1
|
Romani A, Antonietti A, Bella D, Budd J, Giacalone E, Kurban K, Sáray S, Abdellah M, Arnaudon A, Boci E, Colangelo C, Courcol JD, Delemontex T, Ecker A, Falck J, Favreau C, Gevaert M, Hernando JB, Herttuainen J, Ivaska G, Kanari L, Kaufmann AK, King JG, Kumbhar P, Lange S, Lu H, Lupascu CA, Migliore R, Petitjean F, Planas J, Rai P, Ramaswamy S, Reimann MW, Riquelme JL, Román Guerrero N, Shi Y, Sood V, Sy MF, Van Geit W, Vanherpe L, Freund TF, Mercer A, Muller E, Schürmann F, Thomson AM, Migliore M, Káli S, Markram H. Community-based reconstruction and simulation of a full-scale model of the rat hippocampus CA1 region. PLoS Biol 2024; 22:e3002861. [PMID: 39499732 PMCID: PMC11537418 DOI: 10.1371/journal.pbio.3002861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
The CA1 region of the hippocampus is one of the most studied regions of the rodent brain, thought to play an important role in cognitive functions such as memory and spatial navigation. Despite a wealth of experimental data on its structure and function, it has been challenging to integrate information obtained from diverse experimental approaches. To address this challenge, we present a community-based, full-scale in silico model of the rat CA1 that integrates a broad range of experimental data, from synapse to network, including the reconstruction of its principal afferents, the Schaffer collaterals, and a model of the effects that acetylcholine has on the system. We tested and validated each model component and the final network model, and made input data, assumptions, and strategies explicit and transparent. The unique flexibility of the model allows scientists to potentially address a range of scientific questions. In this article, we describe the methods used to set up simulations to reproduce in vitro and in vivo experiments. Among several applications in the article, we focus on theta rhythm, a prominent hippocampal oscillation associated with various behavioral correlates and use our computer model to reproduce experimental findings. Finally, we make data, code, and model available through the hippocampushub.eu portal, which also provides an extensive set of analyses of the model and a user-friendly interface to facilitate adoption and usage. This community-based model represents a valuable tool for integrating diverse experimental data and provides a foundation for further research into the complex workings of the hippocampal CA1 region.
Collapse
Affiliation(s)
- Armando Romani
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alberto Antonietti
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Davide Bella
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Julian Budd
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
| | | | - Kerem Kurban
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Sára Sáray
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Marwan Abdellah
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alexis Arnaudon
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Elvis Boci
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Cristina Colangelo
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Jean-Denis Courcol
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Thomas Delemontex
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - András Ecker
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Joanne Falck
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Cyrille Favreau
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michael Gevaert
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Juan B. Hernando
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Joni Herttuainen
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Genrich Ivaska
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Lida Kanari
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Anna-Kristin Kaufmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - James Gonzalo King
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Pramod Kumbhar
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Sigrun Lange
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Huanxiang Lu
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | | | - Rosanna Migliore
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Fabien Petitjean
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Judit Planas
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Pranav Rai
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael W. Reimann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Juan Luis Riquelme
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Nadir Román Guerrero
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Ying Shi
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Vishal Sood
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Mohameth François Sy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Liesbeth Vanherpe
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Tamás F. Freund
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Audrey Mercer
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Eilif Muller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, Canada
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, Canada
- Mila Quebec AI Institute, Montréal, Canada
| | - Felix Schürmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alex M. Thomson
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Michele Migliore
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Szabolcs Káli
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
2
|
Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space. Cereb Cortex 2024; 34:bhae405. [PMID: 39462814 PMCID: PMC11513197 DOI: 10.1093/cercor/bhae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Multi-electrode arrays covering several square millimeters of neural tissue provide simultaneous access to population signals such as extracellular potentials and spiking activity of one hundred or more individual neurons. The interpretation of the recorded data calls for multiscale computational models with corresponding spatial dimensions and signal predictions. Multi-layer spiking neuron network models of local cortical circuits covering about $1\,{\text{mm}^{2}}$ have been developed, integrating experimentally obtained neuron-type-specific connectivity data and reproducing features of observed in-vivo spiking statistics. Local field potentials can be computed from the simulated spiking activity. We here extend a local network and local field potential model to an area of $4\times 4\,{\text{mm}^{2}}$, preserving the neuron density and introducing distance-dependent connection probabilities and conduction delays. We find that the upscaling procedure preserves the overall spiking statistics of the original model and reproduces asynchronous irregular spiking across populations and weak pairwise spike-train correlations in agreement with experimental recordings from sensory cortex. Also compatible with experimental observations, the correlation of local field potential signals is strong and decays over a distance of several hundred micrometers. Enhanced spatial coherence in the low-gamma band around $50\,\text{Hz}$ may explain the recent report of an apparent band-pass filter effect in the spatial reach of the local field potential.
Collapse
Affiliation(s)
- Johanna Senk
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Sussex AI, School of Engineering and Informatics, University of Sussex, Chichester, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Espen Hagen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Ullevål Hospital, 0424 Oslo, Norway
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| | - Markus Diesmann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr., 52074 Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Otto-Blumenthal-Str., 52074 Aachen, Germany
| |
Collapse
|
3
|
Zhang LA, Li P, Callaway EM. High-Resolution Laminar Identification in Macaque Primary Visual Cortex Using Neuropixels Probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576944. [PMID: 38328229 PMCID: PMC10849622 DOI: 10.1101/2024.01.23.576944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Laminar electrode arrays allow simultaneous recording of activity of many cortical neurons and assignment to layers using current source density (CSD) analyses. Electrode arrays with 100-micron contact spacing have been used to estimate borders between layer 4 versus superficial or deep layers, but in macaque primary visual cortex (V1) there are far more layers, such as 4A which is only 50-100 microns thick. Neuropixels electrode arrays have 20-micron spacing, and thus could potentially discern thinner layers and more precisely identify laminar borders. Here we show that laminar distributions of CSDs lack consistency and the spatial resolution required for thin layers and accurate layer boundaries. To take full advantage of high density Neuropixels arrays, we have developed approaches based on higher resolution electrical signals and analyses, including spike waveforms and spatial spread, unit density, high-frequency action potential (AP) power spectrum, temporal power change, and coherence spectrum, that afford far higher resolution of laminar distinctions, including the ability to precisely detect the borders of even the thinnest layers of V1.
Collapse
Affiliation(s)
- Li A. Zhang
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Peichao Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | | |
Collapse
|
4
|
McAlinden N, Reiche CF, Clark AM, Scharf R, Cheng Y, Sharma R, Rieth L, Dawson MD, Angelucci A, Mathieson K, Blair S. In vivooptogenetics using a Utah Optrode Array with enhanced light output and spatial selectivity. J Neural Eng 2024; 21:046051. [PMID: 39084245 DOI: 10.1088/1741-2552/ad69c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Objective.Optogenetics allows the manipulation of neural circuitsin vivowith high spatial and temporal precision. However, combining this precision with control over a significant portion of the brain is technologically challenging (especially in larger animal models).Approach.Here, we have developed, optimised, and testedin vivo, the Utah Optrode Array (UOA), an electrically addressable array of optical needles and interstitial sites illuminated by 181μLEDs and used to optogenetically stimulate the brain. The device is specifically designed for non-human primate studies.Main results.Thinning the combinedμLED and needle backplane of the device from 300μm to 230μm improved the efficiency of light delivery to tissue by 80%, allowing lowerμLED drive currents, which improved power management and thermal performance. The spatial selectivity of each site was also improved by integrating an optical interposer to reduce stray light emission. These improvements were achieved using an innovative fabrication method to create an anodically bonded glass/silicon substrate with through-silicon vias etched, forming an optical interposer. Optical modelling was used to demonstrate that the tip structure of the device had a major influence on the illumination pattern. The thermal performance was evaluated through a combination of modelling and experiment, in order to ensure that cortical tissue temperatures did not rise by more than 1 °C. The device was testedin vivoin the visual cortex of macaque expressing ChR2-tdTomato in cortical neurons.Significance.It was shown that the UOA produced the strongest optogenetic response in the region surrounding the needle tips, and that the extent of the optogenetic response matched the predicted illumination profile based on optical modelling-demonstrating the improved spatial selectivity resulting from the optical interposer approach. Furthermore, different needle illumination sites generated different patterns of low-frequency potential activity.
Collapse
Affiliation(s)
- Niall McAlinden
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Christopher F Reiche
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Andrew M Clark
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Robert Scharf
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Yunzhou Cheng
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Rohit Sharma
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Loren Rieth
- Department of Mechanical, Materials and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Martin D Dawson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Keith Mathieson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Steve Blair
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
5
|
Elleman AV, Milicic N, Williams DJ, Simko J, Liu CJ, Haynes AL, Ehrlich DE, Makinson CD, Du Bois J. Behavioral control through the direct, focal silencing of neuronal activity. Cell Chem Biol 2024; 31:1324-1335.e20. [PMID: 38729162 PMCID: PMC11260259 DOI: 10.1016/j.chembiol.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The ability to optically stimulate and inhibit neurons has revolutionized neuroscience research. Here, we present a direct, potent, user-friendly chemical approach for optically silencing neurons. We have rendered saxitoxin (STX), a naturally occurring paralytic agent, transiently inert through chemical protection with a previously undisclosed nitrobenzyl-derived photocleavable group. Exposing the caged toxin, STX-bpc, to a brief (5 ms) pulse of light effects rapid release of a potent STX derivative and transient, spatially precise blockade of voltage-gated sodium channels (NaVs). We demonstrate the efficacy of STX-bpc for parametrically manipulating action potentials in mammalian neurons and brain slice. Additionally, we show the effectiveness of this reagent for silencing neural activity by dissecting sensory-evoked swimming in larval zebrafish. Photo-uncaging of STX-bpc is a straightforward method for non-invasive, reversible, spatiotemporally precise neural silencing without the need for genetic access, thus removing barriers for comparative research.
