1
|
Effective in vivo treatment of acute lung injury with helical, amphipathic peptoid mimics of pulmonary surfactant proteins. Sci Rep 2018; 8:6795. [PMID: 29717157 PMCID: PMC5931611 DOI: 10.1038/s41598-018-25009-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/11/2018] [Indexed: 01/27/2023] Open
Abstract
Acute lung injury (ALI) leads to progressive loss of breathing capacity and hypoxemia, as well as pulmonary surfactant dysfunction. ALI's pathogenesis and management are complex, and it is a significant cause of morbidity and mortality worldwide. Exogenous surfactant therapy, even for research purposes, is impractical for adults because of the high cost of current surfactant preparations. Prior in vitro work has shown that poly-N-substituted glycines (peptoids), in a biomimetic lipid mixture, emulate key biophysical activities of lung surfactant proteins B and C at the air-water interface. Here we report good in vivo efficacy of a peptoid-based surfactant, compared with extracted animal surfactant and a synthetic lipid formulation, in a rat model of lavage-induced ALI. Adult rats were subjected to whole-lung lavage followed by administration of surfactant formulations and monitoring of outcomes. Treatment with a surfactant protein C mimic formulation improved blood oxygenation, blood pH, shunt fraction, and peak inspiratory pressure to a greater degree than surfactant protein B mimic or combined formulations. All peptoid-enhanced treatment groups showed improved outcomes compared to synthetic lipids alone, and some formulations improved outcomes to a similar extent as animal-derived surfactant. Robust biophysical mimics of natural surfactant proteins may enable new medical research in ALI treatment.
Collapse
|
2
|
Walther FJ, Gordon LM, Waring AJ. Design of Surfactant Protein B Peptide Mimics Based on the Saposin Fold for Synthetic Lung Surfactants. Biomed Hub 2016; 1. [PMID: 28503550 PMCID: PMC5424708 DOI: 10.1159/000451076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Surfactant protein (SP)-B is a 79-residue polypeptide crucial for the biophysical and physiological function of endogenous lung surfactant. SP-B is a member of the saposin or saposin-like proteins (SAPLIP) family of proteins that share an overall three-dimensional folding pattern based on secondary structures and disulfide connectivity and exhibit a wide diversity of biological functions. Here, we review the synthesis, molecular biophysics and activity of synthetic analogs of saposin proteins designed to mimic those interactions of the parent proteins with lipids that enhance interfacial activity. Saposin proteins generally interact with target lipids as either monomers or multimers via well-defined amphipathic helices, flexible hinge domains, and insertion sequences. Based on the known 3D-structural motif for the saposin family, we show how bioengineering techniques may be used to develop minimal peptide constructs that maintain desirable structural properties and activities in biomedical applications. One important application is the molecular design, synthesis and activity of Saposin mimics based on the SP-B structure. Synthetic lung surfactants containing active SP-B analogs may be potentially useful in treating diseases of surfactant deficiency or dysfunction including the neonatal respiratory distress syndrome and acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Frans J Walther
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Larry M Gordon
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alan J Waring
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Castillo RL, Carrasco Loza R, Romero-Dapueto C. Pathophysiological Approaches of Acute Respiratory Distress syndrome: Novel Bases for Study of Lung Injury. Open Respir Med J 2015; 9:83-91. [PMID: 26312099 PMCID: PMC4541465 DOI: 10.2174/1874306401509010083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
Abstract
Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies.
Collapse
Affiliation(s)
- R L Castillo
- Programa de Fisiopatología, Facultad de Medicina, Universidad de Chile, Chile
| | - R Carrasco Loza
- Departamento de Medicina, Hospital del Salvador, Santiago, Chile; Laboratorio de Investigación Biomédica, Hospital del Salvador, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Romero-Dapueto
- Servicio de Medicina Física y Rehabilitación, Clínica Alemana de Santiago, Santiago, Chile
| |
Collapse
|
4
|
Rimensberger PC. Surfactant. PEDIATRIC AND NEONATAL MECHANICAL VENTILATION 2015. [PMCID: PMC7175631 DOI: 10.1007/978-3-642-01219-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exogenous pulmonary surfactant, widely used in neonatal care, is one of the best-studied treatments in neonatology, and its introduction in the 1990s led to a significant improvement in neonatal outcomes in preterm infants, including a decrease in mortality. This chapter provides an overview of surfactant composition and function in health and disease and summarizes the evidence for its clinical use.
Collapse
Affiliation(s)
- Peter C. Rimensberger
- Service of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University Hospital of Geneva, Geneve, Switzerland
| |
Collapse
|
5
|
Raghavendran K, Willson D, Notter RH. Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Crit Care Clin 2011; 27:525-59. [PMID: 21742216 DOI: 10.1016/j.ccc.2011.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This article examines exogenous lung surfactant replacement therapy and its usefulness in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Surfactant therapy is beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 years with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. This article reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, focusing on its potential advantages in patients with direct pulmonary forms of these syndromes.
Collapse
Affiliation(s)
- Krishnan Raghavendran
- Division of Acute Care Surgery, Department of Surgery, University of Michigan Health System, 1500 East Medical Center Drive, 1C340A-UH, SPC 5033, Ann Arbor, MI 48109-5033, USA.
| | | | | |
Collapse
|
6
|
Pulmonary Surfactant: Biology and Therapy. THE RESPIRATORY TRACT IN PEDIATRIC CRITICAL ILLNESS AND INJURY 2009. [PMCID: PMC7124042 DOI: 10.1007/978-1-84800-925-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008; 295:L379-99. [PMID: 18621912 PMCID: PMC2536793 DOI: 10.1152/ajplung.00010.2008] [Citation(s) in RCA: 1258] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury.
