1
|
Silvestre D, Miseros M, Faubert J, Tullo D, Bertone A. Development of static and dynamic perception for luminance- and texture-defined information from school-ages to adulthood. Vision Res 2022; 200:108103. [PMID: 35870287 DOI: 10.1016/j.visres.2022.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/25/2023]
Abstract
Few studies have assessed the visual development of static and dynamic information processing at different levels of processing during typical development from the school-age years to adulthood. The implication of non-visual factors on visual development, such as cognitive (e.g., IQ) and attentional abilities, has yet to be systematically assessed with regard to spanning such a large age range. To address these voids, 203 typically-developing participants (aged 6 to 31 years) identified the orientation or direction of a static or moving grating defined by either luminance- or texture-contrast. An adaptive staircase procedure was used to measure contrast sensitivity in all four conditions. Cognitive (Wechsler IQ) and attentional ability (CPT-3) were also measured for all participants. Different developmental rates of contrast sensitivity were found between static and dynamic conditions when defined by more complex, texture-defined information, with the difference in sensitivity starting after the age of 9.71 years. However, static and dynamic profiles for luminance-defined information developed similarly with age. In addition, IQ did not correlate with nor predict the sensitivity across any condition. These results suggest age significantly explains the variance in the developmental profiles of contrast sensitivity above and beyond non-visual factors such as IQ and the CPT-3 attentional scores. Moreover, the neural pathways processing static and dynamic visual information continue to develop through late childhood and adolescence for the processing of texture-defined information only.
Collapse
Affiliation(s)
- Daphné Silvestre
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, Canada.
| | - Margarita Miseros
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, Canada
| | - Jocelyn Faubert
- Faubert Lab, École d'optométrie, Université de Montréal, Canada
| | - Domenico Tullo
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, Canada
| | - Armando Bertone
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, Canada
| |
Collapse
|
2
|
Meier K, Giaschi D. Effect of spatial and temporal stimulus parameters on the maturation of global motion perception. Vision Res 2017; 135:1-9. [PMID: 28414023 DOI: 10.1016/j.visres.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 02/03/2023]
Abstract
There are discrepancies with respect to the age at which adult-like performance is reached on tasks assessing global motion perception. This is in part because performance in children depends on stimulus parameters. We recently showed that five-year-olds demonstrated adult-like performance over a range of speeds when the speed ratio was comprised of longer spatial and temporal displacements; but displayed immature performance when the speed ratio was comprised of shorter displacements. The goal of the current study was to assess the effect of these global motion stimulus parameters across a broader age range in order to estimate the age at which mature performance is reached. Motion coherence thresholds were assessed in 182 children and adults aged 7-30years. Dot displacement (Δx) was 1, 5, or 30min of arc; frame duration (Δt) was 17 or 50ms. This created a total of six conditions. Consistent with our previous results, coherence thresholds in the youngest children assessed were adult-like at the two conditions with the largest Δx. Maturity was reached around age 12 for the medium Δx, and by age 16 for the smallest Δx. Performance did not appear to be affected by Δt. This late maturation may reflect a long developmental period for cortical networks underlying global motion perception. These findings resolve many of the discrepancies across previous studies, and should be considered when using global motion tasks to assess children with atypical development.
Collapse
Affiliation(s)
- Kimberly Meier
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, B.C. V6T 1Z4, Canada.
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Rm E300E, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada.
| |
Collapse
|
3
|
Lewis TL, Ellemberg D, Maurer D, Dirks M, Wilkinson F, Wilson HR. A Window on the Normal Development of Sensitivity to Global Form in Glass Patterns. Perception 2016; 33:409-18. [PMID: 15222389 DOI: 10.1068/p5189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We studied the development of sensitivity to global form in 6-year-olds, 9-year-olds, and adults ( n = 24 in each group) using Glass patterns with varying ratios of paired signal dots to noise dots. The developmental pattern was similar whether the global structure within the Glass patterns was concentric or parallel. Thresholds were equally immature for both types of pattern at 6 years of age (about twice the adult value) but were adult-like at 9 years of age. Together, the results indicate that the cortical structures involved in the processing of global form achieve functional maturity between 6 and 9 years of age. During middle childhood, the mechanisms mediating sensitivity to concentric structure develop at the same rate as those mediating sensitivity to parallel structure.
