1
|
Choi B, San José Estépar R, Godbole S, Curtis JL, Wang JM, San José Estépar R, Rosas IO, Mayers JR, Hobbs BD, Hersh CP, Ash SY, Han MK, Bowler RP, Stringer KA, Washko GR, Labaki WW. Plasma metabolomics and quantitative interstitial abnormalities in ever-smokers. Respir Res 2023; 24:265. [PMID: 37925418 PMCID: PMC10625195 DOI: 10.1186/s12931-023-02576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Quantitative interstitial abnormalities (QIA) are an automated computed tomography (CT) finding of early parenchymal lung disease, associated with worse lung function, reduced exercise capacity, increased respiratory symptoms, and death. The metabolomic perturbations associated with QIA are not well known. We sought to identify plasma metabolites associated with QIA in smokers. We also sought to identify shared and differentiating metabolomics features between QIA and emphysema, another smoking-related advanced radiographic abnormality. METHODS In 928 former and current smokers in the Genetic Epidemiology of COPD cohort, we measured QIA and emphysema using an automated local density histogram method and generated metabolite profiles from plasma samples using liquid chromatography-mass spectrometry (Metabolon). We assessed the associations between metabolite levels and QIA using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, pack-years, and inhaled corticosteroid use, at a Benjamini-Hochberg False Discovery Rate p-value of ≤ 0.05. Using multinomial regression models adjusted for these covariates, we assessed the associations between metabolite levels and the following CT phenotypes: QIA-predominant, emphysema-predominant, combined-predominant, and neither- predominant. Pathway enrichment analyses were performed using MetaboAnalyst. RESULTS We found 85 metabolites significantly associated with QIA, with overrepresentation of the nicotinate and nicotinamide, histidine, starch and sucrose, pyrimidine, phosphatidylcholine, lysophospholipid, and sphingomyelin pathways. These included metabolites involved in inflammation and immune response, extracellular matrix remodeling, surfactant, and muscle cachexia. There were 75 metabolites significantly different between QIA-predominant and emphysema-predominant phenotypes, with overrepresentation of the phosphatidylethanolamine, nicotinate and nicotinamide, aminoacyl-tRNA, arginine, proline, alanine, aspartate, and glutamate pathways. CONCLUSIONS Metabolomic correlates may lend insight to the biologic perturbations and pathways that underlie clinically meaningful quantitative CT measurements like QIA in smokers.
Collapse
Affiliation(s)
- Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA.
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Suneeta Godbole
- Anschutz Medical Campus, Department of Biostatistics and Informatics, University of Colorado, Aurora, CO, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Jennifer M Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rubén San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Jared R Mayers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA
| | - Brian D Hobbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Craig P Hersh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Samuel Y Ash
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Critical Care, South Shore Hospital, South Weymouth, MA, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Kathleen A Stringer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Zinellu A, Mangoni AA. Arginine, Transsulfuration, and Folic Acid Pathway Metabolomics in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:2180. [PMID: 37681911 PMCID: PMC10486395 DOI: 10.3390/cells12172180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative stress to guide management and identify new therapeutic targets in patients with chronic obstructive pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric, ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6, and vitamin B12) metabolic pathways and COPD. We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable COPD had significantly lower methionine (standardized mean difference, SMD = -0.50, 95% CI -0.95 to -0.05, p = 0.029) and folic acid (SMD = -0.37, 95% CI -0.65 to -0.09, p = 0.009), and higher homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014), and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the SMD of homocysteine was significantly associated with the biological matrix assessed and the forced expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or analytical method used. Our study suggests that the presence of significant alterations in metabolites within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO registration number: CRD42023448036.).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
3
|
Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, Gouzi F, Hayot M, Pomiès P, Berger P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci 2023; 24:ijms24076454. [PMID: 37047427 PMCID: PMC10095391 DOI: 10.3390/ijms24076454] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Pierre Schilfarth
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Maéva Zysman
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| |
Collapse
|
4
|
Kim J, Suresh B, Lim MN, Hong SH, Kim KS, Song HE, Lee HY, Yoo HJ, Kim WJ. Metabolomics Reveals Dysregulated Sphingolipid and Amino Acid Metabolism Associated with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:2343-2353. [PMID: 36172036 PMCID: PMC9511892 DOI: 10.2147/copd.s376714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease presenting as multiple phenotypes, such as declining lung function, emphysema, or persistent airflow limitation caused by several risk factors, including cigarette smoking and air pollution. The inherent complexity of COPD phenotypes propounds difficulties for accurate diagnosis and prognosis. Although metabolomic profiles on COPD have been reported, the role of metabolism in COPD-related phenotypes is yet to be determined. In this study, we investigated the association between plasma sphingolipids and amino acids, and between COPD and COPD-related phenotypes in a Korean cohort. Patients and Methods Blood samples were collected from 120 patients with COPD and 80 control participants who underwent spirometry and quantitative computed tomography. The plasma metabolic profiling was carried out using LC-MS/MS analysis. Results Among the evaluated plasma sphingolipids, an increase in the metabolism of two specific sphingomyelins, SM (d18:1/24:0) and SM (d18:1/24:1) were significantly associated with COPD. There was no significant correlation between any of the SMs and the emphysema index, FVC and FEV1 in the COPD cohort. Meanwhile, Cer (d18:1/18:0) and Cer (d18:1/24:1) were significantly associated with reduced FEV1. Furthermore, the levels of several amino acids were altered in the COPD group compared to that in the non-COPD group; glutamate and alpha AAA were substantial associated with emphysema in COPD. Kynurenine was the only amino acid significantly associated with reduced FEV1 in COPD. In contrast, there was no correlation between FVC and the elevated metabolites. Conclusion Our results provide dysregulated plasma metabolites impacting COPD phenotypes, although more studies are needed to explore the underlying mechanism related to COPD pathogenesis.
