1
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2024:e2402571. [PMID: 39498750 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - M Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Alaina F Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Tiffany V Pulido
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Jessica N Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Johnny Yi
- Department of Medical and Surgical Gynecology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jeffrey L Cornella
- Department of Medical and Surgical Gynecology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - David G Lott
- Division of Laryngology, Department of Otolaryngology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | - Lindsay B Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Taylor G Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE) at Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Pandele AM, Selaru A, Dinescu S, Costache M, Vasile E, Dascălu C, Raicopol MD, Teodorescu M. Synthesis and evaluation of poly(propylene fumarate)-grafted graphene oxide as nanofiller for porous scaffolds. J Mater Chem B 2023; 11:8241-8250. [PMID: 37565837 DOI: 10.1039/d3tb01232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In an effort to obtain porous scaffolds with improved mechanical properties and biocompatibility, the current study discusses nanocomposite materials based on poly(propylene fumarate)/N-vinyl pyrrolidone(PPF/NVP) networks reinforced with polymer-modified graphene oxide (GO@PPF). The GO@PPF nanofiller was synthesized through a facile and convenient surface esterification reaction, and the successful functionalization was demonstrated by complementary techniques such as FT-IR, XPS, TGA and TEM. The PPF/NVP/GO@PPF porous scaffolds obtained using NaCl as a porogen were further characterized in terms of morphology, mechanical properties, sol fraction, and in vitro degradability. SEM and nanoCT examinations of NaCl-leached samples revealed networks of interconnected pores, fairly uniform in size and shape. We show that the incorporation of GO@PPF in the polymer matrix leads to a significant enhancement in the mechanical properties, which we attribute to the formation of denser and more homogenous networks, as suggested by a decreased sol fraction for the scaffolds containing a higher amount of GO@PPF. Moreover, the surface of mineralized PPF/NVP/GO@PPG scaffolds is uniformly covered in hydroxyapatite-like crystals having a morphology and Ca/P ratio similar to bone tissue. Furthermore, the preliminary biocompatibility assessment revealed a good interaction between PPF/PVP/GO@PPF scaffolds and murine pre-osteoblasts in terms of cell viability and proliferation.
Collapse
Affiliation(s)
- Andreea M Pandele
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania
| | - Aida Selaru
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania
| | - Constanţa Dascălu
- Department of Physics, University Politehnica of Bucharest, 313 Splaiul Independenţei, 060042, Bucharest, Romania
| | - Matei D Raicopol
- "Costin Nenitzescu" Department of Organic Chemistry, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania.
| | - Mircea Teodorescu
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania
| |
Collapse
|
3
|
Wrzecionek M, Kolankowski K, Gadomska-Gajadhur A. Synthesis of Poly(glycerol butenedioate)-PGB-Unsaturated Polyester toward Biomedical Applications. ACS OMEGA 2022; 7:25171-25178. [PMID: 35910158 PMCID: PMC9330079 DOI: 10.1021/acsomega.2c01934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 05/27/2023]
Abstract
A new polyester poly(glycerol butenedioate) (PGB) was obtained in the bulk polycondensation of glycerin and maleic anhydride. Glycerol polyesters are new biomaterials commonly used in tissue engineering. PGB, containing the α,β-unsaturated moiety, could be very interesting due to potential modifications such as additions or oxidation. Such modifications are not possible on the heretofore known glycerol polyesters due to their structure without α,β-unsaturated moieties. In this work, the developed process was optimized by applying the design of experiments. The optimization criterium was the minimization of the E/Z isomer ratio. Applying the two-stage process, the E/Z isomer ratio was reduced from 5.5 to 0.5 compared to the one-stage process. The degree of branching was also reduced from 17 to 9%, as well as the degree of esterification from 0.89 to 0.72. The obtained structure can be used in modifying or cross-linking via Michael additions.
Collapse
|
4
|
Mahmud MAP, Tat T, Xiao X, Adhikary P, Chen J. Advances in 4D-printed physiological monitoring sensors. EXPLORATION (BEIJING, CHINA) 2021; 1:20210033. [PMID: 37323690 PMCID: PMC10191037 DOI: 10.1002/exp.20210033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 06/15/2023]
Abstract
Physiological monitoring sensors have been critical in diagnosing and improving the healthcare industry over the past 30 years, despite various limitations regarding providing differences in signal outputs in response to the changes in the user's body. Four-dimensional (4D) printing has been established in less than a decade; therefore, it currently offers limited resources and knowledge. Still, the technique paves the way for novel platforms in today's ever-growing technologies. This innovative paradigm of 4D printing physiological monitoring sensors aspires to provide real-time and continuous diagnoses. In this perspective, we cover the advancements currently available in the 4D printing industry that has arisen in the last septennium, focusing on the overview of 4D printing, its history, and both wearable and implantable physiological sensing solutions. Finally, we explore the current challenges faced in this field, translational research, and its future prospects. All of these aims highlight key areas of attention that can be applied by future researchers to fully transform 4D printed physiological monitoring sensors into more viable medical products.
Collapse
Affiliation(s)
| | - Trinny Tat
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Xiao Xiao
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Partho Adhikary
- Department of Biomedical Engineering, Khulna University of Engineering & TechnologyKhulnaBangladesh
| | - Jun Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Jiang T, Yang T, Bao Q, Sun W, Yang M, Mao C. Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. J Mater Chem B 2021; 10:4741-4758. [PMID: 34812829 DOI: 10.1039/d1tb01935j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels are prevalent scaffolds for tissue regeneration because of their hierarchical architectures along with outstanding biocompatibility and unique rheological and mechanical properties. For decades, researchers have found that many materials (natural, synthetic, or hybrid) can form hydrogels using different cross-linking strategies. Traditional strategies for fabricating hydrogels include physical, chemical, and enzymatical cross-linking methods. However, due to the diverse characteristics of different tissues/organs to be regenerated, tissue-customized hydrogels need to be developed through precisely controlled processes, making the manufacture of hydrogels reliant on novel cross-linking strategies. Thus, hybrid cross-linkable materials are proposed to tackle this challenge through hybrid cross-linking strategies. Here, different cross-linkable materials and their associated cross-linking strategies are summarized. From the perspective of the major characteristics of the target tissues/organs, we critically analyze how different cross-linking strategies are tailored to fit the regeneration of such tissues and organs. To further advance this field, more appropriate cross-linkable materials and cross-linking strategies should be investigated. In addition, some innovative technologies, such as 3D bioprinting, the internet of medical things (IoMT), and artificial intelligence (AI), are also proposed to improve the development of hydrogels for more efficient tissue regeneration.
