1
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
2
|
Coronel-Oliveros C, Medel V, Whitaker GA, Astudillo A, Gallagher D, Z-Rivera L, Prado P, El-Deredy W, Orio P, Weinstein A. Elevating understanding: Linking high-altitude hypoxia to brain aging through EEG functional connectivity and spectral analyses. Netw Neurosci 2024; 8:275-292. [PMID: 38562297 PMCID: PMC10927308 DOI: 10.1162/netn_a_00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 04/04/2024] Open
Abstract
High-altitude hypoxia triggers brain function changes reminiscent of those in healthy aging and Alzheimer's disease, compromising cognition and executive functions. Our study sought to validate high-altitude hypoxia as a model for assessing brain activity disruptions akin to aging. We collected EEG data from 16 healthy volunteers during acute high-altitude hypoxia (at 4,000 masl) and at sea level, focusing on relative changes in power and aperiodic slope of the EEG spectrum due to hypoxia. Additionally, we examined functional connectivity using wPLI, and functional segregation and integration using graph theory tools. High altitude led to slower brain oscillations, that is, increased δ and reduced α power, and flattened the 1/f aperiodic slope, indicating higher electrophysiological noise, akin to healthy aging. Notably, functional integration strengthened in the θ band, exhibiting unique topographical patterns at the subnetwork level, including increased frontocentral and reduced occipitoparietal integration. Moreover, we discovered significant correlations between subjects' age, 1/f slope, θ band integration, and observed robust effects of hypoxia after adjusting for age. Our findings shed light on how reduced oxygen levels at high altitudes influence brain activity patterns resembling those in neurodegenerative disorders and aging, making high-altitude hypoxia a promising model for comprehending the brain in health and disease.
Collapse
Affiliation(s)
- Carlos Coronel-Oliveros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute (GBHI), University of California, San Francisco (UCSF), San Francisco, CA, USA and Trinity College Dublin, Dublin, Ireland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Neuroscience, Universidad de Chile, Santiago, Chile
| | - Grace Alma Whitaker
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Chair of Acoustics and Haptics, Technische Universität Dresden, Dresden, Germany
| | - Aland Astudillo
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - David Gallagher
- School of Psychology, Liverpool John Moores University, Liverpool, England
| | - Lucía Z-Rivera
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Wael El-Deredy
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Weinstein
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Uddin LQ, Betzel RF, Cohen JR, Damoiseaux JS, De Brigard F, Eickhoff SB, Fornito A, Gratton C, Gordon EM, Laird AR, Larson-Prior L, McIntosh AR, Nickerson LD, Pessoa L, Pinho AL, Poldrack RA, Razi A, Sadaghiani S, Shine JM, Yendiki A, Yeo BTT, Spreng RN. Controversies and progress on standardization of large-scale brain network nomenclature. Netw Neurosci 2023; 7:864-905. [PMID: 37781138 PMCID: PMC10473266 DOI: 10.1162/netn_a_00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica S. Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | | | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Linda Larson-Prior
- Deptartment of Psychiatry and Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A. Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Vancouver, BC, Canada
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Ana Luísa Pinho
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | | | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Anastasia Yendiki
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Gomes AFC, Figueiredo MAT. Orders between Channels and Implications for Partial Information Decomposition. ENTROPY (BASEL, SWITZERLAND) 2023; 25:975. [PMID: 37509922 PMCID: PMC10377940 DOI: 10.3390/e25070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
The partial information decomposition (PID) framework is concerned with decomposing the information that a set of random variables has with respect to a target variable into three types of components: redundant, synergistic, and unique. Classical information theory alone does not provide a unique way to decompose information in this manner, and additional assumptions have to be made. Recently, Kolchinsky proposed a new general axiomatic approach to obtain measures of redundant information based on choosing an order relation between information sources (equivalently, order between communication channels). In this paper, we exploit this approach to introduce three new measures of redundant information (and the resulting decompositions) based on well-known preorders between channels, contributing to the enrichment of the PID landscape. We relate the new decompositions to existing ones, study several of their properties, and provide examples illustrating their novelty. As a side result, we prove that any preorder that satisfies Kolchinsky's axioms yields a decomposition that meets the axioms originally introduced by Williams and Beer when they first proposed PID.