Collapse
Affiliation(s)
- Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Myoung Nam Lim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Ha Eun Song
- Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Yeong Lee
- Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
5
|
Huang Q, Wu X, Gu Y, Wang T, Zhan Y, Chen J, Zeng Z, Lv Y, Zhao J, Xie J. Detection of the Disorders of Glycerophospholipids and Amino Acids Metabolism in Lung Tissue From Male COPD Patients. Front Mol Biosci 2022; 9:839259. [PMID: 35309511 PMCID: PMC8927538 DOI: 10.3389/fmolb.2022.839259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
Background: At present, few studies have reported the metabolic profiles of lung tissue in patients with COPD. Our study attempted to analyze the lung metabolome in male COPD patients and to screen the overlapping biomarkers of the lung and plasma metabolomes. Methods: We performed untargeted metabolomic analysis of normal lung tissue from two independent sets (the discovery set: 20 male COPD patients and 20 controls and the replication set: 47 male COPD patients and 27 controls) and of plasma samples from 80 male subjects containing 40 COPD patients and 40 controls. Results: We found glycerophospholipids (GPs) and Amino acids were the primary classes of differential metabolites between male COPD patients and controls. The disorders of GPs metabolism and the valine, leucine and isoleucine biosynthesis metabolism pathways were identified in lung discovery set and then also validated in the lung replication set. Combining lung tissue and plasma metabolome, Phytosphingosine and l-tryptophan were two overlapping metabolites biomarkers. Binary logistic regression suggested that phytosphingosine together with l-tryptophan was closely associated with male COPD and showed strong diagnostic power with an AUC of 0.911 (95% CI: 0.8460-0.9765). Conclusion: Our study revealed the metabolic perturbations of lung tissues from male COPD patients. The detected disorders of GPs and amino acids may provide an insight into the pathological mechanism of COPD. Phytosphingosine and l-tryptophan were two novel metabolic biomarkers for differentiating COPD patients and controls.
Collapse
Affiliation(s)
- Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinkun Chen
- Department of Science, Western University, London, ON, Canada
| | - Zhilin Zeng
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jungang Xie,
| |
Collapse
|
6
|
Pinson MR, Deutz NEP, Harrykissoon R, Zachria AJ, Engelen MPKJ. Disturbances in branched-chain amino acid profile and poor daily functioning in mildly depressed chronic obstructive pulmonary disease patients. BMC Pulm Med 2021; 21:351. [PMID: 34743729 PMCID: PMC8573879 DOI: 10.1186/s12890-021-01719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Depression is one of the most common and untreated comorbidities in chronic obstructive pulmonary disease (COPD), and is associated with poor health outcomes (e.g. increased hospitalization/exacerbation rates). Although metabolic disturbances have been suggested in depressed non-diseased conditions, comprehensive metabolic phenotyping has never been conducted in those with COPD. We examined whether depressed COPD patients have certain clinical/functional features and exhibit a specific amino acid phenotype which may guide the development of targeted (nutritional) therapies. METHODS Seventy-eight outpatients with moderate to severe COPD (GOLD II-IV) were stratified based on presence of depression using a validated questionnaire. Lung function, disease history, habitual physical activity and protein intake, body composition, cognitive and physical performance, and quality of life were measured. Comprehensive metabolic flux analysis was conducted by pulse stable amino acid isotope administration. We obtained blood samples to measure postabsorptive kinetics (production and clearance rates) and plasma concentrations of amino acids by LC-MS/MS. Data are expressed as mean [95% CI]. Stats were done by graphpad Prism 9.1.0. ɑ < 0.05. RESULTS The COPD depressed (CD, n = 27) patients on average had mild depression, were obese (BMI: 31.7 [28.4, 34.9] kg/m2), and were characterized by shorter 6-min walk distance (P = 0.055), physical inactivity (P = 0.03), and poor quality of life (P = 0.01) compared to the non-depressed COPD (CN, n = 51) group. Lung function, disease history, body composition, cognitive performance, and daily protein intake were not different between the groups. In the CD group, plasma branched chain amino acid concentration (BCAA) was lower (P = 0.02), whereas leucine (P = 0.01) and phenylalanine (P = 0.003) clearance rates were higher. Reduced values were found for tyrosine plasma concentration (P = 0.005) even after adjustment for the large neutral amino acid concentration (= sum BCAA, tyrosine, phenylalanine and tryptophan) as a marker of dopamine synthesis (P = 0.048). CONCLUSION Mild depression in COPD is associated with poor daily performance and quality of life, and a set of metabolic changes in depressed COPD that include perturbation of large neutral amino acids, specifically the BCAAs. Trial registration clinicaltrials.gov: NCT01787682, 11 February 2013-Retrospectively registered; NCT02770092, 12 May 2016-Retrospectively registered; NCT02780219, 23 May 2016-Retrospectively registered; NCT03796455, 8 January 2019-Retrospectively registered.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Nicolaas E P Deutz
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Rajesh Harrykissoon
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Anthony J Zachria
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Mariëlle P K J Engelen
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Rondanelli M, Faliva MA, Peroni G, Infantino V, Gasparri C, Iannello G, Perna S, Alalwan TA, Al-Thawadi S, Corsico AG. Food Pyramid for Subjects with Chronic Obstructive Pulmonary Diseases. Int J Chron Obstruct Pulmon Dis 2020; 15:1435-1448. [PMID: 32606652 PMCID: PMC7310971 DOI: 10.2147/copd.s240561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/20/2020] [Indexed: 02/02/2023] Open
Abstract
Nutritional problems are an important part of rehabilitation for chronic obstructive pulmonary disease (COPD) patients. COPD patients often present with malnutrition, sarcopenia, and osteoporosis with possible onset of cachexia, with an inadequate dietary intake and a poor quality of life. Moreover, diet plays a pivotal role in patients with COPD through three mechanisms: regulation of carbon dioxide produced/oxygen consumed, inflammation, and oxidative stress. A narrative review based on 99 eligible studies was performed to evaluate current evidence regarding optimum diet therapy for the management of COPD, and then a food pyramid was built accordingly. The food pyramid proposal will serve to guide energy and dietary intake in order to prevent and treat nutritionally related COPD complications and to manage progression and COPD-related symptoms. The nutrition pyramid described in our narrative review is hypothetical, even in light of several limitations of the present review; the main limitation is the fact that to date there are no randomized controlled trials in the literature clearly showing that improved nutrition, via the regulation of carbon dioxide produced/oxygen consumed, inflammation and oxidative stress, improves symptoms and/or progression of COPD. Even if this nutritional pyramid is hypothetical, we hope that it can serve the valuable purpose of helping researchers focus on the often-ignored possible connections between body composition, nutrition, and COPD.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia27100, Italy
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia27100, Italy
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia27100, Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia27100, Italy
| | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia27100, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona “Istituto Santa Margherita”, Pavia27100, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir32038, Bahrain
| | | | - Salwa Al-Thawadi
- Department of Biology, College of Science, University of Bahrain, Sakhir32038, Bahrain
| | - Angelo Guido Corsico
- Center for Diagnosis of Inherited Alpha 1-Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia27100, Italy
- Division of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, Pavia27100, Italy
| |
Collapse
|
8
|
Holz O, DeLuca DS, Roepcke S, Illig T, Weinberger KM, Schudt C, Hohlfeld JM. Smokers with COPD Show a Shift in Energy and Nitrogen Metabolism at Rest and During Exercise. Int J Chron Obstruct Pulmon Dis 2020; 15:1-13. [PMID: 32021139 PMCID: PMC6956026 DOI: 10.2147/copd.s217474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose There is an ongoing demand for easily accessible biomarkers that reflect the physiological and pathophysiological mechanisms of COPD. To test if an exercise challenge could help to identify clinically relevant metabolic biomarkers in COPD. Patients and Methods We performed two constant-load exercise challenges separated by 4 weeks including smokers with COPD (n=23/19) and sex- and age-matched healthy smokers (n=23/20). Two hours after a standardized meal venous blood samples were obtained before, 5 mins after the start, at the end of submaximal exercise, and following a recovery of 20 mins. Data analysis was performed using mixed- effects model, with the metabolite level as a function of disease, time point and interaction terms and using each individual's resting level as reference. Results Exercise duration was longer in healthy smokers but lactate levels were comparable between groups at all four time points. Glucose levels were increased in COPD. Glutamine was lower, while glutamate and arginine were higher in COPD. Branched-chain amino acids showed a stronger decline during exercise in healthy smokers. Carnitine and the acyl-carnitines C16 and C18:1 were increased in COPD. These metabolite levels and changes were reproducible in the second challenge. Conclusion Higher serum glucose, evidence for impaired utilization of amino acids during exercise and a shift of energy metabolism to enhanced consumption of lipids could be early signs for a developing metabolic syndrome in COPD. In COPD patients, deviations of energy and nitrogen metabolism are amplified by an exercise challenge.