Collapse
Affiliation(s)
- Tongmeng Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, P. R. China.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
6
|
Liu X, Camilleri ET, Li L, Gaihre B, Rezaei A, Park S, Miller Ii AL, Tilton M, Waletzki BE, Terzic A, Elder BD, Yaszemski MJ, Lu L. Injectable catalyst-free "click" organic-inorganic nanohybrid (click-ON) cement for minimally invasive in vivo bone repair. Biomaterials 2021; 276:121014. [PMID: 34280821 PMCID: PMC8916681 DOI: 10.1016/j.biomaterials.2021.121014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
Injectable polymers have attracted intensive attention in tissue engineering and drug delivery applications. Current injectable polymer systems often require free-radical or heavy-metal initiators and catalysts for the crosslinking process, which may be extremely toxic to the human body. Here, we report a novel polyhedral oligomeric silsesquioxane (POSS) based strain-promoted alkyne-azide cycloaddition (SPAAC) "click" organic-inorganic nanohybrids (click-ON) system that can be click-crosslinked without any toxic initiators or catalysts. The click-ON scaffolds supported excellent adhesion, proliferation, and osteogenesis of stem cells. In vivo evaluation using a rat cranial defect model showed outstanding bone formation with minimum cytotoxicity. Essential osteogenic alkaline phosphatase (ALP) and vascular CD31 marker expression were detected on the defect site, indicating excellent support of in vivo osteogenesis and vascularization. Using salt leaching techniques, an injectable porous click-ON cement was developed to create porous structures and support better in vivo bone regeneration. Beyond defect filling, the click-ON cement also showed promising application for spinal fusion using rabbits as a model. Compared to the current clinically used poly (methyl methacrylate) (PMMA) cement, this click-ON cement showed great advantages of low heat generation, better biocompatibility and biodegradability, and thus has great potential for bone and related tissue engineering applications.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Emily T Camilleri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - A Lee Miller Ii
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brian E Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
|
8
|
Rezaei A, Tilton M, Giambini H, Li Y, Hooke A, Miller Ii AL, Yaszemski MJ, Lu L. Three-dimensional surface strain analyses of simulated defect and augmented spine segments: A biomechanical cadaveric study. J Mech Behav Biomed Mater 2021; 119:104559. [PMID: 33915439 DOI: 10.1016/j.jmbbm.2021.104559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022]
Abstract
While several studies have investigated fracture outcomes of intact vertebrae, fracture properties in metastatically-involved and augmented vertebrae are still far from understood. Consequently, this study was aimed to use 3D digital image correlation (3D-DIC) method to investigate the failure properties of spine segments with simulated metastatic lesions, segments augmented with poly(propylene fumarate) (PPF), and compare the outcomes with intact spines. To this end, biomechanical experiments accompanied by 3D-DIC were performed on spine segments consisting of three vertebrae and two intervertebral discs (IVDs) at loading rates of 0.083 mm/s, mimicking a physiological loading condition, and 200 mm/s, mimicking an impact-type loading condition such as a fall or an accident. Full-field surface strain analysis indicated PPF augmentation reduces the superior/inferior strain when compared with the defect specimens; Presence of a defect in the middle vertebra resulted in shear band fracture pattern. Failure of the superior endplates was confirmed in several defect specimens as the superior IVDs were protruding out of defects. The augmenting PPF showed lower superior/inferior surface strain values at the fast speed as compared to the slow speed. The results of our study showed a significant increase in the fracture force from slow to fast speeds (p = 0.0246). The significance of the study was to determine the fracture properties of normal, pathological, and augmented spinal segments under physiologically-relevant loading conditions. Understanding failure properties associated with either defect (i.e., metastasis lesion) or augmented (i.e., post-treatment) spine segments could potentially provide new insights on the outcome prediction and treatment planning. Additionally, this study provides new knowledge on the effect of PPF augmentation in improving fracture properties, potentially decreasing the risk of fracture in osteoporotic and metastatic spines.
Collapse
Affiliation(s)
- Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Hugo Giambini
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Hooke
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alan L Miller Ii
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Rezaei A, Giambini H, Miller Ii AL, Xu H, Xu H, Li Y, Yaszemski MJ, Lu L. CT-based structural analyses of vertebral fractures with polymeric augmentation: A study of cadaveric three-level spine segments. Comput Biol Med 2021; 133:104395. [PMID: 33872967 DOI: 10.1016/j.compbiomed.2021.104395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Pathologic vertebral fractures due to metastasis can occur under normal physiologic activities, leading to pain and neurologic deficit. Prophylactic vertebroplasty is a technique used to augment vertebral strength and reduce the risk of fracture. Currently, no technique is available to objectively assess vertebral fracture risk in metastatically-involved vertebral bodies. The aim of the current study was to develop an image-based computational technique to estimate fracture force outcomes during bending. To this end, mechanical testing was performed on intact, simulated defect, PMMA-augmented, and PPF-augmented 3-level spine segments from both sexes under a compression/flexion-type loading condition. The augmentation performance of poly(methyl methacrylate) (PMMA) and poly(propylene fumarate) (PPF) were also evaluated and compared. Cylindrical defects were created in 3-level spine segments with attached posterior elements and ligaments. Using CT images of each segment, a rigidity analysis technique was developed and used for predicting fracture forces during bending. On average, PPF strengthened the segments by about 630 N, resulting in fracture forces similar to those observed in the intact and PMMA-augmented groups. Female spines fractured at about 1150 N smaller force than did male spines. Rigidity analysis, along with age, explained 66% variability in experimental outcomes. This number increased to 74% when vertebral size and age were added to the rigidity analysis as explanatory variables. Both PPF and PMMA similarly increased fracture strength to the level of intact specimens. The results suggest that PPF can be a suitable candidate for augmentation purposes and rigidity analysis can be a promising predicting tool for vertebral fracture forces.
Collapse
Affiliation(s)
- Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Hugo Giambini
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alan L Miller Ii
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Hao Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Razazpour F, Najafi F, Moshaverinia A, Fatemi SM, Sima S. Synthesis and characterization of a photo-cross-linked bioactive polycaprolactone-based osteoconductive biocomposite. J Biomed Mater Res A 2021; 109:1858-1868. [PMID: 33830598 DOI: 10.1002/jbm.a.37178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In this study, a light cross-linkable biocomposite scaffold based on a photo-cross-linkable poly (propylene fumarate) (PPF)-co-polycaprolactone (PCL) tri-block copolymer was synthesized and characterized. The developed biodegradable scaffold was further modified with β-tricalcium phosphate (β-TCP) bioceramic for bone tissue engineering applications. The developed biocomposite was characterized using H nuclear magnetic resonance and Fourier transform infrared spectroscopy. Moreover, the bioceramic particle size distribution and morphology were evaluated using Brunauer-Emmett-Teller method, X-ray diffraction, and scanning electron microscopy. The mechanical properties and biodegradation of the scaffolds were also evaluated. Cytotoxicity and mineralization assays were performed to analyze the biocompatibility and bioactivity capacity of the developed biocomposite. The characterization data confirmed the development of a biodegradable and photo-cross-linkable PCL-based biocomposite reinforced with β-TCP bioceramic. In vitro analyses demonstrated the biocompatibility and mineralization potential of the synthesized bioceramic. Altogether, the results of the present study suggest that the photo-cross-linkable PCL-PPF-PCL tri-block copolymer reinforced with β-TCP is a promising biocomposite for bone tissue engineering applications. According to the results, this newly synthesized material has a proper chemical composition for further clinically-relevant studies in tissue engineering.
Collapse
Affiliation(s)
- Fateme Razazpour
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Alireza Moshaverinia
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, USA
| | - Seyyed Mostafa Fatemi
- Department of Dental Materials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Laser Research Center, ACER, Tehran, Iran
| | - Shahabi Sima
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Dental Biomaterials Association, Tehran, Iran
| |
Collapse
|
12
|
Kovylin RS, Aleynik DY, Fedushkin IL. Modern Porous Polymer Implants: Synthesis, Properties, and Application. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The needs of modern surgery triggered the intensive development of transplantology, medical materials science, and tissue engineering. These directions require the use of innovative materials, among which porous polymers occupy one of the leading positions. The use of natural and synthetic polymers makes it possible to adjust the structure and combination of properties of a material to its particular application. This review generalizes and systematizes the results of recent studies describing requirements imposed on the structure and properties of synthetic (or artificial) porous polymer materials and implants on their basis and the advantages and limitations of synthesis methods. The most extensively employed, promising initial materials are considered, and the possible areas of application of polymer implants based on these materials are highlighted.