Collapse
Affiliation(s)
- Anna V Elleman
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| | - Nikola Milicic
- Department of Integrative Biology, University of Wisconsin-Madison, 121 Integrative Biology Research Building, 1117 W Johnson St, Madison, WI 53706, USA
| | - Damian J Williams
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032, USA
| | - Jane Simko
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032, USA
| | - Christine J Liu
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032, USA; Department of Neuroscience, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, MC 9872, New York, NY 10027, USA
| | - Allison L Haynes
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| | - David E Ehrlich
- Department of Integrative Biology, University of Wisconsin-Madison, 121 Integrative Biology Research Building, 1117 W Johnson St, Madison, WI 53706, USA.
| | - Christopher D Makinson
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032, USA; Department of Neuroscience, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, MC 9872, New York, NY 10027, USA.
| | - J Du Bois
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Średniawa W, Borzymowska Z, Kondrakiewicz K, Jurgielewicz P, Mindur B, Hottowy P, Wójcik DK, Kublik E. Local contribution to the somatosensory evoked potentials in rat's thalamus. PLoS One 2024; 19:e0301713. [PMID: 38593141 PMCID: PMC11003638 DOI: 10.1371/journal.pone.0301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation and synchrony of their sources, both oscillations and more complex waves may passively spread in brain tissue over long distances and be falsely interpreted as local activity at such distant recording sites. Here we show that the whisker-evoked potentials in the thalamic nuclei are of local origin up to around 6 ms post stimulus, but the later (7-15 ms) wave is overshadowed by a negative component reaching from cortex. This component can be analytically removed and local thalamic LFP can be recovered reliably using Current Source Density analysis. We used model-based kernel CSD (kCSD) method which allowed us to study the contribution of local and distant currents to LFP from rat thalamic nuclei and barrel cortex recorded with multiple, non-linear and non-regular multichannel probes. Importantly, we verified that concurrent recordings from the cortex are not essential for reliable thalamic CSD estimation. The proposed framework can be used to analyze LFP from other brain areas and has consequences for general LFP interpretation and analysis.
Collapse
Affiliation(s)
- Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Zuzanna Borzymowska
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Kondrakiewicz
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Jurgielewicz
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Bartosz Mindur
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Paweł Hottowy
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Daniel K. Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Jagiellonian University, Faculty of Management and Social Communication, Jagiellonian University, Krakow, Poland
| | - Ewa Kublik
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
McAlinden N, Reiche CF, Clark AM, Scharf R, Cheng Y, Sharma R, Rieth L, Dawson MD, Angelucci A, Mathieson K, Blair S. In vivo optogenetics using a Utah Optrode Array with enhanced light output and spatial selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585479. [PMID: 38562871 PMCID: PMC10983961 DOI: 10.1101/2024.03.18.585479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Optogenetics allows manipulation of neural circuits in vivo with high spatial and temporal precision. However, combining this precision with control over a significant portion of the brain is technologically challenging (especially in larger animal models). Here, we have developed, optimised, and tested in vivo, the Utah Optrode Array (UOA), an electrically addressable array of optical needles and interstitial sites illuminated by 181 µLEDs and used to optogenetically stimulate the brain. The device is specifically designed for non-human primate studies. Thinning the combined µLED and needle backplane of the device from 300 µm to 230 µm improved the efficiency of light delivery to tissue by 80%, allowing lower µLED drive currents, which improved power management and thermal performance. The spatial selectivity of each site was also improved by integrating an optical interposer to reduce stray light emission. These improvements were achieved using an innovative fabrication method to create an anodically bonded glass/silicon substrate with through-silicon vias etched, forming an optical interposer. Optical modelling was used to demonstrate that the tip structure of the device had a major influence on the illumination pattern. The thermal performance was evaluated through a combination of modelling and experiment, in order to ensure that cortical tissue temperatures did not rise by more than 1°C. The device was tested in vivo in the visual cortex of macaque expressing ChR2-tdTomato in cortical neurons. It was shown that the strongest optogenetic response occurred in the region surrounding the needle tips, and that the extent of the optogenetic response matched the predicted illumination profile based on optical modelling - demonstrating the improved spatial selectivity resulting from the optical interposer approach. Furthermore, different needle illumination sites generated different patterns of low-frequency potential (LFP) activity.
Collapse
|
8
|
Clark AM, Ingold A, Reiche CF, Cundy D, Balsor JL, Federer F, McAlinden N, Cheng Y, Rolston JD, Rieth L, Dawson MD, Mathieson K, Blair S, Angelucci A. An optrode array for spatiotemporally-precise large-scale optogenetic stimulation of deep cortical layers in non-human primates. Commun Biol 2024; 7:329. [PMID: 38485764 PMCID: PMC10940688 DOI: 10.1038/s42003-024-05984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Optogenetics has transformed studies of neural circuit function, but remains challenging to apply to non-human primates (NHPs). A major challenge is delivering intense, spatiotemporally-precise, patterned photostimulation across large volumes in deep tissue. Such stimulation is critical, for example, to modulate selectively deep-layer corticocortical feedback circuits. To address this need, we have developed the Utah Optrode Array (UOA), a 10×10 glass needle waveguide array fabricated atop a novel opaque optical interposer, and bonded to an electrically addressable µLED array. In vivo experiments with the UOA demonstrated large-scale, spatiotemporally precise, activation of deep circuits in NHP cortex. Specifically, the UOA permitted both focal (confined to single layers/columns), and widespread (multiple layers/columns) optogenetic activation of deep layer neurons, as assessed with multi-channel laminar electrode arrays, simply by varying the number of activated µLEDs and/or the irradiance. Thus, the UOA represents a powerful optoelectronic device for targeted manipulation of deep-layer circuits in NHP models.
Collapse
Affiliation(s)
- Andrew M Clark
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Alexander Ingold
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Christopher F Reiche
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Donald Cundy
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Justin L Balsor
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Frederick Federer
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Niall McAlinden
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Yunzhou Cheng
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - John D Rolston
- Departments of Neurosurgery and Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Loren Rieth
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Martin D Dawson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Keith Mathieson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Steve Blair
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Chintaluri C, Bejtka M, Średniawa W, Czerwiński M, Dzik JM, Jędrzejewska-Szmek J, Wójcik DK. kCSD-python, reliable current source density estimation with quality control. PLoS Comput Biol 2024; 20:e1011941. [PMID: 38484020 DOI: 10.1371/journal.pcbi.1011941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/26/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Interpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental data and the interpretation of results. We show how to counter the limitations imposed by noise and assumptions in the method itself. kCSD-python allows CSD estimation for an arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and main functionalities useful in validating analysis results.
Collapse
Affiliation(s)
- Chaitanya Chintaluri
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marta Bejtka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Michał Czerwiński
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub M Dzik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Silva-Prieto ML, Hofmann JI, Schwarz C. Activity in Barrel Cortex Related to Trace Eyeblink Conditioning. eNeuro 2023; 10:ENEURO.0206-23.2023. [PMID: 37553241 PMCID: PMC10449485 DOI: 10.1523/eneuro.0206-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023] Open
Abstract
In mammals several memory systems are responsible for learning and storage of associative memory. Even apparently simple behavioral tasks, like pavlovian conditioning, have been suggested to engage, for instance, implicit and explicit memory processes. Here, we used single-whisker tactile trace eyeblink conditioning (TTEBC) to investigate learning and its neuronal bases in the mouse barrel column, the primary neocortical tactile representation of one whisker. Behavioral analysis showed that conditioned responses (CRs) are spatially highly restricted; they generalize from the principal whisker only to its direct neighbors. Within the respective neural representation, the principal column and its direct neighbors, spike activity showed a learning-related spike rate suppression starting during the late phase of conditioning stimulus (CS) presentation that was sustained throughout the stimulus-free trace period (Trace). Trial-by-trial analysis showed that learning-related activity was independent from the generation of eyelid movements within a trial, and set in around the steepest part of the learning curve. Optogenetic silencing of responses and their learning-related changes during CS and Trace epochs blocked CR acquisition but not its recall after learning. Silencing during the Trace alone, which carried major parts of the learning-related changes, had no effect. In summary, we demonstrate specific barrel column spike rate plasticity during TTEBC that can be partially decoupled from the CR, the learned eye closure, a hallmark of implicit learning. Our results, thus, point to a possible role of the barrel column in contributing to other kinds of memory as well.