Collapse
Affiliation(s)
- André F C Gomes
- Instituto de Telecomunicações and LUMLIS (Lisbon ELLIS Unit), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Mário A T Figueiredo
- Instituto de Telecomunicações and LUMLIS (Lisbon ELLIS Unit), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Goz RU, Hooks BM. Correlated Somatosensory Input in Parvalbumin/Pyramidal Cells in Mouse Motor Cortex. eNeuro 2023; 10:ENEURO.0488-22.2023. [PMID: 37094939 PMCID: PMC10167893 DOI: 10.1523/eneuro.0488-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
In mammalian cortex, feedforward excitatory connections recruit feedforward inhibition. This is often carried by parvalbumin (PV+) interneurons, which may densely connect to local pyramidal (Pyr) neurons. Whether this inhibition affects all local excitatory cells indiscriminately or is targeted to specific subnetworks is unknown. Here, we test how feedforward inhibition is recruited by using two-channel circuit mapping to excite cortical and thalamic inputs to PV+ interneurons and Pyr neurons to mouse primary vibrissal motor cortex (M1). Single Pyr and PV+ neurons receive input from both cortex and thalamus. Connected pairs of PV+ interneurons and excitatory Pyr neurons receive correlated cortical and thalamic inputs. While PV+ interneurons are more likely to form local connections to Pyr neurons, Pyr neurons are much more likely to form reciprocal connections with PV+ interneurons that inhibit them. This suggests that Pyr and PV ensembles may be organized based on their local and long-range connections, an organization that supports the idea of local subnetworks for signal transduction and processing. Excitatory inputs to M1 can thus target inhibitory networks in a specific pattern which permits recruitment of feedforward inhibition to specific subnetworks within the cortical column.
Collapse
Affiliation(s)
- Roman U Goz
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
6
|
Varley TF, Sporns O, Schaffelhofer S, Scherberger H, Dann B. Information-processing dynamics in neural networks of macaque cerebral cortex reflect cognitive state and behavior. Proc Natl Acad Sci U S A 2023; 120:e2207677120. [PMID: 36603032 PMCID: PMC9926243 DOI: 10.1073/pnas.2207677120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
One of the essential functions of biological neural networks is the processing of information. This includes everything from processing sensory information to perceive the environment, up to processing motor information to interact with the environment. Due to methodological limitations, it has been historically unclear how information processing changes during different cognitive or behavioral states and to what extent information is processed within or between the network of neurons in different brain areas. In this study, we leverage recent advances in the calculation of information dynamics to explore neural-level processing within and between the frontoparietal areas AIP, F5, and M1 during a delayed grasping task performed by three macaque monkeys. While information processing was high within all areas during all cognitive and behavioral states of the task, interareal processing varied widely: During visuomotor transformation, AIP and F5 formed a reciprocally connected processing unit, while no processing was present between areas during the memory period. Movement execution was processed globally across all areas with predominance of processing in the feedback direction. Furthermore, the fine-scale network structure reconfigured at the neuron level in response to different grasping conditions, despite no differences in the overall amount of information present. These results suggest that areas dynamically form higher-order processing units according to the cognitive or behavioral demand and that the information-processing network is hierarchically organized at the neuron level, with the coarse network structure determining the behavioral state and finer changes reflecting different conditions.