Collapse
Affiliation(s)
- Terri L Lewis
- Department of Psychology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
4
|
Joshi MR, Falkenberg HK. Development of radial optic flow pattern sensitivity at different speeds. Vision Res 2015; 110:68-75. [PMID: 25796975 DOI: 10.1016/j.visres.2015.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
The development of sensitivity to radial optic flow discrimination was investigated by measuring motion coherence thresholds (MCTs) in school-aged children at two speeds. A total of 119 child observers aged 6-16years and 24 young adult observers (23.66+/-2.74years) participated. In a 2AFC task observers identified the direction of motion of a 5° radial (expanding vs. contracting) optic flow pattern containing 100 dots with 75% Michelson contrast moving at 1.6°/s and 5.5°/s and. The direction of each dot was drawn from a Gaussian distribution whose standard deviation was either low (similar directions) or high (different directions). Adult observers also identified the direction of motion for translational (rightward vs. leftward) and rotational (clockwise vs. anticlockwise) patterns. Motion coherence thresholds to radial optic flow improved gradually with age (linear regression, p<0.05), with different rates of development at the two speeds. Even at 16years MCTs were higher than that for adults (independent t-tests, p<0.05). Both children and adults had higher sensitivity at 5.5°/s compared to 1.6°/s (paired t-tests, p<0.05). Sensitivity to radial optic flow is still immature at 16years of age, indicating late maturation of higher cortical areas. Differences in sensitivity and rate of development of radial optic flow at the different speeds, suggest that different motion processing mechanisms are involved in processing slow and fast speeds.
Collapse
Affiliation(s)
- Mahesh Raj Joshi
- Department of Optometry and Visual Science, Buskerud and Vestfold University College, Frogsvei 41, Kongsberg 3611, Norway.
| | - Helle K Falkenberg
- Department of Optometry and Visual Science, Buskerud and Vestfold University College, Frogsvei 41, Kongsberg 3611, Norway.
| |
Collapse
|
5
|
Shirai N, Imura T, Tamura R, Seno T. Stronger vection in junior high school children than in adults. Front Psychol 2014; 5:563. [PMID: 24971067 PMCID: PMC4053762 DOI: 10.3389/fpsyg.2014.00563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that even elementary school-aged children (7 and 11 years old) experience visually induced perception of illusory self-motion (vection) (Lepecq et al., 1995, Perception, 24, 435–449) and that children of a similar age (mean age = 9.2 years) experience more rapid and stronger vection than do adults (Shirai et al., 2012, Perception, 41, 1399–1402). These findings imply that although elementary school-aged children experience vection, this ability is subject to further development. To examine the subsequent development of vection, we compared junior high school students' (N = 11, mean age = 14.4 years) and adults' (N = 10, mean age = 22.2 years) experiences of vection. Junior high school students reported significantly stronger vection than did adults, suggesting that the perceptual experience of junior high school students differs from that of adults with regard to vection and that this ability undergoes gradual changes over a relatively long period of development.
Collapse
Affiliation(s)
- Nobu Shirai
- Department of Psychology, Faculty of Humanities, Niigata University Niigata, Japan
| | - Tomoko Imura
- Department of Information Systems, Niigata University of International and Information Studies Niigata, Japan
| | - Rio Tamura
- Department of Psychology, Faculty of Humanities, Niigata University Niigata, Japan
| | - Takeharu Seno
- Faculty of Design, Kyushu University Fukuoka, Japan ; Institute for Advanced Study, Kyushu University Fukuoka, Japan ; Research Center for Applied Perceptual Science, Kyushu University Fukuoka, Japan
| |
Collapse
|
6
|
Khalil R, Levitt JB. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex. J Comp Neurol 2014; 522:3208-28. [PMID: 24665018 DOI: 10.1002/cne.23591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/04/2014] [Accepted: 03/20/2014] [Indexed: 11/06/2022]
Abstract
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process.