Collapse
Affiliation(s)
- May-Li Silva-Prieto
- Werner Reichardt Center for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, Systems Neurophysiology, Eberhard Karls University, Tübingen, Germany
| | - Julian I Hofmann
- Werner Reichardt Center for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, Systems Neurophysiology, Eberhard Karls University, Tübingen, Germany
| | - Cornelius Schwarz
- Werner Reichardt Center for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, Systems Neurophysiology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
11
|
Angelucci A, Clark A, Ingold A, Reiche C, Cundy D, Balsor J, Federer F, McAlinden N, Cheng Y, Rolston J, Rieth L, Dawson M, Mathieson K, Blair S. An Optrode Array for Spatiotemporally Precise Large-Scale Optogenetic Stimulation of Deep Cortical Layers in Non-human Primates. RESEARCH SQUARE 2023:rs.3.rs-2322768. [PMID: 36909489 PMCID: PMC10002840 DOI: 10.21203/rs.3.rs-2322768/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Optogenetics has transformed studies of neural circuit function, but remains challenging to apply in non-human primates (NHPs). A major challenge is delivering intense and spatially precise patterned photostimulation across large volumes in deep tissue. Here, we have developed and validated the Utah Optrode Array (UOA) to meet this critical need. The UOA is a 10×10 glass waveguide array bonded to an electrically-addressable μLED array. In vivo electrophysiology and immediate early gene (c-fos) immunohistochemistry demonstrated the UOA allows for large-scale spatiotemporally precise neuromodulation of deep tissue in macaque primary visual cortex. Specifically, the UOA permits both focal (single layers or columns), and large-scale (across multiple layers or columns) photostimulation of deep cortical layers, simply by varying the number of simultaneously activated μLEDs and/or the light irradiance. These results establish the UOA as a powerful tool for studying targeted neural populations within single or across multiple deep layers in complex NHP circuits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - John Rolston
- Brigham & Women's Hospital and Harvard Medical School
| | | | | | | | | |
Collapse
|
12
|
Nurminen L, Bijanzadeh M, Angelucci A. Size tuning of neural response variability in laminar circuits of macaque primary visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524397. [PMID: 36711786 PMCID: PMC9882156 DOI: 10.1101/2023.01.17.524397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A defining feature of the cortex is its laminar organization, which is likely critical for cortical information processing. For example, visual stimuli of different size evoke distinct patterns of laminar activity. Visual information processing is also influenced by the response variability of individual neurons and the degree to which this variability is correlated among neurons. To elucidate laminar processing, we studied how neural response variability across the layers of macaque primary visual cortex is modulated by visual stimulus size. Our laminar recordings revealed that single neuron response variability and the shared variability among neurons are tuned for stimulus size, and this size-tuning is layer-dependent. In all layers, stimulation of the receptive field (RF) reduced single neuron variability, and the shared variability among neurons, relative to their pre-stimulus values. As the stimulus was enlarged beyond the RF, both single neuron and shared variability increased in supragranular layers, but either did not change or decreased in other layers. Surprisingly, we also found that small visual stimuli could increase variability relative to baseline values. Our results suggest multiple circuits and mechanisms as the source of variability in different layers and call for the development of new models of neural response variability.
Collapse
Affiliation(s)
- Lauri Nurminen
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
- Present address: College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Maryam Bijanzadeh
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| |
Collapse
|
13
|
Vasaghi Gharamaleki M, Mousavi SZ, Owrangi M, Gholamzadeh MJ, Kamali AM, Dehghani M, Chakrabarti P, Nami M. Neural correlates in functional brain mapping among breast cancer survivors receiving different chemotherapy regimens: a qEEG/HEG-based investigation. Jpn J Clin Oncol 2022; 52:1253-1264. [PMID: 35946328 DOI: 10.1093/jjco/hyac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Post-chemotherapy cognitive impairment commonly known as 'chemobrain' or 'chemofog' is a well-established clinical disorder affecting various cognitive domains including attention, visuospatial working memory, executive function, etc. Although several studies have confirmed the chemobrain in recent years, scant experiments have evaluated the potential neurotoxicity of different chemotherapy regimens and agents. In this study, we aimed to evaluate the extent of attention deficits, one of the commonly affected cognitive domains, among breast cancer patients treated with different chemotherapy regimens through neuroimaging techniques. METHODS Breast cancer patients treated with two commonly prescribed chemotherapy regimens, Adriamycin, Cyclophosphamide and Taxol and Taxotere, Adriamycin and Cyclophosphamide, and healthy volunteers were recruited. Near-infrared hemoencephalography and quantitative electroencephalography assessments were recorded for each participant at rest and during task performance to compare the functional cortical changes associated with each chemotherapy regimen. RESULTS Although no differences were observed in hemoencephalography results across groups, the quantitative electroencephalography analysis revealed increased power of high alpha/low beta in left fronto-centro-parietal regions involved in dorsal and ventral attention networks in the Adriamycin, Cyclophosphamide and Taxol-treated group compared with the Taxotere, Adriamycin and Cyclophosphamide and control group. The Adriamycin, Cyclophosphamide and Taxol-treated cases had the highest current source density values in dorsal attention network and ventral attention network and ventral attention network-related centers in 10 and 15 Hz associated with the lowest Z-scored Fast Fourier Transform coherence in the mentioned regions. CONCLUSIONS The negatively affected neurocognitive profile in breast cancer patients treated with the Adriamycin, Cyclophosphamide and Taxol regimen proposes presumably neurotoxic sequelae of this chemotherapy regimen as compared with the Taxotere, Adriamycin and Cyclophosphamide regimen.
Collapse
Affiliation(s)
| | - Seyedeh Zahra Mousavi
- Students' Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owrangi
- Students' Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali-Mohammad Kamali
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
| | - Mehdi Dehghani
- Hematology Research Center, Department of Hematology and Medical Oncology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
- Swiss Alternative Medicine, Geneva, Switzerland
- Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Republic of Panama
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA
| |
Collapse
|
14
|
Hu X, Khanzada S, Klütsch D, Calegari F, Amin H. Implementation of biohybrid olfactory bulb on a high-density CMOS-chip to reveal large-scale spatiotemporal circuit information. Biosens Bioelectron 2022; 198:113834. [PMID: 34852985 DOI: 10.1016/j.bios.2021.113834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Large-scale multi-site biosensors are essential to probe the olfactory bulb (OB) circuitry for understanding the spatiotemporal dynamics of simultaneous discharge patterns. Current ex-vivo biosensing techniques are limited to recording a small set of neurons and cannot provide an adequate resolution, which hinders revealing the fast dynamic underlying the information coding mechanisms in the OB circuit. Here, we demonstrate a novel biohybrid OB-CMOS biosensing platform to decipher the cross-scale dynamics of the OB electrogenesis and quantify the distinct neuronal coding properties. The approach with 4096-microelectrodes offers a non-invasive, label-free, bioelectrical imaging to decode simultaneous firing patterns from thousands of connected neuronal ensembles in acute OB slices. The platform can measure spontaneous and drug-induced extracellular field potential activity with substantially improved spatiotemporal resolution over conventional OB-based biosensors. Also, we employ our OB-CMOS recordings to perform multidimensional analysis to instantiate specific neurophysiological metrics underlying the olfactory spatiotemporal coding that emerged from the OB interconnected layers. Our results delineate the computational implications of large-scale activity patterns in functional olfactory processing. The systematic interplay of the experimental CMOS-base platform architecture and the high-content characterization of the olfactory circuit with various computational analyses endow significant functional interrogations of the OB information processing, high-spatiotemporal connectivity mapping, and global circuit dynamics. Thus, our study can inspire the design of advanced biomimetic olfactory-based biosensors and neuromorphic approaches for diagnostic biomarkers and drug discovery applications.
Collapse
Affiliation(s)
- Xin Hu
- Biohybrid Neuroelectronics Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Shahrukh Khanzada
- Biohybrid Neuroelectronics Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Diana Klütsch
- Biohybrid Neuroelectronics Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Federico Calegari
- Proliferation and Differentiation of Neural Stem Cells, Center for Regenerative Therapies TU Dresden (CRTD), Dresden, Germany
| | - Hayder Amin
- Biohybrid Neuroelectronics Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| |
Collapse
|
15
|
Computing Extracellular Electric Potentials from Neuronal Simulations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:179-199. [DOI: 10.1007/978-3-030-89439-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Klein N, Siegle JH, Teichert T, Kass RE. Cross-population coupling of neural activity based on Gaussian process current source densities. PLoS Comput Biol 2021; 17:e1009601. [PMID: 34788286 PMCID: PMC8635346 DOI: 10.1371/journal.pcbi.1009601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/01/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022] Open
Abstract
Because local field potentials (LFPs) arise from multiple sources in different spatial locations, they do not easily reveal coordinated activity across neural populations on a trial-to-trial basis. As we show here, however, once disparate source signals are decoupled, their trial-to-trial fluctuations become more accessible, and cross-population correlations become more apparent. To decouple sources we introduce a general framework for estimation of current source densities (CSDs). In this framework, the set of LFPs result from noise being added to the transform of the CSD by a biophysical forward model, while the CSD is considered to be the sum of a zero-mean, stationary, spatiotemporal Gaussian process, having fast and slow components, and a mean function, which is the sum of multiple time-varying functions distributed across space, each varying across trials. We derived biophysical forward models relevant to the data we analyzed. In simulation studies this approach improved identification of source signals compared to existing CSD estimation methods. Using data recorded from primate auditory cortex, we analyzed trial-to-trial fluctuations in both steady-state and task-evoked signals. We found cortical layer-specific phase coupling between two probes and showed that the same analysis applied directly to LFPs did not recover these patterns. We also found task-evoked CSDs to be correlated across probes, at specific cortical depths. Using data from Neuropixels probes in mouse visual areas, we again found evidence for depth-specific phase coupling of primary visual cortex and lateromedial area based on the CSDs.