Collapse
Affiliation(s)
- Thomas F. Varley
- Department of Psychological & Brain Sciences, Indiana University47405-7007, Bloomington, IN
- School of Informatics, Computing, and Engineering, Indiana University47405-7007, Bloomington, IN
| | - Olaf Sporns
- Department of Psychological & Brain Sciences, Indiana University47405-7007, Bloomington, IN
| | - Stefan Schaffelhofer
- Neurobiology Laboratory, German Primate Center37077, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen37073, Goettingen, Germany
| | - Hansjörg Scherberger
- Neurobiology Laboratory, German Primate Center37077, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen37073, Goettingen, Germany
| | - Benjamin Dann
- Neurobiology Laboratory, German Primate Center37077, Goettingen, Germany
| |
Collapse
|
7
|
Varley TF, Kaminski P. Untangling Synergistic Effects of Intersecting Social Identities with Partial Information Decomposition. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1387. [PMID: 37420406 PMCID: PMC9611752 DOI: 10.3390/e24101387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 05/10/2023]
Abstract
The theory of intersectionality proposes that an individual's experience of society has aspects that are irreducible to the sum of one's various identities considered individually, but are "greater than the sum of their parts". In recent years, this framework has become a frequent topic of discussion both in social sciences and among popular movements for social justice. In this work, we show that the effects of intersectional identities can be statistically observed in empirical data using information theory, particularly the partial information decomposition framework. We show that, when considering the predictive relationship between various identity categories such as race and sex, on outcomes such as income, health and wellness, robust statistical synergies appear. These synergies show that there are joint-effects of identities on outcomes that are irreducible to any identity considered individually and only appear when specific categories are considered together (for example, there is a large, synergistic effect of race and sex considered jointly on income irreducible to either race or sex). Furthermore, these synergies are robust over time, remaining largely constant year-to-year. We then show using synthetic data that the most widely used method of assessing intersectionalities in data (linear regression with multiplicative interaction coefficients) fails to disambiguate between truly synergistic, greater-than-the-sum-of-their-parts interactions, and redundant interactions. We explore the significance of these two distinct types of interactions in the context of making inferences about intersectional relationships in data and the importance of being able to reliably differentiate the two. Finally, we conclude that information theory, as a model-free framework sensitive to nonlinearities and synergies in data, is a natural method by which to explore the space of higher-order social dynamics.
Collapse
Affiliation(s)
- Thomas F. Varley
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
- Department of Psychology & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Patrick Kaminski
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
- Department of Sociology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Newman EL, Varley TF, Parakkattu VK, Sherrill SP, Beggs JM. Revealing the Dynamics of Neural Information Processing with Multivariate Information Decomposition. ENTROPY (BASEL, SWITZERLAND) 2022; 24:930. [PMID: 35885153 PMCID: PMC9319160 DOI: 10.3390/e24070930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
The varied cognitive abilities and rich adaptive behaviors enabled by the animal nervous system are often described in terms of information processing. This framing raises the issue of how biological neural circuits actually process information, and some of the most fundamental outstanding questions in neuroscience center on understanding the mechanisms of neural information processing. Classical information theory has long been understood to be a natural framework within which information processing can be understood, and recent advances in the field of multivariate information theory offer new insights into the structure of computation in complex systems. In this review, we provide an introduction to the conceptual and practical issues associated with using multivariate information theory to analyze information processing in neural circuits, as well as discussing recent empirical work in this vein. Specifically, we provide an accessible introduction to the partial information decomposition (PID) framework. PID reveals redundant, unique, and synergistic modes by which neurons integrate information from multiple sources. We focus particularly on the synergistic mode, which quantifies the "higher-order" information carried in the patterns of multiple inputs and is not reducible to input from any single source. Recent work in a variety of model systems has revealed that synergistic dynamics are ubiquitous in neural circuitry and show reliable structure-function relationships, emerging disproportionately in neuronal rich clubs, downstream of recurrent connectivity, and in the convergence of correlated activity. We draw on the existing literature on higher-order information dynamics in neuronal networks to illustrate the insights that have been gained by taking an information decomposition perspective on neural activity. Finally, we briefly discuss future promising directions for information decomposition approaches to neuroscience, such as work on behaving animals, multi-target generalizations of PID, and time-resolved local analyses.