Collapse
Affiliation(s)
- Olaf Holz
- Fraunhofer ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - David S DeLuca
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Stefan Roepcke
- Department of Biomarker Development, Takeda Pharmaceuticals International GmbH, Zürich, Switzerland
| | - Thomas Illig
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Klaus M Weinberger
- Biocrates Life Sciences AG, Innsbruck, Austria.,Research Group for Clinical Bioinformatics, Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.,sAnalytiCo Ltd, Belfast, Ireland
| | | | - Jens M Hohlfeld
- Fraunhofer ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
9
|
Nakao R, Abe T, Yamamoto S, Oishi K. Ketogenic diet induces skeletal muscle atrophy via reducing muscle protein synthesis and possibly activating proteolysis in mice. Sci Rep 2019; 9:19652. [PMID: 31873138 PMCID: PMC6928149 DOI: 10.1038/s41598-019-56166-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Ketogenic diets (KD) that are very high in fat and low in carbohydrates are thought to simulate the metabolic effects of starvation. We fed mice with a KD for seven days to assess the underlying mechanisms of muscle wasting induced by chronic starvation. This diet decreased the weight of the gastrocnemius (Ga), tibialis anterior (TA) and soleus (Sol) muscles by 23%, 11% and 16%, respectively. The size of Ga, TA, Sol muscle fibers and the grip strength of four limbs also significantly declined by 20%, 28%, 16% and 22%, respectively. The muscle atrophy-related genes Mafbx, Murf1, Foxo3, Lc3b and Klf15 were upregulated in the skeletal muscles of mice fed with the KD. In accordance with the reduced expression of anabolic genes such as Igf1, surface sensing of translation (SUnSET) analyses of fast-twitch Ga, TA and Sol muscles revealed that the KD suppressed muscle protein synthesis. The mRNA expression of oxidative stress-responsive genes such as Sod1 was significantly increased in all muscles examined. In addition to hypercorticosteronemia, hypoinsulinemia and reduced IGF-1, oxidative stress might also be involved in KD-induced muscle atrophy. Feeding mice with a KD is a novel experimental animal model of muscle-wasting induced by chronic starvation.
Collapse
Affiliation(s)
- Reiko Nakao
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomoki Abe
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Saori Yamamoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan. .,Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan. .,Department of Computational and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan. .,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
10
|
Serum amino acid concentrations and clinical outcomes in smokers: SPIROMICS metabolomics study. Sci Rep 2019; 9:11367. [PMID: 31388056 PMCID: PMC6684630 DOI: 10.1038/s41598-019-47761-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023] Open
Abstract
Metabolomics is an emerging science that can inform pathogenic mechanisms behind clinical phenotypes in COPD. We aimed to understand disturbances in the serum metabolome associated with respiratory outcomes in ever-smokers from the SPIROMICS cohort. We measured 27 serum metabolites, mostly amino acids, by 1H-nuclear magnetic resonance spectroscopy in 157 white ever-smokers with and without COPD. We tested the association between log-transformed metabolite concentrations and one-year incidence of respiratory exacerbations after adjusting for age, sex, current smoking, body mass index, diabetes, inhaled or oral corticosteroid use, study site and clinical predictors of exacerbations, including FEV1% predicted and history of exacerbations. The mean age of participants was 53.7 years and 58% had COPD. Lower concentrations of serum amino acids were independently associated with 1-year incidence of respiratory exacerbations, including tryptophan (β = −4.1, 95% CI [−7.0; −1.1], p = 0.007) and the branched-chain amino acids (leucine: β = −6.0, 95% CI [−9.5; −2.4], p = 0.001; isoleucine: β = −5.2, 95% CI [−8.6; −1.8], p = 0.003; valine: β = −4.1, 95% CI [−6.9; −1.4], p = 0.003). Tryptophan concentration was inversely associated with the blood neutrophil-to-lymphocyte ratio (p = 0.03) and the BODE index (p = 0.03). Reduced serum amino acid concentrations in ever-smokers with and without COPD are associated with an increased incidence of respiratory exacerbations.