Collapse
Affiliation(s)
- Natalie Klein
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Joshua H. Siegle
- MindScope Program, Allen Institute, Seattle, Washington, United States of America
| | - Tobias Teichert
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert E. Kass
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
17
|
Chintaluri C, Bejtka M, Średniawa W, Czerwiński M, Dzik JM, Jędrzejewska-Szmek J, Kondrakiewicz K, Kublik E, Wójcik DK. What we can and what we cannot see with extracellular multielectrodes. PLoS Comput Biol 2021; 17:e1008615. [PMID: 33989280 PMCID: PMC8153483 DOI: 10.1371/journal.pcbi.1008615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/26/2021] [Accepted: 04/28/2021] [Indexed: 12/02/2022] Open
Abstract
Extracellular recording is an accessible technique used in animals and humans to study the brain physiology and pathology. As the number of recording channels and their density grows it is natural to ask how much improvement the additional channels bring in and how we can optimally use the new capabilities for monitoring the brain. Here we show that for any given distribution of electrodes we can establish exactly what information about current sources in the brain can be recovered and what information is strictly unobservable. We demonstrate this in the general setting of previously proposed kernel Current Source Density method and illustrate it with simplified examples as well as using evoked potentials from the barrel cortex obtained with a Neuropixels probe and with compatible model data. We show that with conceptual separation of the estimation space from experimental setup one can recover sources not accessible to standard methods. Every set of measurements is a window into reality rendering its incomplete or distorted picture. It is often difficult to relate the obtained representation of the world to underlying ground truth. Here we show, for brain electrophysiology, for arbitrary experimental setup (distribution of electrodes), and arbitrary analytical setup (function space of current source densities), that one can identify distributions of current sources which can be recovered precisely, and those which are invisible in the system. This shows what is and what is not observable in the studied system for a given setup, allows to improve the analysis results by modifying analytical setup, and facilitates interpretation of the measured sets of LFP, ECoG and EEG recordings. In particular we show that with conceptual separation of the estimation space from experimental setup one can recover source distributions not accessible to standard methods.
Collapse
Affiliation(s)
- Chaitanya Chintaluri
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Centre for Neural Circuits and Behaviour, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marta Bejtka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Warsaw, Poland
| | - Michał Czerwiński
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub M. Dzik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Kondrakiewicz
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Kublik
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Daniel K. Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
18
|
Średniawa W, Wróbel J, Kublik E, Wójcik DK, Whittington MA, Hunt MJ. Network and synaptic mechanisms underlying high frequency oscillations in the rat and cat olfactory bulb under ketamine-xylazine anesthesia. Sci Rep 2021; 11:6390. [PMID: 33737621 PMCID: PMC7973548 DOI: 10.1038/s41598-021-85705-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Abstract
Wake-related ketamine-dependent high frequency oscillations (HFO) can be recorded in local field potentials (LFP) from cortical and subcortical regions in rodents. The mechanisms underlying their generation and occurrence in higher mammals are unclear. Unfortunately, anesthetic doses of pure ketamine attenuate HFO, which has precluded their investigation under anesthesia. Here, we show ketamine-xylazine (KX) anesthesia is associated with a prominent 80–130 Hz rhythm in the olfactory bulb (OB) of rats, whereas 30–65 Hz gamma power is diminished. Simultaneous LFP and thermocouple recordings revealed the 80–130 Hz rhythm was dependent on nasal respiration. This rhythm persisted despite surgical excision of the piriform cortex. Silicon probes spanning the dorsoventral aspect of the OB revealed this rhythm was strongest in ventral areas and associated with microcurrent sources about the mitral layer. Pharmacological microinfusion studies revealed dependency on excitatory-inhibitory synaptic activity, but not gap junctions. Finally, a similar rhythm occurred in the OB of KX-anesthetized cats, which shared key features with our rodent studies. We conclude that the activity we report here is driven by nasal airflow, local excitatory-inhibitory interactions, and conserved in higher mammals. Additionally, KX anesthesia is a convenient model to investigate further the mechanisms underlying wake-related ketamine-dependent HFO.
Collapse
Affiliation(s)
- Władysław Średniawa
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.,University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jacek Wróbel
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Ewa Kublik
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Daniel Krzysztof Wójcik
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.,Faculty of Management and Social Communication, Jagiellonian University, 30-348, Cracow, Poland
| | | | - Mark Jeremy Hunt
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland. .,University of York, Heslington, NY, YO10 5DD, United Kingdom.
| |
Collapse
|
19
|
Dai K, Gratiy SL, Billeh YN, Xu R, Cai B, Cain N, Rimehaug AE, Stasik AJ, Einevoll GT, Mihalas S, Koch C, Arkhipov A. Brain Modeling ToolKit: An open source software suite for multiscale modeling of brain circuits. PLoS Comput Biol 2020; 16:e1008386. [PMID: 33253147 PMCID: PMC7728187 DOI: 10.1371/journal.pcbi.1008386] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/10/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022] Open
Abstract
Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting opportunities and formidable challenges to existing theoretical and modeling approaches. To turn massive datasets into predictive quantitative frameworks, the field needs software solutions for systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and others, BMTK offers a consistent user experience across multiple levels of resolution. It permits highly sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is an open-source package provided as a resource supporting modeling-based discovery in the community.
Collapse
Affiliation(s)
- Kael Dai
- Allen Institute, Seattle, Washington, United States of America
| | | | - Yazan N. Billeh
- Allen Institute, Seattle, Washington, United States of America
| | - Richard Xu
- Allen Institute, Seattle, Washington, United States of America
| | - Binghuang Cai
- Allen Institute, Seattle, Washington, United States of America
| | - Nicholas Cain
- Allen Institute, Seattle, Washington, United States of America
| | - Atle E. Rimehaug
- Norwegian University of Life Sciences & University of Oslo, Oslo, Norway
| | | | - Gaute T. Einevoll
- Norwegian University of Life Sciences & University of Oslo, Oslo, Norway
| | - Stefan Mihalas
- Allen Institute, Seattle, Washington, United States of America
| | - Christof Koch
- Allen Institute, Seattle, Washington, United States of America
| | - Anton Arkhipov
- Allen Institute, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Luan L, Robinson JT, Aazhang B, Chi T, Yang K, Li X, Rathore H, Singer A, Yellapantula S, Fan Y, Yu Z, Xie C. Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Neuron 2020; 108:302-321. [PMID: 33120025 PMCID: PMC7646678 DOI: 10.1016/j.neuron.2020.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Electrical neural interfaces serve as direct communication pathways that connect the nervous system with the external world. Technological advances in this domain are providing increasingly more powerful tools to study, restore, and augment neural functions. Yet, the complexities of the nervous system give rise to substantial challenges in the design, fabrication, and system-level integration of these functional devices. In this review, we present snapshots of the latest progresses in electrical neural interfaces, with an emphasis on advances that expand the spatiotemporal resolution and extent of mapping and manipulating brain circuits. We include discussions of large-scale, long-lasting neural recording; wireless, miniaturized implants; signal transmission, amplification, and processing; as well as the integration of interfaces with optical modalities. We outline the background and rationale of these developments and share insights into the future directions and new opportunities they enable.
Collapse
Affiliation(s)
- Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Taiyun Chi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Xue Li
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Haad Rathore
- NeuroEngineering Initiative, Rice University, Houston, TX, USA; Applied Physics Graduate Program, Rice University, Houston, TX, USA
| | - Amanda Singer
- NeuroEngineering Initiative, Rice University, Houston, TX, USA; Applied Physics Graduate Program, Rice University, Houston, TX, USA
| | - Sudha Yellapantula
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Yingying Fan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Zhanghao Yu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA.
| |
Collapse
|
21
|
Fedor FZ, Zátonyi A, Cserpán D, Somogyvári Z, Borhegyi Z, Juhász G, Fekete Z. Application of a flexible polymer microECoG array to map functional coherence in schizophrenia model. MethodsX 2020; 7:101117. [PMID: 33194564 PMCID: PMC7644754 DOI: 10.1016/j.mex.2020.101117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023] Open
Abstract
Anatomically, connections form the fundamental brain network, functionally the different types of oscillatory electric activities are creating a temporarily connected fraction of the anatomical connectome generating an output to the motor system. Schizophrenia can be considered as a connectome disease, in which the sensory input generates a schizophrenia specific temporary connectome and the signal processing becomes diseased showing hallucinations and adverse behavioral reactions. In this work, flexible, 32-channel polymer microelectrode arrays fabricated by the authors are used to map the functional coherence on large cortical areas during physiological activities in a schizophrenia model in rats.-Fabrication of a flexible microECoG array is shown.-Protocol to use a flexible microECoG is demonstrated to characterize connectome diseases in rats.-Customized method to analyze the functional coherence between different cortical areas during visually evoked potential is detailed.-R-based implementation of the analysis method is presented.
Collapse
Affiliation(s)
- F Z Fedor
- Doctoral School of Chemical Engineering and Material Sciences, Pannon University, Veszprém, Hungary.,ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.,Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - A Zátonyi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.,Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.,Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - D Cserpán
- Theoretical Neuroscience and Complex Systems Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Z Somogyvári
- Theoretical Neuroscience and Complex Systems Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Z Borhegyi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - G Juhász
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Z Fekete
- Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.,Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
22
|
Unakafova VA, Gail A. Comparing Open-Source Toolboxes for Processing and Analysis of Spike and Local Field Potentials Data. Front Neuroinform 2019; 13:57. [PMID: 31417389 PMCID: PMC6682703 DOI: 10.3389/fninf.2019.00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Analysis of spike and local field potential (LFP) data is an essential part of neuroscientific research. Today there exist many open-source toolboxes for spike and LFP data analysis implementing various functionality. Here we aim to provide a practical guidance for neuroscientists in the choice of an open-source toolbox best satisfying their needs. We overview major open-source toolboxes for spike and LFP data analysis as well as toolboxes with tools for connectivity analysis, dimensionality reduction and generalized linear modeling. We focus on comparing toolboxes functionality, statistical and visualization tools, documentation and support quality. To give a better insight, we compare and illustrate functionality of the toolboxes on open-access dataset or simulated data and make corresponding MATLAB scripts publicly available.