Collapse
Affiliation(s)
- Reem Khalil
- Department of Biology MR526, City College of New York, New York, New York; Graduate Center of the City University of New York, New York, New York
| | | |
Collapse
|
7
|
Falkenberg HK, Simpson WA, Dutton GN. Development of sampling efficiency and internal noise in motion detection and discrimination in school-aged children. Vision Res 2014; 100:8-17. [PMID: 24732568 DOI: 10.1016/j.visres.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 12/14/2022]
Abstract
The aim of this study was to use an equivalent noise paradigm to investigate the development and maturation of motion perception, and how the underlying limitations of sampling efficiency and internal noise effect motion detection and direction discrimination in school-aged children (5-14 years) and adults. Contrast energy thresholds of a 2c/deg sinusoidal grating drifting at 1.0 or 6.0 Hz were measured as a function of added dynamic noise in three tasks: detection of a drifting grating; detection of the sum of two oppositely drifting gratings and direction discrimination of oppositely drifting gratings. Compared to the ideal observer, in both children and adults, the performance for all tasks was limited by reduced sampling efficiency and internal noise. However, the thresholds for discrimination of motion direction and detection of moving gratings show very different developmental profiles. Motion direction discrimination continues to improve after the age of 14 years due to an increase in sampling efficiency that differs with speed. Motion detection and summation were already mature at the age of 5 years, and internal noise was the same for all tasks. These findings were confirmed in a 1-year follow-up study on a group of children from the initial study. The results support suggestions that the detection of a moving pattern and discriminating motion direction are processed by different systems that may develop at different rates.
Collapse
Affiliation(s)
- Helle K Falkenberg
- Department of Optometry and Visual Science, Buskerud and Vestfold University College, Frogsvei 41, 3611 Kongsberg, Norway.
| | - William A Simpson
- School of Psychology, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
| | - Gordon N Dutton
- Department of Vision Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 OAB, UK.
| |
Collapse
|
8
|
|
9
|
Blumenthal EJ, Bosworth RG, Dobkins KR. Fast development of global motion processing in human infants. J Vis 2013; 13:8. [PMID: 24198399 DOI: 10.1167/13.13.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although global motion processing is thought to emerge early in infancy, there is debate regarding the age at which it matures to an adult-like level. In the current study, we address the possibility that the apparent age-related improvement in global motion processing might be secondary to age-related increases in the sensitivity of mechanisms (i.e., local motion detectors) that provide input to global motion mechanisms. To address this, we measured global motion processing by obtaining motion coherence thresholds using stimuli that were equally detectable in terms of contrast across all individuals and ages (3-, 4-, 5-, 6-, and 7-month-olds and adults). For infants, we employed a directional eye movement (DEM) technique. For adults, we employed both DEM and a self-report method. First, contrast sensitivity was obtained for a local task, using a stochastic motion display in which all the dots moved coherently. Contrast sensitivity increased significantly between 3 and 7 months, and between infancy and adulthood. Each subject was then tested on the global motion task with the contrast of the dots set to 2.5 × each individual's contrast threshold. Coherence thresholds were obtained by varying the percentage of coherently moving "signal" versus "noise" dots in the stochastic motion display. Results revealed remarkably stable global motion sensitivity between 3 and 7 months of age, as well as between infancy and adulthood. These results suggest that the mechanisms underlying global motion processing develop to an adult-like state very quickly.
Collapse
|
10
|
Manning C, Aagten-Murphy D, Pellicano E. The development of speed discrimination abilities. Vision Res 2012; 70:27-33. [PMID: 22903088 DOI: 10.1016/j.visres.2012.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022]
Abstract
The processing of speed is a critical part of a child's visual development, allowing children to track and interact with moving objects. Despite such importance, no study has investigated the developmental trajectory of speed discrimination abilities or precisely when these abilities become adult-like. Here, we measured speed discrimination thresholds in 5-, 7-, 9-, 11-year-olds and adults using random dot stimuli with two different reference speeds (slow: 1.5 deg/s; fast: 6 deg/s). Sensitivity for both reference speeds improved exponentially with age and, at all ages, participants were more sensitive to the faster reference speed. However, sensitivity to slow speeds followed a more protracted developmental trajectory than that for faster speeds. Furthermore, sensitivity to the faster reference speed reached adult-like levels by 11 years, whereas sensitivity to the slower reference speed was not yet adult-like by this age. Different developmental trajectories may reflect distinct systems for processing fast and slow speeds. The reasonably late development of speed processing abilities may be due to inherent limits in the integration of neuronal responses in motion-sensitive areas in early childhood.