Collapse
|
11
|
Tan LC, Yang WJ, Fu WP, Su P, Shu JK, Dai LM. 1H-NMR-based metabolic profiling of healthy individuals and high-resolution CT-classified phenotypes of COPD with treatment of tiotropium bromide. Int J Chron Obstruct Pulmon Dis 2018; 13:2985-2997. [PMID: 30310274 PMCID: PMC6166752 DOI: 10.2147/copd.s173264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Heterogeneity of COPD results in different therapeutic effects for different patients receiving the same treatment. COPD patients need to be individually treated according to their own characteristics. The purpose of this study was to explore the differences in different CT phenotypic COPD by molecular metabolites through the use of metabolomics. Methods According to the characteristics of CT imaging, 42 COPD patients were grouped into phenotype E (n=20) or phenotype M (n=24). Each COPD patient received tiotropium bromide powder for inhalation for a therapeutic period of 3 months. All subjects were assigned into phenotype E in pre-therapy (EB, n=20), phenotype E in post-therapy (EA, n=20), phenotype M in pre-therapy (MB, n=22), phenotype M in post-therapy (MA, n=22), or normal control (N, n=24). The method of metabolomics based on 1H nuclear magnetic resonance (1H-NMR) was used to compare the changes in serum metabolites between COPD patients and normal controls and between different phenotypes of COPD patients in pre- and post-therapy. Results Patients with COPD phenotype E responded better to tiotropium bromide than patients with COPD phenotype M in terms of pulmonary function and COPD assessment test scores. There were differences in metabolites in COPD patients vs normal control people. Differences were also observed between different COPD phenotypic patients receiving the treatment in comparison with those who did not receive treatment. The changes of metabolites involved lactate, phenylalanine, fructose, glycine, asparagine, citric acid, pyruvic acid, proline, acetone, ornithine, lipid, pyridoxine, maltose, betaine, lipoprotein, and so on. These identified metabolites covered the metabolic pathways of amino acids, carbohydrates, lipids, genetic materials, and vitamin. Conclusion The efficacy of tiotropium bromide on COPD phenotype E is better than that of phenotype M. Metabolites detected by 1H-NMR metabolomics have potentialities of differentiation of COPD and healthy people, discrimination of different COPD phenotypes, and giving insight into the individualized treatment of COPD.
Collapse
Affiliation(s)
- Li-Chuan Tan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China,
| | - Wen-Jie Yang
- Department of Respiratory, Baoshan People's Hospital, Baoshan 678000, People's Republic of China
| | - Wei-Ping Fu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China,
| | - Ping Su
- Department of Respiratory, Baoshan People's Hospital, Baoshan 678000, People's Republic of China
| | - Jing-Kui Shu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China,
| | - Lu-Ming Dai
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China,
| |
Collapse
|
12
|
Lakhdar R, Rabinovich RA. Can muscle protein metabolism be specifically targeted by nutritional support and exercise training in chronic obstructive pulmonary disease? J Thorac Dis 2018; 10:S1377-S1389. [PMID: 29928520 PMCID: PMC5989103 DOI: 10.21037/jtd.2018.05.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) associates with several extra-pulmonary effects. Muscle dysfunction and wasting is one of the most prominent extra-pulmonary effects and contributes to exercise limitation and health related quality of life (HRQoL), morbidity as well as mortality. The loss of muscle mass is characterised by an impaired balance between protein synthesis (anabolism) and protein breakdown (catabolism) which relates to nutritional disturbances, muscle disuse and the presence of a systemic inflammation, among other factors. Current approaches to reverse skeletal muscle dysfunction and wasting attain only modest improvements. The development of new therapeutic strategies aiming at improving skeletal muscle dysfunction and wasting are needed. This requires a better understanding of the underlying molecular pathways responsible for these abnormalities. In this review we update recent research on protein metabolism, nutritional depletion as well as physical (in)activity in relation to muscle wasting and dysfunction in patients with COPD. We also discuss the role of nutritional supplementation and exercise training as strategies to re-establish the disrupted balance of protein metabolism in the muscle of patients with COPD. Future areas of research and clinical practice directions are also addressed.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Roberto A. Rabinovich
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
- Respiratory Medicine Department, Royal Infirmary of Edinburgh, Scotland, UK
| |
Collapse
|
13
|
Lee HT, Lin CS, Pan SC, Wu TH, Lee CS, Chang DM, Tsai CY, Wei YH. Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients. Mitochondrion 2018; 44:65-74. [PMID: 29337141 DOI: 10.1016/j.mito.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/31/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
We evaluated plasma glutamine levels and basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB) of peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients and healthy controls (HCs). Lower plasma glutamine levels correlated with higher SLE disease activity indexes (p=0.025). Incubated in DMEM containing 100mg/dL glucose, SLE-PBMCs displayed lower mOCRB (p=0.018) but similar ECARB (p=0.467) to those of HC-PBMCs, and their mOCRB got elevated (p<0.001) without altering ECARB (p=0.239) by supplementation with 2 or 4mM glutamine. We conclude that impaired mitochondrial respiration of SLE-PBMCs could be improved by glutamine under euglycemic condition.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Sung Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Siao-Cian Pan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| | - Tsai-Hung Wu
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chyou-Shen Lee
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Deh-Ming Chang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Youh Tsai
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yau-Huei Wei
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan.
| |
Collapse
|
14
|
Abdullah M, Kornegay JN, Honcoop A, Parry TL, Balog-Alvarez CJ, O'Neal SK, Bain JR, Muehlbauer MJ, Newgard CB, Patterson C, Willis MS. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo. Metabolites 2017; 7:E38. [PMID: 28758940 PMCID: PMC5618323 DOI: 10.3390/metabo7030038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. METHODS We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. RESULTS Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10-3), carnosine (0.40-fold of controls, p = 1.88 × 10-2), fumaric acid (0.40-fold of controls, p = 7.40 × 10-4), lactamide (0.33-fold of controls, p = 4.84 × 10-2), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10-2), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10-2), glutamic acid (2.48-fold of controls, p = 2.63 × 10-2), and proline (1.73-fold of controls, p = 3.01 × 10-2). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10-4, FDR 4.7 × 10-2), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle dysfunction. In contrast, two pathways, inosine-5'-monophosphate (VIP Score 3.91) and 3-phosphoglyceric acid (VIP Score 3.08) mainly contributed to the LDE signature, with two metabolites (phosphoglyceric acid and inosine-5'-monophosphate) being significantly decreased. When the BF and LDE were compared, the most significant metabolite was phosphoric acid, which was significantly less in the GRMD BF compared to control and GRMD LDE groups. CONCLUSIONS The identification of elevated BF oleic acid (a long-chain fatty acid) is consistent with recent microarray studies identifying altered lipid metabolism genes, while alterations in arginine and proline metabolism are consistent with recent studies identifying elevated L-arginine in DMD patient sera as a biomarker of disease. Together, these studies demonstrate muscle-specific alterations in GRMD-affected muscle, which illustrate previously unidentified metabolic changes.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Department of Biochemistry, QuaidiAzam University, 45320 Islamabad, Pakistan.
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Aubree Honcoop
- Toxicology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Traci L Parry
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Sara K O'Neal
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27703, USA.
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27703, USA.
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA.