Collapse
Affiliation(s)
| | - Alexander Gail
- Cognitive Neurosciences Laboratory, German Primate Center, Göttingen, Germany
- Primate Cognition, Göttingen, Germany
- Georg-Elias-Mueller-Institute of Psychology, University of Goettingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| |
Collapse
|
23
|
State-aware detection of sensory stimuli in the cortex of the awake mouse. PLoS Comput Biol 2019; 15:e1006716. [PMID: 31150385 PMCID: PMC6561583 DOI: 10.1371/journal.pcbi.1006716] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/12/2019] [Accepted: 05/15/2019] [Indexed: 11/19/2022] Open
Abstract
Cortical responses to sensory inputs vary across repeated presentations of identical stimuli, but how this trial-to-trial variability impacts detection of sensory inputs is not fully understood. Using multi-channel local field potential (LFP) recordings in primary somatosensory cortex (S1) of the awake mouse, we optimized a data-driven cortical state classifier to predict single-trial sensory-evoked responses, based on features of the spontaneous, ongoing LFP recorded across cortical layers. Our findings show that, by utilizing an ongoing prediction of the sensory response generated by this state classifier, an ideal observer improves overall detection accuracy and generates robust detection of sensory inputs across various states of ongoing cortical activity in the awake brain, which could have implications for variability in the performance of detection tasks across brain states. Establishing the link between neural activity and behavior is a central goal of neuroscience. One context in which to examine this link is in a sensory detection task, in which an animal is trained to report the presence of a barely perceptible sensory stimulus. In such tasks, both sensory responses in the brain and behavioral responses are highly variable. A simple hypothesis, originating in signal detection theory, is that perceived inputs generate neural activity that cross some threshold for detection. According to this hypothesis, sensory response variability would predict behavioral variability, but previous studies have not born out this prediction. Further complicating the picture, sensory response variability is partially dependent on the ongoing state of cortical activity, and we wondered whether this could resolve the mismatch between response variability and behavioral variability. Here, we use a computational approach to study an adaptive observer that utilizes an ongoing prediction of sensory responsiveness to detect sensory inputs. This observer has higher overall accuracy than the standard ideal observer. Moreover, because of the adaptation, the observer breaks the direct link between neural and behavioral variability, which could resolve discrepancies arising in past studies. We suggest new experiments to test our theory.
Collapse
|
24
|
Hunt MJ, Adams NE, Średniawa W, Wójcik DK, Simon A, Kasicki S, Whittington MA. The olfactory bulb is a source of high-frequency oscillations (130-180 Hz) associated with a subanesthetic dose of ketamine in rodents. Neuropsychopharmacology 2019; 44:435-442. [PMID: 30140046 PMCID: PMC6300534 DOI: 10.1038/s41386-018-0173-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 12/26/2022]
Abstract
High-frequency neuronal population oscillations (HFO, 130-180 Hz) are robustly potentiated by subanesthetic doses of ketamine. This frequency band has been recorded in functionally and neuroanatomically diverse cortical and subcortical regions, notably ventral striatal areas. However, the locus of generation remains largely unknown. There is compelling evidence that olfactory regions can drive oscillations in distant areas. Here we tested the hypothesis that the olfactory bulb (OB) is a locus for the generation of HFO following a subanesthetic dose of ketamine. The effect of ketamine on the electrophysiological activity of the OB and ventral striatum of male Wistar rats was examined using field potential and unit recordings, local inhibition, naris blockade, current source density and causality estimates. Ketamine-HFO was of larger magnitude and was phase-advanced in the OB relative to ventral striatum. Granger causality analysis was consistent with the OB as the source of HFO. Unilateral local inhibition of the OB and naris blockade both attenuated HFO recorded locally and in the ventral striatum. Within the OB, current source density analysis revealed HFO current dipoles close to the mitral layer and unit firing of mitral/tufted cells was phase locked to HFO. Our results reveal the OB as a source of ketamine-HFO which can contribute to HFO in the ventral striatum, known to project diffusely to many other brain regions. These findings provide a new conceptual understanding on how changes in olfactory system function may have implications for neurological disorders involving NMDA receptor dysfunction such as schizophrenia and depression.
Collapse
Affiliation(s)
- Mark Jeremy Hunt
- University of York, Heslington, York, YO10 5DD, UK.
- Nencki Institute of Experimental Biology, 3 Pasteur Street, Warsaw, 02-093, Poland.
| | | | - Władysław Średniawa
- Nencki Institute of Experimental Biology, 3 Pasteur Street, Warsaw, 02-093, Poland
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Daniel K Wójcik
- Nencki Institute of Experimental Biology, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Anna Simon
- University of York, Heslington, York, YO10 5DD, UK
| | - Stefan Kasicki
- Nencki Institute of Experimental Biology, 3 Pasteur Street, Warsaw, 02-093, Poland
| | | |
Collapse
|
25
|
Bijanzadeh M, Nurminen L, Merlin S, Clark AM, Angelucci A. Distinct Laminar Processing of Local and Global Context in Primate Primary Visual Cortex. Neuron 2018; 100:259-274.e4. [PMID: 30220509 DOI: 10.1016/j.neuron.2018.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 07/05/2018] [Accepted: 08/18/2018] [Indexed: 01/19/2023]
Abstract
Visual perception is affected by spatial context. In visual cortex, neuronal responses to stimuli inside the receptive field (RF) are suppressed by stimuli in the RF surround. To understand the circuits and cortical layers processing spatial context, we simultaneously recorded across all layers of macaque primary visual cortex while presenting stimuli at increasing distances from the recorded cells' RF. We find that near versus far-surround stimuli activate distinct layers, thus revealing unique laminar contributions to the processing of local and global spatial context. Stimuli in the near-surround evoke the earliest subthreshold responses in superficial and upper-deep layers, and earliest suppression of spiking responses in superficial layers. Conversely, far-surround stimuli evoke the earliest subthreshold responses in feedback-recipient layer 1 and lower-deep layers, and earliest suppression of spiking responses almost simultaneously in all layers, except 4C, where suppression emerges last. Our results suggest distinct circuits for local and global signal integration.
Collapse
Affiliation(s)
- Maryam Bijanzadeh
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Lauri Nurminen
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Sam Merlin
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Andrew M Clark
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
26
|
Jacob VEJM. Current Source Density Analysis of Electroantennogram Recordings: A Tool for Mapping the Olfactory Response in an Insect Antenna. Front Cell Neurosci 2018; 12:287. [PMID: 30233325 PMCID: PMC6135050 DOI: 10.3389/fncel.2018.00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
The set of chemosensory receptors expressed by the olfactory receptor neurons lying in an insect's antennae and maxillary palps define the ability of this insect to perceive the volatile chemicals of its environment. The main two electrophysiological methods of antennal recordings for studying the range of chemicals that activate chemosensory receptors have limitations. Single-sensillum recording (SSR) samples a subset of olfactory receptor neurons and therefore does not reveal the full capacity of an insect to perceive an odor. Electroantennography (EAG), even if less resolutive than SSRs, is sometimes preferred since it samples the activity of a large number of the olfactory receptor neurons. But, at least in flies, the amplitude of the EAG signal is not directly correlated with the degree of sensitivity of the insect to the olfactory compound. Such dual methodology was also used to study mammalian brains, and the current source density (CSD) analysis was developed to bridge the gap between the cellular and the population recordings. This paper details the use of a similar approach adapted to the study of olfactory responses within insects with bulbous antennae. The EAG was recorded at multiple antennal positions and the CSD that generates the EAG potentials were estimated. The method measures the activation of olfactory receptor neurons (ORNs) across the antennae and thus it quantifies the olfactory sensitivity of the insect. It allows a rapid mapping of olfactory responses and thus can be used to guide further SSRs or to determine that two chemicals are detected by independent ORNs. This study further explored biases resulting from a limited number of recording positions or from an approximation of the antennal geometry that should be considered for interpreting the CSD maps. It also shows that the CSD analysis of EAGs is compatible with a gas chromatograph stimulator for analyzing the response to complex odors. Finally, I discuss the origin of the EAG signal in light of the CSD theory.
Collapse
|
27
|
Deciphering the Contribution of Oriens-Lacunosum/Moleculare (OLM) Cells to Intrinsic θ Rhythms Using Biophysical Local Field Potential (LFP) Models. eNeuro 2018; 5:eN-NWR-0146-18. [PMID: 30225351 PMCID: PMC6140113 DOI: 10.1523/eneuro.0146-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
Oscillations in local field potentials (LFPs) are prevalent and contribute to brain function. An understanding of the cellular correlates and pathways affecting LFPs is needed, but many overlapping pathways in vivo make this difficult to achieve. A prevalent LFP rhythm in the hippocampus associated with memory processing and spatial navigation is the θ (3–12 Hz) oscillation. θ rhythms emerge intrinsically in an in vitro whole hippocampus preparation and this reduced preparation makes it possible to assess the contribution of different cell types to LFP generation. We focus on oriens-lacunosum/moleculare (OLM) cells as a major class of interneurons in the hippocampus. OLM cells can influence pyramidal (PYR) cells through two distinct pathways: by direct inhibition of PYR cell distal dendrites, and by indirect disinhibition of PYR cell proximal dendrites. We use previous inhibitory network models and build biophysical LFP models using volume conductor theory. We examine the effect of OLM cells to ongoing intrinsic LFP θ rhythms by directly comparing our model LFP features with experiment. We find that OLM cell inputs regulate the robustness of LFP responses without affecting their average power and that this robust response depends on coactivation of distal inhibition and basal excitation. We use our models to estimate the spatial extent of the region generating LFP θ rhythms, leading us to predict that about 22,000 PYR cells participate in intrinsic θ generation. Besides obtaining an understanding of OLM cell contributions to intrinsic LFP θ rhythms, our work can help decipher cellular correlates of in vivo LFPs.