Collapse
Affiliation(s)
- Gustavo Matute-Bello
- Medical Research Service of the Veterans Affairs/Puget Sound Health Care System, 815 Mercer St., Seattle, WA 98109, USA
| | | | | |
Collapse
|
8
|
Abstract
This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.
Collapse
Affiliation(s)
- Douglas F Willson
- Pediatric ICU and Division of Pediatric Critical Care, University of Virginia Children's Medical Center, UVA Health Sciences System, Box 800386, Charlottesville, VA 22908-0386, USA.
| | | | | |
Collapse
|
9
|
Almlén A, Stichtenoth G, Linderholm B, Haegerstrand-Björkman M, Robertson B, Johansson J, Curstedt T. Surfactant proteins B and C are both necessary for alveolar stability at end expiration in premature rabbits with respiratory distress syndrome. J Appl Physiol (1985) 2008; 104:1101-8. [DOI: 10.1152/japplphysiol.00865.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modified natural surfactant preparations, used for treatment of respiratory distress syndrome in premature infants, contain phospholipids and the hydrophobic surfactant protein (SP)-B and SP-C. Herein, the individual and combined effects of SP-B and SP-C were evaluated in premature rabbit fetuses treated with airway instillation of surfactant and ventilated without positive end-expiratory pressure. Artificial surfactant preparations composed of synthetic phospholipids mixed with either 2% (wt/wt) of porcine SP-B, SP-C, or a synthetic poly-Leu analog of SP-C (SP-C33) did not stabilize the alveoli at the end of expiration, as measured by low lung gas volumes of ∼5 ml/kg after 30 min of ventilation. However, treatment with phospholipids containing both SP-B and SP-C/SP-C33 approximately doubled lung gas volumes. Doubling the SP-C33 content did not affect lung gas volumes. The tidal volumes were similar in all groups receiving surfactant. This shows that SP-B and SP-C exert different physiological effects, since both proteins are needed to establish alveolar stability at end expiration in this animal model of respiratory distress syndrome, and that an optimal synthetic surfactant probably requires the presence of mimics of both SP-B and SP-C.
Collapse
|
10
|
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of surface-active lipids to the air-liquid interface of the alveoli and are essential for alveolar stability and gas exchange. Synthetic surfactant preparations must contain at least one of these hydrophobic proteins, or analogs thereof, to have optimal effects when administered into the airways of patients with lung diseases. However, development of clinically active artificial surfactants has turned out to be more complicated than initially anticipated since the native hydrophobic proteins are structurally complex or unstable in pure form. The proteins have been replaced by different analogs which have the right conformation without forming oligomers. Increased understanding of the surfactant proteins will hopefully lead to development of effective synthetic surfactants which can be produced in large quantities for treatment of a wide range of respiratory disorders. Furthermore, the lipid composition seems to be important, as well as a high lipid concentration in the suspension. For successful treatment of many respiratory diseases, it is also desirable that the synthetic surfactant resists inactivation by plasma components leaking into the alveoli.
Collapse
Affiliation(s)
- Tore Curstedt
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
11
|
Romero EJ, Moya FR, Tuvim MJ, Alcorn JL. Interaction of an artificial surfactant in human pulmonary epithelial cells. Pediatr Pulmonol 2005; 39:167-77. [PMID: 15633204 DOI: 10.1002/ppul.20166] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Surfaxin (lucinactant), a peptide-based surfactant consisting of dipalmitoylphosphatidylcholine (DPPC) plus KL(4) (sinapultide) (a synthetic peptide modeled after human surfactant protein-B), is effective in treating respiratory distress syndrome in preterm infants. Our goal was to determine the uptake and effects of Surfaxin on human pulmonary type II cells isolated from fetal tissue and other lung cell types. Based on previous published reports, we hypothesized that this exogenous synthetic surfactant would have little effect on type II cell surfactant-related physiological features. Human type II cells and A549 and NCI-H441 adenocarcinoma cells incorporated (3)H-KL(4) and (14)C-DPPC components in Surfaxin, but with different kinetics. Fractionation of NCI-H441 and A549 cellular components indicated that the highest specific activity of (3)H-KL(4) was present in the 18,000g cellular fraction (which contains vesicles and lysosomes). The number of lamellar bodies (LBs) appears to increase in human type II cells incubated in the presence of Surfaxin when visualized by light microscopy, while LB structure (determined by electron microscopy) was not altered. Expression of endogenous surfactant protein (SP-A, SP-B, and SP-C) mRNA levels in human type II cells was not altered by the presence of Surfaxin. We conclude that while human type II cells and other lung cell types can incorporate the components of Surfaxin, the surfactant-related physiological functions of these cells are not altered.