Collapse
Affiliation(s)
- Catherine Manning
- Centre for Research in Autism and Education (CRAE), Department of Psychology and Human Development, Institute of Education, University of London, London, United Kingdom.
| | | | | |
Collapse
|
11
|
Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina). Vision Res 2012; 63:34-42. [PMID: 22580018 DOI: 10.1016/j.visres.2012.04.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/23/2022]
Abstract
To explore the relative development of the dorsal and ventral extrastriate processing streams, we studied the development of sensitivity to form and motion in macaque monkeys (Macaca nemestrina). We used Glass patterns and random dot kinematograms (RDK) to assay ventral and dorsal stream function, respectively. We tested 24 animals, longitudinally or cross-sectionally, between the ages of 5 weeks and 3 years. Each animal was tested with Glass patterns and RDK stimuli with each of two pattern types--circular and linear--at each age using a two alternative forced-choice task. We measured coherence threshold for discrimination of the global form or motion pattern from an incoherent control stimulus. Sensitivity to global motion appeared earlier than to global form and was higher at all ages, but performance approached adult levels at similar ages. Infants were most sensitive to large spatial scale (Δx) and fast speeds; sensitivity to fine scale and slow speeds developed more slowly independently of pattern type. Within the motion domain, pattern type had little effect on overall performance. However, within the form domain, sensitivity for linear Glass patterns was substantially poorer than that for concentric patterns. Our data show comparatively early onset for global motion integration ability, perhaps reflecting early development of the dorsal stream. However, both pathways mature over long time courses reaching adult levels between 2 and 3 years after birth.
Collapse
|
12
|
van den Boomen C, van der Smagt MJ, Kemner C. Keep your eyes on development: the behavioral and neurophysiological development of visual mechanisms underlying form processing. Front Psychiatry 2012; 3:16. [PMID: 22416236 PMCID: PMC3299398 DOI: 10.3389/fpsyt.2012.00016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 02/17/2012] [Indexed: 11/16/2022] Open
Abstract
Visual form perception is essential for correct interpretation of, and interaction with, our environment. Form perception depends on visual acuity and processing of specific form characteristics, such as luminance contrast, spatial frequency, color, orientation, depth, and even motion information. As other cognitive processes, form perception matures with age. This paper aims at providing a concise overview of our current understanding of the typical development, from birth to adulthood, of form-characteristic processing, as measured both behaviorally and neurophysiologically. Two main conclusions can be drawn. First, the current literature conveys that for most reviewed characteristics a developmental pattern is apparent. These trajectories are discussed in relation to the organization of the visual system. The second conclusion is that significant gaps in the literature exist for several age-ranges. To complete our understanding of the typical and, by consequence, atypical development of visual mechanisms underlying form processing, future research should uncover these missing segments.
Collapse
Affiliation(s)
- C van den Boomen
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University Utrecht, Netherlands
| | | | | |
Collapse
|
13
|
Armstrong V, Maurer D, Ellemberg D, Lewis TL. Sensitivity to first- and second-order drifting gratings in 3-month-old infants. Iperception 2011; 2:440-57. [PMID: 23145237 PMCID: PMC3485786 DOI: 10.1068/i0406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 06/21/2011] [Indexed: 11/13/2022] Open
Abstract
In two experiments, we investigated 3-month-old infants' sensitivity to first- and second-order drifting gratings. In Experiment 1 we used forced-choice preferential looking with drifting versus stationary gratings to estimate depth modulation thresholds for 3-month-old infants and a similar task for a comparison group of adults. Thresholds for infants were more adult-like for second-order than first-order gratings. In Experiment 2, 3-month-olds dishabituated to a change in first-order orientation, but not to a change in direction of first- or second-order motion. Hence, results from Experiment 1 were likely driven by the perception of flicker rather than motion. Thus, infants' sensitivity to uniform motion is slow to develop and appears to be driven initially by flicker-sensitive mechanisms. The underlying mechanisms have more mature tuning for second-order than for first-order information.