Collapse
|
13
|
Cemali G, Aruh A, Köse GT, Can E. Biodegradable polymeric networks of poly(propylene fumarate) and phosphonic acid‐based monomers. POLYM INT 2020. [DOI: 10.1002/pi.6077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Görkem Cemali
- Genetics and Bioengineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Avram Aruh
- Chemical Engineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Gamze Torun Köse
- Genetics and Bioengineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Erde Can
- Chemical Engineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| |
Collapse
|
14
|
Liu X, George MN, Park S, Miller Ii AL, Gaihre B, Li L, Waletzki BE, Terzic A, Yaszemski MJ, Lu L. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Acta Biomater 2020; 111:129-140. [PMID: 32428680 DOI: 10.1016/j.actbio.2020.04.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/29/2020] [Accepted: 04/25/2020] [Indexed: 02/03/2023]
Abstract
Three-dimensional (3D) printing is a promising technology for tissue engineering. However, 3D-printing methods are limited in their ability to produce desired microscale features or electrochemical properties in support of robust cell adhesion, proliferation, and differentiation. This study addresses this deficiency by proposing an integrated, one-step, method to increase the cytocompatibility of 3D-printed scaffolds through functionalization leveraging conductive carbon nanotubes (CNTs). To this end, CNTs were first sonicated with water-soluble single-stranded deoxyribonucleic acid (ssDNA) to generate a negatively charged ssDNA@CNT nano-complex. Concomitantly, 3D-printed poly(propylene fumarate) (PPF) scaffolds were ammonolyzed to introduce free amine groups, which can take on a positive surface charge in water. The ssDNA@CNT nano-complex was then applied to 3D-printed scaffolds through a simple one-step coating utilizing electric-static force. This fast and facile functionalization step resulted in a homogenous and non-toxic coating of CNTs to the surface, which significantly improved the adhesion, proliferation, and differentiation of pre-osteoblast cells. In addition, the CNT based conductive coating layer enabled modulation of cell behavior through electrical stimuli (ES) leading to cellular proliferation and osteogenic gene marker expression, including alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Collectively, these data provide the foundation for a one-step functionalization method for simple, fast, and effective functionalization of 3D printed scaffolds that support enhanced cell adhesion, proliferation, and differentiation, especially when employed in conjunction with ES. STATEMENT OF SIGNIFICANCE: Three-dimensional (3D) printing is a promising technology for tissue engineering. However, 3D-printing methods have limited ability to produce desired features or electrochemical properties in support of robust cell behavior. To address this deficiency, the current study proposed an integrated, one-step method to increase the cytocompatibility of 3D-printed scaffolds through functionalization leveraging conductive carbon nanotubes (CNTs). This fast and facile functionalization resulted in a homogenous and non-toxic coating of CNTs to the surface, which significantly improved the adhesion, proliferation, and differentiation of cells on the 3D-printed scaffolds.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - A Lee Miller Ii
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
15
|
Gaihre B, Liu X, Lee Miller A, Yaszemski M, Lu L. Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1758718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Le Guéhennec L, Van Hede D, Plougonven E, Nolens G, Verlée B, De Pauw MC, Lambert F. In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration. J Biomed Mater Res A 2019; 108:412-425. [PMID: 31654476 DOI: 10.1002/jbm.a.36823] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Stereolithography (SLA) is an interesting manufacturing technology to overcome limitations of commercially available particulated biomaterials dedicated to intra-oral bone regeneration applications. The purpose of this study was to evaluate the in vitro and in vivo biocompatibility and osteoinductive properties of two calcium-phosphate (CaP)-based scaffolds manufactured by SLA three-dimensional (3D) printing. Pellets and macro-porous scaffolds were manufactured in pure hydroxyapatite (HA) and in biphasic CaP (HA:60-TCP:40). Physico-chemical characterization was performed using micro X-ray fluorescence, scanning electron microscopy (SEM), optical interferometry, and microtomography (μCT) analyses. Osteoblast-like MG-63 cells were used to evaluate the biocompatibility of the pellets in vitro with MTS assay and the cell morphology and growth characterized by SEM and DAPI-actin staining showed similar early behavior. For in vivo biocompatibility, newly formed bone and biodegradability of the experimental scaffolds were evaluated in a subperiosteal cranial rat model using μCT and descriptive histology. The histological analysis has not indicated evidences of inflammation but highlighted close contacts between newly formed bone and the experimental biomaterials revealing an excellent scaffold osseointegration. This study emphasizes the relevance of SLA 3D printing of CaP-based biomaterials for intra-oral bone regeneration even if manufacturing accuracy has to be improved and further experiments using biomimetic scaffolds should be conducted.
Collapse
Affiliation(s)
- Laurent Le Guéhennec
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes, France.,Department of Preclinical Biomedical Sciences, Mammalian Cell Culture Laboratory, GIGA-R, Faculty of Medicine, Liège, Belgium
| | - Dorien Van Hede
- Department of Periodontology and Oral Surgery, Faculty of Medicine, Liège, Belgium
| | - Erwan Plougonven
- Department of Chemical Engineering, Faculty of Applied Sciences, Liège, Belgium
| | - Grégory Nolens
- Department of Biomedical Sciences, Faculty of Medicine, Namur, Belgium
| | - Bruno Verlée
- Sirris, Additive Manufacturing Department, Seraing, Belgium
| | - Marie-Claire De Pauw
- Department of Preclinical Biomedical Sciences, Mammalian Cell Culture Laboratory, GIGA-R, Faculty of Medicine, Liège, Belgium
| | - France Lambert
- Department of Periodontology and Oral Surgery, Faculty of Medicine, Liège, Belgium
| |
Collapse
|
17
|
Karfarma M, Esnaashary MH, Rezaie HR, Javadpour J, Naimi-Jamal MR. Poly(propylene fumarate)/magnesium calcium phosphate injectable bone composite: Effect of filler size and its weight fraction on mechanical properties. Proc Inst Mech Eng H 2019; 233:1165-1174. [PMID: 31545134 DOI: 10.1177/0954411919877277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to produce a composite of poly(propylene fumarate)/magnesium calcium phosphate as a substitutional implant in the treatment of trabecular bone defects. So, the effect of magnesium calcium phosphate particle size, magnesium calcium phosphate:poly(propylene fumarate) weight ratio on compressive strength, Young's modulus, and toughness was assessed by considering effective fracture mechanisms. Micro-sized (∼30 µm) and nano-sized (∼50 nm) magnesium calcium phosphate particles were synthesized via emulsion precipitation and planetary milling methods, respectively, and added to poly(propylene fumarate) up to 20 wt.%. Compressive strength, Young's modulus, and toughness of the composites were measured by compressive test, and effective fracture mechanisms were evaluated by imaging fracture surface. In both micro- and nano-composites, the highest compressive strength was obtained by adding 10 wt.% magnesium calcium phosphate particles, and the enhancement in nano-composite was superior to micro-one. The micrographs of fracture surface revealed different mechanisms such as crack pinning, void plastic growth, and particle cleavage. According to the results, the produced composite can be considered as a candidate for substituting hard tissue.