Collapse
Affiliation(s)
- Edgar J Romero
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Health Science Center-Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
12
|
Lam BCC, Ng YK, Wong KY. Randomized trial comparing two natural surfactants (Survanta vs. bLES) for treatment of neonatal respiratory distress syndrome. Pediatr Pulmonol 2005; 39:64-9. [PMID: 15558604 DOI: 10.1002/ppul.20125] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exogenous surfactants have been used as an effective treatment of neonatal respiratory distress syndrome (RDS). Different preparations of surfactant carry different biophysical and clinical properties. To study the response pattern and treatment outcome of two natural surfactants (bLES and Survanta) for the treatment of RDS, we conducted a randomized clinical trial at the neonatal unit of a university teaching hospital. Premature babies with birth weight between 500-1,800 g who developed RDS requiring mechanical ventilation with an oxygen requirement of more than 30% within 6 hr of life were randomized into two treatment groups. Oxygenation indices (OIs) within 12 hr of treatment were compared as primary outcomes, while neonatal complications were analyzed as secondary outcomes of the study. Sixty babies were recruited, with 29 in the bLES and 31 in the Survanta treatment group. Both groups had significant and sustained improvements in OI after surfactant replacement therapy (SRT), while the bLES group was associated with a significantly lower OI throughout the initial 12 hr after treatment compared with the Survanta group. There was no difference in secondary outcomes including mortality, ventilator days, and occurrence of chronic lung disease. We conclude that infants with RDS respond favorably to both types of surfactant replacement, and that bLES achieved a faster clinical response in terms of improvement in OI than Survanta.
Collapse
Affiliation(s)
- Barbara C C Lam
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
13
|
Seurynck SL, Patch JA, Barron AE. Simple, Helical Peptoid Analogs of Lung Surfactant Protein B. ACTA ACUST UNITED AC 2005; 12:77-88. [PMID: 15664517 DOI: 10.1016/j.chembiol.2004.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 10/18/2004] [Accepted: 10/27/2004] [Indexed: 11/30/2022]
Abstract
The helical, amphipathic surfactant protein, SP-B, is a critical element of pulmonary surfactant and hence is an important therapeutic molecule. However, it is difficult to isolate from natural sources in high purity. We have created and studied three different, nonnatural analogs of a bioactive SP-B fragment (SP-B(1-25)), using oligo-N-substituted glycines (peptoids) with simple, repetitive sequences designed to favor the formation of amphiphilic helices. For comparison, a peptide with a similar repetitive sequence previously shown to be a good SP mimic was also studied, along with SP-B(1-25) itself. Surface pressure-area isotherms, surfactant film phase morphology, and dynamic adsorption behavior all indicate that the peptoids are promising mimics of SP-B(1-25). The extent of biomimicry appears to correlate with peptoid helicity and lipophilicity. These biostable oligomers could serve in a synthetic surfactant replacement to treat respiratory distress syndrome.
Collapse
Affiliation(s)
- Shannon L Seurynck
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | | | |
Collapse
|
14
|
Alonso C, Alig T, Yoon J, Bringezu F, Warriner H, Zasadzinski JA. More than a monolayer: relating lung surfactant structure and mechanics to composition. Biophys J 2004; 87:4188-202. [PMID: 15454404 PMCID: PMC1304928 DOI: 10.1529/biophysj.104.051201] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 09/16/2004] [Indexed: 11/18/2022] Open
Abstract
Survanta, a clinically used bovine lung surfactant extract, in contact with surfactant in the subphase, shows a coexistence of discrete monolayer islands of solid phase coexisting with continuous multilayer "reservoirs" of fluid phase adjacent to the air-water interface. Exchange between the monolayer, the multilayer reservoir, and the subphase determines surfactant mechanical properties such as the monolayer collapse pressure and surface viscosity by regulating solid-fluid coexistence. Grazing incidence x-ray diffraction shows that the solid phase domains consist of two-dimensional crystals similar to those formed by mixtures of dipalmitoylphosphatidylcholine and palmitic acid. The condensed domains grow as the surface pressure is increased until they coalesce, trapping protrusions of liquid matrix. At approximately 40 mN/m, a plateau exists in the isotherm at which the solid phase fraction increases from approximately 60 to 90%, at which the surface viscosity diverges. The viscosity is driven by the percolation of the solid phase domains, which depends on the solid phase area fraction of the monolayer. The high viscosity may lead to high monolayer collapse pressures, help prevent atelectasis, and minimize the flow of lung surfactant out of the alveoli due to surface tension gradients.
Collapse
Affiliation(s)
- Coralie Alonso
- Department of Chemical Engineering and Materials, University of California, Santa Barbara, California 93106-5080, USA
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Ainsworth SB, Milligan DWA. Surfactant therapy for respiratory distress syndrome in premature neonates: a comparative review. ACTA ACUST UNITED AC 2004; 1:417-33. [PMID: 14720029 DOI: 10.1007/bf03257169] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exogenous surfactant therapy has been part of the routine care of preterm neonates with respiratory distress syndrome (RDS) since the beginning of the 1990s. Discoveries that led to its development as a therapeutic agent span the whole of the 20th century but it was not until 1980 that the first successful use of exogenous surfactant therapy in a human population was reported. Since then, randomized controlled studies demonstrated that surfactant therapy was not only well tolerated but that it significantly reduced both neonatal mortality and pulmonary air leaks; importantly, those surviving neonates were not at greater risk of subsequent neurological impairment. Surfactants may be of animal or synthetic origin. Both types of surfactants have been extensively studied in animal models and in clinical trials to determine the optimum timing, dose size and frequency, route and method of administration. The advantages of one type of surfactant over another are discussed in relation to biophysical properties, animal studies and results of randomized trials in neonatal populations. Animal-derived exogenous surfactants are the treatment of choice at the present time with relatively few adverse effects related largely to changes in oxygenation and heart rate during surfactant administration. The optimum dose of surfactant is usually 100 mg/kg. The use of surfactant with high frequency oscillation and continuous positive pressure modes of respiratory support presents different problems compared with its use with conventional ventilation. The different components of surfactant have important functions that influence its effectiveness both in the primary function of the reduction of surface tension and also in secondary, but nonetheless just as important, role of lung defense. With greater understanding of the individual surfactant components, particularly the surfactant-associated proteins, development of newer synthetic surfactants has been made possible. Despite being an effective therapy for RDS, surfactant has failed to have a significant impact on the incidence of chronic lung disease in survivors. Paradoxically the cost of care has increased as surviving neonates are more immature and consume a greater proportion of neonatal intensive care resources. Despite this, surfactant is considered a cost-effective therapy for RDS compared with other therapeutic interventions in premature infants.