Collapse
Affiliation(s)
- Ehren L. Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA;
| | - Thomas F. Varley
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA;
| | - Vibin K. Parakkattu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA;
| | | | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
9
|
Hancock F, Rosas FE, Mediano PAM, Luppi AI, Cabral J, Dipasquale O, Turkheimer FE. May the 4C's be with you: an overview of complexity-inspired frameworks for analysing resting-state neuroimaging data. J R Soc Interface 2022; 19:20220214. [PMID: 35765805 PMCID: PMC9240685 DOI: 10.1098/rsif.2022.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Competing and complementary models of resting-state brain dynamics contribute to our phenomenological and mechanistic understanding of whole-brain coordination and communication, and provide potential evidence for differential brain functioning associated with normal and pathological behaviour. These neuroscientific theories stem from the perspectives of physics, engineering, mathematics and psychology and create a complicated landscape of domain-specific terminology and meaning, which, when used outside of that domain, may lead to incorrect assumptions and conclusions within the neuroscience community. Here, we review and clarify the key concepts of connectivity, computation, criticality and coherence-the 4C's-and outline a potential role for metastability as a common denominator across these propositions. We analyse and synthesize whole-brain neuroimaging research, examined through functional magnetic imaging, to demonstrate that complexity science offers a principled and integrated approach to describe, and potentially understand, macroscale spontaneous brain functioning.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Department of Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Alan Turing Institute, London, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Sherrill SP, Timme NM, Beggs JM, Newman EL. Partial information decomposition reveals that synergistic neural integration is greater downstream of recurrent information flow in organotypic cortical cultures. PLoS Comput Biol 2021; 17:e1009196. [PMID: 34252081 PMCID: PMC8297941 DOI: 10.1371/journal.pcbi.1009196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
The directionality of network information flow dictates how networks process information. A central component of information processing in both biological and artificial neural networks is their ability to perform synergistic integration–a type of computation. We established previously that synergistic integration varies directly with the strength of feedforward information flow. However, the relationships between both recurrent and feedback information flow and synergistic integration remain unknown. To address this, we analyzed the spiking activity of hundreds of neurons in organotypic cultures of mouse cortex. We asked how empirically observed synergistic integration–determined from partial information decomposition–varied with local functional network structure that was categorized into motifs with varying recurrent and feedback information flow. We found that synergistic integration was elevated in motifs with greater recurrent information flow beyond that expected from the local feedforward information flow. Feedback information flow was interrelated with feedforward information flow and was associated with decreased synergistic integration. Our results indicate that synergistic integration is distinctly influenced by the directionality of local information flow. Networks compute information. That is, they modify inputs to generate distinct outputs. These computations are an important component of network information processing. Knowing how the routing of information in a network influences computation is therefore crucial. Here we asked how a key form of computation—synergistic integration—is related to the direction of local information flow in networks of spiking cortical neurons. Specifically, we asked how information flow between input neurons (i.e., recurrent information flow) and information flow from output neurons to input neurons (i.e., feedback information flow) was related to the amount of synergistic integration performed by output neurons. We found that greater synergistic integration occurred where there was more recurrent information flow. And, lesser synergistic integration occurred where there was more feedback information flow relative to feedforward information flow. These results show that computation, in the form of synergistic integration, is distinctly influenced by the directionality of local information flow. Such work is valuable for predicting where and how network computation occurs and for designing networks with desired computational abilities.
Collapse
Affiliation(s)
- Samantha P. Sherrill
- Department of Psychological and Brain Sciences & Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana, United States of America
- * E-mail: (SPS); (ELN)
| | - Nicholas M. Timme
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - John M. Beggs
- Department of Physics & Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Ehren L. Newman
- Department of Psychological and Brain Sciences & Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana, United States of America
- * E-mail: (SPS); (ELN)
| |
Collapse
|
11
|
Varley TF, Denny V, Sporns O, Patania A. Topological analysis of differential effects of ketamine and propofol anaesthesia on brain dynamics. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201971. [PMID: 34168888 PMCID: PMC8220281 DOI: 10.1098/rsos.201971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/21/2021] [Indexed: 05/07/2023]
Abstract
Research has found that the vividness of conscious experience is related to brain dynamics. Despite both being anaesthetics, propofol and ketamine produce different subjective states: we explore the different effects of these two anaesthetics on the structure of dynamic attractors reconstructed from electrophysiological activity recorded from cerebral cortex of two macaques. We used two methods: the first embeds the recordings in a continuous high-dimensional manifold on which we use topological data analysis to infer the presence of higher-order dynamics. The second reconstruction, an ordinal partition network embedding, allows us to create a discrete state-transition network, which is amenable to information-theoretic analysis and contains rich information about state-transition dynamics. We find that the awake condition generally had the 'richest' structure, visiting the most states, the presence of pronounced higher-order structures, and the least deterministic dynamics. By contrast, the propofol condition had the most dissimilar dynamics, transitioning to a more impoverished, constrained, low-structure regime. The ketamine condition, interestingly, seemed to combine aspects of both: while it was generally less complex than the awake condition, it remained well above propofol in almost all measures. These results provide deeper and more comprehensive insights than what is typically gained by using point-measures of complexity.