Collapse
Affiliation(s)
- Vickie Armstrong
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, L8S 4K1; e-mail:
| | | | | | | |
Collapse
|
14
|
Bertone A, Hanck J, Guy J, Cornish K. The development of luminance- and texture-defined form perception during the school-aged years. Neuropsychologia 2010; 48:3080-5. [DOI: 10.1016/j.neuropsychologia.2010.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/08/2010] [Accepted: 06/12/2010] [Indexed: 11/29/2022]
|
15
|
Developmental changes during childhood in single-letter acuity and its crowding by surrounding contours. J Exp Child Psychol 2010; 107:423-37. [PMID: 20633893 DOI: 10.1016/j.jecp.2010.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 11/23/2022]
Abstract
Crowding refers to impaired target recognition caused by surrounding contours. We investigated the development of crowding in central vision by comparing single-letter and crowding thresholds in groups of 5-year-olds, 8-year-olds, 11-year-olds, and adults. The task was to discriminate the orientation of a Sloan letter E. Single-letter thresholds, defined as the stroke width forming the smallest discriminable E, were worse than those of adults (0.83 arcmin) at 5 years of age (1.05 arcmin) but not at older ages (8-year-olds: 0.81 arcmin; 11-year-olds: 0.78 arcmin). The maximum distances over which crowding occurred, as measured in multiples of threshold stroke width, were smaller in adults (2.83) than in the three groups of children, who did not differ from each other (5-year-olds: 7.03; 8-year-olds: 7.84; 11-year-olds: 7.13). Thus, even 11-year-olds are more affected than adults by surrounding contours despite having single-letter acuity that has been mature for several years. The stronger influence of crowding in children may be caused by immaturities in the brain areas beyond the primary visual cortex (V1) where early visual inputs are combined and may contribute to their slower reading speed.
Collapse
|
16
|
Lippé S, Kovacevic N, McIntosh AR. Differential maturation of brain signal complexity in the human auditory and visual system. Front Hum Neurosci 2009; 3:48. [PMID: 19949455 PMCID: PMC2783025 DOI: 10.3389/neuro.09.048.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/30/2009] [Indexed: 12/13/2022] Open
Abstract
Brain development carries with it a large number of structural changes at the local level which impact on the functional interactions of distributed neuronal networks for perceptual processing. Such changes enhance information processing capacity, which can be indexed by estimation of neural signal complexity. Here, we show that during development, EEG signal complexity increases from one month to 5 years of age in response to auditory and visual stimulation. However, the rates of change in complexity were not equivalent for the two responses. Infants’ signal complexity for the visual condition was greater than auditory signal complexity, whereas adults showed the same level of complexity to both types of stimuli. The differential rates of complexity change may reflect a combination of innate and experiential factors on the structure and function of the two sensory systems.
Collapse
Affiliation(s)
- Sarah Lippé
- Centre de Recherche CHU Ste-Justine, University of Montreal Montreal, Quebec, Canada.
| | | | | |
Collapse
|
17
|
Sensitivity to first- and second-order motion and form in children and adults. Vision Res 2009; 49:2774-81. [DOI: 10.1016/j.visres.2009.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 11/18/2022]
|
18
|
Farzin F, Whitney D, Hagerman RJ, Rivera SM. Contrast detection in infants with fragile X syndrome. Vision Res 2008; 48:1471-8. [PMID: 18457856 PMCID: PMC2486371 DOI: 10.1016/j.visres.2008.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 03/03/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
Studies have reported that a selective deficit in visual motion processing is present in certain developmental disorders, including Williams syndrome and autism. More recent evidence suggests a visual motion impairment is also present in adults with fragile X syndrome (FXS), the most common form of inherited mental retardation. The goal of the current study was to examine low-level cortical visual processing in infants diagnosed with FXS in order to explore the developmental origin of this putative deficit. We measured contrast detection of first-order (luminance-defined) and second-order (contrast-defined) gratings at two levels of temporal frequency, 0 Hz (static) and 4 Hz (moving). Results indicate that infants with FXS display significantly higher detection thresholds only for the second-order, moving stimuli compared to mental age-matched typically developing controls.