Collapse
|
17
|
Affiliation(s)
- Henry L Halliday
- Regional Neonatal Unit, Royal Maternity Hospital, Department of Child Health, Queen's University of Belfast, Belfast, Northern Ireland.
| |
Collapse
|
18
|
Abstract
Among the families of peptidomimetic foldamers under development as novel biomaterials and therapeutics, poly-N-substituted glycines (peptoids) with alpha-chiral side chains are of particular interest for their ability to adopt stable, helical secondary structure in organic and aqueous solution. Here, we show that a peptoid 22-mer with a biomimetic sequence of side chains and an amphipathic, helical secondary structure acts as an excellent mimic of surfactant protein C (SP-C), a small protein that plays an important role in surfactant replacement therapy for the treatment of neonatal respiratory distress syndrome. When integrated into a lipid film, the helical peptoid SP mimic captures the essential surface-active behaviors of the natural protein. This work provides an example of how an abiological oligomer that closely mimics both the hydrophobic/polar sequence patterning and the fold of a natural protein can also mimic its biophysical function.
Collapse
Affiliation(s)
- Cindy W Wu
- Department of Chemical Engineering, Northwestern University, 2145 Sheridan Road, Room E136, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
19
|
Cai P, Flach CR, Mendelsohn R. An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)4K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids. Biochemistry 2003; 42:9446-52. [PMID: 12899632 DOI: 10.1021/bi030052b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KLLLLKLLLLKLLLLKLLLLK (KL(4)) has been suggested to mimic some aspects of the pulmonary surfactant protein SP-B and has been tested clinically as a therapeutic agent for respiratory distress syndrome in premature infants [Cochrane, C. G., and Revak, S. D. (1991) Science 254, 566-568]. It is of obvious interest to understand the mechanism of KL(4) function as a guide for design of improved therapeutic agents. Attenuated total reflection (ATR) IR measurements have indicated that KL(4) is predominantly alpha-helical with a transmembrane orientation in lipid multilayers (1), a geometry quite different from the originally proposed peripheral membrane lipid interaction. However, the lipid multilayer model required for ATR may not be the best experimental paradigm to mimic the in vivo function of KL(4). In the current experiments, IR reflection-absorption spectroscopy (IRRAS) was used to evaluate peptide secondary structure in monolayers at the air/water interface, the physical state that best approximates the alveolar lining. In contrast to the ATR-IR results, KL(4) (2.5-5 mol %) films with either DPPC or DPPC/DPPG (7/3 mol ratio) adopted an antiparallel beta-sheet structure at all surface pressures studied > or =5 mN/m, including pressures physiologically relevant for lung function (40-72 mN/m). In contrast, in DPPG/KL(4) films, the dominant conformation was the alpha-helix over the entire pressure range, a possible consequence of enhanced electrostatic interactions. IRRAS has thus provided unique molecular structure information and insight into KL(4)/lipid interaction in a physiologically relevant state. A structural model is proposed for the response of the peptide to surface pressure changes.
Collapse
Affiliation(s)
- Peng Cai
- Department of Chemistry, Newark College of Arts and Sciences, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
20
|
Brockman JM, Wang Z, Notter RH, Dluhy RA. Effect of hydrophobic surfactant proteins SP-B and SP-C on binary phospholipid monolayers: II. Infrared external reflectance-absorption spectroscopy. Biophys J 2003; 84:326-40. [PMID: 12524286 PMCID: PMC1302614 DOI: 10.1016/s0006-3495(03)74853-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In situ external reflection infrared spectroscopy at the air-water interface was used to study the influence on phospholipid structure of an endogenous mixture of the two hydrophobic surfactant proteins, SP-B and SP-C, which are thought to play pivotal roles in the adsorption and function of pulmonary surfactant. Mixtures studied were 1:1, 2:1, and 7:1 (mol:mol) DPPC-d(62):DPPG, and 7:1 DPPC-d(62):DOPG, alone and in the presence of 0.5-10 wt % mixed SP-B/C purified chromatographically from calf lung surfactant extract. Perdeuteration of DPPC produced a shift in vibrational frequencies so that it could be differentiated spectroscopically from the phosphoglycerol component in the surface monolayer. CH(2) antisymmetric and symmetric stretching bands ( approximately 2920 and 2852 cm(-1)) along with the analogous CD(2) stretching bands ( approximately 2194 and 2089 cm(-1)) were analyzed, and band heights and peak wavenumber positions were assessed as a function of monolayer surface pressure. Small, near-physiological contents of 1-2 wt % SP-B/C typically produced the maximum observed spectroscopic effects, which were abolished at high protein contents of 10 wt %. Analysis of CH(2) and CD(2) stretching bands and C-H/C-D band height ratios indicated that SP-B/C affected PC and PG lipids differently within the surface monolayer. SP-B/C had preferential interactions with DPPG in 1:1, 2:1, and 7:1 DPPC-d(62):DPPG films that increased its acyl chain order. SP-B/C also interacted specifically with DOPG in 7:1 DPPC-d(62):DOPG monolayers, but in this case an increase in CH(2) band heights and peak wavenumber positions indicated a further disordering of the already fluid DOPG acyl chains. CD(2) band height and peak wavenumber analysis indicated that SP-B/C had no significant effect on the structure of DPPC-d(62) chains in 7:1 films with DPPG or DOPG, and had only a slight tendency to increase the acyl chain order in 1:1 films of DPPC-d(62):DPPG. SP-B/C had no significant effect on DPPC-d(62) structure in films with DOPG. Infrared results also indicated that interactions involving SP-B/C and lipids led to exclusion of PC and PG lipids from the compressed interfacial monolayer, in agreement with our previous report on the phase morphology of lipid monolayers containing 1 wt % SP-B/C.