Collapse
|
28
|
Moshkforoush A, Valdes-Hernandez PA, Rivera-Espada DE, Mori Y, Riera J. waveCSD: A method for estimating transmembrane currents originated from propagating neuronal activity in the neocortex: Application to study cortical spreading depression. J Neurosci Methods 2018; 307:106-124. [PMID: 29997062 PMCID: PMC6086575 DOI: 10.1016/j.jneumeth.2018.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent years have witnessed an upsurge in the development of methods for estimating current source densities (CSDs) in the neocortical tissue from their recorded local field potential (LFP) reflections using microelectrode arrays. Among these, methods utilizing linear arrays work under the assumption that CSDs vary as a function of cortical depth; whereas they are constant in the tangential direction, infinitely or in a confined cylinder. This assumption is violated in the analysis of neuronal activity propagating along the neocortical sheet, e.g. propagation of alpha waves or cortical spreading depression. NEW METHOD Here, we developed a novel mathematical method (waveCSD) for CSD analysis of LFPs associated with a planar wave of neocortical neuronal activity propagating at a constant velocity towards a linear probe. RESULTS Results show that the algorithm is robust to the presence of noise in LFP data and uncertainties in knowledge of propagation velocity. Also, results show high level of accuracy of the method in a wide range of electrode resolutions. Using in vivo experimental recordings from the rat neocortex, we employed waveCSD to characterize transmembrane currents associated with cortical spreading depressions. COMPARISON WITH EXISTING METHOD(S) Simulation results indicate that waveCSD has a significantly higher reconstruction accuracy compared to the widely-used inverse CSD method (iCSD), and the regularized kernel CSD method (kCSD), in the analysis of CSDs originating from propagating neuronal activity. CONCLUSIONS The waveCSD method provides a theoretical platform for estimation of transmembrane currents from their LFPs in experimental paradigms involving wave propagation.
Collapse
Affiliation(s)
- Arash Moshkforoush
- Department Biomedical Engineering, Florida International University, United States
| | | | | | - Yoichiro Mori
- Department of Mathematics, University of Minnesota Twin Cities, United States
| | - Jorge Riera
- Department Biomedical Engineering, Florida International University, United States.
| |
Collapse
|
29
|
Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE, Srinivasan R. Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nat Neurosci 2018; 21:903-919. [PMID: 29942039 DOI: 10.1038/s41593-018-0171-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/01/2018] [Indexed: 11/09/2022]
Abstract
New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.
Collapse
Affiliation(s)
- Bijan Pesaran
- Center for Neural Science, New York University, New York, NY, USA. .,NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience Munich, Munich Cluster of Systems Neurology (SyNergy), Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Markus Siegel
- Centre for Integrative Neuroscience & MEG Center, University of Tübingen, Tübingen, Germany
| | - Wilson Truccolo
- Department of Neuroscience and Institute for Brain Science, Brown University, Providence, RI, USA.,Center for Neurorestoration and Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, USA
| | - Charles E Schroeder
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Neurosurgery, Columbia College of Physicians and Surgeons, New York, NY, USA
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
30
|
Nurminen L, Merlin S, Bijanzadeh M, Federer F, Angelucci A. Top-down feedback controls spatial summation and response amplitude in primate visual cortex. Nat Commun 2018; 9:2281. [PMID: 29892057 PMCID: PMC5995810 DOI: 10.1038/s41467-018-04500-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Sensory information travels along feedforward connections through a hierarchy of cortical areas, which, in turn, send feedback connections to lower-order areas. Feedback has been implicated in attention, expectation, and sensory context, but the mechanisms underlying these diverse feedback functions are unknown. Using specific optogenetic inactivation of feedback connections from the secondary visual area (V2), we show how feedback affects neural responses in the primate primary visual cortex (V1). Reducing feedback activity increases V1 cells' receptive field (RF) size, decreases their responses to stimuli confined to the RF, and increases their responses to stimuli extending into the proximal surround, therefore reducing surround suppression. Moreover, stronger reduction of V2 feedback activity leads to progressive increase in RF size and decrease in response amplitude, an effect predicted by a recurrent network model. Our results indicate that feedback modulates RF size, surround suppression and response amplitude, similar to the modulatory effects of visual spatial attention.
Collapse
Affiliation(s)
- Lauri Nurminen
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Sam Merlin
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
- Medical Science, School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Maryam Bijanzadeh
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
- Department of Neurological Surgery, UCSF, San Francisco, CA, 94143, USA
| | - Frederick Federer
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
31
|
Hindriks R, Schmiedt J, Arsiwalla XD, Peter A, Verschure PFMJ, Fries P, Schmid MC, Deco G. Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays. PLoS One 2017; 12:e0187490. [PMID: 29253006 PMCID: PMC5734682 DOI: 10.1371/journal.pone.0187490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 10/20/2017] [Indexed: 01/04/2023] Open
Abstract
Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires “inverting” Poisson’s equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs). Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to “invert” a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joscha Schmiedt
- Ernst StrÜngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Xerxes D Arsiwalla
- Synthetic Perceptive Emotive and Cognitive Systems (SPECS) Lab, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alina Peter
- Ernst StrÜngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Paul F M J Verschure
- Synthetic Perceptive Emotive and Cognitive Systems (SPECS) Lab, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain.,Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pascal Fries
- Ernst StrÜngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Michael C Schmid
- Ernst StrÜngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
32
|
Cserpán D, Meszéna D, Wittner L, Tóth K, Ulbert I, Somogyvári Z, Wójcik DK. Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings. eLife 2017; 6:29384. [PMID: 29148974 PMCID: PMC5716668 DOI: 10.7554/elife.29384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 12/29/2022] Open
Abstract
Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations; however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here, we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus.
Collapse
Affiliation(s)
- Dorottya Cserpán
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Domokos Meszéna
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Zoltán Somogyvári
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary.,National Institute of Clinical Neurosciences, Budapest, Hungary.,Neuromicrosystems Ltd., Budapest, Hungary
| | - Daniel K Wójcik
- Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
33
|
Abstract
A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. In some sciences, this could be a mathematical proof, yet biological systems usually do not satisfy assumptions of mathematical theorems. One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. Moreover, these data can be used to study the effects of different tissue models on the measurement. The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al., Journal of Neurophysiology, 93(4), 2194–2232 (Traub et al. 2005)), with activity evoked by different thalamic stimuli.
Collapse
Affiliation(s)
- Helena Głąbska
- Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Chaitanya Chintaluri
- Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Daniel K Wójcik
- Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
34
|
Large-scale mapping of cortical synaptic projections with extracellular electrode arrays. Nat Methods 2017; 14:882-890. [DOI: 10.1038/nmeth.4393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
35
|
Hagen E, Fossum JC, Pettersen KH, Alonso JM, Swadlow HA, Einevoll GT. Focal Local Field Potential Signature of the Single-Axon Monosynaptic Thalamocortical Connection. J Neurosci 2017; 37:5123-5143. [PMID: 28432143 PMCID: PMC5444196 DOI: 10.1523/jneurosci.2715-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
A resurgence has taken place in recent years in the use of the extracellularly recorded local field potential (LFP) to investigate neural network activity. To probe monosynaptic thalamic activation of cortical postsynaptic target cells, so called spike-trigger-averaged LFP (stLFP) signatures have been measured. In these experiments, the cortical LFP is measured by multielectrodes covering several cortical lamina and averaged on spontaneous spikes of thalamocortical (TC) cells. Using a well established forward-modeling scheme, we investigated the biophysical origin of this stLFP signature with simultaneous synaptic activation of cortical layer-4 neurons, mimicking the effect of a single afferent spike from a single TC neuron. Constrained by previously measured intracellular responses of the main postsynaptic target cell types and with biologically plausible assumptions regarding the spatial distribution of thalamic synaptic inputs into layer 4, the model predicted characteristic contributions to monosynaptic stLFP signatures both for the regular-spiking (RS) excitatory neurons and the fast-spiking (FS) inhibitory interneurons. In particular, the FS cells generated stLFP signatures of shorter temporal duration than the RS cells. Added together, a sum of the stLFP signatures of these two principal synaptic targets of TC cells were observed to resemble experimentally measured stLFP signatures. Outside the volume targeted by TC afferents, the resulting postsynaptic LFP signals were found to be sharply attenuated. This implies that such stLFP signatures provide a very local measure of TC synaptic activation, and that newly developed inverse current-source density (CSD)-estimation methods are needed for precise assessment of the underlying spatiotemporal CSD profiles.SIGNIFICANCE STATEMENT Despite its long history and prevalent use, the proper interpretation of the extracellularly recorded local field potential (LFP) is still not fully established. Here we investigate by biophysical modeling the origin of the focal LFP signature of the single-axon monosynaptic thalamocortical connection as measured by spike-trigger-averaging of cortical LFPs on spontaneous spikes of thalamocortical neurons. We find that this LFP signature is well accounted for by a model assuming thalamic projections to two cortical layer-4 cell populations: one excitatory (putatively regular-spiking cells) and one inhibitory (putatively fast-spiking cells). The LFP signature is observed to decay sharply outside the cortical region receiving the thalamocortical projection, implying that it indeed provides a very local measure of thalamocortical synaptic activation.