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
He M, Harms AC, van Wijk E, Wang M, Berger R, Koval S, Hankemeier T, van der Greef J. Role of amino acids in rheumatoid arthritis studied by metabolomics. Int J Rheum Dis 2017; 22:38-46. [PMID: 28328075 DOI: 10.1111/1756-185x.13062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a complex, chronic autoimmune disease characterized by various inflammatory symptoms, including joint swelling, joint pain, and both structural and functional joint damage. The most commonly used animal model for studying RA is mice with collagen-induced arthritis (CIA); the wide use of this model is due primarily to many similarities with RA in human patients. Metabolomics is used increasingly in biological studies for diagnosing disease and for predicting and evaluating drug interventions, as a large number of disease-associated metabolites can be analyzed and interpreted from a biological perspective. AIM To profile free amino acids and their biogenic metabolites in CIA mice plasma. METHOD Ultra-high-performance liquid chromatography/tandem mass spectrometry coupled with multiple reaction monitoring (MRM) was used for metabolomics study. RESULTS Profile of 45 amine metabolites, including free amino acids and their biogenic metabolites in plasma was obtained from CIA mice. We found that the plasma levels of 20 amine metabolites were significantly decreased in the CIA group. CONCLUSION The results suggest that a disordered amine response is linked to RA-associated muscle wasting and energy expenditure.
Collapse
Affiliation(s)
- Min He
- Analytical BioSciences, LACDR, Leiden University, Leiden, the Netherlands.,Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, Leiden, the Netherlands
| | - Amy C Harms
- Analytical BioSciences, LACDR, Leiden University, Leiden, the Netherlands
| | - Eduard van Wijk
- Analytical BioSciences, LACDR, Leiden University, Leiden, the Netherlands.,Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, Leiden, the Netherlands
| | - Mei Wang
- Analytical BioSciences, LACDR, Leiden University, Leiden, the Netherlands.,Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, Leiden, the Netherlands.,SU Biomedicine, Zeist, the Netherlands
| | - Ruud Berger
- Analytical BioSciences, LACDR, Leiden University, Leiden, the Netherlands
| | - Slavik Koval
- Analytical BioSciences, LACDR, Leiden University, Leiden, the Netherlands
| | - Thomas Hankemeier
- Analytical BioSciences, LACDR, Leiden University, Leiden, the Netherlands.,Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, Leiden, the Netherlands
| | - Jan van der Greef
- Analytical BioSciences, LACDR, Leiden University, Leiden, the Netherlands.,Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, Leiden, the Netherlands.,TNO, Zeist, the Netherlands
| |
Collapse
|
16
|
Adamko DJ, Saude E, Bear M, Regush S, Robinson JL. Urine metabolomic profiling of children with respiratory tract infections in the emergency department: a pilot study. BMC Infect Dis 2016; 16:439. [PMID: 27549246 PMCID: PMC4994221 DOI: 10.1186/s12879-016-1709-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinicians lack objective tests to help determine the severity of bronchiolitis or to distinguish a viral from bacterial causes of respiratory distress. We hypothesized that children with respiratory syncytial virus (RSV) infection would have a different metabolomic profile compared to those with bacterial infection or healthy controls, and this might also vary with bronchiolitis severity. METHODS Clinical information and urine-based metabolomic data were collected from healthy age-matched children (n = 37) and those admitted to hospital with a proven infection (RSV n = 55; Non-RSV viral n = 16; bacterial n = 24). Nuclear magnetic resonance (NMR) measured 86 metabolites per urine sample. Partial least squares discriminant analysis (PLS-DA) was performed to create models of separation. RESULTS Using a combination of metabolites, a strong PLS-DA model (R2 = 0.86, Q2 = 0.76) was created differentiating healthy children from those with RSV infection. This model had over 90 % accuracy in classifying blinded infants with similar illness severity. Two other models differentiated length of hospitalization and viral versus bacterial infection. CONCLUSION While the sample sizes remain small, this is the first report suggesting that metabolomic analysis of urine samples has the potential to become a diagnostic aid. Future studies with larger sample sizes are required to validate the utility of metabolomics in pediatric patients with respiratory distress.
Collapse
Affiliation(s)
- Darryl J Adamko
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada. .,University of Saskatchewan, S7N 0W8, Saskatoon, Saskatchewan, Canada.
| | - Erik Saude
- Department of Emergency Medicine, University of Calgary, T2N 2T9, Calgary, Alberta, Canada
| | - Matthew Bear
- University of Saskatchewan, S7N 0W8, Saskatoon, Saskatchewan, Canada
| | - Shana Regush
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada
| | - Joan L Robinson
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada
| |
Collapse
|
17
|
Sanders KJC, Kneppers AEM, van de Bool C, Langen RCJ, Schols AMWJ. Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective. J Cachexia Sarcopenia Muscle 2016; 7:5-22. [PMID: 27066314 PMCID: PMC4799856 DOI: 10.1002/jcsm.12062] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 07/05/2015] [Accepted: 07/12/2015] [Indexed: 12/19/2022] Open
Abstract
Cachexia and muscle wasting are well recognized as common and partly reversible features of chronic obstructive pulmonary disease (COPD), adversely affecting disease progression and prognosis. This argues for integration of weight and muscle maintenance in patient care. In this review, recent insights are presented in the diagnosis of muscle wasting in COPD, the pathophysiology of muscle wasting, and putative mechanisms involved in a disturbed energy balance as cachexia driver. We discuss the therapeutic implications of these new insights for optimizing and personalizing management of COPD-induced cachexia.
Collapse
Affiliation(s)
- Karin J C Sanders
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| | - Anita E M Kneppers
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| | - Coby van de Bool
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| |
Collapse
|
18
|
Exogenous Glutamine in Respiratory Diseases: Myth or Reality? Nutrients 2016; 8:76. [PMID: 26861387 PMCID: PMC4772040 DOI: 10.3390/nu8020076] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Several respiratory diseases feature increased inflammatory response and catabolic activity, which are associated with glutamine depletion; thus, the benefits of exogenous glutamine administration have been evaluated in clinical trials and models of different respiratory diseases. Recent reviews and meta-analyses have focused on the effects and mechanisms of action of glutamine in a general population of critical care patients or in different models of injury. However, little information is available about the role of glutamine in respiratory diseases. The aim of the present review is to discuss the evidence of glutamine depletion in cystic fibrosis (CF), asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and lung cancer, as well as the results of exogenous glutamine administration in experimental and clinical studies. Exogenous glutamine administration might be beneficial in ARDS, asthma, and during lung cancer treatment, thus representing a potential therapeutic tool in these conditions. Further experimental and large randomized clinical trials focusing on the development and progression of respiratory diseases are necessary to elucidate the effects and possible therapeutic role of glutamine in this setting.