Collapse
Affiliation(s)
- Masoud Karfarma
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Hamid Reza Rezaie
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Javadpour
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
18
|
Liu X, Miller AL, Xu H, Waletzki BE, Lu L. Injectable Catalyst-Free Poly(Propylene Fumarate) System Cross-Linked by Strain Promoted Alkyne-Azide Cycloaddition Click Chemistry for Spine Defect Filling. Biomacromolecules 2019; 20:3352-3365. [PMID: 31398020 PMCID: PMC9009285 DOI: 10.1021/acs.biomac.9b00133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new PPF-BCN/hyPCL32-N3 injectable system that can be cross-linked by catalyst-free, strain promoted alkyne-azide cycloaddition (SPAAC) click chemistry was developed for tissue engineering applications. The system consisted of two components: PPF-BCN, poly(propylene fumarate) (PPF) functionalized with (1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN-OH), and hyPCL32-N3, a hyper-branched 32-arm poly(ε-caprolactone) (PCL) dendrimer functionalized with azide as the cross-linker core. Fast SPAAC click reaction allowed the desired gelation of the system without using any toxic initiator or catalyst. Compared to the conventional injectable formulation, e.g., poly(methyl methacrylate) (PMMA), our PPF-BCN/hyPCL32-N3 (abbreviated as PFCL-Click) injectable system showed enhanced biocompatibility and low heat generation during cross-linking. After reaction, the cross-linked PFCL-Click scaffolds supported excellent proliferation and differentiation of preosteoblast cells on the surface. The PFCL-Click system can be successfully injected into vertebral bodies of rabbit spine and can be monitored by X-ray imaging after incorporating zirconium dioxide (ZrO2) powder. With these unique advantages, this injectable system has promising potential for bone defect repair and other tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Hao Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Liu X, Miller AL, Park S, George MN, Waletzki BE, Xu H, Terzic A, Lu L. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23558-23572. [PMID: 31199116 PMCID: PMC8942345 DOI: 10.1021/acsami.9b04121] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) materials have emerged as a new promising research topic for tissue engineering because of their ability to alter the surface properties of tissue scaffolds and thus improve their biocompatibility and cell affinity. Multiple 2D materials, such as graphene and graphene oxide (GO), have been widely reported to enhance cell adhesion and proliferation. Recently, a newly emerged black phosphorus (BP) 2D material has attracted attention in biomedical applications because of its unique mechanical and electrochemical characteristics. In this study, we investigated the synergistic effect of these two types of 2D materials on cell osteogenesis for bone tissue engineering. BP was first wrapped in negatively charged GO nanosheets, which were then adsorbed together onto positively charged poly(propylene fumarate) three-dimensional (3D) scaffolds. The increased surface area provided by GO nanosheets would enhance cell attachment at the initial stage. In addition, slow oxidation of BP nanosheets wrapped within GO layers would generate a continuous release of phosphate, an important osteoblast differentiation facilitator designed to stimulate cell osteogenesis toward the new bone formation. Through the use of 3D confocal imaging, unique interactions between cells and BP nanosheets were observed, including a stretched cell shape and the development of filaments around the BP nanosheets, along with increased cell proliferation when compared with scaffolds incorporating only one of the 2D materials. Furthermore, the biomineralization of 3D scaffolds, as well as cellular osteogenic markers, was all measured and improved on scaffolds with both BP and GO nanosheets. All these results indicate that the incorporation of 2D BP and GO materials could effectively and synergistically stimulate cell proliferation and osteogenesis on 3D tissue scaffolds.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Matthew N. George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Corresponding Author: . Tel.: 507-284-2267. Fax: 507-284-5075
| |
Collapse
|
20
|
Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. POLYMERIC BIOMATERIALS FOR SCAFFOLD-BASED BONE REGENERATIVE ENGINEERING. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:128-154. [PMID: 31423461 PMCID: PMC6697158 DOI: 10.1007/s40883-018-0072-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use. These favorable attributes have contributed to the rise of scaffold-based polymeric tissue regeneration. Critical components in the scaffold-based polymeric regenerative engineering approach often include 1. The existence of biodegradable polymeric porous structures with properties selected to promote tissue regeneration and while providing appropriate mechanical support during tissue regeneration. 2. Cellular populations that can influence and enhance regeneration. 3. The use of growth and morphogenetic factors which can influence cellular migration, differentiation and tissue regeneration in vivo. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and their ability to produce biocompatible degradation products. This paper presents an overview of polymeric scaffold-based bone tissue regeneration and reviews approaches as well as the particular roles of biodegradable polymers currently in use.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tahereh Jafari
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jorge L. Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
21
|
Cai Z, Wan Y, Becker ML, Long YZ, Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials 2019; 208:45-71. [PMID: 30991217 DOI: 10.1016/j.biomaterials.2019.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/04/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Poly(propylene fumarate) (PPF) is a biodegradable polymer that has been investigated extensively over the last three decades. It has led many scientists to synthesize and fabricate a variety of PPF-based materials for biomedical applications due to its controllable mechanical properties, tunable degradation and biocompatibility. This review provides a comprehensive overview of the progress made in improving PPF synthesis, resin formulation, crosslinking, device fabrication and post polymerization modification. Further, we highlight the influence of these parameters on biodegradation, biocompatibility, and their use in a number of regenerative medicine applications, especially bone tissue engineering. In particular, the use of 3D printing techniques for the fabrication of PPF-based scaffolds is extensively reviewed. The recent invention of a ring-opening polymerization method affords precise control of PPF molecular mass, molecular mass distribution (ƉM) and viscosity. Low ƉM facilitates time-certain resorption of 3D printed structures. Novel post-polymerization and post-printing functionalization methods have accelerated the expansion of biomedical applications that utilize PPF-based materials. Finally, we shed light on evolving uses of PPF-based materials for orthopedics/bone tissue engineering and other biomedical applications, including its use as a hydrogel for bioprinting.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, United States.
| | - Yong Wan
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China; Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China.
| | - David Dean
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
22
|
Liu X, Fundora KA, Zhou Z, Miller AL, Lu L. Composite Hydrogel Embedded with Porous Microspheres for Long-Term pH-Sensitive Drug Delivery. Tissue Eng Part A 2019; 25:172-182. [PMID: 30152721 PMCID: PMC6388718 DOI: 10.1089/ten.tea.2018.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT A composite hydrogel embedded with porous microspheres fabricated by phase separation methods was developed and showed excellent long-term anticancer drug delivery capability to cancer cells.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kevin A. Fundora
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zifei Zhou
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alan Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
23
|
Whitely M, Cereceres S, Dhavalikar P, Salhadar K, Wilems T, Smith B, Mikos A, Cosgriff-Hernandez E. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials 2018; 185:194-204. [PMID: 30245387 DOI: 10.1016/j.biomaterials.2018.09.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022]
Abstract
The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5-7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering.
Collapse
Affiliation(s)
- Michael Whitely
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA.
| | - Stacy Cereceres
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA.
| | - Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Thomas Wilems
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Brandon Smith
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | - Antonios Mikos
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | | |
Collapse
|
24
|
Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater 2018; 74:90-111. [PMID: 29753139 DOI: 10.1016/j.actbio.2018.05.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. STATEMENT OF SIGNIFICANCE Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds.
Collapse
Affiliation(s)
- Nicholas A Chartrain
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christopher B Williams
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abby R Whittington
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
25
|
Effective Catalyst for Oxidation Synthesis of 2,4,6-Trimethylbenzoyldipenylphosphine Oxide: V/MCM-41. Catal Letters 2018. [DOI: 10.1007/s10562-018-2299-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Ahn CB, Kim Y, Park SJ, Hwang Y, Lee JW. Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:917-931. [PMID: 28929935 DOI: 10.1080/09205063.2017.1383020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Poly(propylene fumarate) (PPF) has known to be a good candidate material for cartilage tissue regeneration because of its excellent mechanical properties during its degradation processes. Here, we describe the potential application of PPF-based materials as 3D printing bioinks to create macroporous cell scaffolds using micro-stereolithography. To improve cell-matrix interaction of seeded human chondrocytes within the PPF-based 3D scaffolds, we immobilized arginine-glycine-aspartate (RGD) peptide onto the PPF scaffolds. We also evaluated various cellular behaviors of the seeded chondrocytes using MTS assay, microscopic and histological analyses. The results indicated that PPF-based biocompatible scaffolds with immobilized RGD peptide could effectively support initial adhesion and proliferation of human chondrocytes. Such a 3D bio-printable scaffold can offer an opportunity to promote cartilage tissue regeneration.