Collapse
Affiliation(s)
- F Farzin
- Department of Psychology, University of California, Davis, CA 95618, USA. <>
| | | | | | | |
Collapse
|
19
|
Kato M, de Wit TC, Stasiewicz D, von Hofsten C. Sensitivity to second-order motion in 10-month-olds. Vision Res 2008; 48:1187-95. [DOI: 10.1016/j.visres.2007.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 10/04/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
|
20
|
Gori M, Del Viva M, Sandini G, Burr DC. Young Children Do Not Integrate Visual and Haptic Form Information. Curr Biol 2008; 18:694-8. [PMID: 18450446 DOI: 10.1016/j.cub.2008.04.036] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/21/2008] [Accepted: 04/04/2008] [Indexed: 11/19/2022]
Affiliation(s)
- Monica Gori
- Istituto Italiano di Tecnologia, Genoa, Italy
| | | | | | | |
Collapse
|
21
|
Development of static and dynamic perception for luminance-defined and texture-defined information. Neuroreport 2008; 19:225-8. [PMID: 18185113 DOI: 10.1097/wnr.0b013e3282f48401] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development of static and dynamic perception for stimuli requiring different levels of neural analysis was assessed by measuring orientation-identification and direction-identification thresholds for both lower-level [or first-order (FO)] and higher-level [or second-order (SO)] stimuli as a function of age. Results demonstrate that both lower-level and higher-level perception continue to develop during school-age years in both dynamic and static domains. When compared with adult levels, dynamic performance for 5-6-year-olds is significantly decreased for SO, but not for the FO perception; however, type of stimulus (FO vs. SO) did not affect the development of static perception. We therefore suggest that levels of stimulus complexity should be considered an important variable when assessing and making inferences regarding the typical and atypical development of static and dynamic perception.
Collapse
|
22
|
Development of cortical responses to optic flow. Vis Neurosci 2007; 24:845-56. [DOI: 10.1017/s0952523807070769] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 10/08/2007] [Indexed: 11/07/2022]
Abstract
Humans discriminate approaching objects from receding ones shortly after birth, and optic flow associated with self-motion may activate distinctive brain networks, including the human MT+ complex. We sought evidence for evoked brain activity that distinguished radial motion from other optic flow patterns, such as translation or rotation by recording steady-state visual evoked potentials (ssVEPs), in both adults and 4–6 month-old infants to direction-reversing optic flow patterns. In adults, radial flow evoked distinctive brain responses in both the time and frequency domains. Differences between expansion/contraction and both translation and rotation were especially strong in lateral channels (PO7 and PO8), and there was an asymmetry between responses to expansion and contraction. In contrast, infants' evoked response waveforms to all flow types were equivalent, and showed no evidence of the expansion/contraction asymmetry. Infants' responses were largest and most reliable for the translation patterns in which all dots moved in the same direction. This pattern of response is consistent with an account in which motion processing systems detecting locally uniform motion develop earlier than do systems specializing in complex, globally non-uniform patterns of motion, and with evidence suggesting that motion processing undergoes prolonged postnatal development.
Collapse
|
23
|
Thibault D, Brosseau-Lachaine O, Faubert J, Vital-Durand F. Maturation of the sensitivity for luminance and contrast modulated patterns during development of normal and pathological human children. Vision Res 2007; 47:1561-9. [PMID: 17452046 DOI: 10.1016/j.visres.2007.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 03/15/2007] [Accepted: 03/15/2007] [Indexed: 11/27/2022]
Abstract
Any object may contain at least two spatio-temporal components referred to as first- and second-order, respectively, defined by spatial-temporal luminance modulation or by contrast, texture or depth modulation. This study investigates form sensitivity of infants, normals, premature or strabismic. A two-alternative forced-choice preferential looking procedure was used in monocular and binocular condition. Maturation profile for both stimuli was similar in the control group. Strabismic infants showed a vertical offset in maturation, which affected the second-order more severely. The pre-term group showed a lag of second-order sensitivity. Our results underline differences between first- and second-order processing.
