccades support hypothesis-driven, constructive perception and recognition; is compatible with holistic face processing; and constitutes the first quantitative proposal for a role of grid cells in visual recognition. The variance of grid cell activity along saccade trajectories exhibits 6-fold symmetry across 360 degrees akin to recently reported fMRI data. The model suggests that disconnecting grid cells from occipitotemporal inputs may yield prosopagnosia-like symptoms. The mechanism is robust with regard to partial visual occlusion, can accommodate size and position invariance, and suggests a functional explanation for medial temporal lobe involvement in visual memory for relational information and memory-guided attention.
Collapse
Affiliation(s)
- Andrej Bicanski
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, WC1N 3AZ London, UK.
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, WC1N 3AZ London, UK.
| |
Collapse
|