Collapse
Affiliation(s)
- Thomas F. Varley
- Psychological & Brain Sciences, Indiana University, Bloomington, IN 47401, USA
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN 47401, USA
| | - Vanessa Denny
- Psychological & Brain Sciences, Indiana University, Bloomington, IN 47401, USA
| | - Olaf Sporns
- Psychological & Brain Sciences, Indiana University, Bloomington, IN 47401, USA
- Indiana University Network Sciences Institute (IUNI), Bloomington, IN 47401, USA
| | - Alice Patania
- Indiana University Network Sciences Institute (IUNI), Bloomington, IN 47401, USA
| |
Collapse
|
12
|
Trojanowski NF, Bottorff J, Turrigiano GG. Activity labeling in vivo using CaMPARI2 reveals intrinsic and synaptic differences between neurons with high and low firing rate set points. Neuron 2021; 109:663-676.e5. [PMID: 33333001 PMCID: PMC7897300 DOI: 10.1016/j.neuron.2020.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/27/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Neocortical pyramidal neurons regulate firing around a stable mean firing rate (FR) that can differ by orders of magnitude between neurons, but the factors that determine where individual neurons sit within this broad FR distribution are not understood. To access low- and high-FR neurons for ex vivo analysis, we used Ca2+- and UV-dependent photoconversion of CaMPARI2 in vivo to permanently label neurons according to mean FR. CaMPARI2 photoconversion was correlated with immediate early gene expression and higher FRs ex vivo and tracked the drop and rebound in ensemble mean FR induced by prolonged monocular deprivation. High-activity L4 pyramidal neurons had greater intrinsic excitability and recurrent excitatory synaptic strength, while E/I ratio, local output strength, and local connection probability were not different. Thus, in L4 pyramidal neurons (considered a single transcriptional cell type), a broad mean FR distribution is achieved through graded differences in both intrinsic and synaptic properties.
Collapse
Affiliation(s)
| | - Juliet Bottorff
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
13
|
Abstract
Brain dynamics show a rich spatiotemporal behavior whose stability is neither ordered nor chaotic, indicating that neural networks operate at intermediate stability regimes including critical dynamics represented by a negative power-law distribution of avalanche sizes with exponent α=−1.5. However, it is unknown which stability regimen allows global and local information transmission with reduced metabolic costs, which are measured in terms of synaptic potentials and action potentials. In this work, using a hierarchical neuron model with rich-club organization, we measure the average number of action potentials required to activate n different neurons (avalanche size). Besides, we develop a mathematical formula to represent the metabolic synaptic potential cost. We develop simulations variating the synaptic amplitude, synaptic time course (ms), and hub excitatory/inhibitory ratio. We compare different dynamic regimes in terms of avalanche sizes vs. metabolic cost. We also implement the dynamic model in a Drosophila and Erdos–Renyi networks to computer dynamics and metabolic costs. The results show that the synaptic amplitude and time course play a key role in information propagation. They can drive the system from subcritical to supercritical regimes. The later result promotes the coexistence of critical regimes with a wide range of excitation/inhibition hub ratios. Moreover, subcritical or silent regimes minimize metabolic cost for local avalanche sizes, whereas critical and intermediate stability regimes show the best compromise between information propagation and reduced metabolic consumption, also minimizing metabolic cost for a wide range of avalanche sizes.