Collapse
Affiliation(s)
- Delphine Thibault
- INSERM, U846, Stem Cell and Brain Research Institute, Department of Integrative Neurosciences, F-69500 Bron, France
| | | | | | | |
Collapse
|
24
|
Doucet ME, Gosselin F, Lassonde M, Guillemot JP, Lepore F. Development of visual-evoked potentials to radially modulated concentric patterns. Neuroreport 2006; 16:1753-6. [PMID: 16237321 DOI: 10.1097/01.wnr.0000185011.91197.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The visual processing of radially modulated concentric patterns was studied in human participants, aged 3-22 years, by recording event-related potentials. These stimuli are known to activate the fusiform face area as well as area V4 in normal adults. The electrophysiological data showed a P1 latency that reached a maturation asymptote before 3 years of age, whereas that of N1 and P2 became adultlike by 13 years of age. In addition, the distribution of the P2 component over the scalp was focalized in the primary visual cortex before adolescence and became distributed over the entire brain after adolescence. Radially modulated concentric stimuli thus induce brain activation that is not mature until 13 years of age.
Collapse
|
25
|
Ellemberg D, Lewis TL, Defina N, Maurer D, Brent HP, Guillemot JP, Lepore F. Greater losses in sensitivity to second-order local motion than to first-order local motion after early visual deprivation in humans. Vision Res 2006; 45:2877-84. [PMID: 16087210 DOI: 10.1016/j.visres.2004.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 05/26/2004] [Accepted: 11/19/2004] [Indexed: 11/19/2022]
Abstract
We compared sensitivity to first-order versus second-order local motion in patients treated for dense central congenital cataracts in one or both eyes. Amplitude modulation thresholds were measured for discriminating the direction of motion of luminance-modulated (first-order) and contrast modulated (second-order) horizontal sine-wave gratings. Early visual deprivation, whether monocular or binocular, caused losses in sensitivity to both first- and second-order motion, with greater losses for second-order motion than for first-order motion. These findings are consistent with the hypothesis that the two types of motion are processed by different mechanisms and suggest that those mechanisms are differentially sensitive to early visual input.
Collapse
Affiliation(s)
- D Ellemberg
- Département de Kinésiologie, Université de Montréal, Montréal, Qué., Canada.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bruno A, Brambati SM, Perani D, Morrone MC. Development of saccadic suppression in children. J Neurophysiol 2006; 96:1011-7. [PMID: 16407425 DOI: 10.1152/jn.01179.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We measured saccadic suppression in adolescent children and young adults using spatially curtailed low spatial frequency stimuli. For both groups, sensitivity for color-modulated stimuli was unchanged during saccades. Sensitivity for luminance-modulated stimuli was greatly reduced during saccades in both groups but far more for adolescents than for young adults. Adults' suppression was on average a factor of about 3, whereas that for the adolescent group was closer to a factor of 10. The specificity of the suppression to luminance-modulated stimuli excludes generic explanations such as task difficulty and attention. We suggest that the enhanced suppression in adolescents results from the immaturity of the ocular-motor system at that age.
Collapse
|
27
|
Ahmed IJ, Lewis TL, Ellemberg D, Maurer D. Discrimination of speed in 5-year-olds and adults: are children up to speed? Vision Res 2005; 45:2129-35. [PMID: 15845244 DOI: 10.1016/j.visres.2005.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 12/29/2004] [Accepted: 01/19/2005] [Indexed: 11/30/2022]
Abstract
We compared thresholds for discriminating changes in speed by 5-year-olds and adults for two reference speeds: 1.5 and 6 degrees s(-1). Both adults and 5-year-olds were more sensitive to changes from the faster than from the slower reference speed. Five-year-olds were less sensitive than adults at both reference speeds but significantly more immature at the slower (1.5 degrees s(-1)) than at the faster (6 degrees s(-1)) reference speed. The findings suggest that the mechanisms underlying speed discrimination are immature in 5-year-olds, especially those that process slower speeds.
