1
|
Neder JA, Santyr G, Zanette B, Kirby M, Pourafkari M, James MD, Vincent SG, Ferguson C, Wang CY, Domnik NJ, Phillips DB, Porszasz J, Stringer WW, O'Donnell DE. Beyond Spirometry: Linking Wasted Ventilation to Exertional Dyspnea in the Initial Stages of COPD. COPD 2024; 21:2301549. [PMID: 38348843 DOI: 10.1080/15412555.2023.2301549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024]
Abstract
Exertional dyspnea, a key complaint of patients with chronic obstructive pulmonary disease (COPD), ultimately reflects an increased inspiratory neural drive to breathe. In non-hypoxemic patients with largely preserved lung mechanics - as those in the initial stages of the disease - the heightened inspiratory neural drive is strongly associated with an exaggerated ventilatory response to metabolic demand. Several lines of evidence indicate that the so-called excess ventilation (high ventilation-CO2 output relationship) primarily reflects poor gas exchange efficiency, namely increased physiological dead space. Pulmonary function tests estimating the extension of the wasted ventilation and selected cardiopulmonary exercise testing variables can, therefore, shed unique light on the genesis of patients' out-of-proportion dyspnea. After a succinct overview of the basis of gas exchange efficiency in health and inefficiency in COPD, we discuss how wasted ventilation translates into exertional dyspnea in individual patients. We then outline what is currently known about the structural basis of wasted ventilation in "minor/trivial" COPD vis-à-vis the contribution of emphysema versus a potential impairment in lung perfusion across non-emphysematous lung. After summarizing some unanswered questions on the field, we propose that functional imaging be amalgamated with pulmonary function tests beyond spirometry to improve our understanding of this deeply neglected cause of exertional dyspnea. Advances in the field will depend on our ability to develop robust platforms for deeply phenotyping (structurally and functionally), the dyspneic patients showing unordinary high wasted ventilation despite relatively preserved FEV1.
Collapse
Affiliation(s)
- J Alberto Neder
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Giles Santyr
- Translational Medicine Department, Faculty of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Brandon Zanette
- Translational Medicine Department, Faculty of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Miranda Kirby
- Department of Physics, Faculty of Science, Toronto Metropolitan University, Toronto, Canada
| | - Marina Pourafkari
- Department of Radiology and Diagnostic Imaging, Kingston Health Sciences Centre, Kingston, Canada
| | - Matthew D James
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Sandra G Vincent
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Carrie Ferguson
- The Lundquist Institute for Biomedical Innovation, Harbor U.C.L.A Medical Centre, Torrance, CA, USA
| | - Chu-Yi Wang
- The Lundquist Institute for Biomedical Innovation, Harbor U.C.L.A Medical Centre, Torrance, CA, USA
| | - Nicolle J Domnik
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Devin B Phillips
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Janos Porszasz
- The Lundquist Institute for Biomedical Innovation, Harbor U.C.L.A Medical Centre, Torrance, CA, USA
| | - William W Stringer
- The Lundquist Institute for Biomedical Innovation, Harbor U.C.L.A Medical Centre, Torrance, CA, USA
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| |
Collapse
|
2
|
Harder EM, Nardelli P, Pistenmaa CL, Ash SY, Balasubramanian A, Bowler RP, Iturrioz Campo M, Diaz AA, Hassoun PM, Leopold JA, Martinez FJ, Nathan SD, Noth I, Podolanczuk AJ, Saggar R, San José Estépar R, Shlobin OA, Wang W, Waxman AB, Putman RK, Washko GR, Choi B, San José Estépar R, Rahaghi FN. Preacinar Arterial Dilation Mediates Outcomes of Quantitative Interstitial Abnormalities in the COPDGene Study. Am J Respir Crit Care Med 2024; 210:1132-1142. [PMID: 38820122 DOI: 10.1164/rccm.202312-2342oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/31/2024] [Indexed: 06/02/2024] Open
Abstract
Rationale: Quantitative interstitial abnormalities (QIAs) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes, including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIAs and its role in the QIA-outcome relationship is unknown. Objectives: To quantify radiographic pulmonary vasculopathy in QIAs and determine whether this vasculopathy mediates the QIA-outcome relationship. Methods: Ever-smokers with QIAs, outcomes, and pulmonary vascular mediator data were identified from the Genetic Epidemiology of COPD (COPDGene) study cohort. CT-based vascular mediators were right ventricle-to-left ventricle ratio, pulmonary artery-to-aorta ratio, and preacinar intraparenchymal arterial dilation (pulmonary artery volume, 5-20 mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were 6-minute walk distance and a modified Medical Council Research Council Dyspnea Scale score of 2 or higher. Adjusted causal mediation analyses were used to determine whether the pulmonary vasculature mediated the QIA effect on outcomes. Associations of preacinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. Measurements and Main Results: Among 8,200 participants, QIA burden correlated positively with vascular damage measures, including preacinar arterial dilation. Preacinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6-minute walk distance (56.2-100%; P < 0.001). Pulmonary artery-to-aorta ratio was a weak mediator, and right ventricle-to-left ventricle ratio was a suppressor. Similar results were observed in the relationship between QIA and modified Medical Council Research Council dyspnea score. Preacinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels, including angiopoietin-2 and N-terminal brain natriuretic peptide. Conclusions: Parenchymal QIAs deleteriously impact outcomes primarily through pulmonary vasculopathy. Preacinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIAs.
Collapse
Affiliation(s)
| | | | | | - Samuel Y Ash
- Department of Critical Care Medicine, South Shore Hospital, South Weymouth, Massachusetts, and School of Medicine, Tufts University, Boston, Massachusetts
| | - Aparna Balasubramanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Russell P Bowler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | | | | | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York City, New York
| | - Steven D Nathan
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Falls Church, Virginia
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York City, New York
| | - Rajan Saggar
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California; and
| | | | - Oksana A Shlobin
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Falls Church, Virginia
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Bina Choi
- Division of Pulmonary and Critical Care Medicine
| | | | | |
Collapse
|
3
|
Blanco I, Torres-Castro R, Barberà JA. Pulmonary vascular disease in chronic lung diseases: cause or comorbidity? Curr Opin Pulm Med 2024; 30:437-443. [PMID: 38958570 DOI: 10.1097/mcp.0000000000001091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW To provide timely and relevant insights into the complex relationship between pulmonary vascular disease (PVD) and chronic lung disease (CLD), focusing on the causative and consequential dynamics between these conditions. RECENT FINDINGS There are shared pathogenic mechanisms between pulmonary arterial hypertension (PAH) and group 3 pulmonary hypertension, including altered expression of mediators and growth factors implicated in both conditions. Factors such as hypoxia, hypoxemia, and hypercapnia also contribute to pulmonary vascular remodelling and endothelial dysfunction. However, the role of hypoxia as the sole driver of pulmonary hypertension in CLD is being reconsidered, particularly in chronic obstructive pulmonary disease (COPD), with evidence suggesting a potential role for cigarette smoke products in initiating pulmonary vascular impairment. On the other hand, interstitial lung disease (ILD) encompasses a group of heterogeneous lung disorders characterized by inflammation and fibrosis of the interstitium, leading to impaired gas exchange and progressive respiratory decline, which could also play a role as a cause of pulmonary hypertension. SUMMARY Understanding the intricate interplay between the pulmonary vascular compartment and the parenchymal and airway compartments in respiratory disease is crucial for developing effective diagnostic and therapeutic strategies for patients with PVD and CLD, with implications for both clinical practice and research.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES); Madrid, Spain
| | - Rodrigo Torres-Castro
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES); Madrid, Spain
| |
Collapse
|
4
|
Perez-Bogerd S, Van Muylem A, Zengin S, El Khloufi Y, Maufroy E, Faoro V, Malinovschi A, Michils A. LAMA improves tissue oxygenation more than LABA in patients with COPD. J Appl Physiol (1985) 2024; 137:154-165. [PMID: 38722752 DOI: 10.1152/japplphysiol.00467.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 07/13/2024] Open
Abstract
The effect of bronchodilators is mainly assessed with forced expiratory volume in 1 s (FEV1) in chronic obstructive pulmonary disease (COPD). Their impact on oxygenation and lung periphery is less known. Our objective was to compare the action of long-acting β2-agonists (LABA-olodaterol) and muscarinic antagonists (LAMA-tiotropium) on tissue oxygenation in COPD, considering their impact on proximal and peripheral ventilation as well as lung perfusion. FEV1, Helium slope (SHe) from a single-breath washout test (SHe decreases reflecting a peripheral ventilation improvement), frequency dependence of resistance (R5-R19), area under reactance (AX), lung capillary blood volume (Vc) from double diffusion (DLNO/DLCO), and transcutaneous oxygenation (TcO2) were measured before and 2 h post-LABA (day 1) and LAMA (day 3) in 30 patients with COPD (FEV1 54 ± 18% pred; GOLD A 31%/B 48%/E 21%) after 5-7 days of washout, respectively. We found that TcO2 increased more (P = 0.03) after LAMA (11 ± 12% from baseline, P < 001) compared with LABA (4 ± 11%, P = 0.06) despite a lower FEV1 increase (P = 0.03) and similar SHe (P = 0.98), AX (P = 0.63), and R5-R19 decreases (P = 0.37). TcO2 and SHe changes were negatively correlated (r = -0.47, P = 0.01) after LABA, not after LAMA (r = 0.10, P = 0.65). DLNO/DLCO decreased and Vc increased after LAMA (P = 0.04; P = 0.01, respectively) but not after LABA (P = 0.53; P = 0.24). In conclusion, LAMA significantly improved tissue oxygenation in patients with COPD, while only a trend was observed with LABA. The mechanisms involved may differ between both drugs: LABA increased peripheral ventilation, whereas LAMA increased lung capillary blood volume. Should oxygenation differences persist over time, LAMA could arguably become the first therapeutic choice in COPD.NEW & NOTEWORTHY Long-acting muscarinic antagonists (LAMAs) significantly improved tissue oxygenation in patients with COPD, while only a trend was observed with β2-agonists (LABAs). The mechanisms involved may differ between drugs: increased peripheral ventilation for LABA and likely lung capillary blood volume for LAMA. This could argue for LAMA as the first therapeutic choice in COPD.