Collapse
|
14
|
Varley TF, Sporns O, Puce A, Beggs J. Differential effects of propofol and ketamine on critical brain dynamics. PLoS Comput Biol 2020; 16:e1008418. [PMID: 33347455 PMCID: PMC7785236 DOI: 10.1371/journal.pcbi.1008418] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/05/2021] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Whether the brain operates at a critical "tipping" point is a long standing scientific question, with evidence from both cellular and systems-scale studies suggesting that the brain does sit in, or near, a critical regime. Neuroimaging studies of humans in altered states of consciousness have prompted the suggestion that maintenance of critical dynamics is necessary for the emergence of consciousness and complex cognition, and that reduced or disorganized consciousness may be associated with deviations from criticality. Unfortunately, many of the cellular-level studies reporting signs of criticality were performed in non-conscious systems (in vitro neuronal cultures) or unconscious animals (e.g. anaesthetized rats). Here we attempted to address this knowledge gap by exploring critical brain dynamics in invasive ECoG recordings from multiple sessions with a single macaque as the animal transitioned from consciousness to unconsciousness under different anaesthetics (ketamine and propofol). We use a previously-validated test of criticality: avalanche dynamics to assess the differences in brain dynamics between normal consciousness and both drug-states. Propofol and ketamine were selected due to their differential effects on consciousness (ketamine, but not propofol, is known to induce an unusual state known as "dissociative anaesthesia"). Our analyses indicate that propofol dramatically restricted the size and duration of avalanches, while ketamine allowed for more awake-like dynamics to persist. In addition, propofol, but not ketamine, triggered a large reduction in the complexity of brain dynamics. All states, however, showed some signs of persistent criticality when testing for exponent relations and universal shape-collapse. Further, maintenance of critical brain dynamics may be important for regulation and control of conscious awareness.
Collapse
Affiliation(s)
- Thomas F. Varley
- Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
- School of Informatics, Indiana University, Bloomington, Indiana, USA
| | - Olaf Sporns
- Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Aina Puce
- Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - John Beggs
- Department of Physics, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
15
|
Srivastava P, Nozari E, Kim JZ, Ju H, Zhou D, Becker C, Pasqualetti F, Pappas GJ, Bassett DS. Models of communication and control for brain networks: distinctions, convergence, and future outlook. Netw Neurosci 2020; 4:1122-1159. [PMID: 33195951 PMCID: PMC7655113 DOI: 10.1162/netn_a_00158] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in computational models of signal propagation and routing in the human brain have underscored the critical role of white-matter structure. A complementary approach has utilized the framework of network control theory to better understand how white matter constrains the manner in which a region or set of regions can direct or control the activity of other regions. Despite the potential for both of these approaches to enhance our understanding of the role of network structure in brain function, little work has sought to understand the relations between them. Here, we seek to explicitly bridge computational models of communication and principles of network control in a conceptual review of the current literature. By drawing comparisons between communication and control models in terms of the level of abstraction, the dynamical complexity, the dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the convergence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of communication and control in human brain networks, this work provides an integrative perspective for the field and outlines exciting directions for future work.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Erfan Nozari
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Harang Ju
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Dale Zhou
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Cassiano Becker
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, CA USA
| | - George J. Pappas
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Santa Fe Institute, Santa Fe, NM USA
| |
Collapse
|
16
|
Candadai M, Izquierdo EJ. Sources of predictive information in dynamical neural networks. Sci Rep 2020; 10:16901. [PMID: 33037274 PMCID: PMC7547683 DOI: 10.1038/s41598-020-73380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022] Open
Abstract
Behavior involves the ongoing interaction between an organism and its environment. One of the prevailing theories of adaptive behavior is that organisms are constantly making predictions about their future environmental stimuli. However, how they acquire that predictive information is still poorly understood. Two complementary mechanisms have been proposed: predictions are generated from an agent's internal model of the world or predictions are extracted directly from the environmental stimulus. In this work, we demonstrate that predictive information, measured using bivariate mutual information, cannot distinguish between these two kinds of systems. Furthermore, we show that predictive information cannot distinguish between organisms that are adapted to their environments and random dynamical systems exposed to the same environment. To understand the role of predictive information in adaptive behavior, we need to be able to identify where it is generated. To do this, we decompose information transfer across the different components of the organism-environment system and track the flow of information in the system over time. To validate the proposed framework, we examined it on a set of computational models of idealized agent-environment systems. Analysis of the systems revealed three key insights. First, predictive information, when sourced from the environment, can be reflected in any agent irrespective of its ability to perform a task. Second, predictive information, when sourced from the nervous system, requires special dynamics acquired during the process of adapting to the environment. Third, the magnitude of predictive information in a system can be different for the same task if the environmental structure changes.