Collapse
|
19
|
Smolenska Z, Smolenski RT, Zdrojewski Z. Plasma concentrations of amino acid and nicotinamide metabolites in rheumatoid arthritis--potential biomarkers of disease activity and drug treatment. Biomarkers 2016; 21:218-24. [PMID: 26811910 DOI: 10.3109/1354750x.2015.1130746] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to evaluate changes in plasma amino acid and nicotinamide metabolites concentrations in rheumatoid arthritis (RA) in a search for potential biomarkers of the disease activity and the effect treatment. Analysis of plasma metabolite patterns with liquid chromatography/mass spectrometry revealed specific changes in RA as well as correlations with clinical parameters. Combined concentration parameter calculated as [aspartic acid] + [threonine] + [tryptophan] - [histidine] - [phenylalanine] offered the strongest correlation (p < 0.001) with pain joint count, swollen joint count and DAS 28. Such analysis of amino acid and related metabolite pattern offers potential for diagnosis as well as for monitoring disease progression and therapy in RA.
Collapse
Affiliation(s)
- Zaneta Smolenska
- a Department of Internal Medicine , Connective Tissue Diseases and Geriatrics, Medical University of Gdansk , Gdansk , Poland and
| | - Ryszard T Smolenski
- b Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - Zbigniew Zdrojewski
- a Department of Internal Medicine , Connective Tissue Diseases and Geriatrics, Medical University of Gdansk , Gdansk , Poland and
| |
Collapse
|
20
|
Gea J, Pascual S, Casadevall C, Orozco-Levi M, Barreiro E. Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings. J Thorac Dis 2015; 7:E418-38. [PMID: 26623119 DOI: 10.3978/j.issn.2072-1439.2015.08.04] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Respiratory and/or limb muscle dysfunction, which are frequently observed in chronic obstructive pulmonary disease (COPD) patients, contribute to their disease prognosis irrespective of the lung function. Muscle dysfunction is caused by the interaction of local and systemic factors. The key deleterious etiologic factors are pulmonary hyperinflation for the respiratory muscles and deconditioning secondary to reduced physical activity for limb muscles. Nonetheless, cigarette smoke, systemic inflammation, nutritional abnormalities, exercise, exacerbations, anabolic insufficiency, drugs and comorbidities also seem to play a relevant role. All these factors modify the phenotype of the muscles, through the induction of several biological phenomena in patients with COPD. While respiratory muscles improve their aerobic phenotype (percentage of oxidative fibers, capillarization, mitochondrial density, enzyme activity in the aerobic pathways, etc.), limb muscles exhibit the opposite phenotype. In addition, both muscle groups show oxidative stress, signs of damage and epigenetic changes. However, fiber atrophy, increased number of inflammatory cells, altered regenerative capacity; signs of apoptosis and autophagy, and an imbalance between protein synthesis and breakdown are rather characteristic features of the limb muscles, mostly in patients with reduced body weight. Despite that significant progress has been achieved in the last decades, full elucidation of the specific roles of the target biological mechanisms involved in COPD muscle dysfunction is still required. Such an achievement will be crucial to adequately tackle with this relevant clinical problem of COPD patients in the near-future.
Collapse
Affiliation(s)
- Joaquim Gea
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Sergi Pascual
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Carme Casadevall
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Mauricio Orozco-Levi
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Esther Barreiro
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Metabolomic profiling of asthma and chronic obstructive pulmonary disease: A pilot study differentiating diseases. J Allergy Clin Immunol 2015; 136:571-580.e3. [PMID: 26152317 DOI: 10.1016/j.jaci.2015.05.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Differentiating asthma from other causes of chronic airflow limitation, such as chronic obstructive pulmonary disease (COPD), can be difficult in a typical outpatient setting. The inflammation of asthma typically is different than that of COPD, and the degree of inflammation and cellular damage varies with asthma severity. Metabolomics is the study of molecules created by cellular metabolic pathways. OBJECTIVES We hypothesized that the metabolic activity of adults with asthma would differ from that of adults with COPD. Furthermore, we hypothesized that nuclear magnetic resonance spectroscopy (NMR) would measure such differences in urine samples. METHODS Clinical and urine-based NMR data were collected on adults meeting the criteria of asthma and COPD before and after an exacerbation (n = 133 and 38, respectively) and from patients with stable asthma or COPD (n = 54 and 23, respectively). Partial least-squares discriminant analysis was performed on the NMR data to create models of separation (86 metabolites were measured per urine sample). Some subjects' metabolomic data were withheld from modeling to be run blindly to determine diagnostic accuracy. RESULTS Partial least-squares discriminant analysis of the urine NMR data found unique differences in select metabolites between patients with asthma and those with COPD seen in the emergency department and even in follow-up after exacerbation. By using these select metabolomic profiles, the model could correctly diagnose blinded asthma and COPD with greater than 90% accuracy. CONCLUSION This is the first report showing that metabolomic analysis of human urine samples could become a useful clinical tool to differentiate asthma from COPD.
Collapse
|
22
|
Krajcova A, Ziak J, Jiroutkova K, Patkova J, Elkalaf M, Dzupa V, Trnka J, Duska F. Normalizing Glutamine Concentration Causes Mitochondrial Uncoupling in an In Vitro Model of Human Skeletal Muscle. JPEN J Parenter Enteral Nutr 2015; 39:180-189. [DOI: 10.1177/0148607113513801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Adela Krajcova
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jakub Ziak
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Katerina Jiroutkova
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jana Patkova
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Moustafa Elkalaf
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Valer Dzupa
- Department of Orthopaedic Surgery, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jan Trnka
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Frantisek Duska
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
23
|
Tsukano K, Suzuki K, Shimamori T, Sato A, Kudo K, Asano R, Ajito T, Lakritz J. Profiles of serum amino acids to screen for catabolic and inflammation status in calves with Mycoplasma bronchopneumonia. J Vet Med Sci 2014; 77:67-73. [PMID: 25342635 PMCID: PMC4349539 DOI: 10.1292/jvms.14-0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The aim of the present study was to investigate the relationships between serum
amino acid profiles in normal and calves with Mycoplasma
bronchopneumonia. Serum free amino acid concentrations in serum obtained from 34 calves
with or without Mycoplasma bronchopneumonia were determined by
high-performance liquid chromatography. The calves with Mycoplasma were
characterized by significantly lower total amino acid and total essential amino acid
concentrations and molar ratios of branched-chain amino acid (BCAA) to aromatic amino acid
(BCAA/AAA) and BCAA to tyrosine (BTR), and by a significantly higher molar ratio of serine
phosphorylation (SPR). The proposed diagnostic cutoffs for BCAA/AAA, BTR and SPR in serum
based on ROC analysis for detection of catabolic states associated with
Mycoplasma bronchopneumonia were set at <1.75, <2.86 and
>0.85, respectively. Our results suggest that determining the profiles of amino acids,
especially BTR and SPR, could provide useful diagnostic information in terms of predicting
protein catabolism in Mycoplasma bronchopneumonia.