Collapse
Affiliation(s)
- Silvia Perez-Bogerd
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Selim Zengin
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Yasmina El Khloufi
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Emilie Maufroy
- Cardiopulmonary Exercise Laboratory, Faculty of Motorskill Science, Université Libre de Bruxelles, Brussels, Belgium
| | - Vitalie Faoro
- Cardiopulmonary Exercise Laboratory, Faculty of Motorskill Science, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Alain Michils
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Blanco I, Hernández-González F, García A, Torres-Castro R, Barberà JA. Management of Pulmonary Hypertension Associated with Chronic Lung Disease. Semin Respir Crit Care Med 2023; 44:826-839. [PMID: 37487524 DOI: 10.1055/s-0043-1770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Pulmonary hypertension (PH) is a common complication of chronic lung diseases, particularly in chronic obstructive pulmonary disease (COPD) and interstitial lung diseases (ILD) and especially in advanced disease. It is associated with greater mortality and worse clinical course. Given the high prevalence of some respiratory disorders and because lung parenchymal abnormalities might be present in other PH groups, the appropriate diagnosis of PH associated with respiratory disease represents a clinical challenge. Patients with chronic lung disease presenting symptoms that exceed those expected by the pulmonary disease should be further evaluated by echocardiography. Confirmatory right heart catheterization is indicated in candidates to surgical treatments, suspected severe PH potentially amenable with targeted therapy, and, in general, in those conditions where the result of the hemodynamic assessment will determine treatment options. The treatment of choice for these patients who are hypoxemic is long-term oxygen therapy and pulmonary rehabilitation to improve symptoms. Lung transplant is the only curative therapy and can be considered in appropriate cases. Conventional vasodilators or drugs approved for pulmonary arterial hypertension (PAH) are not recommended in patients with mild-to-moderate PH because they may impair gas exchange and their lack of efficacy shown in randomized controlled trials. Patients with severe PH (as defined by pulmonary vascular resistance >5 Wood units) should be referred to a center with expertise in PH and lung diseases and ideally included in randomized controlled trials. Targeted PAH therapy might be considered in this subset of patients, with careful monitoring of gas exchange. In patients with ILD, inhaled treprostinil has been shown to improve functional ability and to delay clinical worsening.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Fernanda Hernández-González
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Agustín García
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Rodrigo Torres-Castro
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Joan A Barberà
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| |
Collapse
|
6
|
Tang G, Wang F, Liang Z, Liang C, Wang J, Yang Y, Tang W, Shi W, Tang G, Yang K, Wang Z, Li Q, Li H, Xu J, Chen D, Chen R. Correlations of Computed Tomography Measurement of Distal Pulmonary Vascular Pruning with Airflow Limitation and Emphysema in COPD Patients. Int J Chron Obstruct Pulmon Dis 2022; 17:2241-2252. [PMID: 36128016 PMCID: PMC9482777 DOI: 10.2147/copd.s362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background Pulmonary vascular alteration is an important feature of chronic obstructive pulmonary disease (COPD), which is characterized by distal pulmonary vascular pruning in angiography. We aimed to further investigate the clinical relevance of pulmonary vasculature in COPD patients using non-contrast computed tomography (CT). Methods Seventy-one control subjects and 216 COPD patients completed the questionnaires, spirometry, and computed tomography (CT) scans within 1 month and were included in the study. Small pulmonary vessels represented by percentage of cross-sectional area of pulmonary vessels smaller than 5 mm2 or 5–10 mm2 to the total lung fields (%CSA<5 or %CSA5–10, respectively) were measured using ImageJ software. Spearman correlation was used to investigate the relationship between %CSA<5 and airflow limitation. A receiver operating characteristic (ROC) curve was built to evaluate the value of %CSA<5 in discriminating COPD patients from healthy control subjects. Segmented regression was used to analyze the relationship between %CSA<5 and %LAA-950 (percentage of low-attenuation areas less than −950 HU). Results We found a significant correlation between %CSA<5 and forced expiratory volume in one second (FEV1) percentage of predicted value (%pred) (r = 0.564, P < 0.001). The area under the ROC curve for the value of %CSA<5 in distinguishing COPD was 0.816, with a cut-off value of 0.537 (Youden index J, 0.501; sensitivity, 78.24%; specificity, 71.83%). Since the relationship between %CSA<5 and %LAA-950 was not constant, performance of segmented regression was better than ordinary linear regression (adjusted R2, 0.474 vs 0.332, P < 0.001 and P < 0.001, respectively). As %CSA<5 decreased, %LAA-950 slightly increased until an inflection point (%CSA<5 = 0.524) was reached, after which the %LAA-950 increased apparently with a decrease in %CSA<5. Conclusion %CSA<5 was significantly correlated with both airflow limitation and emphysema, and we identified an inflection point for the relationship between %CSA<5 and %LAA-950.
Collapse
Affiliation(s)
- Guoyan Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Cuixia Liang
- Neusoft Medical Systems Co., Ltd, Shenyang, People's Republic of China
| | - Jinling Wang
- Qingyuan Chronic Disease Prevention Hospital, Qingyuan Occupational Disease Prevention Hospital, Qingyuan, People's Republic of China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wanyi Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Qingyuan People's Hospital, the Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guoqiang Tang
- Qingyuan Chronic Disease Prevention Hospital, Qingyuan Occupational Disease Prevention Hospital, Qingyuan, People's Republic of China
| | - Kai Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, People's Republic of China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qiasheng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Hualin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiaxuan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Deyan Chen
- Neusoft Medical Systems Co., Ltd, Shenyang, People's Republic of China
| | - Rongchang Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Pulmonary hypertension (PH) is a common complication of chronic obstructive lung disease (COPD), but clinical presentation is variable and not always 'proportional' to the severity of the obstructive disease. This review aims to analyze heterogeneity in clinical features of PH-COPD, providing a guide for diagnosis and management according to phenotypes. RECENT FINDINGS Recent works have focused on severe PH in COPD, providing insights into the characteristics of patients with predominantly vascular disease. The recently recognized 'pulmonary vascular phenotype', characterized by severe PH and mild airflow obstruction with severe hypoxemia, has markedly worse prognosis and may be a candidate for large trials with pulmonary vasodilators. In severe PH, which might be best described by a pulmonary vascular resistance threshold, there may also be a need to distinguish patients with mild COPD (pulmonary vascular phenotype) from those with severe COPD ('Severe COPD-Severe PH' phenotype). SUMMARY Correct phenotyping is key to appropriate management of PH associated with COPD. The lack of evidence regarding the use of pulmonary vasodilators in PH-COPD may be due to the existence of previously unrecognized phenotypes with different responses to therapy. This review offers the clinician caring for patients with COPD and PH a phenotype-focused approach to diagnosis and management, aimed at personalized care.
Collapse
Affiliation(s)
| | - Lucilla Piccari
- Department of Pulmonary Medicine, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
8
|
Angiogenesis, Lymphangiogenesis, and Inflammation in Chronic Obstructive Pulmonary Disease (COPD): Few Certainties and Many Outstanding Questions. Cells 2022; 11:cells11101720. [PMID: 35626756 PMCID: PMC9139415 DOI: 10.3390/cells11101720] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, predominantly affecting the lung parenchyma and peripheral airways, that results in progressive and irreversible airflow obstruction. COPD development is promoted by persistent pulmonary inflammation in response to several stimuli (e.g., cigarette smoke, bacterial and viral infections, air pollution, etc.). Angiogenesis, the formation of new blood vessels, and lymphangiogenesis, the formation of new lymphatic vessels, are features of airway inflammation in COPD. There is compelling evidence that effector cells of inflammation (lung-resident macrophages and mast cells and infiltrating neutrophils, eosinophils, basophils, lymphocytes, etc.) are major sources of a vast array of angiogenic (e.g., vascular endothelial growth factor-A (VEGF-A), angiopoietins) and/or lymphangiogenic factors (VEGF-C, -D). Further, structural cells, including bronchial and alveolar epithelial cells, endothelial cells, fibroblasts/myofibroblasts, and airway smooth muscle cells, can contribute to inflammation and angiogenesis in COPD. Although there is evidence that alterations of angiogenesis and, to a lesser extent, lymphangiogenesis, are associated with COPD, there are still many unanswered questions.
Collapse
|
9
|
Park SW, Lim MN, Kim WJ, Bak SH. Quantitative assessment the longitudinal changes of pulmonary vascular counts in chronic obstructive pulmonary disease. Respir Res 2022; 23:29. [PMID: 35164757 PMCID: PMC8842934 DOI: 10.1186/s12931-022-01953-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chest computed tomography (CT) is a widely used method to assess morphological and dynamic abnormalities in chronic obstructive pulmonary disease (COPD). The small pulmonary vascular cross-section (CSA), quantitatively extracted from volumetric CT, is a reliable indicator for predicting pulmonary vascular changes. CSA is associated with the severity of symptoms, pulmonary function tests (PFT) and emphysema and in COPD patients the severity increases over time. We analyzed the correlation longitudinal changes in pulmonary vascular parameters with clinical parameters in COPD patients. MATERIALS AND METHODS A total of 288 subjects with COPD were investigated during follow up period up to 6 years. CT images were classified into five subtypes from normal to severe emphysema according to percentage of low-attenuation areas less than -950 and -856 Hounsfield units (HU) on inspiratory and expiratory CT (LAA-950, LAA-856exp). Total number of vessels (Ntotal) and total number of vessels with area less than 5 mm2 (N<5 mm) per 1 cm2 of lung surface area (LSA) were measured at 6 mm from the pleural surface. RESULTS Ntotal/LSA and N<5 mm/LSA changed from 1.16 ± 0.27 to 0.87 ± 0.2 and from 1.02 ± 0.22 to 0.78 ± 0.22, respectively, during Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage progression. Both parameters changed from normal to severe emphysema according to CT subtype from 1.39 ± 0.21 to 0.74 ± 0.17 and from 1.18 ± 0.19 to 0.67 ± 0.15, respectively. LAA-950 and LAA-856exp were negatively correlated with Ntotal/LSA (r = - 0.738, - 0.529) and N<5 mm /LSA (r = - 0.729, -- .497). On the other hand, pulmonary function test (PFT) results showed a weak correlation with Ntotal/LSA and N<5 mm/LSA (r = 0.205, 0.210). The depth in CT subtypes for longitudinal change both Ntotal/LSA and N<5 mm/LSA was (- 0.032, - 0.023) and (- 0.027) in normal and SAD, respectively. CONCLUSIONS Quantitative computed tomography features faithfully reflected pulmonary vessel alterations, showing in particular that pulmonary vascular alteration started.
Collapse
Affiliation(s)
- Sang Won Park
- Department of Big Data Medical Convergence, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Myoung-Nam Lim
- Department of Biomedical Research Institute, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Environmental Health Center, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Biomedical Research Institute, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Environmental Health Center, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyeon Bak
- Department of Radiology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
10
|
Synn AJ, Margerie-Mellon CD, Jeong SY, Rahaghi FN, Jhun I, Washko GR, Estépar RSJ, Bankier AA, Mittleman MA, VanderLaan PA, Rice MB. Vascular remodeling of the small pulmonary arteries and measures of vascular pruning on computed tomography. Pulm Circ 2021; 11:20458940211061284. [PMID: 34881020 PMCID: PMC8647266 DOI: 10.1177/20458940211061284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023] Open
Abstract
Pulmonary hypertension is characterized histologically by intimal and medial
thickening in the small pulmonary arteries, eventually resulting in vascular
“pruning.” Computed tomography (CT)-based quantification of pruning is
associated with clinical measures of pulmonary hypertension, but it is not
established whether CT-based pruning correlates with histologic arterial
remodeling. Our sample consisted of 138 patients who underwent resection for
early-stage lung adenocarcinoma. From histologic sections, we identified small
pulmonary arteries and measured the relative area comprising the intima and
media (VWA%), with higher VWA% representing greater histologic remodeling. From
pre-operative CTs, we used image analysis algorithms to calculate the small
vessel volume fraction (BV5/TBV) as a CT-based indicator of pruning (lower
BV5/TBV represents greater pruning). We investigated relationships of CT pruning
and histologic remodeling using Pearson correlation, simple linear regression,
and multivariable regression with adjustment for age, sex, height, weight,
smoking status, and total pack-years. We also tested for effect modification by
sex and smoking status. In primary models, more severe CT pruning was associated
with greater histologic remodeling. The Pearson correlation coefficient between
BV5/TBV and VWA% was –0.41, and in linear regression models, VWA% was 3.13%
higher (95% CI: 1.95–4.31%, p < 0.0001) per standard deviation lower BV5/TBV.
This association persisted after multivariable adjustment. We found no evidence
that these relationships differed by sex or smoking status. Among individuals
who underwent resection for lung adenocarcinoma, more severe CT-based vascular
pruning was associated with greater histologic arterial remodeling. These
findings suggest CT imaging may be a non-invasive indicator of pulmonary
vascular pathology.