Collapse
|
21
|
Wang Z, Baatz JE, Holm BA, Notter RH. Content-dependent activity of lung surfactant protein B in mixtures with lipids. Am J Physiol Lung Cell Mol Physiol 2002; 283:L897-906. [PMID: 12376341 DOI: 10.1152/ajplung.00431.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The content-dependent activity of surfactant protein (SP)-B was studied in mixtures with dipalmitoyl phosphatidylcholine (DPPC), synthetic lipids (SL), and purified phospholipids (PPL) from calf lung surfactant extract (CLSE). At fixed SP-B content, adsorption and dynamic surface tension lowering were ordered as PPL/SP-B approximately SL/SP-B > DPPC/SP-B. All mixtures were similar in having increased surface activity as SP-B content was incrementally raised from 0.05 to 0.75% by weight. SP-B had small but measurable effects on interfacial properties even at very low levels < or =0.1% by weight. PPL/SP-B (0.75%) had the highest adsorption and dynamic surface activity, approaching the behavior of CLSE. All mixtures containing 0.75% SP-B reached minimum surface tensions <1 mN/m in pulsating bubble studies at low phospholipid concentration (1 mg/ml). Mixtures of PPL or SL with SP-B (0.5%) also had minimum surface tensions <1 mN/m at 1 mg/ml, whereas DPPC/SP-B (0.5%) reached <1 mN/m at 2.5 mg/ml. Physiological activity also was strongly dependent on SP-B content. The ability of instilled SL/SP-B mixtures to improve surfactant-deficient pressure-volume mechanics in excised lavaged rat lungs increased as SP-B content was raised from 0.1 to 0.75% by weight. This study emphasizes the crucial functional activity of SP-B in lung surfactants. Significant differences in SP-B content between exogenous surfactants used to treat respiratory disease could be associated with substantial activity variations.
Collapse
Affiliation(s)
- Z Wang
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
22
|
Notter RH, Wang Z, Egan EA, Holm BA. Component-specific surface and physiological activity in bovine-derived lung surfactants. Chem Phys Lipids 2002; 114:21-34. [PMID: 11841823 DOI: 10.1016/s0009-3084(01)00197-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Composition, surface activity and effects on pressure-volume (P-V) mechanics are examined for lavaged calf lung surfactant (LS) and the clinical exogenous surfactants Infasurf and Survanta. Lavaged LS and Infasurf had closely-matching compositions of phospholipids and neutral lipids. Survanta had higher levels of free fatty acids and triglycerides consistent with its content of added synthetic palmitic acid and tripalmitin. Infasurf and Survanta both contained less total protein than LS because of extraction with hydrophobic solvents, but the total protein content relative to phospholipid in Survanta was about 45% lower than in Infasurf. This difference was primarily due to surfactant protein (SP)-B, which was present by ELISA at a mean weight percent relative to phospholipid of 1.04% in LS, 0.90% in Infasurf, and 0.044% in Survanta. Studies on component fractions separated by gel permeation chromatography showed that SP-B was a major contributor to the adsorption, dynamic surface activity, and P-V mechanical effects of Infasurf, which approached whole LS in magnitude. Survanta had lower adsorption, higher minimum surface tension, and a smaller effect on surfactant-deficient P-V mechanics consistent with minimal contributions from SP-B. Addition of 0.05% by weight of purified bovine SP-B to Survanta did not improve surface or physiological activity, but added 0.7% SP-B improved adsorption, dynamic surface tension lowering, and P-V activity to levels similar to Infasurf. The SP-B content of lung surfactants appears to be a crucial factor in their surface activity and efficacy in improving surfactant-deficient pulmonary P-V mechanics.