Collapse
Affiliation(s)
- Kenji Tsukano
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimati, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nägeli M, Fasshauer M, Sommerfeld J, Fendel A, Brandi G, Stover JF. Prolonged continuous intravenous infusion of the dipeptide L-alanine- L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury. Crit Care 2014; 18:R139. [PMID: 24992948 PMCID: PMC4227121 DOI: 10.1186/cc13962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/02/2014] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. METHODS Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. RESULTS Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn's test). CONCLUSIONS High dose L-alanine-L-glutamine infusion (0.75 g/ kg/ d up to 5 days) increased plasma and brain glutamine and alanine levels. This was not associated with elevated glutamate or signs of potential glutamate-mediated cerebral injury. The increased nitrogen load should be considered in patients with renal and hepatic dysfunction. TRIAL REGISTRATION Clinicaltrials.gov NCT02130674. Registered 5 April 2014.
Collapse
Affiliation(s)
- Mirjam Nägeli
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - Mario Fasshauer
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - Jutta Sommerfeld
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - Angela Fendel
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - Giovanna Brandi
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - John F Stover
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| |
Collapse
|
25
|
Tomoda K, Kubo K, Hino K, Kondoh Y, Nishii Y, Koyama N, Yamamoto Y, Yoshikawa M, Kimura H. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats. J Toxicol Sci 2014; 39:331-7. [DOI: 10.2131/jts.39.331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Koichi Tomoda
- Second Department of Internal Medicine, Nara Medical University
| | - Kaoru Kubo
- Laboratory Animal Research Center, Nara Medical University
| | - Kazuo Hino
- Nutrition Research Laboratory, Otsuka Pharmaceutical Factory, Inc
| | - Yasunori Kondoh
- Nutrition Research Laboratory, Otsuka Pharmaceutical Factory, Inc
| | | | - Noriko Koyama
- Second Department of Internal Medicine, Nara Medical University
| | | | | | - Hiroshi Kimura
- Second Department of Internal Medicine, Nara Medical University
| |
Collapse
|
26
|
Abstract
Muscle dysfunction often occurs in patients with chronic obstructive pulmonary disease (COPD) and may involve both respiratory and locomotor (peripheral) muscles. The loss of strength and/or endurance in the former can lead to ventilatory insufficiency, whereas in the latter it limits exercise capacity and activities of daily life. Muscle dysfunction is the consequence of complex interactions between local and systemic factors, frequently coexisting in COPD patients. Pulmonary hyperinflation along with the increase in work of breathing that occur in COPD appear as the main contributing factors to respiratory muscle dysfunction. By contrast, deconditioning seems to play a key role in peripheral muscle dysfunction. However, additional systemic factors, including tobacco smoking, systemic inflammation, exercise, exacerbations, nutritional and gas exchange abnormalities, anabolic insufficiency, comorbidities and drugs, can also influence the function of both respiratory and peripheral muscles, by inducing modifications in their local microenvironment. Under all these circumstances, protein metabolism imbalance, oxidative stress, inflammatory events, as well as muscle injury may occur, determining the final structure and modulating the function of different muscle groups. Respiratory muscles show signs of injury as well as an increase in several elements involved in aerobic metabolism (proportion of type I fibers, capillary density, and aerobic enzyme activity) whereas limb muscles exhibit a loss of the same elements, injury, and a reduction in fiber size. In the present review we examine the current state of the art of the pathophysiology of muscle dysfunction in COPD.
Collapse
Affiliation(s)
- Joaquim Gea
- Servei de Pneumologia, Hospital del Mar-IMIM, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), ISCIII, Bunyola, Spain
| | - Alvar Agustí
- CIBER de Enfermedades Respiratorias (CIBERES), ISCIII, Bunyola, Spain
- Servei de Pneumologia, Institut del Tòrax. Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain; and
- Fundació Investigació Sanitària Illes Balears (FISIB), Mallorca, Spain
| | - Josep Roca
- CIBER de Enfermedades Respiratorias (CIBERES), ISCIII, Bunyola, Spain
- Servei de Pneumologia, Institut del Tòrax. Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain; and
| |
Collapse
|
27
|
Ubhi BK, Cheng KK, Dong J, Janowitz T, Jodrell D, Tal-Singer R, MacNee W, Lomas DA, Riley JH, Griffin JL, Connor SC. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. MOLECULAR BIOSYSTEMS 2012; 8:3125-33. [PMID: 23051772 DOI: 10.1039/c2mb25194a] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
BACKGROUND COPD, a leading cause of mortality is currently assessed by spirometry (forced expiratory volume in 1 second, FEV(1)). However FEV(1) does not correlate with patient mortality. ECLIPSE (Evaluation of Chronic obstructive pulmonary disease to Longitudinally Identify Predictive Surrogate Endpoints) aims to identify biomarkers that correlate with clinically relevant COPD subtypes, and to assess how these may predict disease progression. New methods were developed and validated to evaluate small molecules as potential diagnostic tools in patients with COPD, COPD related cachexia and cancer related cachexia. METHODS AND FINDINGS quantitative LC-MS/MS was developed to measure 34 amino acids and dipeptides for stratification of patient groups. Subsets of the ECLIPSE patients were used to assess biomarkers of lung obstruction; GOLD IV (n = 30) versus control (n = 30); emphysema (n = 38) versus airways disease (n = 21) and cachexia (n = 30) versus normal body mass index (n = 30). Serum from cachexic (n = 7) and non-cachexic (n = 5) pancreatic cancer patients were included as controls. Targeted LC-MS/MS distinguished GOLD IV patients from controls, patients with and without emphysema and patients with and without cachexia. Glutamine, aspartate and arginine were significantly increased (p < 0.05; FDR adjustment α < 0.1) in cachexia, emphysema and GOLD IV patients and aminoadipate was decreased. Several amino acid concentrations were significantly altered in patients with COPD but not patients with pancreatic cancer (serine, sarcosine, tryptophan, BCAAs and 3-methylhistdine). Increased γ-aminobutyrate (GABA, p < 0.01) levels were specific to cachexia in patients with pancreatic cancer. β-aminoisobutyrate, 1-methylhistidine and asparagine (p < 0.05) were common across the patients with cachexia from both the COPD and pancreatic cancer cohorts. CONCLUSION these results demonstrate that a metabolomic fingerprint has potential to stratify patients for the treatment of COPD and may provide a means of assessing response to therapy. GOLD IV patients were distinguished from smoker control subjects, patients with emphysema were distinguished from those without emphysema and COPD patients displaying cachexia were distinguished from those not displaying cachexia. General markers of cachexia were discovered reflecting both COPD- and pancreatic cancer-related cachexia (increased glutamine, aspartate, arginine, and asparagine and decreased aminoadipate, β-aminoisobutyrate and 1-methylhistidine). Metabolomic biomarkers, particularly altered levels of GABA, could be exploited as a way of monitoring treatment efficacy and tumour recurrence for patients with pancreatic cancer experiencing cachexia.