Collapse
Affiliation(s)
- Andrew J Synn
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Sun Young Jeong
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Farbod N Rahaghi
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Iny Jhun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - George R Washko
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raúl San José Estépar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander A Bankier
- Department of Radiology, University of Massachusetts Medical School, Worchester, MA, USA
| | - Murray A Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paul A VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mary B Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
James MD, Phillips DB, Elbehairy AF, Milne KM, Vincent SG, Domnik NJ, de Torres JP, Neder JA, O'Donnell DE. Mechanisms of Exertional Dyspnea in Patients with Mild COPD and a Low Resting DL CO. COPD 2021; 18:501-510. [PMID: 34496691 DOI: 10.1080/15412555.2021.1932782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Patients with mild chronic obstructive pulmonary disease (COPD) and lower resting diffusing capacity for carbon monoxide (DLCO) often report troublesome dyspnea during exercise although the mechanisms are not clear. We postulated that in such individuals, exertional dyspnea is linked to relatively high inspiratory neural drive (IND) due, in part, to the effects of reduced ventilatory efficiency. This cross-sectional study included 28 patients with GOLD I COPD stratified into two groups with (n = 15) and without (n = 13) DLCO less than the lower limit of normal (<LLN; Global Lung Function Initiative criteria) and 16 healthy controls. We compared dyspnea (Borg scale), IND (by diaphragm electromyography), ventilatory equivalent for CO2 (V̇E/V̇CO2), and respiratory mechanics during incremental cycle exercise in the three groups. Spirometry and resting lung volumes were similar between COPD groups. During exercise, dyspnea, IND and V̇E/V̇CO2 were higher at equivalent work rates (WR) in the DLCO<LLN group compared with the other two groups (all p < 0.05). In patients with DLCO<LLN, severe respiratory mechanical constraints, indicated by end-inspiratory lung volume of approximately 90% of total lung capacity, occurred at a lower WR than the other two groups (p < 0.05). The dyspnea/IND relationship was similar across groups; therefore, the increased dyspnea at a standardized WR in the low DLCO<LLN group reflected the higher corresponding IND. Higher dyspnea ratings in patients with mild COPD and DLCO<LLN were associated with higher IND and V̇E/V̇CO2 at a given work rate. Higher ventilatory requirements in the DLCO<LLN group accelerated dynamic mechanical abnormalities earlier in exercise, further increasing IND and dyspnea.
Collapse
Affiliation(s)
- Matthew D James
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Devin B Phillips
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Amany F Elbehairy
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kathryn M Milne
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Colombia, St. Paul's Hospital, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra G Vincent
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Nicolle J Domnik
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Juan P de Torres
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - J Alberto Neder
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Department of Medicine, Queen's University, and Kingston Health Sciences Centre, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Affiliation(s)
- Steven K Huang
- Division of Pulmonary and Critical Care Medicine University of Michigan Ann Arbor, Michigan
| |
Collapse
|
13
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Woo J, Koziol-White C, Panettieri R, Jude J. TGF-β: The missing link in obesity-associated airway diseases? CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100016. [PMID: 34909651 PMCID: PMC8663968 DOI: 10.1016/j.crphar.2021.100016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Obesity is emerging as a global public health epidemic. The co-morbidities associated with obesity significantly contribute to reduced quality of life, mortality, and global healthcare burden. Compared to other asthma comorbidities, obesity prominently engenders susceptibility to inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), contributes to greater disease severity and evokes insensitivity to current therapies. Unlike in other metabolic diseases associated with obesity, the mechanistic link between obesity and airway diseases is only poorly defined. Transforming growth factor-β (TGF-β) is a pleiotropic inflammatory cytokine belonging to a family of growth factors with pivotal roles in asthma. In this review, we summarize the role of TGF-β in major obesity-associated co-morbidities to shed light on mechanisms of the diseases. Literature evidence shows that TGF-β mechanistically links many co-morbidities with obesity through its profibrotic, remodeling, and proinflammatory functions. We posit that TGF-β plays a similar mechanistic role in obesity-associated inflammatory airway diseases such as asthma and COPD. Concerning the role of TGF-β on metabolic effects of obesity, we posit that TGF-β has a similar mechanistic role in obesity-associated inflammatory airway diseases in interplay with different comorbidities such as hypertension, metabolic diseases like type 2 diabetes, and cardiomyopathies. Future studies in TGF-β-dependent mechanisms in obesity-associated inflammatory airway diseases will advance our understanding of obesity-induced asthma and help find novel therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Joanna Woo
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Reynold Panettieri
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Corresponding author. Rutgers Institute for Translational Medicine & Science, Rm# 4276, 89 French Street, New Brunswick, NJ08901, United States.
| |
Collapse
|
15
|
Abstract
Lung function testing has undisputed value in the comprehensive assessment and individualized management of chronic obstructive pulmonary disease, a pathologic condition in which a functional abnormality, poorly reversible expiratory airway obstruction, is at the core of its definition. After an overview of the physiologic underpinnings of the disease, the authors outline the role of lung function testing in this disease, including diagnosis, assessment of severity, and indication for and responses to pharmacologic and nonpharmacologic interventions. They discuss the current controversies surrounding test interpretation with these purposes in mind and provide balanced recommendations to optimize their usefulness in different clinical scenarios.
Collapse
|
16
|
Chae KJ, Choi J, Jin GY, Hoffman EA, Laroia AT, Park M, Lee CH. Relative Regional Air Volume Change Maps at the Acinar Scale Reflect Variable Ventilation in Low Lung Attenuation of COPD patients. Acad Radiol 2020; 27:1540-1548. [PMID: 32024604 DOI: 10.1016/j.acra.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate regional air volume changes at the acinar scale of the lung in chronic obstructive pulmonary disease (COPD) patients using an image registration technique. MATERIALS AND METHODS Thirty-four emphysema patients and 24 subjects with normal chest CT and pulmonary function test (PFT) results were included in this retrospective study for which informed consent was waived by the institutional review board. After lung segmentation, a mass-preserving image registration technique was used to compute relative regional air volume changes (RRAVCs) between inspiration and expiration CT scans. After determining the appropriate thresholds of RRAVCs for low ventilation areas (LVAs), they were displayed and analyzed using color maps on the background inspiration CT image, and compared with the low attenuation area (LAA) map. Correlations between quantitative CT parameters and PFTs were assessed using Pearson's correlation test, and parameters were compared between emphysema and normal-CT patients using the Student's t-test. RESULTS LVA percentage with an RRAVC threshold of 0.5 (%LVA0.5) showed the strongest correlations with FEV1/FVC (r = -0.566), FEV1 (r = -0.534), %LAA-950insp (r = 0.712), and %LAA-856exp (r = 0.775). %LVA0.5 was significantly higher (P < 0.001) in COPD patients than normal subjects. Despite the identical appearance of emphysematous lesions on the LAA-950insp map, the RRAVC map depicted a wide range of ventilation differences between these LAA clusters. CONCLUSION RRAVC-based %LVA0.5 correlated well with FEV1/FVC, FEV1, %LAA-950insp and %LAA-856exp. RRAVC holds the potential for providing additional acinar scale functional information for emphysematous LAAs in inspiratory CT images, providing the basis for a novel set for emphysematous phenotypes.
Collapse
|
17
|
Ceriotti S, Bullone M, Leclere M, Ferrucci F, Lavoie JP. Severe asthma is associated with a remodeling of the pulmonary arteries in horses. PLoS One 2020; 15:e0239561. [PMID: 33091038 PMCID: PMC7580920 DOI: 10.1371/journal.pone.0239561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Pulmonary hypertension and cor pulmonale are complications of severe equine asthma, as a consequence of pulmonary hypoxic vasoconstriction. However, as pulmonary hypertension is only partially reversible by oxygen administration, other etiological factors are likely involved. In human chronic obstructive pulmonary disease, pulmonary artery remodeling contributes to the development of pulmonary hypertension. In rodent models, pulmonary vascular remodeling is present as a consequence of allergic airway inflammation. The present study investigated the presence of remodeling of the pulmonary arteries in severe equine asthma, its distribution throughout the lungs, and its reversibility following long-term antigen avoidance strategies and inhaled corticosteroid administration. Using histomorphometry, the total wall area of pulmonary arteries from different regions of the lungs of asthmatic horses and controls was measured. The smooth muscle mass of pulmonary arteries was also estimated on lung sections stained for α-smooth muscle actin. Reversibility of vascular changes in asthmatic horses was assessed after 1 year of antigen avoidance alone or treatment with inhaled fluticasone. Pulmonary arteries showed increased wall area in apical and caudodorsal lung regions of asthmatic horses in both exacerbation and remission. The pulmonary arteries smooth muscle mass was similarly increased. Both treatments reversed the increase in wall area. However, a trend for normalization of the vascular smooth muscle mass was observed only after treatment with antigen avoidance, but not with fluticasone. In conclusion, severe equine asthma is associated with remodeling of the pulmonary arteries consisting in an increased smooth muscle mass. The resulting narrowing of the artery lumen could enhance hypoxic vasoconstriction, contributing to pulmonary hypertension. In our study population, the antigen avoidance strategy appeared more promising than inhaled corticosteroids in controlling vascular remodeling. However, further studies are needed to support the reversibility of vascular smooth muscle mass remodeling after asthma treatment.
Collapse
Affiliation(s)
- Serena Ceriotti
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Michela Bullone
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mathilde Leclere
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Francesco Ferrucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
18
|
Tian H, Zhou Y, Tang L, Wu F, Deng Z, Lin B, Huang P, Wei S, Zhao D, Zheng J, Zhong N, Ran P. High-dose N-acetylcysteine for long-term, regular treatment of early-stage chronic obstructive pulmonary disease (GOLD I-II): study protocol for a multicenter, double-blinded, parallel-group, randomized controlled trial in China. Trials 2020; 21:780. [PMID: 32917271 PMCID: PMC7488567 DOI: 10.1186/s13063-020-04701-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/27/2020] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The presence of increased oxidative stress and airway inflammation has been proven in subjects with chronic obstructive pulmonary disease (COPD). Several studies have demonstrated that drugs with antioxidant and anti-inflammatory properties such as N-acetylcysteine (NAC) can reduce the rate of exacerbations in patients with COPD. However, the beneficial effects of NAC in early-stage COPD are minimally discussed. We are investigating whether high-dose NAC has therapeutic effects in Chinese patients with early-stage COPD. METHOD AND ANALYSIS A randomized, double-blinded, placebo-controlled, parallel-group, multicenter clinical trial is evaluating the efficacy and safety of NAC for the long-term treatment of patients with early-stage COPD at 24 centers in China. Subjects aged 40-80 years and recruited by physicians or researchers with special training will be randomized to either NAC 600 mg twice daily group or matching placebo group for 2 years. Measurements will include forced expiratory volume in 1 s (FEV1), the number of COPD exacerbations, health-related quality, and pharmacoeconomic analysis. DISCUSSION Currently, there are no randomized controlled trials with high-dose N-acetylcysteine (600 mg twice daily) for patients with mild-to-moderate COPD (GOLD I-II). We designed this multicenter randomized controlled trial (RCT) to assess the effectiveness, safety, and cost-effectiveness of long-term treatment with high-dose N-acetylcysteine. The results of this trial may guide clinical practice and change the standard of early COPD management. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR-IIR-17012604 . Registered on 07 September 2017.
Collapse
Affiliation(s)
- Heshen Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Longhui Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Bijia Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Peiyu Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Shaodan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Dongxing Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Jingping Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
James MD, Milne KM, Phillips DB, Neder JA, O'Donnell DE. Dyspnea and Exercise Limitation in Mild COPD: The Value of CPET. Front Med (Lausanne) 2020; 7:442. [PMID: 32903547 PMCID: PMC7438541 DOI: 10.3389/fmed.2020.00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023] Open
Abstract
The majority of smokers with chronic obstructive pulmonary disease (COPD) have mild airflow limitation as determined by simple spirometry. Although small airway dysfunction is the hallmark of COPD, many studies attest to complex heterogeneous physiological impairments beyond increased airway resistance. These impairments are related to inflammation of lung parenchyma and its microvasculature, which is obscured by simple spirometry. Recent studies using advanced radiological imaging have highlighted significant structural abnormalities in smokers with relatively preserved spirometry. These important studies have generated considerable interest and have reinforced the pressing need to better understand the physiological consequences of various morphological abnormalities, and their impact on the clinical outcomes and natural history of COPD. The overarching objective of this review is to provide a concise overview of the importance and utility of cardiopulmonary exercise testing (CPET) in clinical and research settings. CPET uniquely allows evaluation of integrated abnormalities of the respiratory, cardio-circulatory, metabolic, peripheral muscle and neurosensory systems during increases in physiologic stress. This brief review examines the results of recent studies in mild COPD that have uncovered consistent derangements in pulmonary gas exchange and development of “restrictive” dynamic mechanics that together contribute to exercise intolerance. We examine the evidence that compensatory increases in inspiratory neural drive from respiratory control centers are required during exercise in mild COPD to maintain ventilation commensurate with increasing metabolic demand. The ultimate clinical consequences of this high inspiratory neural drive are earlier onset of critical respiratory mechanical constraints and increased perceived respiratory discomfort at relatively low exercise intensities.