Collapse
Affiliation(s)
- Robert H Notter
- Department of Pediatrics (Neonatology, Box 777), University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
23
|
Gupta M, Hernandez-Juviel JM, Waring AJ, Walther FJ. Function and inhibition sensitivity of the N-terminal segment of surfactant protein B (SP-B1-25) in preterm rabbits. Thorax 2001; 56:871-6. [PMID: 11641513 PMCID: PMC1745956 DOI: 10.1136/thorax.56.11.871] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Surfactant protein B (SP-B) is an essential component of pulmonary surfactant, but shorter SP-B sequences may exert equivalent surface activity. METHODS We synthesised a peptide based on the amino-terminal domain of SP-B (SP-B1-25), a full length SP-B1-78, and a full length palmitoylated SP-C peptide (SP-C1-35) and compared the in vivo function and sensitivity to plasma inhibition of preparations consisting of mixtures of phospholipids with SP-B1-25 or SP-B1-78 and/or SP-C1-35 to Survanta. Preterm rabbits born at 27 days of gestation were treated at birth with surfactant and ventilated for 60 minutes. At 15 minutes half of them received plasma intratracheally. Dynamic compliance was monitored every 15 minutes and postmortem pressure-volume curves were measured to define lung mechanics. RESULTS Dynamic compliance and postmortem lung volumes were highest after treatment with a surfactant consisting of an SP-B peptide and SP-C1-35 or Survanta. Plasma instillation decreased dynamic compliance and lung volumes sharply, but the most effective activity was by prior instillation of surfactants containing SP-B1-25. CONCLUSION These experiments suggest that the N-terminal domain of SP-B (SP-B1-25) exhibits in vitro and in vivo surface activity and is relatively insensitive to plasma inhibition.
Collapse
Affiliation(s)
- M Gupta
- Harbor-UCLA Research and Education Institute, Torrance, CA 90502, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Surfactant administration has proven remarkably effective in the prevention and treatment of infantile respiratory distress syndrome (IRDS) and may also be beneficial in other forms of acute lung injury. Several surfactant products are available commercially along with others in various phases of development and clinical trials. While all of these products share an ability to lower surface tension in vitro, there are substantial compositional differences that appear to affect their in vivo efficacy. At present, the 'modified natural' surfactants containing the hydrophobic surfactant proteins SP-B and SP-C appear most effective. Calfactant may have a particular advantage because of its relatively high content of SP-B and its lack of contamination with non-surfactant lipids and proteins.
Collapse
Affiliation(s)
- D Willson
- Division of Pediatric Critical Care, Pediatric ICU, Children's Medical Center, University of Virginia Health Sciences System, Charlottesville 22908, USA
| |
Collapse
|
25
|
Lee KY, Majewski J, Kuhl TL, Howes PB, Kjaer K, Lipp MM, Waring AJ, Zasadzinski JA, Smith GS. Synchrotron X-ray study of lung surfactant-specific protein SP-B in lipid monolayers. Biophys J 2001; 81:572-85. [PMID: 11423439 PMCID: PMC1301536 DOI: 10.1016/s0006-3495(01)75724-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This work reports the first x-ray scattering measurements to determine the effects of SP-B(1-25), the N-terminus peptide of lung surfactant-specific protein SP-B, on the structure of palmitic acid (PA) monolayers. In-plane diffraction shows that the peptide fluidizes a portion of the monolayer but does not affect the packing of the residual ordered phase. This implies that the peptide resides in the disordered phase, and that the ordered phase is essentially pure lipid, in agreement with fluorescence microscopy studies. X-ray reflectivity shows that the peptide is oriented in the lipid monolayer at an angle of approximately 56 degrees relative to the interface normal, with one end protruding past the hydrophilic region into the fluid subphase and the other end embedded in the hydrophobic region of the monolayer. The quantitative insights afforded by this study lead to a better understanding of the lipid/protein interactions found in lung surfactant systems.
Collapse
Affiliation(s)
- K Y Lee
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ding J, Takamoto DY, von Nahmen A, Lipp MM, Lee KY, Waring AJ, Zasadzinski JA. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys J 2001; 80:2262-72. [PMID: 11325728 PMCID: PMC1301417 DOI: 10.1016/s0006-3495(01)76198-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome.
Collapse
Affiliation(s)
- J Ding
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Dieudonné D, Mendelsohn R, Farid RS, Flach CR. Secondary structure in lung surfactant SP-B peptides: IR and CD studies of bulk and monolayer phases. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:99-112. [PMID: 11248209 DOI: 10.1016/s0005-2736(00)00387-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulmonary surfactant protein SP-B is known to facilitate adsorption and spreading of surfactant components across the air/water interface. This property appears essential for in vivo function in the alveolar subphase and at the air/alveolar surface. Three peptides with amino acid sequences based on SP-B containing predicted alpha-helical regions (SP-B(1--20), SP-B(9--36A), SP-B(40--60A)) have been synthesized to probe structure-function relationships and protein-lipid interaction in bulk phase and monolayer environments. IR and CD studies are reported along with traditional surface pressure-molecular area (pi-A) isotherms and IR reflection-absorption spectroscopy (IRRAS) investigations conducted at the air/water interface. In bulk phase, helix-promoting environments (methanol and aqueous dispersions of lipid vesicles), SP-B(1--20) and SP-B(9--36A) contained significant amounts of alpha-helical structure, whereas varying degrees of alpha-helix, random coil, and beta-sheet were observed in aqueous solutions and monolayers. The most striking behavior was observed for SP-B(9--36A), which displayed reversible surface pressure-induced beta-sheet formation. Bulk phase lipid melting curves and monolayer experiments with peptide-lipid mixtures showed subtle differences in the degree of bulk phase interaction and substantial differences in peptide surface activity. The uniqueness of IRRAS is emphasized as the importance of evaluating secondary structure in both bulk phase and monolayer environments for lung surfactant peptide mimics is demonstrated.