Collapse
Affiliation(s)
- I J Ahmed
- Department of Psychology, McMaster University, Hamilton, Ont., Canada
| | | | | | | |
Collapse
|
28
|
MacKay TL, Jakobson LS, Ellemberg D, Lewis TL, Maurer D, Casiro O. Deficits in the processing of local and global motion in very low birthweight children. Neuropsychologia 2005; 43:1738-48. [PMID: 16154449 DOI: 10.1016/j.neuropsychologia.2005.02.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/08/2005] [Accepted: 02/15/2005] [Indexed: 11/26/2022]
Abstract
This study evaluated the impact of premature birth on the development of local and global motion processing in a group of very low birthweight (<1500 g), 5- to 8-year-old children. Sensitivity to first- and second-order local motion stimuli and coherence thresholds for global motion in random dot kinematograms were measured. Relative to full-term controls, premature children showed deficits on all three aspects of motion processing. These problems could not be accounted for by stereo deficits, amblyopia, or attentional problems. A history of mild retinopathy of prematurity and/or intraventricular hemorrhage increased risk, but deficits were observed in some children with no apparent ocular or cerebral pathology. It is important to note that, despite the observed group differences, individual profiles of performance did vary; the results suggest that these three forms of motion processing may involve separate neural mechanisms. These findings serve to increase our understanding of the organization and functional development of motion-processing subsystems in humans, and of the impact of prematurity and associated complications on visual development.
Collapse
Affiliation(s)
- T L MacKay
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | | | | | | | | | | |
Collapse
|
29
|
Ellemberg D, Lewis TL, Dirks M, Maurer D, Ledgeway T, Guillemot JP, Lepore F. Putting order into the development of sensitivity to global motion. Vision Res 2004; 44:2403-11. [PMID: 15320331 DOI: 10.1016/j.visres.2004.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We studied differences in the development of sensitivity to first-versus second-order global motion by comparing the motion coherence thresholds of 5-year-olds and adults tested at three speeds (1.5, 6, and 9 degrees s(-1)). We used Random Gabor Kinematograms (RGKs) formed with luminance-modulated (first-order) or contrast-modulated (second-order) concentric Gabor patterns with a sinusoidal spatial frequency of 3c deg(-1). To achieve equal visibility, modulation depth was set at 30% for first-order Gabors and at 100%, for second-order Gabors. Subjects were 24 adults and 24 5-year-olds. For both first- and second-order global motion, the motion coherence threshold of 5-year-olds was less mature for the slowest speed (1.5 degrees s(-1)) than for the two faster speeds (6 and 9 degrees s(-1)). In addition, at the slowest speed, the immaturity was greater for second-order than for first-order global motion. The findings suggest that the extrastriate mechanisms underlying the perception of global motion are different, at least in part, for first- versus second-order signals and for slower versus faster speeds. They also suggest that those separate mechanisms mature at different rates during middle childhood.
Collapse
Affiliation(s)
- D Ellemberg
- McGill Vision Research, Department of Ophthalmology, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ellemberg D, Allen HA, Hess RF. Investigating local network interactions underlying first- and second-order processing. Vision Res 2004; 44:1787-97. [PMID: 15135994 DOI: 10.1016/j.visres.2004.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 02/25/2004] [Indexed: 11/27/2022]
Abstract
We compared the spatial lateral interactions for first-order cues to those for second-order cues, and investigated spatial interactions between these two types of cues. We measured the apparent modulation depth of a target Gabor at fixation, in the presence and the absence of horizontally flanking Gabors. The Gabors' gratings were either added to (first-order) or multiplied with (second-order) binary 2-D noise. Apparent "contrast" or modulation depth (i.e., the perceived difference between the high and low luminance regions for the first-order stimulus, or between the high and low contrast regions for the second-order stimulus) was measured with a modulation depth-matching paradigm. For each observer, the first- and second-order Gabors were equated for apparent modulation depth without the flankers. Our results indicate that at the smallest inter-element spacing, the perceived reduction in modulation depth is significantly smaller for the second-order than for the first-order stimuli. Further, lateral interactions operate over shorter distances and the spatial frequency and orientation tuning of the suppression effect are broader for second- than first-order stimuli. Finally, first- and second-order information interact in an asymmetrical fashion; second-order flankers do not reduce the apparent modulation depth of the first-order target, whilst first-order flankers reduce the apparent modulation depth of the second-order target.
Collapse
Affiliation(s)
- Dave Ellemberg
- Department of Ophthalmology, McGill Vision Research Unit, McGill University, 687 Pine Ave. West H4-14, Montreal, Que., Canada H3A 1A1.
| | | | | |
Collapse
|