Collapse
Affiliation(s)
- Madhavun Candadai
- Cognitive Science program, Indiana University, Bloomington, IN, USA
- The Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Eduardo J Izquierdo
- Cognitive Science program, Indiana University, Bloomington, IN, USA.
- The Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
17
|
Sherrill SP, Timme NM, Beggs JM, Newman EL. Correlated activity favors synergistic processing in local cortical networks in vitro at synaptically relevant timescales. Netw Neurosci 2020; 4:678-697. [PMID: 32885121 PMCID: PMC7462423 DOI: 10.1162/netn_a_00141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Neural information processing is widely understood to depend on correlations in neuronal activity. However, whether correlation is favorable or not is contentious. Here, we sought to determine how correlated activity and information processing are related in cortical circuits. Using recordings of hundreds of spiking neurons in organotypic cultures of mouse neocortex, we asked whether mutual information between neurons that feed into a common third neuron increased synergistic information processing by the receiving neuron. We found that mutual information and synergistic processing were positively related at synaptic timescales (0.05-14 ms), where mutual information values were low. This effect was mediated by the increase in information transmission-of which synergistic processing is a component-that resulted as mutual information grew. However, at extrasynaptic windows (up to 3,000 ms), where mutual information values were high, the relationship between mutual information and synergistic processing became negative. In this regime, greater mutual information resulted in a disproportionate increase in redundancy relative to information transmission. These results indicate that the emergence of synergistic processing from correlated activity differs according to timescale and correlation regime. In a low-correlation regime, synergistic processing increases with greater correlation, and in a high-correlation regime, synergistic processing decreases with greater correlation.
Collapse
Affiliation(s)
- Samantha P. Sherrill
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Nicholas M. Timme
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - John M. Beggs
- Department of Physics & Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Ehren L. Newman
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
18
|
Dynamic representations in networked neural systems. Nat Neurosci 2020; 23:908-917. [PMID: 32541963 DOI: 10.1038/s41593-020-0653-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/12/2020] [Indexed: 11/08/2022]
Abstract
A group of neurons can generate patterns of activity that represent information about stimuli; subsequently, the group can transform and transmit activity patterns across synapses to spatially distributed areas. Recent studies in neuroscience have begun to independently address the two components of information processing: the representation of stimuli in neural activity and the transmission of information in networks that model neural interactions. Yet only recently are studies seeking to link these two types of approaches. Here we briefly review the two separate bodies of literature; we then review the recent strides made to address this gap. We continue with a discussion of how patterns of activity evolve from one representation to another, forming dynamic representations that unfold on the underlying network. Our goal is to offer a holistic framework for understanding and describing neural information representation and transmission while revealing exciting frontiers for future research.
Collapse
|
19
|
Levy M, Sporns O, MacLean JN. Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding. Cell Rep 2020; 31:107483. [PMID: 32294431 PMCID: PMC7218481 DOI: 10.1016/j.celrep.2020.03.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Accepted: 03/13/2020] [Indexed: 02/02/2023] Open
Abstract
Unbiased and dense sampling of large populations of layer 2/3 pyramidal neurons in mouse primary visual cortex (V1) reveals two functional sub-populations: neurons tuned and untuned to drifting gratings. Whether functional interactions between these two groups contribute to the representation of visual stimuli is unclear. To examine these interactions, we summarize the population partial pairwise correlation structure as a directed and weighted graph. We find that tuned and untuned neurons have distinct topological properties, with untuned neurons occupying central positions in functional networks (FNs). Implementation of a decoder that utilizes the topology of these FNs yields accurate decoding of visual stimuli. We further show that decoding performance degrades comparably following manipulations of either tuned or untuned neurons. Our results demonstrate that untuned neurons are an integral component of V1 FNs and suggest that network interactions contain information about the stimulus that is accessible to downstream elements.