Collapse
Affiliation(s)
- D Dieudonné
- Rutgers University, Department of Chemistry, 73 Warren Street, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
28
|
Abstract
This year is the 20th anniversary of the first successful trial of exogenous surfactant for respiratory distress syndrome in the newborn and it is perhaps a good time to review recent advances in basic science and clinical practice as they relate to surfactant therapy.
Collapse
Affiliation(s)
- A E Curley
- Regional Neonatal Unit, Royal Maternity Hospital, Grosvenor Road, BT12 6BB, Northern Ireland, Belfast, UK
| | | |
Collapse
|
29
|
Abstract
Mammalian lung surfactant is a mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C, and SP-D). Its major function is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film highly enriched in dipalmitoyl phosphatidylcholine (DPPC), thereby preventing alveolar collapse during expiration. SP-A and SP-D are large hydrophilic proteins, which play an important role in host defense, whereas the small hydrophobic peptides SP-B and SP-C interact with DPPC to generate and maintain a surface-active film. Surfactant replacement therapy with bovine and porcine lung surfactant extracts, which contain only polar lipids and SP-B and SP-C, has revolutionized the clinical management of premature infants with respiratory distress syndrome. Newer surfactant preparations will probably be based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. The development of peptide analogues of SP-B and SP-C offers the possibility to study their molecular mechanism of action and will allow the design of surfactant formulations for specific pulmonary diseases and better quality control. This review describes the hydrophobic peptide analogues developed thus far and their potential for use in a new generation of synthetic surfactant preparations.
Collapse
Affiliation(s)
- F J Walther
- Harbor-UCLA Research and Education Institute, Torrance, California 90502, USA.
| | | | | | | | | |
Collapse
|
30
|
Belai Y, Hernández-Juviel JM, Bruni R, Waring AJ, Walther FJ. Addition of alpha1-antitrypsin to surfactant improves oxygenation in surfactant-deficient rats. Am J Respir Crit Care Med 1999; 159:917-23. [PMID: 10051273 DOI: 10.1164/ajrccm.159.3.9801121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During its life cycle, surfactant converts from highly surface active, large aggregates to less surface active, smaller aggregates. This process is probably regulated by a serine protease. We tested whether adding alpha1-antitrypsin (alpha1-AT), an antiprotease, to surfactant improves its in vivo function. alpha1-AT was added to Survanta, to a standard phospholipid (PL) mixture, and to a synthetic surfactant (BC mixture = PL mixture + synthetic surfactant proteins B and C) at a dose of 100 mg alpha1-AT per 75 mg PL. Adding alpha1-AT did not affect in vitro surface activity, except for that of the PL mixture. Adult rats were ventilated with 100% O2, at a tidal volume of 7.5 ml/kg and a ventilatory rate of 60 breaths/ min. The rats' lungs were lavaged with saline until the PaO2 dropped below 100 mm Hg, at which time 100 mg/kg of surfactant with or without alpha1-AT or alpha1-AT alone was instilled. After 1 h of ventilation the rats were killed, pressure-volume curves were generated, and the rats' lungs were relavaged. Surfactant treatment improved oxygenation in the order: BC mixture > Survanta > PL mixture. Addition of alpha1-AT equalized oxygenation in all three alpha1-AT groups, but decreased respiratory system compliance in the groups given Survanta and PL mixture. Particle sizing of the final lung lavages showed preservation of large surfactant aggregates after treatment with alpha1-AT. These data suggest that the addition of alpha1-AT to surfactant can exert a positive effect on oxygenation and surfactant metabolism in surfactant-deficient rats.
Collapse
Affiliation(s)
- Y Belai
- Department of Pediatrics, Charles R. Drew University of Medicine and Science, Perinatal Research Laboratories, Harbor-UCLA Research and Education Institute, University of California Los Angeles School of Medicine, Los Angeles, USA
| | | | | | | | | |
Collapse
|
31
|
Mbagwu N, Bruni R, Hernández-Juviel JM, Waring AJ, Walther FJ. Sensitivity of synthetic surfactants to albumin inhibition in preterm rabbits. Mol Genet Metab 1999; 66:40-8. [PMID: 9973546 DOI: 10.1006/mgme.1998.2788] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surfactant can be inhibited in vivo by plasma proteins invading the alveolar space during acute lung injury. The resistance to protein inhibition of surfactant preparations with various synthetic surfactant proteins B and C (B and C) was tested in preterm rabbits. Surfactants consisted of a palmitic acid containing phospholipid mixture (PL) with full-length SP-B peptide (B1-78), one of two SP-B mutants (Bserine and BR236C), the synthetic SP-B mimic KL4 (UCLA-KL4), a natural SP-B (Bbovine), synthetic palmitoylated SP-C peptide (C1-35), a combination of B1-78 + C1-35, a combination of BR236C + C1-35, and the clinical surfactant Survanta. Preterm rabbits born at 28 days of gestation were ventilated and received 100 mg/kg of albumin intratracheally at 30 min and 100 mg/kg of surfactant at 45 min after birth. Dynamic lung compliance (tidal volume/mean airway pressure) decreased from 0.82 to 0.57 mL/kg/cm H2O after albumin instillation and to 0.43 mL/kg/cm H2O over a 60-min period after saline placebo. Treatment with B1-78 + C1-35 and BR236C + C1-35 surfactant and Survanta returned dynamic compliance to prealbumin values, B1-78, BR236C, Bbovine, and C1-35 surfactant stabilized dynamic compliance, but PL, Bserine, and UCLA-KL4 surfactant were unable to prevent a further deterioration in dynamic compliance. These data suggest that a combination of synthetic surfactant peptides B1-78 and C1-35 and the clinical surfactant Survanta confer a high degree of resistance to surfactant inhibition by human albumin in ventilated preterm rabbits.