Collapse
Affiliation(s)
- Chi Bum Ahn
- a Department of Molecular Medicine, College of Medicine , Gachon University , Incheon , Korea
| | - Youngjo Kim
- b Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Republic of Korea
| | - Sung Jean Park
- c College of Pharmacy , Gachon University , Incheon , Korea
| | - Yongsung Hwang
- b Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Republic of Korea.,d Institute of Tissue Regeneration, College of Medicine , Soonchunhyang University , Cheonan-si , Republic of Korea
| | - Jin Woo Lee
- a Department of Molecular Medicine, College of Medicine , Gachon University , Incheon , Korea
| |
Collapse
|
27
|
Diez-Pascual AM. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate). Polymers (Basel) 2017; 9:E260. [PMID: 30970938 PMCID: PMC6432123 DOI: 10.3390/polym9070260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
Poly(propylene fumarate) (PPF) is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), graphene oxide nanoribbons (GONR), graphite oxide nanoplatelets (GONP), polyethylene glycol-functionalized graphene oxide (PEG-GO), polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs) and hydroxyapatite (HA) nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ana M Diez-Pascual
- Analytical Chemistry, Physical Chemistry and Chemical Engineering Department, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, 28871 Madrid, Spain.
| |
Collapse
|
28
|
Walker JM, Bodamer E, Krebs O, Luo Y, Kleinfehn A, Becker ML, Dean D. Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds. Biomacromolecules 2017; 18:1419-1425. [DOI: 10.1021/acs.biomac.7b00146] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jason M. Walker
- The Ohio State University, Department of Plastic
Surgery, 460 West 12th
Avenue, Room 388, Columbus, Ohio 43210, United States
- Youngstown State University, Department of Mechanical
and Industrial Engineering, 1 University Plaza, Youngstown, Ohio 44555, United States
| | - Emily Bodamer
- The Ohio State University, Department of Plastic
Surgery, 460 West 12th
Avenue, Room 388, Columbus, Ohio 43210, United States
| | - Olivia Krebs
- The Ohio State University, Department of Plastic
Surgery, 460 West 12th
Avenue, Room 388, Columbus, Ohio 43210, United States
| | - Yuanyuan Luo
- The University of Akron, Department of Polymer
Science, 170 University
Avenue, Akron, Ohio 44325-3909, United States
| | - Alex Kleinfehn
- The University of Akron, Department of Polymer
Science, 170 University
Avenue, Akron, Ohio 44325-3909, United States
| | - Matthew L. Becker
- The University of Akron, Department of Polymer
Science, 170 University
Avenue, Akron, Ohio 44325-3909, United States
| | - David Dean
- The Ohio State University, Department of Plastic
Surgery, 460 West 12th
Avenue, Room 388, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Müller BM, Loth R, Hoffmeister PG, Zühl F, Kalbitzer L, Hacker MC, Schulz-Siegmund M. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds. Acta Biomater 2017; 51:148-160. [PMID: 28069495 DOI: 10.1016/j.actbio.2017.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023]
Abstract
The concept of macromers allows for a broad adjustment of biomaterial properties by macromer chemistry or copolymerization. Copolymerization strategies can also be used to introduce reactive sites for subsequent surface modification. Control over surface features enables adjustment of cellular reactions with regard to site and object of implantation. We designed macromer-derived polymer films which function as non-implantable analytical substrates for the investigation of surface properties of equally composed scaffolds for bone tissue engineering. To this end, a toolbox of nine different biodegradable, three-armed macromers was thermally cross-copolymerized with poly(ethylene glycol)-methacrylate (PEG-MA) to films. Subsequent activation of PEG-hydroxyl groups with succinic anhydride and N-hydroxysuccinimid allowed for covalent surface modification. We quantified the capacity to immobilize analytes of low (amino-functionalized fluorescent dye, Fcad, and RGD-peptides) and high (alkaline phosphatase, ALP) molecular weight. Fcad grafting level was controlled by macromer chemistry, content and molecular weight of PEG-MA, but also the solvent used for film synthesis. Fcad molar amount per surface area was twentyfive times higher on high-swelling compared to low-swelling films, but differences became smaller when large ALP (appr. 2:1) were employed. Similarly, small differences were observed on RGD peptide functionalized films that were investigated by cell adhesion studies. Presentation of PEG-derivatives on surfaces was visualized by atomic force microscopy (AFM) which unraveled composition-dependent domain formation influencing fluorescent dye immobilization. Surface wetting characteristics were investigated via static water contact angle. We conclude that macromer ethoxylation and lactic acid content determined film swelling, PEG domain formation and eventually efficiency of surface decoration. STATEMENT OF SIGNIFICANCE Surfaces of implantable biomaterials are the site of interaction with a host tissue. Accordingly, modifications in the composition of the surface will determine cellular response towards the material which is crucial for the success of innovations and control of tissue regeneration. We employed a macromer approach which is most flexible for the design of biomaterials with a broad spectrum of physicochemical characteristics. For ideal analytical accessibility of the material platform, we cross-copolymerized films on solid supports. Films allowed for the covalent immobilization of fluorescent labels, peptides and enzymes and thorough analytical characterization revealed that macromer hydrophilicity is the most relevant design parameter for surface analyte presentation in these materials. All analytical results were combined in a model describing PEG linker domain formation and ligand presentation.
Collapse
Affiliation(s)
- Benno M Müller
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Rudi Loth
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Peter-Georg Hoffmeister
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Friederike Zühl
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Liv Kalbitzer
- Biophysical Chemistry, Institute of Biochemistry, Leipzig University, Johannisallee 21, Leipzig 04103, Germany.
| | - Michael C Hacker
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.
| |
Collapse
|
30
|
Liu X, Paulsen A, Giambini H, Guo J, Miller AL, Lin PC, Yaszemski MJ, Lu L. A New Vertebral Body Replacement Strategy Using Expandable Polymeric Cages. Tissue Eng Part A 2017; 23:223-232. [PMID: 27835935 PMCID: PMC5346914 DOI: 10.1089/ten.tea.2016.0246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
We have developed a novel polymeric expandable cage that can be delivered via a posterior-only surgical approach for the treatment of noncontained vertebral defects. This approach is less invasive than an anterior-only or combined approach and much more cost-effective than currently used expandable metal cages. The polymeric expandable cage is composed of oligo poly(ethylene glycol) fumarate (OPF), a hydrogel that has been previously shown to have excellent nerve and bone tissue biocompatibility. OPF hydrogel cages can expand to twice their original diameter and length within a surgical time frame following hydration. Modulation of parameters such as polymeric network crosslink density or the introduction of charge to the network allowed for precise expansion kinetics. To meet specific requirements due to size variations in patient vertebral bodies, we fabricated a series of molds with varied diameters and explored the expansion kinetics of the OPF cages. Results showed a stable expansion ratio of approximately twofold to the original size within 20 min, regardless of the absolute value of the cage size. Following implantation of a dried OPF cage into a noncontained vertebral defect and its in situ expansion with normal saline, other augmentation biomaterials, such as poly(propylene fumarate) (PPF), can be injected to the lumen of the OPF cage and allowed to crosslink in situ. The OPF/PPF composite scaffold can provide the necessary rigidity and stability to the augmented spine.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Alex Paulsen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Hugo Giambini
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ji Guo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Po-Chun Lin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
31
|
Whitely ME, Robinson JL, Stuebben MC, Pearce HA, McEnery MAP, Cosgriff-Hernandez E. Prevention of Oxygen Inhibition of PolyHIPE Radical Polymerization using a Thiol-based Crosslinker. ACS Biomater Sci Eng 2017; 3:409-419. [PMID: 29104917 DOI: 10.1021/acsbiomaterials.6b00663] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions (polyHIPEs) are highly porous constructs currently under investigation as tissue engineered scaffolds. We previously reported on the potential of redox-initiated polyHIPEs as injectable bone grafts that space fill irregular defects with improved integration and rapid cure. Upon subsequent investigation, the radical-initiated cure of these systems rendered them susceptible to oxygen inhibition with an associated increase in uncured macromer in the clinical setting. In the current study, polyHIPEs with increased resistance to oxygen inhibition were fabricated utilizing a tetrafunctional thiol, pentaerythritol tetrakis(3-mercaptoproprionate), and the biodegradable macromer, propylene fumarate dimethacrylate. Increased concentrations of the tetrathiol additive provided improved oxygen resistance as confirmed by polyHIPE gel fraction while retaining the requisite rapid cure rate, compressive properties, and pore architecture for use as an injectable bone graft. Additionally, thiol-methacrylate polyHIPEs exhibited increased degradation under accelerated conditions and supported critical markers of human mesenchymal stem cell activity. In summary, we have improved upon current methods of fabricating injectable polyHIPE grafts to meet translational design goals of improved polymerization kinetics under clinically relevant conditions without sacrificing key scaffold properties.