Collapse
Affiliation(s)
- Matthew D James
- Respiratory Investigation Unit, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kathryn M Milne
- Respiratory Investigation Unit, Department of Medicine, Queen's University, Kingston, ON, Canada.,Clinician Investigator Program, University of British Colombia, Vancouver, BC, Canada
| | - Devin B Phillips
- Respiratory Investigation Unit, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - J Alberto Neder
- Laboratory of Clinical and Exercise Physiology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
20
|
Elliott AR, Kizhakke Puliyakote AS, Tedjasaputra V, Pazár B, Wagner H, Sá RC, Orr JE, Prisk GK, Wagner PD, Hopkins SR. Ventilation-perfusion heterogeneity measured by the multiple inert gas elimination technique is minimally affected by intermittent breathing of 100% O 2. Physiol Rep 2020; 8:e14488. [PMID: 32638530 PMCID: PMC7340847 DOI: 10.14814/phy2.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
Proton magnetic resonance (MR) imaging to quantify regional ventilation-perfusion ( V ˙ A / Q ˙ ) ratios combines specific ventilation imaging (SVI) and separate proton density and perfusion measures into a composite map. Specific ventilation imaging exploits the paramagnetic properties of O2 , which alters the local MR signal intensity, in an FI O2 -dependent manner. Specific ventilation imaging data are acquired during five wash-in/wash-out cycles of breathing 21% O2 alternating with 100% O2 over ~20 min. This technique assumes that alternating FI O2 does not affect V ˙ A / Q ˙ heterogeneity, but this is unproven. We tested the hypothesis that alternating FI O2 exposure increases V ˙ A / Q ˙ mismatch in nine patients with abnormal pulmonary gas exchange and increased V ˙ A / Q ˙ mismatch using the multiple inert gas elimination technique (MIGET).The following data were acquired (a) breathing air (baseline), (b) breathing alternating air/100% O2 during an emulated-SVI protocol (eSVI), and (c) 20 min after ambient air breathing (recovery). MIGET heterogeneity indices of shunt, deadspace, ventilation versus V ˙ A / Q ˙ ratio, LogSD V ˙ , and perfusion versus V ˙ A / Q ˙ ratio, LogSD Q ˙ were calculated. LogSD V ˙ was not different between eSVI and baseline (1.04 ± 0.39 baseline, 1.05 ± 0.38 eSVI, p = .84); but was reduced compared to baseline during recovery (0.97 ± 0.39, p = .04). There was no significant difference in LogSD Q ˙ across conditions (0.81 ± 0.30 baseline, 0.79 ± 0.15 eSVI, 0.79 ± 0.20 recovery; p = .54); Deadspace was not significantly different (p = .54) but shunt showed a borderline increase during eSVI (1.0% ± 1.0 baseline, 2.6% ± 2.9 eSVI; p = .052) likely from altered hypoxic pulmonary vasoconstriction and/or absorption atelectasis. Intermittent breathing of 100% O2 does not substantially alter V ˙ A / Q ˙ matching and if SVI measurements are made after perfusion measurements, any potential effects will be minimized.
Collapse
Affiliation(s)
- Ann R. Elliott
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
| | - Abhilash S. Kizhakke Puliyakote
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
| | - Vincent Tedjasaputra
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
| | - Beni Pazár
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
| | - Harrieth Wagner
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Rui C. Sá
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
| | - Jeremy E. Orr
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - G. Kim Prisk
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
| | - Peter D. Wagner
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Susan R. Hopkins
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
21
|
Alterations in central hemodynamic in patients with COPD after acute high intensity exercise. Pulmonology 2020; 27:215-218. [PMID: 32622734 DOI: 10.1016/j.pulmoe.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the relationship between central hemodynamics and lung function and the response to an acute bout of exercise in COPD. METHODS Based on the severity of COPD, moderate group (MOD, n = 12) and more mild group (MLD, n = 12) underwent central hemodynamic assessments pre- and post-peak exercise. RESULTS In the entire cohort (n = 24), central diastolic blood pressure (cDBP) was associated with pulmonary function. Post-exercise, cDBP remained elevated (p < 0.01), however, peripheral diastolic blood pressure (pDBP) was reduced (p = 0.02). Prior to exercise, the MOD showed higher cDBP and heart rate (HR) than the MLD (p = 0.02 and p = 0.01, respectively), but no difference in central aortic/arterial stiffness (p > 0.05). These findings remained similar post-exercise. CONCLUSION Central diastolic blood pressure is linked to pulmonary function in COPD and it is elevated after exercise-induced reductions in pDBP. Central diastolic blood pressure is higher in the MOD than the MLD, however, there was no difference in central aortic/arterial stiffness between groups.
Collapse
|
22
|
Stewart GM, Chase S, Cross TJ, Wheatley-Guy CM, Joyner MJ, Curry T, Lehrer-Graiwer J, Dufu K, Vlahakis NE, Johnson BD. Effects of an allosteric hemoglobin affinity modulator on arterial blood gases and cardiopulmonary responses during normoxic and hypoxic low-intensity exercise. J Appl Physiol (1985) 2020; 128:1467-1476. [PMID: 32324473 DOI: 10.1152/japplphysiol.00185.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous pathophysiological conditions induce hypoxemia-related cardiopulmonary perturbations, decrements in exercise capacity, and debilitating symptoms. Accordingly, this study investigated the efficacy of an allosteric hemoglobin modulator (voxelotor) to enhance arterial oxygen saturation during low-intensity exercise in hypoxia. Eight normal healthy subjects (36 ± 7 yr; 73.8 ± 9.5 kg; 3 women) completed a submaximal cycling test (60 W) under normoxic ([Formula: see text]: 0.21; O2 partial pressure: 144 mmHg) and hypoxic ([Formula: see text]: 0.125; O2 partial pressure: 82 mmHg) conditions before (day 1) and after (day 15) 14 days of oral drug administration. While stationary on a cycle ergometer and during exercise, ratings of perceived exertion (RPE) and dyspnea, oxygen consumption (V̇o2), and cardiac output (Q) were measured noninvasively, while arterial blood pressure (MAP) and blood gases ([Formula: see text], [Formula: see text], and [Formula: see text]) were measured invasively. The 14-day drug administration left shifted the oxygen-hemoglobin dissociation curve (ODC; p50 measured at standard pH and Pco2; day 1: 28.0 ± 2.1 mmHg vs. day 15: 26.1 ± 1.8 mmHg, P < 0.05). RPE, dyspnea, V̇o2, Q, and MAP were not different between day 1 and day 15. [Formula: see text] was similar during normoxia on day 1 and day 15 while stationary but higher during exercise (day 1: 95.2 ± 0.4% vs. day 15: 96.6 ± 0.3%, P < 0.05). [Formula: see text] was higher during hypoxia on day 15 while stationary (day 1: 82.9 ± 3.4% vs. day 15: 90.9 ± 1.8%, P < 0.05) and during exercise (day 1: 73.6 ± 2.5% vs. day 15: 84.8 ± 2.7%, P < 0.01). [Formula: see text] and [Formula: see text]were systematically higher and lower, respectively, after drug (P < 0.01), while the alveolar-arterial oxygen difference was unchanged suggesting hyperventilation contributed to the rise in [Formula: see text]. Oral administration of voxelotor left shifted the ODC and stimulated a mild hyperventilation, leading to improved arterial oxygen saturation without altering V̇o2 and central hemodynamics during rest and low-intensity exercise. This effect was more pronounced during submaximal hypoxic exercise, when arterial desaturation was more evident. Additional studies are needed to determine the effects of voxelotor during maximal exercise and under chronic forms of hypoxia.NEW & NOTEWORTHY In humans, a novel allosteric hemoglobin-oxygen affinity modulator was administered to comprehensively examine the cardiopulmonary consequences of stabilizing a portion of the available hemoglobin in a high-oxygen affinity state during submaximal exercise in normoxia and hypoxia. Oral administration of voxelotor enhanced arterial oxygen saturation during submaximal exercise without altering oxygen consumption and central hemodynamics; however, the partial pressure of arterial carbon dioxide was reduced and the partial pressure of arterial oxygen was increased implying that hyperventilation also contributed to the increase in oxygen saturation. The preservation of arterial oxygen saturation and content was particularly evident during hypoxic submaximal exercise, when arterial desaturation typically occurs, but this did not influence arterial-venous oxygen difference.
Collapse
Affiliation(s)
- Glenn M Stewart
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Steven Chase
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Troy J Cross
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Courtney M Wheatley-Guy
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Michael J Joyner
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy Curry
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Kobina Dufu
- Global Blood Therapeutics, South San Francisco, California
| | | | - Bruce D Johnson
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Bozorgmehr R, Edalatifard M, Safavi E, Rahimi B, Ghorbani F, Abtahi H, Amini S, Pourdowlat G. Therapeutic effects of nebulized verapamil on chronic obstructive pulmonary disease: A randomized and double‐blind clinical trial. CLINICAL RESPIRATORY JOURNAL 2020; 14:370-381. [DOI: 10.1111/crj.13142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/08/2019] [Accepted: 12/09/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Rama Bozorgmehr
- Clinical Research Development Unit Shohadaye Tajrish Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Maryam Edalatifard
- Thoracic Research Center Tehran University of Medical Sciences Tehran Iran
| | - Enayat Safavi
- Thoracic Research Center Tehran University of Medical Sciences Tehran Iran
| | - Besharat Rahimi
- Thoracic Research Center Tehran University of Medical Sciences Tehran Iran
| | - Fariba Ghorbani
- Tracheal Diseases Research Center National Research Institute of Tuberculosis and Lung DiseaseShahid Beheshti University of Medical Sciences Tehran Iran
| | - Hamidreza Abtahi
- Thoracic Research Center Tehran University of Medical Sciences Tehran Iran
| | - Shahideh Amini
- Faculty of Pharmacy Clinical Pharmacy Department Tehran University of Medical Sciences Tehran Iran
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Center National Research Institute of Tuberculosis and Lung Disease (NRITLD)Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
24
|
Hwang HJ, Lee SM, Seo JB, Lee JS, Kim N, Kim C, Oh SY, Lee SW. Assessment Of Changes In Regional Xenon-Ventilation, Perfusion, And Ventilation-Perfusion Mismatch Using Dual-Energy Computed Tomography After Pharmacological Treatment In Patients With Chronic Obstructive Pulmonary Disease: Visual And Quantitative Analysis. Int J Chron Obstruct Pulmon Dis 2019; 14:2195-2203. [PMID: 31576116 PMCID: PMC6768130 DOI: 10.2147/copd.s210555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose To assess changes in regional ventilation (V), perfusion (Q), and V-Q mismatch in patients with chronic obstructive pulmonary disease (COPD) after pharmacologic treatment using combined xenon-enhanced V and iodine-enhanced Q dual-energy CT (DECT). Patients and methods Combined V and Q DECT were performed at baseline and after three-month pharmacologic treatment in 52 COPD patients. Anatomically co-registered virtual non-contrast images, V, Q, and V/Qratio maps were obtained. V/Q pattern was visually determined to be matched, mismatched, or reversed-mismatched and compared with the regional parenchymal disease patterns of each segment. DECT parameters for V, Q, and V-Q imbalance were quantified. Results The parenchymal patterns on CT were not changed at follow-up. The segments with matched V/Q pattern were increased (80.2% to 83.6%) as the segments with reversed-mismatched V/Q pattern were decreased with improving ventilation (17.6% to 13.8%) after treatment. Changes of V/Q patterns were mostly observed in segments with bronchial wall thickening. Compared with patients without bronchial wall thickening, the quantified DECT parameters of V-Q imbalance were significantly improved in patients with bronchial wall thickening (p < 0.05). Changes in forced expiratory volume in one second after treatment were correlated with changes in the quantified DECT parameters (r = 0.327–0.342 or r = −0.406 and −0.303; p < 0.05). Conclusion DECT analysis showed that the V-Q imbalance was improved after the pharmacological treatment in COPD patients, although the parenchymal disease patterns remained unchanged. This improvement of V-Q imbalance may occur mostly in the areas with bronchial wall thickening.