Collapse
Affiliation(s)
- N Mbagwu
- Department of Pediatrics, Charles R. Drew University of Medicine and Science, Los Angeles, California
| | | | | | | | | |
Collapse
|
32
|
Mayer-Fligge P, Volz J, Krüger U, Sturm E, Gernandt W, Schäfer KP, Przybylski M. Synthesis and structural characterization of human-identical lung surfactant SP-C protein. J Pept Sci 1998; 4:355-63. [PMID: 9753395 DOI: 10.1002/(sici)1099-1387(199808)4:5<355::aid-psc153>3.0.co;2-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient synthesis for human-identical lung surfactant protein SP-C is described with a semi-automated solid phase synthesizer using Fmoc chemistry. Double coupling and acetic anhydride capping procedures were employed for synthetic cycles within the highly hydrophobic C-terminal domain of SP-C. Isolation of the protein was performed by mild cleavage and deprotection conditions and subsequent HPLC purification yielding a highly homogeneous protein as established by sequence determination, electrospray, plasma desorption and MALDI mass spectrometry. A general method has been employed for the preparation of Cys-palmitoylated protein by using temporary Cys(tButhio) protection, in situ deprotection with beta-mercaptoethanol and selective palmitoylation of resin-bound SP-C. The mild synthesis and isolation conditions provide SP-C with a high alpha-helical content, comparable to that of the natural SP-C, as assessed by CD spectra. Furthermore, first biophysical data indicate a surfactant activity comparable to that of the natural protein.
Collapse
|
33
|
Walther FJ, Hernández-Juviel J, Bruni R, Waring AJ. Protein composition of synthetic surfactant affects gas exchange in surfactant-deficient rats. Pediatr Res 1998; 43:666-73. [PMID: 9585014 DOI: 10.1203/00006450-199805000-00016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Synthetic surfactant peptides offer an opportunity to standardize the protein composition of surfactant. We tested the effect of phospholipids (PL) with synthetic full-length SP-B1-78 (B), mutant B (Bser), KL4 peptide (UCLA-KL4), and palmitoylated SP-C1-35 (C) on oxygenation and lung function in a surfactant-deficient rat model. Sixty-four adult rats were ventilated with 100% oxygen, a tidal volume of 7.5 mL/kg, and a rate of 60/min. Their lungs were lavaged with saline until the arterial PO2 dropped below 80 torr, when 100 mg/kg surfactant was instilled. Surfactant preparations included: PL (PL surfactant), PL + 3% B (B surfactant), PL + 3% B and 1% C (BC surfactant), PL + 3% UCLA-KL4 (KL4 surfactant), PL + 3% Bser (Bser surfactant), and PL + 3% B and 1% UCLA-KL4 (BKL4 surfactant). Sixty minutes after surfactant instillation, positive end-expiratory pressure was applied for 5 min, and pressure-volume curves were determined in situ. The six surfactant preparations had a minimum surface tensions <10 mN/m on a Langmuir/Wilhelmy balance. Instillation of PL, Bser, and BKL4 surfactant increased mean arterial/alveolar PO2 (aADO2) ratios by 50-100% over postlavage values, whereas KL4 surfactant increased aADO2 ratios by 118%, B surfactant by 191%, and BC surfactant by 225%. Lung volumes at 30 cm H2O pressure were highest after treatment with BC surfactant, intermediate after B and KL4 surfactants, and lowest after BKL4, Bser, and PL surfactants. These data suggest that a surfactant preparation with a combination of synthetic B and C peptides surpasses synthetic B and KL4 surfactants in improving oxygenation and lung compliance in surfactant-deficient rats.
Collapse
Affiliation(s)
- F J Walther
- Department of Pediatrics, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA
| | | | | | | |
Collapse
|
34
|
Bruni R, Hernández-Juviel JM, Tanoviceanu R, Walther FJ. Synthetic mimics of surfactant proteins B and C: in vitro surface activity and effects on lung compliance in two animal models of surfactant deficiency. Mol Genet Metab 1998; 63:116-25. [PMID: 9562965 DOI: 10.1006/mgme.1997.2657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synthetic surfactant peptides SP-B1-78 and SP-C1-31 in a standard phospholipid mixture have been employed to examine the correlation between in vitro surface activity and in vivo function of synthetic surfactant preparations in the isolated rat lung and premature rabbit models of respiratory distress syndrome. Monolayer techniques showed that SP-B peptides have a high propensity for association with a phospholipid structure. By dynamic respreading, synthetic SP-B and SP-C showed rapid spreading and attained low surface tensions. Used as replacement surfactants in two animal models, these synthetic surfactant preparations partially restored lung compliance in lavaged rats and premature rabbits better than a pure phospholipid preparation and to a degree comparable to clinical surfactant, measured by pressure/volume curves. Our data confirm that in vitro functional determinations of synthetic surfactant peptides are instrumental in the preparation of replacement surfactants, and that dispersions thus selected represent viable therapeutic alternatives to current treatments for respiratory distress syndrome.
Collapse
Affiliation(s)
- R Bruni
- Department of Pediatrics, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | | | | | | |
Collapse
|