Collapse
Affiliation(s)
- Michael E Whitely
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Jennifer L Robinson
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Melissa C Stuebben
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Hannah A Pearce
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Madison A P McEnery
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A.,Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Houston, Texas, 77030, U.S.A
| |
Collapse
|
32
|
Bracaglia LG, Messina M, Vantucci C, Baker HB, Pandit A, Fisher JP. Controlled Delivery of Tissue Inductive Factors in a Cardiovascular Hybrid Biomaterial Scaffold. ACS Biomater Sci Eng 2016; 3:1350-1358. [PMID: 33429693 DOI: 10.1021/acsbiomaterials.6b00460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hybrid biomaterials, combining naturally derived and synthetic materials, offer a tissue engineering platform that can provide initial mechanical support from a synthetic biomaterial, as well as a viable, bioactive substrate to support native cell infiltration and remodeling. The goal of this work was to develop a directional delivery system for bioactive molecules that can be coupled with a hybrid biomaterial. It was hypothesized that by using poly(propylene fumarate) as a scaffold to encapsulate PLGA microparticles, a tunable and directional release would be achieved from the intact scaffold into the bioactive substrate, pericardium. Release will occur as poly(lactic-co-glycolic acid) microparticles degrade hydrolytically into biocompatible molecules, leaving the PPF scaffold unchanged within the release time frame and able to mechanically support the pericardium substrate through remodeling. This study evaluated the degradation and strength of the composite polymer layer, and determined the release of encapsulated factors to occur over 8 days, while the bulk polymer remained intact with near 100% of its original mass. Next, this study demonstrated sustained bioactive molecule release into cell culture, causing significant changes to cellular metabolic activity. In particular, delivering vascular endothelial growth factor from the composite material to endothelial cells increased metabolic activity over the same cells with unloaded composite material. Additionally, delivering tumor necrosis factor α from the composite material to L929 cells significantly reduced metabolic activity compared to the same cells with unloaded composite material (p < 0.05). Finally, directional release into a bioactive substrate was confirmed with localized immunostaining of the encapsulated factor.
Collapse
Affiliation(s)
- Laura G Bracaglia
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Michael Messina
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Casey Vantucci
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Hannah B Baker
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
33
|
Salarian M, Xu WZ, Bohay R, Lui EMK, Charpentier PA. Angiogenic Rg 1 /Sr-Doped TiO 2 Nanowire/Poly(Propylene Fumarate) Bone Cement Composites. Macromol Biosci 2016; 17. [PMID: 27618224 DOI: 10.1002/mabi.201600156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/29/2016] [Indexed: 12/11/2022]
Abstract
A new approach is provided for preparing radiopaque and angiogenic poly(propylene fumarate) (PPF) bone cements by integrating Sr-doped n-TiO2 nanowires and ginsenoside Rg1 suitable for treating osteonecrosis. High aspect ratio radiopaque TiO2 -nanowires are synthesized by strontium doping in supercritical CO2 for the first time, showing a new phase, SrTiO3 . PPF is synthesized using a transesterification method by reacting diethyl fumarate and propylene glycol, then functionalized using maleic anhydride to produce terminal carboxyl groups, which are subsequently linked to the nanowires. The strong interfacial adhesion between functionalized PPF and nanowires is examined by scanning electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, thermal analysis, and mechanical testing. An angiogenic modulator, ginsenoside Rg1 , is integrated into the bone cement formulation with the mechanical properties, radiopacity, drug release, and angiogenesis behavior of the formed composites explored. The results show superior radiopacity and excellent release of ginsenoside Rg1 in vitro, as well as a dose-dependent increase in the branching point numbers. The present study suggests this new methodology provides sufficient mechanical properties, radiopacity, and angiogenic activity to be suitable for cementation of necrotic bone.
Collapse
Affiliation(s)
- Mehrnaz Salarian
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,The Ontario Ginseng Innovation & Research Consortium, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - William Z Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Richard Bohay
- Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Edmund M K Lui
- The Ontario Ginseng Innovation & Research Consortium, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Paul A Charpentier
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| |
Collapse
|
34
|
Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 2016; 3:56-71. [PMID: 27239485 PMCID: PMC4880030 DOI: 10.1016/j.gendis.2015.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials.
Collapse
Affiliation(s)
- Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| | - Zach J. Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
35
|
Liu X, Chen W, Gustafson CT, Miller AL, Waletzki BE, Yaszemski MJ, Lu L. Tunable tissue scaffolds fabricated by in situ crosslink in phase separation system. RSC Adv 2015; 5:100824-100833. [PMID: 26989479 DOI: 10.1039/c5ra19406g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3-D) scaffolds with intrinsic porous structures are desirable in various tissue regeneration applications. In this study, a unique method that combines thermally induced phase separation with a photocrosslinking process was developed for the fabrication of 3-D crosslinked polymer scaffolds with densely interconnected porous structures. Biodegradable poly(propylene fumarate)-co-poly(L-lactic acid) with crosslinkable fumarate bonds were used as the structural polymer material and a dioxane/water binary system was applied for the phase separation. By altering the polymer composition (9, 5 and 3 wt%), different types of scaffolds with distinct morphology, mechanical strength, degradation rate, cell growth and morphology, and extracellular matrix production were fabricated. These crosslinked 3-D porous scaffolds with tunable strength and biological responses show promise for potential applications in regenerative therapies, including bone and neural tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Wenjian Chen
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Carl T Gustafson
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - A Lee Miller
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E Waletzki
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Liu X, Miller AL, Waletzki BE, Mamo TK, Yaszemski MJ, Lu L. Hydrolysable core crosslinked particle for receptor-mediated pH-sensitive anticancer drug delivery. NEW J CHEM 2015; 39:8840-8847. [PMID: 27134519 PMCID: PMC4846283 DOI: 10.1039/c5nj01404b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biodegradable micelle systems with both extracellular stabilities and specific targeting properties are highly desirable for anti-cancer drug delivery. Here, we report a biodegradable and crosslinkable poly(propylene fumarate)-co-poly(lactide-co-glycolide)-co-poly(ethylene glycol) (PPF-PLGA-PEG) copolymer conjugated with folate (FA) molecules for receptor-mediated delivery of doxorubicin. Micelles with folate ligands on surface and fumarate bonds within the core were self-assembled and crosslinked, which exhibited better stability against potential physiological conditions during and after drug administration. A pH sensitive drug release profile was observed showing robust release at acidic environment due to the ester hydrolysis of PLGA (50:50). Further, micelles with folate ligands on surface showed strong targeting ability and therapeutic efficacy through receptor-mediated endocytosis, as evidenced by efficacious cancer killing and fatal DNA damage. These results imply promising potential for ligand-conjugated core crosslinked PPF-PLGA-PEG-FA micelles as carrier system for targeted anti-cancer drug delivery.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tewodros K. Mamo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J. Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Gao Q, Hu B, Ning Q, Ye C, Xie J, Ye J, Gao C. A primary study of poly(propylene fumarate)-2-hydroxyethyl methacrylate copolymer scaffolds for tarsal plate repair and reconstruction in rabbit eyelids. J Mater Chem B 2015; 3:4052-4062. [PMID: 32262627 DOI: 10.1039/c5tb00285k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eyelid reconstruction includes anterior lamella reconstruction and posterior lamella reconstruction. As an important skeletal component of the posterior lamella, tarsal plates repair is the key issue for eyelid reconstruction. Presently, neither traditional surgery nor autograft/allograft has achieved satisfactory repair effects. Poly(propylene fumarate)-co-2-hydroxyethyl methacrylate (PPF-HEMA) networks with mass ratios of 1 : 0.5, 1 : 1 and 1 : 2 were synthesized and used as the tarsal substitute in this study. Their chemical compositions, swelling ability, and mechanical properties were characterized. Porous scaffolds were fabricated by a gelatin particle leaching method. The in vitro studies of cytotoxicity on human dermal fibroblasts (HDFs) and degradation demonstrated that PPF-HEMA scaffolds did not have noticeable cell cytotoxicity and their degradation rates correlated with the ratio of PPF to HEMA. The PPF-HEMA networks, with mass ratios of 1 : 1 and 1 : 2, and an ADM control were implanted in rabbits with tarsal plate defects for in vivo biocompatibility and degradation behavior evaluation. PPF-HEMA scaffolds provided satisfactory repair results with mild tissue response and biocompatibility to fibroblast growth and fibrous capsulation compared to the ADM control. The tissue compatible and biodegradable PPF-HEMA networks with elastic mechanical properties were proven to be a suitable candidate for tarsal repair.