Collapse
Affiliation(s)
- Hye Jeon Hwang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul 138-736, South Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul 138-736, South Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul 138-736, South Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul 138-736, South Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul 138-736, South Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi-do, Korea
| | - Sang Young Oh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul 138-736, South Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul 138-736, South Korea
| |
Collapse
|
25
|
Zhai Z, Staring M, Hernández Girón I, Veldkamp WJH, Kroft LJ, Ninaber MK, Stoel BC. Automatic quantitative analysis of pulmonary vascular morphology in CT images. Med Phys 2019; 46:3985-3997. [PMID: 31206181 PMCID: PMC6852650 DOI: 10.1002/mp.13659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Vascular remodeling is a significant pathological feature of various pulmonary diseases, which may be assessed by quantitative computed tomography (CT) imaging. The purpose of this study was therefore to develop and validate an automatic method for quantifying pulmonary vascular morphology in CT images. METHODS The proposed method consists of pulmonary vessel extraction and quantification. For extracting pulmonary vessels, a graph-cuts-based method is proposed which considers appearance (CT intensity) and shape (vesselness from a Hessian-based filter) features, and incorporates distance to the airways into the cost function to prevent false detection of airway walls. For quantifying the extracted pulmonary vessels, a radius histogram is generated by counting the occurrence of vessel radii, calculated from a distance transform-based method. Subsequently, two biomarkers, slope α and intercept β, are calculated by linear regression on the radius histogram. A public data set from the VESSEL12 challenge was used to independently evaluate the vessel extraction. The quantitative analysis method was validated using images of a three-dimensional (3D) printed vessel phantom, scanned by a clinical CT scanner and a micro-CT scanner (to obtain a gold standard). To confirm the association between imaging biomarkers and pulmonary function, 77 scleroderma patients were investigated with the proposed method. RESULTS In the independent evaluation with the public data set, our vessel segmentation method obtained an area under the receiver operating characteristic (ROC) curve of 0.976. The median radius difference between clinical and micro-CT scans of a 3D printed vessel phantom was 0.062 ± 0.020 mm, with interquartile range of 0.199 ± 0.050 mm. In the studied patient group, a significant correlation between diffusion capacity for carbon monoxide and the biomarkers, α (R = -0.27, P = 0.018) and β (R = 0.321, P = 0.004), was obtained. CONCLUSION In conclusion, the proposed method was validated independently using a public data set resulting in an area under the ROC curve of 0.976 and using a 3D printed vessel phantom data set, showing a vessel sizing error of 0.062 mm (0.16 in-plane pixel units). The correlation between imaging biomarkers and diffusion capacity in a clinical data set confirmed an association between lung structure and function. This quantification of pulmonary vascular morphology may be helpful in understanding the pathophysiology of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Zhiwei Zhai
- Division of Image ProcessingDepartment of RadiologyLeiden University Medical CenterPO Box 96002300 RCLeidenThe Netherlands
| | - Marius Staring
- Division of Image ProcessingDepartment of RadiologyLeiden University Medical CenterPO Box 96002300 RCLeidenThe Netherlands
| | - Irene Hernández Girón
- Medical Physics, Department of RadiologyLeiden University Medical CenterPO Box 96002300 RCLeidenThe Netherlands
| | - Wouter J. H. Veldkamp
- Medical Physics, Department of RadiologyLeiden University Medical CenterPO Box 96002300 RCLeidenThe Netherlands
| | - Lucia J. Kroft
- Department of RadiologyLeiden University Medical CenterPO Box 96002300 RCLeidenThe Netherlands
| | - Maarten K. Ninaber
- Department of PulmonologyLeiden University Medical CenterPO Box 96002300 RCLeidenThe Netherlands
| | - Berend C. Stoel
- Division of Image ProcessingDepartment of RadiologyLeiden University Medical CenterPO Box 96002300 RCLeidenThe Netherlands
| |
Collapse
|
26
|
Rahaghi FN, Argemí G, Nardelli P, Domínguez-Fandos D, Arguis P, Peinado VI, Ross JC, Ash SY, de La Bruere I, Come CE, Diaz AA, Sánchez M, Washko GR, Barberà JA, San José Estépar R. Pulmonary vascular density: comparison of findings on computed tomography imaging with histology. Eur Respir J 2019; 54:1900370. [PMID: 31196942 PMCID: PMC7007984 DOI: 10.1183/13993003.00370-2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/11/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND Exposure to cigarette smoke has been shown to lead to vascular remodelling. Computed tomography (CT) imaging measures of vascular pruning have been associated with pulmonary vascular disease, an important morbidity associated with smoking. In this study we compare CT-based measures of distal vessel loss to histological vascular and parenchymal changes. METHODS A retrospective review of 80 patients who had undergone lung resection identified patients with imaging appropriate for three-dimensional (3D) vascular reconstruction (n=18) and a second group for two-dimensional (2D) analysis (n=19). Measurements of the volume of the small vessels (3D) and the cross-sectional area of the small vessels (<5 mm2 cross-section) were computed. Histological measures of cross-sectional area of the vasculature and loss of alveoli septa were obtained for all subjects. RESULTS The 2D cross-sectional area of the vasculature on CT imaging was associated with the histological vascular cross-sectional area (r=0.69; p=0.001). The arterial small vessel volume assessed by CT correlated with the histological vascular cross-sectional area (r=0.50; p=0.04), a relationship that persisted even when adjusted for CT-derived measures of emphysema in a regression model. CONCLUSIONS Loss of small vessel volume in CT imaging of smokers is associated with histological loss of vascular cross-sectional area. Imaging-based quantification of pulmonary vasculature provides a noninvasive method to study the multiscale effects of smoking on the pulmonary circulation.
Collapse
Affiliation(s)
- Farbod N Rahaghi
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Equal contributors on this article
| | - Gemma Argemí
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Equal contributors on this article
| | - Pietro Nardelli
- Dept of Radiology, Harvard School of Medicine, Boston, MA, USA
| | - David Domínguez-Fandos
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Pedro Arguis
- Dept of Radiology, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Víctor I Peinado
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center for Respiratory Diseases (CIBERES), Madrid Spain
| | - James C Ross
- Dept of Radiology, Harvard School of Medicine, Boston, MA, USA
| | - Samuel Y Ash
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Isaac de La Bruere
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carolyn E Come
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alejandro A Diaz
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Marcelo Sánchez
- Dept of Radiology, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - George R Washko
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Equal contributors on this article
| | - Joan Albert Barberà
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center for Respiratory Diseases (CIBERES), Madrid Spain
- Equal contributors on this article
| | - Raúl San José Estépar
- Pulmonary and Critical Care Division, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Equal contributors on this article
| |
Collapse
|
27
|
Tura-Ceide O, Pizarro S, García-Lucio J, Ramírez J, Molins L, Blanco I, Torralba Y, Sitges M, Bonjoch C, Peinado VI, Barberà JA. Progenitor cell mobilisation and recruitment in pulmonary arteries in chronic obstructive pulmonary disease. Respir Res 2019; 20:74. [PMID: 30992021 PMCID: PMC6469212 DOI: 10.1186/s12931-019-1024-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Pulmonary vascular abnormalities are a characteristic feature of chronic obstructive pulmonary disease (COPD). Cigarette smoking is the most important risk factor for COPD. It is believed that its constant exposure triggers endothelial cell damage and vascular remodelling. Under pathological conditions, progenitor cells (PCs) are mobilized from the bone marrow and recruited to sites of vascular injury. The aim of the study was to investigate whether in COPD the number of circulating PCs is related to the presence of bone marrow-derived cells in pulmonary arteries and the association of these phenomena to both systemic and pulmonary endothelial dysfunction. Methods Thirty-nine subjects, 25 with COPD, undergoing pulmonary resection because of a localized carcinoma, were included. The number of circulating PCs was assessed by flow cytometry using a triple combination of antibodies against CD45, CD133 and CD34. Infiltrating CD45+ cells were identified by immunohistochemistry in pulmonary arteries. Endothelial function in systemic and pulmonary arteries was measured by flow-mediated dilation and adenosine diphosphate-induced vasodilation, respectively. Results COPD patients had reduced numbers of circulating PCs (p < 0.05) and increased numbers of CD45+ cells (< 0.05) in the pulmonary arterial wall than non-COPD subjects, being both findings inversely correlated (r = − 0.35, p < 0.05). In pulmonary arteries, the number of CD45+ cells correlated with the severity of vascular remodelling (r = 0.4, p = 0.01) and the endothelium-dependent vasodilation (r = − 0.3, p = 0.05). Systemic endothelial function was unrelated to the number of circulating PCs and changes in pulmonary vessels. Conclusion In COPD, the decrease of circulating PCs is associated with their recruitment in pulmonary arteries, which in turn is associated with endothelial dysfunction and vessel remodelling, suggesting a mechanistic link between these phenomena. Our findings are consistent with the notion of an imbalance between endothelial damage and repair capacity in the pathogenesis of pulmonary vascular abnormalities in COPD. Electronic supplementary material The online version of this article (10.1186/s12931-019-1024-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain. .,Servei de Pneumologia, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
| | - Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Josep Ramírez
- Department of Pathology, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Laureano Molins
- Department of Thoracic Surgery, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Cristina Bonjoch
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Victor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain. .,Servei de Pneumologia, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
| |
Collapse
|
28
|
Pulmonary capillary blood volume response to exercise is diminished in mild chronic obstructive pulmonary disease. Respir Med 2018; 145:57-65. [PMID: 30509717 DOI: 10.1016/j.rmed.2018.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Previous work suggests that mild chronic obstructive pulmonary disease (COPD) patients have greater lung dysfunction than previously appreciated from spirometry alone. There is evidence of pulmonary microvascular dysfunction in mild COPD, which may reduce diffusing capacity (DLCO) and increase ventilatory inefficiency during exercise. The purpose of this study was to determine if DLCO, pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) are diminished during exercise in mild COPD, and whether this is related to ventilatory inefficiency and dyspnea. METHODS Seventeen mild COPD patients (FEV1/FVC: 64 ± 4%, FEV1 = 94 ± 11%pred) and 17 age- and sex-matched controls were recruited. Ten moderate COPD patients were also tested for comparison (FEV1 = 66 ± 7%pred). DLCO, Vc, and Dm were determined using the multiple-fraction of inspired oxygen (FIO2) DLCO method at baseline and during steady-state cycle exercise at 40W, 50%, and 80% of V˙O2peak. Using expired gas data, ventilatory inefficiency was assessed by V˙E/V˙CO2. RESULTS Compared to controls, mild COPD had lower DLCO at baseline and during exercise secondary to diminished Vc (P < 0.05). No difference in Dm was observed between controls and mild COPD at rest or during exercise. Patients with high V˙E/V˙CO2 (i.e. ≥34) had lower Vc and greater dyspnea ratings compared to control at 40W. Moderate COPD patients were unable to increase Vc with increasing exercise intensity, suggesting further pulmonary vascular impairment with increased obstruction severity. CONCLUSION Despite relatively minor airflow obstruction, mild COPD patients exhibit a diminished DLCO and capillary blood volume response to exercise, which appears to contribute to ventilatory inefficiency and greater dyspnea.