Collapse
Affiliation(s)
- Espen Hagen
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and Jülich Aachen Research Alliance - Brain Institute I, Jülich Research Centre, 52425 Jülich, Germany
- Department of Physics and
| | - Janne C Fossum
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway
| | - Klas H Pettersen
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway
- Letten Centre and GliaLab, Institute of Basic Medical Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jose-Manuel Alonso
- Department of Biological Sciences, State University of New York College of Optometry, New York, New York 10036, and
| | - Harvey A Swadlow
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway,
- Department of Physics and
| |
Collapse
|
36
|
Gratiy SL, Halnes G, Denman D, Hawrylycz MJ, Koch C, Einevoll GT, Anastassiou CA. From Maxwell's equations to the theory of current-source density analysis. Eur J Neurosci 2017; 45:1013-1023. [PMID: 28177156 PMCID: PMC5413824 DOI: 10.1111/ejn.13534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
Abstract
Despite the widespread use of current‐source density (CSD) analysis of extracellular potential recordings in the brain, the physical mechanisms responsible for the generation of the signal are still debated. While the extracellular potential is thought to be exclusively generated by the transmembrane currents, recent studies suggest that extracellular diffusive, advective and displacement currents—traditionally neglected—may also contribute considerably toward extracellular potential recordings. Here, we first justify the application of the electro‐quasistatic approximation of Maxwell's equations to describe the electromagnetic field of physiological origin. Subsequently, we perform spatial averaging of currents in neural tissue to arrive at the notion of the CSD and derive an equation relating it to the extracellular potential. We show that, in general, the extracellular potential is determined by the CSD of membrane currents as well as the gradients of the putative extracellular diffusion current. The diffusion current can contribute significantly to the extracellular potential at frequencies less than a few Hertz; in which case it must be subtracted to obtain correct CSD estimates. We also show that the advective and displacement currents in the extracellular space are negligible for physiological frequencies while, within cellular membrane, displacement current contributes toward the CSD as a capacitive current. Taken together, these findings elucidate the relationship between electric currents and the extracellular potential in brain tissue and form the necessary foundation for the analysis of extracellular recordings.
Collapse
Affiliation(s)
| | - Geir Halnes
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway
| | - Daniel Denman
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | | | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Costas A Anastassiou
- Allen Institute for Brain Science, Seattle, WA, 98109, USA.,Department of Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Halnes G, Mäki-Marttunen T, Pettersen KH, Andreassen OA, Einevoll GT. Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis. J Neurophysiol 2017; 118:114-120. [PMID: 28298307 PMCID: PMC5494370 DOI: 10.1152/jn.00976.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
Standard CSD analysis does not account for ionic diffusion. Using biophysically realistic computer simulations, we show that unaccounted-for diffusive currents can lead to the prediction of spurious current sources. This finding may be of strong interest for in vivo electrophysiologists doing extracellular recordings in general, and CSD analysis in particular. Current-source density (CSD) analysis is a well-established method for analyzing recorded local field potentials (LFPs), that is, the low-frequency part of extracellular potentials. Standard CSD theory is based on the assumption that all extracellular currents are purely ohmic, and thus neglects the possible impact from ionic diffusion on recorded potentials. However, it has previously been shown that in physiological conditions with large ion-concentration gradients, diffusive currents can evoke slow shifts in extracellular potentials. Using computer simulations, we here show that diffusion-evoked potential shifts can introduce errors in standard CSD analysis, and can lead to prediction of spurious current sources. Further, we here show that the diffusion-evoked prediction errors can be removed by using an improved CSD estimator which accounts for concentration-dependent effects. NEW & NOTEWORTHY Standard CSD analysis does not account for ionic diffusion. Using biophysically realistic computer simulations, we show that unaccounted-for diffusive currents can lead to the prediction of spurious current sources. This finding may be of strong interest for in vivo electrophysiologists doing extracellular recordings in general, and CSD analysis in particular.
Collapse
Affiliation(s)
- Geir Halnes
- Faculty for Science and Technology, Norwegian University of Life Sciences, Ås, Norway;
| | - Tuomo Mäki-Marttunen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Klas H Pettersen
- Letten Centre and GliaLab, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gaute T Einevoll
- Faculty for Science and Technology, Norwegian University of Life Sciences, Ås, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
McColgan T, Liu J, Kuokkanen PT, Carr CE, Wagner H, Kempter R. Dipolar extracellular potentials generated by axonal projections. eLife 2017; 6:26106. [PMID: 28871959 PMCID: PMC5617635 DOI: 10.7554/elife.26106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/01/2017] [Indexed: 01/27/2023] Open
Abstract
Extracellular field potentials (EFPs) are an important source of information in neuroscience, but their physiological basis is in many cases still a matter of debate. Axonal sources are typically discounted in modeling and data analysis because their contributions are assumed to be negligible. Here, we established experimentally and theoretically that contributions of axons to EFPs can be significant. Modeling action potentials propagating along axons, we showed that EFPs were prominent in the presence of terminal zones where axons branch and terminate in close succession, as found in many brain regions. Our models predicted a dipolar far field and a polarity reversal at the center of the terminal zone. We confirmed these predictions using EFPs from the barn owl auditory brainstem where we recorded in nucleus laminaris using a multielectrode array. These results demonstrate that axonal terminal zones can produce EFPs with considerable amplitude and spatial reach.
Collapse
Affiliation(s)
- Thomas McColgan
- Department for Biology, Institute for Theoretical BiologyHumboldt-Universität zu BerlinBerlinGermany
| | - Ji Liu
- Department of BiologyUniversity of MarylandCollege ParkUnited States
| | - Paula Tuulia Kuokkanen
- Department for Biology, Institute for Theoretical BiologyHumboldt-Universität zu BerlinBerlinGermany,Bernstein Center for Computational NeuroscienceBerlinGermany
| | | | | | - Richard Kempter
- Department for Biology, Institute for Theoretical BiologyHumboldt-Universität zu BerlinBerlinGermany,Bernstein Center for Computational NeuroscienceBerlinGermany,Einstein Center for NeurosciencesBerlinGermany
| |
Collapse
|
39
|
van Dijk KJ, Janssen MLF, Zwartjes DGM, Temel Y, Visser-Vandewalle V, Veltink PH, Benazzouz A, Heida T. Spatial Localization of Sources in the Rat Subthalamic Motor Region Using an Inverse Current Source Density Method. Front Neural Circuits 2016; 10:87. [PMID: 27857684 PMCID: PMC5093117 DOI: 10.3389/fncir.2016.00087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/14/2016] [Indexed: 11/18/2022] Open
Abstract
Objective: In this study we introduce the use of the current source density (CSD) method as a way to visualize the spatial organization of evoked responses in the rat subthalamic nucleus (STN) at fixed time stamps resulting from motor cortex stimulation. This method offers opportunities to visualize neuronal input and study the relation between the synaptic input and the neural output of neural populations. Approach: Motor cortex evoked local field potentials and unit activity were measured in the subthalamic region, with a 3D measurement grid consisting of 320 measurement points and high spatial resolution. This allowed us to visualize the evoked synaptic input by estimating the current source density (CSD) from the measured local field potentials, using the inverse CSD method. At the same time, the neuronal output of the cells within the grid is assessed by calculating post stimulus time histograms. Main results: The CSD method resulted in clear and distinguishable sources and sinks of the neuronal input activity in the STN after motor cortex stimulation. We showed that the center of the synaptic input of the STN from the motor cortex is located dorsal to the input from globus pallidus. Significance: For the first time we have performed CSD analysis on motor cortex stimulation evoked LFP responses in the rat STN as a proof of principle. Our results suggest that the CSD method can be used to gain new insights into the spatial extent of synaptic pathways in brain structures.
Collapse
Affiliation(s)
- Kees J van Dijk
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Marcus L F Janssen
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurology, Maastricht University Medical CenterMaastricht, Netherlands; University de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique UMR 5293Bordeaux, France
| | - Daphne G M Zwartjes
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Yasin Temel
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurosurgery, Maastricht University Medical CenterMaastricht, Netherlands
| | | | - Peter H Veltink
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Abdelhamid Benazzouz
- University de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique UMR 5293 Bordeaux, France
| | - Tjitske Heida
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| |
Collapse
|
40
|
Kropf P, Shmuel A. 1D Current Source Density (CSD) Estimation in Inverse Theory: A Unified Framework for Higher-Order Spectral Regularization of Quadrature and Expansion-Type CSD Methods. Neural Comput 2016; 28:1305-55. [PMID: 27172379 DOI: 10.1162/neco_a_00846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Estimation of current source density (CSD) from the low-frequency part of extracellular electric potential recordings is an unstable linear inverse problem. To make the estimation possible in an experimental setting where recordings are contaminated with noise, it is necessary to stabilize the inversion. Here we present a unified framework for zero- and higher-order singular-value-decomposition (SVD)-based spectral regularization of 1D (linear) CSD estimation from local field potentials. The framework is based on two general approaches commonly employed for solving inverse problems: quadrature and basis function expansion. We first show that both inverse CSD (iCSD) and kernel CSD (kCSD) fall into the category of basis function expansion methods. We then use these general categories to introduce two new estimation methods, quadrature CSD (qCSD), based on discretizing the CSD integral equation with a chosen quadrature rule, and representer CSD (rCSD), an even-determined basis function expansion method that uses the problem's data kernels (representers) as basis functions. To determine the best candidate methods to use in the analysis of experimental data, we compared the different methods on simulations under three regularization schemes (Tikhonov, tSVD, and dSVD), three regularization parameter selection methods (NCP, L-curve, and GCV), and seven different a priori spatial smoothness constraints on the CSD distribution. This resulted in a comparison of 531 estimation schemes. We evaluated the estimation schemes according to their source reconstruction accuracy by testing them using different simulated noise levels, lateral source diameters, and CSD depth profiles. We found that ranking schemes according to the average error over all tested conditions results in a reproducible ranking, where the top schemes are found to perform well in the majority of tested conditions. However, there is no single best estimation scheme that outperforms all others under all tested conditions. The unified framework we propose expands the set of available estimation methods, provides increased flexibility for 1D CSD estimation in noisy experimental conditions, and allows for a meaningful comparison between estimation schemes.