Collapse
Affiliation(s)
- Qi Gao
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Liu X, Miller AL, Yaszemski MJ, Lu L. Biodegradable and crosslinkable PPF-PLGA-PEG self-assembled nanoparticles dual-decorated with folic acid ligands and rhodamine B fluorescent probes for targeted cancer imaging. RSC Adv 2015; 5:33275-33282. [PMID: 35330847 PMCID: PMC8942413 DOI: 10.1039/c5ra04096e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Novel biodegradable and crosslinkable copolymers of hydrophobic poly(propylene fumarate)-co-poly(lactic-co-glycolic acid) (PPF-PLGA) linked with hydrophilic poly(ethylene glycol) (PEG), namely PPF-PLGA-PEG, were developed and fabricated into core-shell nanoparticles through self-assembly and photocrosslinking. A fluorescent probe, rhodamine B (RhB), was conjugated to the end of the copolymer chain (PPF-PLGA-PEG-RhB), which allows tracking of the nanoparticles through visualizing the fluorescence probe. Folic acid (FA) ligand was conjugated to another series of chains (PPF-PLGA-PEG-FA) for targeted delivery of the nanoparticles to the tumor sites by binding to the ubiquitously overexpressed FA receptors on tumor cells. Our results showed that PPF-PLGA-PEG nanoparticles incorporated with RhB fluorescence probes and FA tumor binding ligands have specific cancer cell targeting and imaging abilities. These crosslinkable nanoparticles are potentially useful to serve as a platform for conjugation of fluorescence probes as well as various antibodies and peptides for cancer targeted imaging or drug delivery.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Liu X, Miller AL, Waletzki BE, Yaszemski MJ, Lu L. Novel biodegradable poly(propylene fumarate)- co-poly(l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications. RSC Adv 2015; 5:21301-21309. [PMID: 26989483 PMCID: PMC4792309 DOI: 10.1039/c5ra00508f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Scaffolds with intrinsically interconnected porous structures are highly desirable in tissue engineering and regenerative medicine. In this study, three-dimensional polymer scaffolds with highly interconnected porous structures were fabricated by thermally induced phase separation of novel synthesized biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) in a dioxane/water binary system. Defined porous scaffolds were achieved by optimizing conditions to attain interconnected porous structures. The effect of phase separation parameters on scaffold morphology were investigated, including polymer concentration (1, 3, 5, 7, and 9%), quench time (1, 4, and 8 min), dioxane/water ratio (83/17, 85/15, and 87/13 wt/wt), and freeze temperature (-20, -80, and -196 °C). Interesting pore morphologies were created by adjusting these processing parameters, e.g., flower-shaped (5%; 85/15; 1 min; -80 °C), spherulite-like (5%; 85/15; 8 min; -80 °C), and bead-like (5%; 87/13; 1 min; -80 °C) morphology. Modulation of phase separation conditions also resulted in remarkable differences in scaffold porosities (81% to 91%) and thermal properties. Furthermore, scaffolds with varied mechanic strengths, degradation rates, and protein adsorption capabilities could be fabricated using the phase separation method. In summary, this work provides an effective route to generate multi-dimensional porous scaffolds that can be applied to a variety of hydrophobic polymers and copolymers. The generated scaffolds could potentially be useful for various tissue engineering applications including bone tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J. Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP, Selaru FM, Gracias DH. Stimuli-responsive theragrippers for chemomechanical controlled release. Angew Chem Int Ed Engl 2014; 53:8045-8049. [PMID: 24634136 PMCID: PMC4315180 DOI: 10.1002/anie.201311047] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/07/2022]
Abstract
We report on a therapeutic approach using thermo-responsive multi-fingered drug eluting devices. These therapeutic grippers referred to as theragrippers are shaped using photolithographic patterning and are composed of rigid poly(propylene fumarate) segments and stimuli-responsive poly(N-isopropylacrylamide-co-acrylic acid) hinges. They close above 32 °C allowing them to spontaneously grip onto tissue when introduced from a cold state into the body. Due to porosity in the grippers, theragrippers could also be loaded with fluorescent dyes and commercial drugs such as mesalamine and doxorubicin, which eluted from the grippers for up to seven days with first order release kinetics. In an in vitro model, theragrippers enhanced delivery of doxorubicin as compared to a control patch. We also released theragrippers into a live pig and visualized release of dye in the stomach. The design of such tissue gripping drug delivery devices offers an effective strategy for sustained release of drugs with immediate applicability in the gastrointestinal tract.
Collapse
Affiliation(s)
- Kate Malachowski
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Joyce Breger
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Hye Rin Kwag
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Martha O. Wang
- Fischell Department of Bioengineering University of Maryland, College Park, MD 20742 (USA)
| | - John P. Fisher
- Fischell Department of Bioengineering University of Maryland, College Park, MD 20742 (USA)
| | - Florin M. Selaru
- Department of Medicine, The Johns Hopkins University, Baltimore, MD21218 (USA)
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| |
Collapse
|
41
|
Ferlin KM, Prendergast ME, Miller ML, Nguyen BNB, Kaplan DS, Fisher JP. Development of a dynamic stem cell culture platform for mesenchymal stem cell adhesion and evaluation. Mol Pharm 2014; 11:2172-81. [PMID: 24620713 PMCID: PMC4086736 DOI: 10.1021/mp500062n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The importance of providing a physiologically relevant environment for cell culture is well recognized. The combination of proper environmental cues which are provided in vivo by the bloodstream and extracellular matrix must be reproduced to properly examine cell response in vitro, and cannot be recapitulated using traditional culture on polystyrene. Here, we have developed a device, the dynamic stem cell culture platform (DSCCP), consisting of a biomimetic scaffold cultured within the dynamic environment of a perfusion bioreactor. By varying scaffold parameters including stiffness and protein inclusion at the material surface, we found that human mesenchymal stem cells (hMSCs) were able to adhere to modified substrates, while still maintaining multipotency. Culture in a perfusion bioreactor showed cell survival and proliferation, particularly on modified substrates. The DSCCP represents a complete platform for cell adhesion and subsequent evaluation, including the response of a cell population to drug treatment.
Collapse
Affiliation(s)
- Kimberly M Ferlin
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | | | |
Collapse
|
42
|
Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP, Selaru FM, Gracias DH. Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Wallace J, Wang MO, Thompson P, Busso M, Belle V, Mammoser N, Kim K, Fisher JP, Siblani A, Xu Y, Welter JF, Lennon DP, Sun J, Caplan AI, Dean D. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication 2014; 6:015003. [PMID: 24429508 DOI: 10.1088/1758-5082/6/1/015003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.
Collapse
Affiliation(s)
- Jonathan Wallace
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saez-Martinez V, Atorrasagasti G, Olalde B, Madarieta I, Morin F, Garagorri N. Fabrication and Characterization of Macroporous Poly(Ethylene Glycol) Hydrogels Generated by Several Types of Porogens. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2012.734353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Wang MO, Etheridge JM, Thompson JA, Vorwald CE, Dean D, Fisher JP. Evaluation of the in vitro cytotoxicity of cross-linked biomaterials. Biomacromolecules 2013; 14:1321-9. [PMID: 23627804 DOI: 10.1021/bm301962f] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study evaluated the in vitro cytotoxicity of poly(propylene fumarate) (PPF). PPF is an aliphatic biodegradable polymer that has been well characterized for use in bone tissue engineering scaffolds. Four different cell types, human mesenchymal stem cells (hMSC), fibroblasts (L929), preosteoblasts (MC3T3), and canine mesenchymal stem cells (cMSC), were used to evaluate the cytotoxicity of PPF. These cell types represent the tissues that PPF would interact with in vivo as a bone tissue scaffold. The sol fraction of the PPF films was measured and then utilized to estimate cross-linking density. Cytotoxicity was evaluated using XTT assay and fluorescence imaging. Results showed that PPF supported similar cell metabolic activities of hMSC, L929, MC3T3, and cMSC compared to the noncytotoxic control, high-density polyethylene (HDPE) and were statistically different than those cultured with the cytotoxic control, a polyurethane film containing 0.1% zinc diethyldithiocarbamate (ZCF). Results showed differing cellular responses to ZCF, the cytotoxic control. The L929 cells had the lowest cell metabolic activity levels after exposure to ZCF compared to the cell metabolic activity levels of the MC3T3, hMSC, or cMSC cells. Qualitative verification of the results using fluorescence imaging demonstrated no change in cell morphology, vacuolization, or detachment when cultured with PPF compared to HDPE or blank media cultures. Overall, the cytotoxicity response of the cells to PPF was demonstrated to be similar to the cytotoxic response of cells to known noncytotoxic materials (HDPE).