Collapse
|
29
|
Quantitative assessment of pulmonary vascular alterations in chronic obstructive lung disease: Associations with pulmonary function test and survival in the KOLD cohort. Eur J Radiol 2018; 108:276-282. [PMID: 30396668 DOI: 10.1016/j.ejrad.2018.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE Despite the high prevalence of pulmonary vascular alterations and their substantial impact on chronic obstructive pulmonary disease (COPD), tools for the direct in vivo assessment of pulmonary vascular alterations remain limited. Thus, the purpose of this study was to automatically extract pulmonary vessels from volumetric chest CT and evaluate the associations between the derived quantitative pulmonary vessel features and clinical parameters, including survival, in COPD patients. METHODS This study included 344 adult COPD patients. Pulmonary vessels were automatically extracted from volumetric chest CT data. Quantitative pulmonary vessel features were obtained from various lung surface areas (LSAs), which are theoretical surface areas drawn at different depths from the pleural borders. The total number of vessels (Ntotal) and number of vessels with vessel area (VA) less than 5 mm2 (N<5mm) were counted as both robust values and as values per 10 cm2 of LSA (Ntotal/LSA; N<5mm/LSA). The average VA (VAmean) and percentage of measured VA in the corresponding LSA (%VA) were measured. Associations between quantitative pulmonary vessel features and clinical parameters, including survival and the pulmonary function test (PFT), were evaluated. RESULTS The pulmonary vessels were automatically extracted with 100% technical success. Cox regression analysis showed Ntotal/LSA, N<5mm/LSA, VAmean, and %VA to be significant predictors of survival (hazard ratio (HR), 0.80, 0.75, 0.70, 0.49, respectively). Patients classified into high-risk groups by %VA18mm (cut-off = 3.258), chosen because it demonstrated the strongest statistical influence on survival in a univariate Cox analysis, were associated with worse overall survival before (HR, 4.83; p < 0.001) and after adjustment for patient age and BMI (HR, 2.18; p = 0.014). Of the quantitative pulmonary vessel features, Ntotal/LSA, N<5mm/LSA, and %VA were correlated with FEV1, FEV1/FVC, and DLCO in all LSAs. The strongest correlation with PFTs was noted at LSA9mm for both Ntotal (FEV1, r = 0.33; FEV1/FVC, r = 0.51) and N<5mm (FEV1, r = 0.35; FEV1/FVC, r = 0.52). For %VA, the association was most evident at LSA18mm (FEV1, r = 0.27; FEV1/FVC, r = 0.47). Significant moderate to strong correlations were consistently observed between the extent of emphysema and quantitative pulmonary vessel features (r = 0.44-0.66; all p < 0.001). CONCLUSIONS The automated extraction of pulmonary vessels and their quantitative assessment are technically feasible. Various quantitative pulmonary vessel features demonstrated significant relationships with survival and PFT in COPD patients. Of the various quantitative features, the percentage of total VA measured at 18 mm depth from the pleural surface (%VA18mm) and the number of small vessels counted per 10 cm2 of LSA at 9 mm depth from the pleural surface (N<5mm/LSA9mm) had the strongest predictability for the clinical parameters.
Collapse
|
30
|
Abstract
Pulmonary hypertension that develops in the setting of underlying lung diseases such as COPD or idiopathic pulmonary fibrosis (IPF) is associated with decreased functional status, worsening hypoxemia and quality of life, and increased mortality. This complication of lung disease is complex in its origin and carries a unique set of diagnostic and therapeutic issues. This review attempts to provide an overview of mechanisms associated with the onset of pulmonary hypertension in COPD and IPF, touches on appropriate evaluation, and reviews the state of knowledge on treating pulmonary hypertension related to underlying lung disease.
Collapse
Affiliation(s)
- Michael J Cuttica
- Northwestern Pulmonary Hypertension Program, 676 St Claire Suite 1400, Chicago, IL, 60611, USA.
| |
Collapse
|
31
|
Association of thrombocytosis with COPD morbidity: the SPIROMICS and COPDGene cohorts. Respir Res 2018; 19:20. [PMID: 29373977 PMCID: PMC5787242 DOI: 10.1186/s12931-018-0717-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Thrombocytosis has been associated with COPD prevalence and increased all-cause mortality in patients with acute exacerbation of COPD (AECOPD); but whether it is associated with morbidity in stable COPD is unknown. This study aims to determine the association of thrombocytosis with COPD morbidity including reported AECOPD, respiratory symptoms and exercise capacity. METHODS Participants with COPD were included from two multi-center observational studies (SPIROMICS and COPDGene). Cross-sectional associations of thrombocytosis (platelet count ≥350 × 109/L) with AECOPD during prior year (none vs. any), exertional dyspnea (modified Medical Research Council (mMRC) score ≥ 2), COPD Assessment Test (CAT) score ≥ 10, six-minute-walk distance (6MWD), and St. George Respiratory questionnaire (SGRQ) were modeled using multivariable logistic or linear regression. A pooled effect estimate for thrombocytosis was produced using meta-analysis of data from both studies. RESULTS Thrombocytosis was present in 124/1820 (6.8%) SPIROMICS participants and 111/2185 (5.1%) COPDGene participants. In meta-analysis thrombocytosis was associated with any AECOPD (adjusted odds ratio [aOR] 1.5; 95% confidence interval [95% CI]: 1.1-2.0), severe AECOPD (aOR 1.5; 95% CI: 1.1-2.2), dyspnea (mMRC ≥ 2 aOR 1.4; 95% CI: 1.0-1.9), respiratory symptoms (CAT ≥ 10 aOR 1.6; 95% CI: 1.1-2.4), and higher SGRQ score (β 2.7; 95% CI: 0.5, 5). Thrombocytosis was also associated with classification into Global Initiative for Chronic Obstructive Lung Disease (GOLD) group D (aOR 1.7 95% CI: 1.2-2.4). CONCLUSIONS Thrombocytosis was associated with higher likelihood of prior exacerbation and worse symptoms. Platelet count, a commonly measured clinical assay, may be a biomarker for moderate-severe COPD symptoms, guide disease classification and intensity of treatment. Future longitudinal studies investigating the role of platelets in COPD progression may be warranted. TRIAL REGISTRATION ClinicalTrials.gov: NCT01969344 (SPIROMICS) and NCT00608764 (COPDGene).
Collapse
|
32
|
Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients. J Biomech 2017; 68:84-92. [PMID: 29310945 DOI: 10.1016/j.jbiomech.2017.12.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/30/2017] [Accepted: 12/17/2017] [Indexed: 11/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by an elevated pulmonary arterial (PA) pressure. While several computational hemodynamic models of the pulmonary vasculature have been developed to understand PAH, they are lacking in some aspects, such as the vessel wall deformation and its lack of calibration against measurements in humans. Here, we describe a computational modeling framework that addresses these limitations. Specifically, computational models describing the coupling of hemodynamics and vessel wall mechanics in the pulmonary vasculature of a PAH patient and a normal subject were developed. Model parameters, consisting of linearized stiffness E of the large vessels and Windkessel parameters for each outflow branch, were calibrated against in vivo measurements of pressure, flow and vessel wall deformation obtained, respectively, from right-heart catheterization, phase-contrast and cine magnetic resonance images. Calibrated stiffness E of the proximal PA was 2.0 and 0.5 MPa for the PAH and normal models, respectively. Calibrated total compliance CT and resistance RT of the distal vessels were, respectively, 0.32 ml/mmHg and 11.3 mmHg∗min/l for the PAH model, and 2.93 ml/mmHg and 2.6 mmHg∗min/l for the normal model. These results were consistent with previous findings that the pulmonary vasculature is stiffer with more constricted distal vessels in PAH patients. Individual effects on PA pressure due to remodeling of the distal and proximal compartments of the pulmonary vasculature were also investigated in a sensitivity analysis. The analysis suggests that the remodeling of distal vasculature contributes more to the increase in PA pressure than the remodeling of proximal vasculature.
Collapse
|
33
|
Brandsma CA, de Vries M, Costa R, Woldhuis RR, Königshoff M, Timens W. Lung ageing and COPD: is there a role for ageing in abnormal tissue repair? Eur Respir Rev 2017; 26:26/146/170073. [PMID: 29212834 DOI: 10.1183/16000617.0073-2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide, with increasing prevalence, in particular in the elderly. COPD is characterised by abnormal tissue repair resulting in (small) airways disease and emphysema. There is accumulating evidence that ageing hallmarks are prominent features of COPD. These ageing hallmarks have been described in different subsets of COPD patients, in different lung compartments and also in a variety of cell types, and thus might contribute to different COPD phenotypes. A better understanding of the main differences and similarities between normal lung ageing and the pathology of COPD may improve our understanding of the mechanisms driving COPD pathology, in particular in those patients that develop the most severe form of COPD at a relatively young age, i.e. severe early-onset COPD patients.In this review, after introducing the main concepts of lung ageing and COPD pathology, we focus on the role of (abnormal) ageing in lung remodelling and repair in COPD. We discuss the current evidence for the involvement of ageing hallmarks in these pathological features of COPD. We also highlight potential novel treatment strategies and opportunities for future research based on our current knowledge of abnormal lung ageing in COPD.
Collapse
Affiliation(s)
- Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands
| | - Rita Costa
- Comprehensive Pneumology Center, Helmholtz Zentrum München, University Hospital of the Ludwig Maximilians University, Munich, Germany
| | - Roy R Woldhuis
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Zentrum München, University Hospital of the Ludwig Maximilians University, Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Denver, CO, USA.,Both authors contributed equally
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,Both authors contributed equally
| |
Collapse
|
34
|
Elbehairy AF, Parraga G, Webb KA, Neder JA, O’Donnell DE. Mild chronic obstructive pulmonary disease: why spirometry is not sufficient! Expert Rev Respir Med 2017; 11:549-563. [DOI: 10.1080/17476348.2017.1334553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amany F. Elbehairy
- Department of Medicine, Queen’s University and Kingston General Hospital, Kingston, ON, Canada
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Grace Parraga
- Department of Medical Biophysics, Robarts Research Institute, Western University, London, Canada
| | - Katherine A. Webb
- Department of Medicine, Queen’s University and Kingston General Hospital, Kingston, ON, Canada
| | - J Alberto Neder
- Department of Medicine, Queen’s University and Kingston General Hospital, Kingston, ON, Canada
| | - Denis E. O’Donnell
- Department of Medicine, Queen’s University and Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
35
|
Rodriguez-Roisin R, Han MK, Vestbo J, Wedzicha JA, Woodruff PG, Martinez FJ. Chronic Respiratory Symptoms with Normal Spirometry. A Reliable Clinical Entity? Am J Respir Crit Care Med 2017; 195:17-22. [DOI: 10.1164/rccm.201607-1376pp] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Brockhoff B, Schreckenberg R, Forst S, Heger J, Bencsik P, Kiss K, Ferdinandy P, Schulz R, Schlüter K. Effect of nitric oxide deficiency on the pulmonary PTHrP system. J Cell Mol Med 2017; 21:96-106. [PMID: 27581501 PMCID: PMC5192877 DOI: 10.1111/jcmm.12942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/04/2016] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) deficiency is common in pulmonary diseases, but its effect on pulmonary remodelling is still controversial. As pulmonary parathyroid hormone-related protein (PTHrP) expression is a key regulator of pulmonary fibrosis and development, the effect of chronic NO deficiency on the pulmonary PTHrP system and its relationship with oxidative stress was addressed. NO bioavailability in adult rats was reduced by systemic administration of L-NAME via tap water. To clarify the role of NO synthase (NOS)-3-derived NO on pulmonary expression of PTHrP, NOS-3-deficient mice were used. Captopril and hydralazine were used to reduce the hypertensive effect of L-NAME treatment and to interfere with the pulmonary renin-angiotensin system (RAS). Quantitative RT-PCR and immunoblot techniques were used to characterize the expression of key proteins involved in pulmonary remodelling. L-NAME administration significantly reduced pulmonary NO concentration and caused oxidative stress as characterized by increased pulmonary nitrite concentration and increased expression of NOX2, p47phox and p67phox. Furthermore, L-NAME induced the pulmonary expression of PTHrP and of its corresponding receptor, PTH-1R. Expression of PTHrP and PTH-1R correlated with the expression of two well-established PTHrP downstream targets, ADRP and PPARγ, suggesting an activation of the pulmonary PTHrP system by NO deficiency. Captopril reduced the expression of PTHrP, profibrotic markers and ornithine decarboxylase, but neither that of PTH-1R nor that of ADRP and PPARγ. All transcriptional changes were confirmed in NOS-3-deficient mice. In conclusion, NOS-3-derived NO suppresses pulmonary PTHrP and PTH-1R expression, thereby modifying pulmonary remodelling.