Collapse
Affiliation(s)
- Maayan Levy
- Committee on Computational Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Olaf Sporns
- Indiana University Network Science Institute, Indiana University, Bloomington, IN 47405, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jason N MacLean
- Committee on Computational Neuroscience, The University of Chicago, Chicago, IL 60637, USA; Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior.
| |
Collapse
|
20
|
Betzel RF. Organizing principles of whole-brain functional connectivity in zebrafish larvae. Netw Neurosci 2020; 4:234-256. [PMID: 32166210 PMCID: PMC7055648 DOI: 10.1162/netn_a_00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Network science has begun to reveal the fundamental principles by which large-scale brain networks are organized, including geometric constraints, a balance between segregative and integrative features, and functionally flexible brain areas. However, it remains unknown whether whole-brain networks imaged at the cellular level are organized according to similar principles. Here, we analyze whole-brain functional networks reconstructed from calcium imaging data recorded in larval zebrafish. Our analyses reveal that functional connections are distance-dependent and that networks exhibit hierarchical modular structure and hubs that span module boundaries. We go on to show that spontaneous network structure places constraints on stimulus-evoked reconfigurations of connections and that networks are highly consistent across individuals. Our analyses reveal basic organizing principles of whole-brain functional brain networks at the mesoscale. Our overarching methodological framework provides a blueprint for studying correlated activity at the cellular level using a low-dimensional network representation. Our work forms a conceptual bridge between macro- and mesoscale network neuroscience and opens myriad paths for future studies to investigate network structure of nervous systems at the cellular level.
Collapse
Affiliation(s)
- Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
21
|
Li M, Han Y, Aburn MJ, Breakspear M, Poldrack RA, Shine JM, Lizier JT. Transitions in information processing dynamics at the whole-brain network level are driven by alterations in neural gain. PLoS Comput Biol 2019; 15:e1006957. [PMID: 31613882 PMCID: PMC6793849 DOI: 10.1371/journal.pcbi.1006957] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
A key component of the flexibility and complexity of the brain is its ability to dynamically adapt its functional network structure between integrated and segregated brain states depending on the demands of different cognitive tasks. Integrated states are prevalent when performing tasks of high complexity, such as maintaining items in working memory, consistent with models of a global workspace architecture. Recent work has suggested that the balance between integration and segregation is under the control of ascending neuromodulatory systems, such as the noradrenergic system, via changes in neural gain (in terms of the amplification and non-linearity in stimulus-response transfer function of brain regions). In a previous large-scale nonlinear oscillator model of neuronal network dynamics, we showed that manipulating neural gain parameters led to a 'critical' transition in phase synchrony that was associated with a shift from segregated to integrated topology, thus confirming our original prediction. In this study, we advance these results by demonstrating that the gain-mediated phase transition is characterized by a shift in the underlying dynamics of neural information processing. Specifically, the dynamics of the subcritical (segregated) regime are dominated by information storage, whereas the supercritical (integrated) regime is associated with increased information transfer (measured via transfer entropy). Operating near to the critical regime with respect to modulating neural gain parameters would thus appear to provide computational advantages, offering flexibility in the information processing that can be performed with only subtle changes in gain control. Our results thus link studies of whole-brain network topology and the ascending arousal system with information processing dynamics, and suggest that the constraints imposed by the ascending arousal system constrain low-dimensional modes of information processing within the brain.
Collapse
Affiliation(s)
- Mike Li
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Yinuo Han
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Matthew J. Aburn
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | | | - Russell A. Poldrack
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - James M. Shine
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Joseph T. Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, Australia
- Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
22
|
Synergistic Coding of Visual Information in Columnar Networks. Neuron 2019; 104:402-411.e4. [PMID: 31399280 DOI: 10.1016/j.neuron.2019.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
Abstract
Incoming stimuli are encoded collectively by populations of cortical neurons, which transmit information by using a neural code thought to be predominantly redundant. Redundant coding is widely believed to reflect a design choice whereby neurons with overlapping receptive fields sample environmental stimuli to convey similar information. Here, we performed multi-electrode laminar recordings in awake monkey V1 to report significant synergistic interactions between nearby neurons within a cortical column. These interactions are clustered non-randomly across cortical layers to form synergy and redundancy hubs. Homogeneous sub-populations comprising synergy hubs decode stimulus information significantly better compared to redundancy hubs or heterogeneous sub-populations. Mechanistically, synergistic interactions emerge from the stimulus dependence of correlated activity between neurons. Our findings suggest a refinement of the prevailing ideas regarding coding schemes in sensory cortex: columnar populations can efficiently encode information due to synergistic interactions even when receptive fields overlap and shared noise between cells is high.
Collapse
|