Collapse
Affiliation(s)
- Martha O Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20740, United States
| | | | | | | | | | | |
Collapse
|
46
|
Meretoja VV, Tirri T, Malin M, Seppälä JV, Närhi TO. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Clin Oral Implants Res 2012; 25:159-64. [DOI: 10.1111/clr.12051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Ville V. Meretoja
- Department of Prosthetic Dentistry; Institute of Dentistry; University of Turku; Turku Finland
- Turku Clinical Biomaterials Center; Turku Finland
| | - Teemu Tirri
- Department of Prosthetic Dentistry; Institute of Dentistry; University of Turku; Turku Finland
- Turku Clinical Biomaterials Center; Turku Finland
| | - Minna Malin
- Aalto University; School of Chemical Technology; Polymer Technology AALTO, Finland
| | - Jukka V. Seppälä
- Aalto University; School of Chemical Technology; Polymer Technology AALTO, Finland
| | - Timo O. Närhi
- Department of Prosthetic Dentistry; Institute of Dentistry; University of Turku; Turku Finland
- Turku Clinical Biomaterials Center; Turku Finland
- Clinic of Oral Diseases; Turku University Central Hospital; Turku Finland
| |
Collapse
|
47
|
Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, Kang Y, Yang Y, Khademhosseini A. Vascularized bone tissue engineering: approaches for potential improvement. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:363-82. [PMID: 22765012 DOI: 10.1089/ten.teb.2012.0012] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes.
Collapse
Affiliation(s)
- Lonnissa H Nguyen
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Henslee AM, Gwak DH, Mikos AG, Kasper FK. Development of a biodegradable bone cement for craniofacial applications. J Biomed Mater Res A 2012; 100:2252-9. [PMID: 22499285 DOI: 10.1002/jbm.a.34157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 11/12/2022]
Abstract
This study investigated the formulation of a two-component biodegradable bone cement comprising the unsaturated linear polyester macromer poly(propylene fumarate) (PPF) and crosslinked PPF microparticles for use in craniofacial bone repair applications. A full factorial design was employed to evaluate the effects of formulation parameters such as particle weight percentage, particle size, and accelerator concentration on the setting and mechanical properties of crosslinked composites. It was found that the addition of crosslinked microparticles to PPF macromer significantly reduced the temperature rise upon crosslinking from 100.3°C ± 21.6°C to 102.7°C ± 49.3°C for formulations without microparticles to 28.0°C ± 2.0°C to 65.3°C ± 17.5°C for formulations with microparticles. The main effects of increasing the particle weight percentage from 25 to 50% were to significantly increase the compressive modulus by 37.7 ± 16.3 MPa, increase the compressive strength by 2.2 ± 0.5 MPa, decrease the maximum temperature by 9.5°C ± 3.7°C, and increase the setting time by 0.7 ± 0.3 min. Additionally, the main effects of increasing the particle size range from 0-150 μm to 150-300 μm were to significantly increase the compressive modulus by 31.2 ± 16.3 MPa and the compressive strength by 1.3 ± 0.5 MPa. However, the particle size range did not have a significant effect on the maximum temperature and setting time. Overall, the composites tested in this study were found to have properties suitable for further consideration in craniofacial bone repair applications.
Collapse
Affiliation(s)
- Allan M Henslee
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
49
|
Dean D, Wallace J, Siblani A, Wang MO, Kim K, Mikos AG, Fisher JP. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds. VIRTUAL AND PHYSICAL PROTOTYPING 2012; 7:13-24. [PMID: 23066427 PMCID: PMC3466612 DOI: 10.1080/17452759.2012.673152] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP(®) (Texas Instruments, Dallas, TX) chip. One such additive manufacturing device is the envisionTEC (Ferndale, MI) Perfactory(®). To use cDLP we integrate a photo-crosslinkable polymer, a photo-initiator, and a biocompatible dye. The dye attenuates light, thereby limiting the depth of polymerization. In this study we fabricated scaffolds using the well-studied resorbable polymer, poly(propylene fumarate) (PPF), titanium dioxide (TiO(2)) as a dye, Irgacure(®) 819 (BASF [Ciba], Florham Park, NJ) as an initiator, and diethyl fumarate as a solvent to control viscosity.
Collapse
Affiliation(s)
- David Dean
- Corresponding Author Tel: (216) 844-3333; Fax: (216) 844-3336;
| | - Jonathan Wallace
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA; Tel: (216) 844-1307; Fax: (216) 844-3336;
| | - Ali Siblani
- envisionTEC, Inc., 1100 Hilton Road, Ferndale, MI 48220 USA; Tel: (248) 582-0038; Fax: (248) 582-0039;
| | - Martha O. Wang
- Fischell Dept. of Bioengineering, 3238 Jeong H. Kim Engineering Bldg (JHKEB) University of Maryland, College Park, Maryland 20742 USA; Tel: (301) 405-8782; Fax: (301) 405-0523;
| | - Kyobum Kim
- Dept. of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, TX 77251-1892 USA; Tel: (713) 348-3009; Fax: (713) 348-4244;
| | - Antonios G. Mikos
- Dept. of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, TX 77251-1892 USA; Tel: (713) 348-5355; Fax: (713) 348-4244;
| | - John P. Fisher
- Fischell Dept. of Bioengineering, 3238 Jeong H. Kim Engineering Bldg (JHKEB) University of Maryland, College Park, Maryland 20742 USA; Tel: (301) 405-7475; Fax: (301) 405-0523;
| |
Collapse
|
50
|
Kretlow JD, Mikos AG. Founder's award to Antonios G. Mikos, Ph.D., 2011 Society for Biomaterials annual meeting and exposition, Orlando, Florida, April 13-16, 2011: Bones to biomaterials and back again--20 years of taking cues from nature to engineer synthetic polymer scaffolds. J Biomed Mater Res A 2011; 98:323-31. [PMID: 21714068 DOI: 10.1002/jbm.a.33154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 12/11/2022]
Abstract
For biomaterials scientists focusing on tissue engineering applications, the gold standard material is healthy, autologous tissue. Ideal material properties and construct design parameters are thus both obvious and often times unachievable; additional considerations such as construct delivery and the underlying pathology necessitating new tissue yield additional design challenges with solutions that are not evident in nature. For the past nearly two decades, our laboratory and collaborators have aimed to develop both new biomaterials and a better understanding of the complex interplay between material and host tissue to facilitate bone and cartilage regeneration. Various approaches have ranged from mimicking native tissue material properties and architecture to developing systems for bioactive molecule delivery as soluble factors or bound directly to the biomaterial substrate. Such technologies have allowed others and us to design synthetic biomaterials incorporating increasing levels of complexity found in native tissues with promising advances made toward translational success. Recent work focuses on translation of these technologies in specific clinical situations through the use of adjunctive biomaterials designed to address existing pathologies or guide host-material integration.
Collapse
Affiliation(s)
- James D Kretlow
- Department of Bioengineering, Rice University, Houston, Texas 77251-1892, USA
| | | |
Collapse
|