Collapse
Affiliation(s)
- Bastian Brockhoff
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | | | - Svenja Forst
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | - Jacqueline Heger
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | - Péter Bencsik
- Pharmahungary GroupSzegedHungary
- Cardiovascular Research GroupDepartment of BiochemistryUniversity of SzegedSzegedHungary
| | - Krisztina Kiss
- Pharmahungary GroupSzegedHungary
- Cardiovascular Research GroupDepartment of BiochemistryUniversity of SzegedSzegedHungary
| | - Peter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Rainer Schulz
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | | |
Collapse
|
37
|
Ma J, Yu N, Shen C, Wang Z, He T, Guo YM. A three-dimensional approach for identifying small pulmonary vessels in smokers. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:391-402. [PMID: 28157121 DOI: 10.3233/xst-16216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND This study aims to develop a computerized scheme that utilizes a differential geometric approach to identify pulmonary vessels and then evaluate the performance of the scheme on the CT images of heavy smokers. METHODS The scheme consists of two primary steps to segment entire lung vascular tree and identify the number of pulmonary vessels in a cross section. The scheme performance including accuracy, consistency, and efficiency was assessed using 102 chest CT scans. Further assessment was performed on the relationship between pulmonary vessels and the extent of emphysema as well as pulmonary artery alteration. RESULTS The mean number of vessels in the cross section at the 5th generation was 17.84±4.74 and 17.23±4.85 assessed by computerized scheme and radiologists, respectively, which are significantly different (t = 2.12, p = 0.055). The results were consistent with those obtained by using a semi-automatic tool (r = 0.75, p = 0.01). In addition, in the 5th generation, the mean number of vessels was inversely related to the percentage of the low attenuation area (r = -0.704, p = 0.000), the mean lumen area of pulmonary vessel was inversely related to the mean value of main pulmonary artery diameter (r = -0.617, p = 0.000). The computational time of segmenting vessels was 6.50±0.02 seconds, which is much less than the average 8 minutes of the time spent by radiologists using the semi-automatic tool. CONCLUSION Applying the computerized scheme yields reasonable performance on the segmentation of pulmonary vessels. The alteration of pulmonary vessels may reflect the presence of pulmonary hypertension, as well as the extent of emphysema.
Collapse
Affiliation(s)
- Junchao Ma
- Department of Radiology, The Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xian yang, China
| | - Nan Yu
- Department of Radiology, The Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xian yang, China
| | - Cong Shen
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhimin Wang
- Department of Radiology, Tumor Hospital of Gansu Province, Lanzhou, China
| | - Taiping He
- Department of Radiology, The Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xian yang, China
| | - You-Min Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Abstract
Oxygen is an essential element for life and without oxygen humans can survive for few minutes only. There should be a balance between oxygen demand and delivery in order to maintain homeostasis within the body. The two main organ systems responsible for oxygen delivery in the body and maintaining homeostasis are respiratory and cardiovascular system. Abnormal function of any of these two would lead to the development of hypoxemia and its detrimental consequences. There are various mechanisms of hypoxemia but ventilation/perfusion mismatch is the most common underlying mechanism of hypoxemia. The present review will focus on definition, various causes, mechanisms, and approach of hypoxemia in human.
Collapse
Affiliation(s)
- Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - N Niranjan
- Navodaya Medical College Hospital and Research Center, Raichur, Karnataka, India
| | - P K Banyal
- Community Health Center, Kupvi, Nerwa, Shimla, Himachal Pradesh, India
| |
Collapse
|
39
|
Jones JH, Zelt JT, Hirai DM, Diniz CV, Zaza A, O'Donnell DE, Neder JA. Emphysema on Thoracic CT and Exercise Ventilatory Inefficiency in Mild-to-Moderate COPD. COPD 2016; 14:210-218. [PMID: 27997255 DOI: 10.1080/15412555.2016.1253670] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There is growing evidence that emphysema on thoracic computed tomography (CT) is associated with poor exercise tolerance in COPD patients with only mild-to-moderate airflow obstruction. We hypothesized that an excessive ventilatory response to exercise (ventilatory inefficiency) would underlie these abnormalities. In a prospective study, 19 patients (FEV1 = 82 ± 13%, 12 Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 1) and 26 controls underwent an incremental exercise test. Ventilatory inefficiency was assessed by the ventilation ([Formula: see text]E)/CO2 output ([Formula: see text]CO2) nadir. Pulmonary blood flow (PBF) in a submaximal test was calculated by inert gas rebreathing. Emphysema was quantified as % of attenuation areas below 950 HU. Patients typically presented with centrilobular emphysema (76.8 ± 10.1% of total emphysema) in the upper lobes (upper/total lung ratio = 0.82 ± 0.04). They had lower peak oxygen uptake ([Formula: see text]O2), higher [Formula: see text]E/[Formula: see text]CO2 nadir, and greater dyspnea scores than controls (p < 0.05). Lower peak [Formula: see text]O2 and worse dyspnea were found in patients with higher [Formula: see text]E/[Formula: see text]CO2 nadirs (≥30). Patients had blunted increases in PBF from rest to iso-[Formula: see text]O2 exercise (p < 0.05). Higher [Formula: see text]E/[Formula: see text]CO2 nadir in COPD was associated with emphysema severity (r = 0.63) which, in turn, was related to reduced lung diffusing capacity (r = -0.72) and blunted changes in PBF from rest to exercise (r = -0.69) (p < 0.01). Ventilation "wasted" in emphysematous areas is associated with impaired exercise ventilatory efficiency in mild-to-moderate COPD. Exercise ventilatory inefficiency links structure (emphysema) and function (DLCO) to a key clinical outcome (poor exercise tolerance) in COPD patients with only modest spirometric abnormalities.
Collapse
Affiliation(s)
- Joshua H Jones
- a Laboratory of Clinical Exercise Physiology (LACEP), Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University , Kingston , ON , Canada
| | - Joel T Zelt
- a Laboratory of Clinical Exercise Physiology (LACEP), Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University , Kingston , ON , Canada
| | - Daniel M Hirai
- a Laboratory of Clinical Exercise Physiology (LACEP), Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University , Kingston , ON , Canada
| | - Camilla V Diniz
- a Laboratory of Clinical Exercise Physiology (LACEP), Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University , Kingston , ON , Canada
| | - Aida Zaza
- a Laboratory of Clinical Exercise Physiology (LACEP), Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University , Kingston , ON , Canada
| | - Denis E O'Donnell
- b Respiratory Investigation Unit (RIU), Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University , Kingston , ON , Canada
| | - J Alberto Neder
- a Laboratory of Clinical Exercise Physiology (LACEP), Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University , Kingston , ON , Canada
| |
Collapse
|
40
|
State of the Art Review of the Right Ventricle in COPD Patients: It is Time to Look Closer. Lung 2016; 195:9-17. [DOI: 10.1007/s00408-016-9961-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
41
|
Yu N, Wei X, Li Y, Deng L, Jin CW, Guo Y. Computed tomography quantification of pulmonary vessels in chronic obstructive pulmonary disease as identified by 3D automated approach. Medicine (Baltimore) 2016; 95:e5095. [PMID: 27749587 PMCID: PMC5059090 DOI: 10.1097/md.0000000000005095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to investigate the vascular alteration of the whole lung and individual lobes in patients with COPD, and assess the association between pulmonary vessels and the extent and distribution of emphysema as well as pulmonary function by a 3-dimensional automated approach.A total of 83 computed tomography images from COPD patients were analyzed. Automated computerized approach was used to measure the total number of vessels at the fifth generation. The extent of emphysema (%LAA-950) in the whole lung and individual lobes were also calculated automatically. The association between the vascular number and the extent and distribution of emphysema, as well as the pulmonary function were assessed.Both the vascular number of fifth generation in the upper lobe and in the lower lobe were significantly negatively correlated with %LAA-950 (P < 0.05). Furthermore, there were significant, yet weak correlations between the vascular number and FEV1% predicted (R = 0.556, P = 0.039) and FEV1/FVC (R = 0.538, P = 0.047). In contrast, the vascular numbers were strongly correlated with DLco (R = 0.770, P = 0.003). Finally, the vascular number correlated closer with %LAA-950 of upper lobes than with %LAA-950 of lower lobes.Pulmonary vessel alteration can be measured; it is related to the extent of emphysema rather than the distribution of emphysema.
Collapse
Affiliation(s)
- Nan Yu
- Department of Radiology, The Affiliated Hospital of Shaanxi University of traditional Chinese Medicine
| | - Xia Wei
- Department of Respiratory Medicine, The Ninth Hospital of Xi’an, Xi’an, China
| | - Yan Li
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University
| | - Lei Deng
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University
| | - Chen-wang Jin
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University
| | - Youmin Guo
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University
- Correspondence: Youmin Guo, 277 Yanta Western Road, Xi’an 710061, China (e-mail: )
| |
Collapse
|
42
|
Functional and Prognostic Implications of the Main Pulmonary Artery Diameter to Aorta Diameter Ratio from Chest Computed Tomography in Korean COPD Patients. PLoS One 2016; 11:e0154584. [PMID: 27152915 PMCID: PMC4859521 DOI: 10.1371/journal.pone.0154584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The ratio of the diameter of the main pulmonary artery (mPA) to the diameter of the aorta (Ao) on chest computed tomography is associated with diverse clinical conditions. Herein, we determined the functional and prognostic implications of the mPA/Ao ratio in Korean chronic obstructive pulmonary disease (COPD) patients. METHODS The study population comprised 226 chronic obstructive pulmonary disease patients from the Korean Obstructive Lung Disease cohort who underwent chest computed tomography. We analyzed the relationships between the clinical characteristics, including pulmonary function, echocardiography findings, St. George's Respiratory Questionnaire, 6-minute walking (6MW) distance, and exacerbation with the mPA, Ao, and mPA/Ao ratio. RESULTS The mean age was 65.8 years, and 219 (96.9%) patients were male. The mean FEV1% predicted and FEV1/FVC ratio were 61.2% and 47.3%, respectively. The mean mPA and Ao were 23.7 and 36.4 mm, respectively, and the mPA/Ao ratio was 0.66. The mPA/Ao ratio correlated negatively with the 6MW distance (G = -0.133, P = 0.025) and positively with the right ventricular pressure (G = 0.323, P = 0.001). After adjustment for potential confounders, the mPA/Ao ratio was significantly associated with 6MW distance (β = -107.7, P = 0.017). Moreover, an mPA/Ao ratio >0.8 was a significant predictor of exacerbation at the 1-year (odds ratio 2.12, 95% confidence interval 1.27-3.52) and 3-year follow-ups (odds ratio 2.04, 95% confidence interval 1.42-2.90). CONCLUSIONS The mPA/Ao ratio is an independent predictor of exercise capacity and an mPA/Ao ratio >0.8 is a significant risk factor of COPD exacerbation.