Collapse
Affiliation(s)
- Pascal Kropf
- McConnell Brain Imaging Center, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Amir Shmuel
- McConnell Brain Imaging Center, Montreal Neurological Institute, Departments of Neurology, Neurosurgery, Physiology, and Biomedical Engineering, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
41
|
Głąbska HT, Norheim E, Devor A, Dale AM, Einevoll GT, Wójcik DK. Generalized Laminar Population Analysis (gLPA) for Interpretation of Multielectrode Data from Cortex. Front Neuroinform 2016; 10:1. [PMID: 26834620 PMCID: PMC4724720 DOI: 10.3389/fninf.2016.00001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/02/2016] [Indexed: 01/17/2023] Open
Abstract
Laminar population analysis (LPA) is a method for analysis of electrical data recorded by linear multielectrodes passing through all lamina of cortex. Like principal components analysis (PCA) and independent components analysis (ICA), LPA offers a way to decompose the data into contributions from separate cortical populations. However, instead of using purely mathematical assumptions in the decomposition, LPA is based on physiological constraints, i.e., that the observed LFP (low-frequency part of signal) is driven by action-potential firing as observed in the MUA (multi-unit activity; high-frequency part of the signal). In the presently developed generalized laminar population analysis (gLPA) the set of basis functions accounting for the LFP data is extended compared to the original LPA, thus allowing for a better fit of the model to experimental data. This enhances the risk for overfitting, however, and we therefore tested various versions of gLPA on virtual LFP data in which we knew the ground truth. These synthetic data were generated by biophysical forward-modeling of electrical signals from network activity in the comprehensive, and well-known, thalamocortical network model developed by Traub and coworkers. The results for the Traub model imply that while the laminar components extracted by the original LPA method overall are in fair agreement with the ground-truth laminar components, the results may be improved by use of gLPA method with two (gLPA-2) or even three (gLPA-3) postsynaptic LFP kernels per laminar population.
Collapse
Affiliation(s)
- Helena T Głąbska
- Laboratory of Neuroinformatics, Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences Warsaw, Poland
| | - Eivind Norheim
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences Aas, Norway
| | - Anna Devor
- Departments of Neurosciences and Radiology, University of CaliforniaSan Diego, La Jolla, CA, USA; Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General HospitalCharlestown, MA, USA
| | - Anders M Dale
- Departments of Neurosciences and Radiology, University of California San Diego, La Jolla, CA, USA
| | - Gaute T Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life SciencesAas, Norway; Department of Physics, University of OsloOslo, Norway
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
42
|
Chintaluri C, Wójcik DK. A novel method for spatial source localization using ECoG and SEEG recordings in human epilepsy patients. BMC Neurosci 2015. [PMCID: PMC4699127 DOI: 10.1186/1471-2202-16-s1-p286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Ness TV, Chintaluri C, Potworowski J, Łęski S, Głąbska H, Wójcik DK, Einevoll GT. Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs). Neuroinformatics 2015; 13:403-26. [PMID: 25822810 PMCID: PMC4626530 DOI: 10.1007/s12021-015-9265-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microelectrode arrays (MEAs), substrate-integrated planar arrays of up to thousands of closely spaced metal electrode contacts, have long been used to record neuronal activity in in vitro brain slices with high spatial and temporal resolution. However, the analysis of the MEA potentials has generally been mainly qualitative. Here we use a biophysical forward-modelling formalism based on the finite element method (FEM) to establish quantitatively accurate links between neural activity in the slice and potentials recorded in the MEA set-up. Then we develop a simpler approach based on the method of images (MoI) from electrostatics, which allows for computation of MEA potentials by simple formulas similar to what is used for homogeneous volume conductors. As we find MoI to give accurate results in most situations of practical interest, including anisotropic slices covered with highly conductive saline and MEA-electrode contacts of sizable physical extensions, a Python software package (ViMEAPy) has been developed to facilitate forward-modelling of MEA potentials generated by biophysically detailed multicompartmental neurons. We apply our scheme to investigate the influence of the MEA set-up on single-neuron spikes as well as on potentials generated by a cortical network comprising more than 3000 model neurons. The generated MEA potentials are substantially affected by both the saline bath covering the brain slice and a (putative) inadvertent saline layer at the interface between the MEA chip and the brain slice. We further explore methods for estimation of current-source density (CSD) from MEA potentials, and find the results to be much less sensitive to the experimental set-up.
Collapse
Affiliation(s)
- Torbjørn V Ness
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Chaitanya Chintaluri
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Potworowski
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Łęski
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Helena Głąbska
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Daniel K Wójcik
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Gaute T Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway.
- Department of Physics, University of Oslo, Oslo, Norway.
| |
Collapse
|
44
|
Muldoon SF, Villette V, Tressard T, Malvache A, Reichinnek S, Bartolomei F, Cossart R. GABAergic inhibition shapes interictal dynamics in awake epileptic mice. Brain 2015; 138:2875-90. [PMID: 26280596 DOI: 10.1093/brain/awv227] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is characterized by recurrent seizures and brief, synchronous bursts called interictal spikes that are present in-between seizures and observed as transient events in EEG signals. While GABAergic transmission is known to play an important role in shaping healthy brain activity, the role of inhibition in these pathological epileptic dynamics remains unclear. Examining the microcircuits that participate in interictal spikes is thus an important first step towards addressing this issue, as the function of these transient synchronizations in either promoting or prohibiting seizures is currently under debate. To identify the microcircuits recruited in spontaneous interictal spikes in the absence of any proconvulsive drug or anaesthetic agent, we combine a chronic model of epilepsy with in vivo two-photon calcium imaging and multiunit extracellular recordings to map cellular recruitment within large populations of CA1 neurons in mice free to run on a self-paced treadmill. We show that GABAergic neurons, as opposed to their glutamatergic counterparts, are preferentially recruited during spontaneous interictal activity in the CA1 region of the epileptic mouse hippocampus. Although the specific cellular dynamics of interictal spikes are found to be highly variable, they are consistently associated with the activation of GABAergic neurons, resulting in a perisomatic inhibitory restraint that reduces neuronal spiking in the principal cell layer. Given the role of GABAergic neurons in shaping brain activity during normal cognitive function, their aberrant unbalanced recruitment during these transient events could have important downstream effects with clinical implications.
Collapse
Affiliation(s)
- Sarah Feldt Muldoon
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Vincent Villette
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Thomas Tressard
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Arnaud Malvache
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Susanne Reichinnek
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Fabrice Bartolomei
- 4 Institut des Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale Unité 1106, 13005 Marseille, France
| | - Rosa Cossart
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| |
Collapse
|
45
|
Głąbska H, Potworowski J, Łęski S, Wójcik DK. Independent components of neural activity carry information on individual populations. PLoS One 2014; 9:e105071. [PMID: 25153730 PMCID: PMC4143226 DOI: 10.1371/journal.pone.0105071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/17/2014] [Indexed: 01/10/2023] Open
Abstract
Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges.
Collapse
Affiliation(s)
- Helena Głąbska
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jan Potworowski
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Szymon Łęski
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Daniel K. Wójcik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
46
|
Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 2013; 14:770-85. [PMID: 24135696 DOI: 10.1038/nrn3599] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed a renewed interest in cortical local field potentials (LFPs)--that is, extracellularly recorded potentials with frequencies of up to ~500 Hz. This is due to both the advent of multielectrodes, which has enabled recording of LFPs at tens to hundreds of sites simultaneously, and the insight that LFPs offer a unique window into key integrative synaptic processes in cortical populations. However, owing to its numerous potential neural sources, the LFP is more difficult to interpret than are spikes. Careful mathematical modelling and analysis are needed to take full advantage of the opportunities that this signal offers in understanding signal processing in cortical circuits and, ultimately, the neural basis of perception and cognition.
Collapse
Affiliation(s)
- Gaute T Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | | | | |
Collapse
|
47
|
Łęski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT. Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 2013; 9:e1003137. [PMID: 23874180 PMCID: PMC3715549 DOI: 10.1371/journal.pcbi.1003137] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
Abstract
Despite its century-old use, the interpretation of local field potentials (LFPs), the low-frequency part of electrical signals recorded in the brain, is still debated. In cortex the LFP appears to mainly stem from transmembrane neuronal currents following synaptic input, and obvious questions regarding the 'locality' of the LFP are: What is the size of the signal-generating region, i.e., the spatial reach, around a recording contact? How far does the LFP signal extend outside a synaptically activated neuronal population? And how do the answers depend on the temporal frequency of the LFP signal? Experimental inquiries have given conflicting results, and we here pursue a modeling approach based on a well-established biophysical forward-modeling scheme incorporating detailed reconstructed neuronal morphologies in precise calculations of population LFPs including thousands of neurons. The two key factors determining the frequency dependence of LFP are the spatial decay of the single-neuron LFP contribution and the conversion of synaptic input correlations into correlations between single-neuron LFP contributions. Both factors are seen to give low-pass filtering of the LFP signal power. For uncorrelated input only the first factor is relevant, and here a modest reduction (<50%) in the spatial reach is observed for higher frequencies (>100 Hz) compared to the near-DC ([Formula: see text]) value of about [Formula: see text]. Much larger frequency-dependent effects are seen when populations of pyramidal neurons receive correlated and spatially asymmetric inputs: the low-frequency ([Formula: see text]) LFP power can here be an order of magnitude or more larger than at 60 Hz. Moreover, the low-frequency LFP components have larger spatial reach and extend further outside the active population than high-frequency components. Further, the spatial LFP profiles for such populations typically span the full vertical extent of the dendrites of neurons in the population. Our numerical findings are backed up by an intuitive simplified model for the generation of population LFP.
Collapse
Affiliation(s)
- Szymon Łęski
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway.
| | | | | | | | | |
Collapse
|
48
|
Łęski S, Głąbska H, Potworowski J, Wójcik DK. Synaptic activations of neuronal populations in the thalamocortical loop from LFP using kCSD and ICA. BMC Neurosci 2012. [PMCID: PMC3403497 DOI: 10.1186/1471-2202-13-s1-p11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|