Collapse
|
43
|
Blanco I, Piccari L, Barberà JA. Pulmonary vasculature in COPD: The silent component. Respirology 2016; 21:984-94. [PMID: 27028849 DOI: 10.1111/resp.12772] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/06/2015] [Accepted: 12/20/2015] [Indexed: 01/15/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction that results from an inflammatory process affecting the airways and lung parenchyma. Despite major abnormalities taking place in bronchial and alveolar structures, changes in pulmonary vessels also represent an important component of the disease. Alterations in vessel structure are highly prevalent and abnormalities in their function impair gas exchange and may result in pulmonary hypertension (PH), an important complication of the disease associated with reduced survival and worse clinical course. The prevalence of PH is high in COPD, particularly in advanced stages, although it remains of mild to moderate severity in the majority of cases. Endothelial dysfunction, with imbalance between vasodilator/vasoconstrictive mediators, is a key determinant of changes taking place in pulmonary vasculature in COPD. Cigarette smoke products may perturb endothelial cells and play a critical role in initiating vascular changes. The concurrence of inflammation, hypoxia and emphysema further contributes to vascular damage and to the development of PH. The use of drugs that target endothelium-dependent signalling pathways, currently employed in pulmonary arterial hypertension, is discouraged in COPD due to the lack of efficacy observed in randomized clinical trials and because there is compelling evidence indicating that these drugs may worsen pulmonary gas exchange. The subgroup of patients with severe PH should be ideally managed in centres with expertise in both PH and chronic lung diseases because alterations of pulmonary vasculature might resemble those observed in pulmonary arterial hypertension. Because this condition entails poor prognosis, it warrants specialist treatment.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic and August Pi i Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona and Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Lucilla Piccari
- Department of Pulmonary Medicine, Hospital Clínic and August Pi i Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona and Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic and August Pi i Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona and Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
44
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs. J Biomech 2016; 49:1230-1232. [PMID: 26949099 DOI: 10.1016/j.jbiomech.2016.02.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 11/22/2022]
Abstract
Bioengineering of functional lung tissue by using whole lung scaffolds has been proposed as a potential alternative for patients awaiting lung transplant. Previous studies have demonstrated that vascular resistance (Rv) could be altered to optimize the process of obtaining suitable lung scaffolds. Therefore, this work was aimed at determining how lung inflation (tracheal pressure) and perfusion (pulmonary arterial pressure) affect vascular resistance. This study was carried out using the lungs excised from 5 healthy male Sprague-Dawley rats. The trachea was cannulated and connected to a continuous positive airway pressure (CPAP) device to provide a tracheal pressure ranging from 0 to 15cmH2O. The pulmonary artery was cannulated and connected to a controlled perfusion system with continuous pressure (gravimetric level) ranging from 5 to 30cmH2O. Effective Rv was calculated by ratio of pulmonary artery pressure (PPA) by pulmonary artery flow (V'PA). Rv in the decellularized lungs scaffolds decreased at increasing V'PA, stabilizing at a pulmonary arterial pressure greater than 20cmH2O. On the other hand, CPAP had no influence on vascular resistance in the lung scaffolds after being subjected to pulmonary artery pressure of 5cmH2O. In conclusion, compared to positive airway pressure, arterial lung pressure markedly influences the mechanics of vascular resistance in decellularized lungs.
Collapse
|
46
|
Reimann S, Fink L, Wilhelm J, Hoffmann J, Bednorz M, Seimetz M, Dessureault I, Troesser R, Ghanim B, Klepetko W, Seeger W, Weissmann N, Kwapiszewska G. Increased S100A4 expression in the vasculature of human COPD lungs and murine model of smoke-induced emphysema. Respir Res 2015; 16:127. [PMID: 26483185 PMCID: PMC4612429 DOI: 10.1186/s12931-015-0284-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
Background Chronic obstructive lung disease (COPD) is a common cause of death in industrialized countries often induced by exposure to tobacco smoke. A substantial number of patients with COPD also suffer from pulmonary hypertension that may be caused by hypoxia or other hypoxia-independent stimuli - inducing pulmonary vascular remodeling. The Ca2+ binding protein, S100A4 is known to play a role in non-COPD-driven vascular remodeling of intrapulmonary arteries. Therefore, we have investigated the potential involvement of S100A4 in COPD induced vascular remodeling. Methods Lung tissue was obtained from explanted lungs of five COPD patients and five non-transplanted donor lungs. Additionally, mice lungs of a tobacco-smoke-induced lung emphysema model (exposure for 3 and 8 month) and controls were investigated. Real-time RT-PCR analysis of S100A4 and RAGE mRNA was performed from laser-microdissected intrapulmonary arteries. S100A4 immunohistochemistry was semi-quantitatively evaluated. Mobility shift assay and siRNA knock-down were used to prove hypoxia responsive elements (HRE) and HIF binding within the S100A4 promoter. Results Laser-microdissection in combination with real-time PCR analysis revealed higher expression of S100A4 mRNA in intrapulmonary arteries of COPD patients compared to donors. These findings were mirrored by semi-quantitative analysis of S100A4 immunostaining. Analogous to human lungs, in mice with tobacco-smoke-induced emphysema an up-regulation of S100A4 mRNA and protein was observed in intrapulmonary arteries. Putative HREs could be identified in the promoter region of the human S100A4 gene and their functionality was confirmed by mobility shift assay. Knock-down of HIF1/2 by siRNA attenuated hypoxia-dependent increase in S100A4 mRNA levels in human primary pulmonary artery smooth muscle cells. Interestingly, RAGE mRNA expression was enhanced in pulmonary arteries of tobacco-smoke exposed mice but not in pulmonary arteries of COPD patients. Conclusions As enhanced S100A4 expression was observed in remodeled intrapulmonary arteries of COPD patients, targeting S100A4 could serve as potential therapeutic option for prevention of vascular remodeling in COPD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0284-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Reimann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Ludger Fink
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany. .,Institute of Pathology and Cytology, UEGP, Forsthausstrasse 1, 35578, Wetzlar, Germany.
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.
| | - Mariola Bednorz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Isabel Dessureault
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Roger Troesser
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Bahil Ghanim
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria.
| | - Walter Klepetko
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria.
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.
| | - Grazyna Kwapiszewska
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany. .,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.
| |
Collapse
|
47
|
Quantification of Lung Perfusion Blood Volume by Dual-Energy CT in Patients With and Without Chronic Obstructive Pulmonary Disease. J Belg Soc Radiol 2015; 99:62-68. [PMID: 30039069 PMCID: PMC6032427 DOI: 10.5334/jbr-btr.865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose: In chronic obstructive pulmonary disease (COPD), pulmonary vascular alteration is one of the characteristic features. Recently, software has been used for the quantification of lung iodine perfusion blood volume (iPBV) using dual-energy CT, allowing objective evaluation. The purpose of this study was to evaluate the quantification of lung PBV with and without COPD. Materials and Methods: This study was approved by the Institutional Review Board. Sixty-two subjects who had undergone a respiratory function test within one month underwent dual-energy CT angiography. The subjects were divided into two groups: with (n = 14) and without (n = 48) COPD. We evaluated the quantification of lung iPBV in the early phase and late phase using Syngo softwarepost contrast. Associations between lung iPBV and respiratory function (forced expiratory volume in 1 second/forced vital capacity; FEV1/FVC) and the percentage area of emphysema (%LAA-950) were also evaluated. Results: In the early phase, lung iPBV values were 20.1 ± 5.5 and 30.6 ± 7.6 Hounsfield Unit (HU) in those with and without COPD, respectively, with a significant difference between them (p < 0.0001). In the late phase, the values were 12.3 ± 3.7 and 15.3 ± 4.6 HU, respectively, with no significant difference (p = 0.051). However, this could be noticed as a trend. In the early phase, there was a weak significant correlation between lung iPBV value and FEV1/FVC (R = 0.26, p = 0.047). There were significant and moderate negative correlations between lung iPBV value and %LAA-950 in early and late phases (R = −0.57, p = 0.0002; R = −0.45, p = 0.005, respectively). Conclusions: Quantification of lung iPBV reflects reduced pulmonary perfusion in patients with COPD. It may be useful for objective evaluation of the pulmonary blood flow in patients with COPD.
Collapse
|
48
|
O'Donnell DE, Neder JA, Elbehairy AF. Physiological impairment in mild COPD. Respirology 2015; 21:211-23. [PMID: 26333038 DOI: 10.1111/resp.12619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 11/28/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common and often progressive inflammatory disease of the airways, alveoli and microvasculature that is both preventable and treatable. It is well established that smokers with mild airway obstruction, as spirometrically defined, represent the vast majority of patients with COPD, yet this population has not been extensively studied. An insidious preclinical course means that mild COPD is both underdiagnosed and undertreated. In this context, recent studies have confirmed that even patients with mild COPD can have extensive physiological impairment, which contributes to poor perceived health status compared with non-smoking healthy controls. This review describes the heterogeneous pathophysiology that can exist in COPD patients with only mild airway obstruction on spirometry. It exposes the compensatory adaptations that develop in such patients to ensure that the respiratory system fulfils its primary task of maintaining adequate pulmonary gas exchange for the prevailing metabolic demand. It demonstrates that adaptations such as increased inspiratory neural drive to the diaphragm due to combined effects of increased mechanical loading and chemostimulation underscore the increased dyspnoea and exercise intolerance in this population. Finally, based on available evidence, we present what we believe is a sound physiological rationale for earlier diagnosis in this population.
Collapse
Affiliation(s)
- Denis E O'Donnell
- Department of Medicine, Division of Respiratory and Critical Care Medicine, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada
| | - J Alberto Neder
- Department of Medicine, Division of Respiratory and Critical Care Medicine, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada
| | - Amany F Elbehairy
- Department of Medicine, Division of Respiratory and Critical Care Medicine, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada.,Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
49
|
|
50
|
Weir-McCall JR, Struthers AD, Lipworth BJ, Houston JG. The role of pulmonary arterial stiffness in COPD. Respir Med 2015; 109:1381-90. [PMID: 26095859 PMCID: PMC4646836 DOI: 10.1016/j.rmed.2015.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/10/2015] [Accepted: 06/10/2015] [Indexed: 12/23/2022]
Abstract
COPD is the second most common cause of pulmonary hypertension, and is a common complication of severe COPD with significant implications for both quality of life and mortality. However, the use of a rigid diagnostic threshold of a mean pulmonary arterial pressure (mPAP) of ≥25mHg when considering the impact of the pulmonary vasculature on symptoms and disease is misleading. Even minimal exertion causes oxygen desaturation and elevations in mPAP, with right ventricular hypertrophy and dilatation present in patients with mild to moderate COPD with pressures below the threshold for diagnosis of pulmonary hypertension. This has significant implications, with right ventricular dysfunction associated with poorer exercise capability and increased mortality independent of pulmonary function tests. The compliance of the pulmonary artery (PA) is a key component in decoupling the right ventricle from the pulmonary bed, allowing the right ventricle to work at maximum efficiency and protecting the microcirculation from large pressure gradients. PA stiffness increases with the severity of COPD, and correlates well with the presence of exercise induced pulmonary hypertension. A curvilinear relationship exists between PA distensibility and mPAP and pulmonary vascular resistance (PVR) with marked loss of distensibility before a rapid rise in mPAP and PVR occurs with resultant right ventricular failure. This combination of features suggests PA stiffness as a promising biomarker for early detection of pulmonary vascular disease, and to play a role in right ventricular failure in COPD. Early detection would open this up as a potential therapeutic target before end stage arterial remodelling occurs. Pulmonary hypertension is common in COPD. Right ventricular remodeling occurs at pressures below the diagnostic threshold of PH. Pulmonary arterial stiffening occurs early in the development of PH. Non-invasive measurement of pulmonary stiffness may serve as an early biomarker of PH.
Collapse
Affiliation(s)
- Jonathan R Weir-McCall
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, United Kingdom.
| | - Allan D Struthers
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Brian J Lipworth
- Scottish Centre for Respiratory Research, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - J Graeme Houston
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| |
Collapse
|