Collapse
Affiliation(s)
- Baljit K Ubhi
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cederholm TE, Bauer JM, Boirie Y, Schneider SM, Sieber CC, Rolland Y. Toward a Definition of Sarcopenia. Clin Geriatr Med 2011; 27:341-53. [DOI: 10.1016/j.cger.2011.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Breyer MK, Rutten EP, Vernooy JH, Spruit MA, Dentener MA, van der Kallen C, vanGreevenbroek MM, Wouters EF. Gender differences in the adipose secretome system in chronic obstructive pulmonary disease (COPD): A pivotal role of leptin. Respir Med 2011; 105:1046-53. [DOI: 10.1016/j.rmed.2011.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 11/30/2022]
|
30
|
Higashimoto Y, Yamagata T, Honda N, Satoh R, Sano H, Iwanaga T, Miyhara T, Muraki M, Tomita K, Tohda Y, Fukuda K. Clinical and inflammatory factors associated with body mass index in elderly patients with chronic obstructive pulmonary disease. Geriatr Gerontol Int 2011; 11:32-8. [PMID: 20609004 DOI: 10.1111/j.1447-0594.2010.00629.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Body mass index (BMI) is closely associated with mortality in chronic obstructive pulmonary disease (COPD). Systemic inflammation has been suggested as one of the mechanisms of malnutrition in COPD. This study investigated the relationships of clinical variables and inflammatory biomarkers with BMI in COPD in an aging population. METHODS Baseline levels of serum biomarkers were determined for 69 patients with stable male COPD. Multivariate logistic regression was used to evaluate associations between clinical variables, including emphysema scores, and biomarkers with BMI. RESULTS Twenty eight patients were categorized as low BMI (<20 kg/m2). BMI was inversely correlated with serum α1-antitrypsin (α1-AT) concentration and emphysema scores, and was positively correlated with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). Multivariate logistic regression analysis showed that α1-AT was independently associated with BMI. CONCLUSION Low BMI was associated with the severity of emphysema and systemic inflammation reflected by elevated α1-AT level.
Collapse
Affiliation(s)
- Yuji Higashimoto
- Department of Rehabilitation Medicine, Kinki University School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Baldi S, Aquilani R, Pinna GD, Poggi P, De Martini A, Bruschi C. Fat-free mass change after nutritional rehabilitation in weight losing COPD: role of insulin, C-reactive protein and tissue hypoxia. Int J Chron Obstruct Pulmon Dis 2010; 5:29-39. [PMID: 20368909 PMCID: PMC2846151 DOI: 10.2147/copd.s7739] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fat-free mass (FFM) depletion marks the imbalance between tissue protein synthesis and breakdown in chronic obstructive pulmonary disease (COPD). To date, the role of essential amino acid supplementation (EAAs) in FFM repletion has not been fully acknowledged. A pilot study was undertaken in patients attending pulmonary rehabilitation. METHODS 28 COPD patients with dynamic weight loss > 5% over the last 6 months were randomized to receive EAAs embedded in a 12-week rehabilitation program (EAAs group n = 14), or to the same program without supplementation (C group n = 14). Primary outcome measures were changes in body weight and FFM, using dual X-ray absorptiometry (DEXA). RESULTS At the 12th week, a body weight increment occurred in 92% and 15% of patients in the EAAs and C group, respectively, with an average increase of 3.8 +/- 2.6 kg (P = 0.0002) and -0.1 +/- 1.1 kg (P = 0.81), respectively. A FFM increment occurred in 69% and 15% of EAAs and C patients, respectively, with an average increase of 1.5 +/- 2.6 kg (P = 0.05) and -0.1 +/- 2.3 kg (P = 0.94), respectively. In the EAAs group, FFM change was significantly related to fasting insulin (r(2) 0.68, P < 0.0005), C-reactive protein (C-RP) (r(2) = 0.46, P < 0.01), and oxygen extraction tension (PaO(2x)) (r(2) = 0.46, P < 0.01) at end of treatment. These three variables were highly correlated in both groups (r > 0.7, P < 0.005 in all tests). CONCLUSIONS Changes in FFM promoted by EAAs are related to cellular energy and tissue oxygen availability in depleted COPD. Insulin, C-RP, and PaO(2x) must be regarded as clinical markers of an amino acid-stimulated signaling to FFM accretion.
Collapse
Affiliation(s)
- Simonetta Baldi
- Department of Pneumology and Biomedical Engineering, Scientific Institute of Montescano, Salvatore Maugeri Foundation I.R.C.C.S. Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Plasma branched-chain amino acid levels and muscle energy metabolism in patients with chronic obstructive pulmonary disease. Clin Nutr 2009; 28:203-8. [PMID: 19250720 DOI: 10.1016/j.clnu.2009.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 01/11/2009] [Accepted: 01/29/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Although several studies have shown that plasma concentrations of branched-chain amino acids (BCAAs) are reduced in patients with chronic obstructive pulmonary disease (COPD), little is understood about how low concentrations of BCAAs limit exercise in such patients. The present study investigated whether plasma BCAAs are related to energy metabolism in exercising muscle using (31)P-magnetic resonance spectroscopy (MRS). METHODS We analyzed the plasma amino acid profiles of 23 male patients with COPD (aged 69.2+/-5.1 years) and of 7 healthy males (aged 64.1+/-6.0 years). We normalized the exercise intensity of repetitive lifting by adjusting the weight to 7% of the maximal grip power. The intracellular pH and the phosphocreatine (PCr) index (PCr/(PCr+Pi); Pi, inorganic phosphate) were calculated from MR spectra. We evaluated the relationship between intracellular pH and PCr index at the completion of exercise and the plasma BCAA concentration. RESULTS Glutamine concentrations were elevated in patients with COPD compared with healthy individuals. Plasma concentrations of BCAAs correlated with intracellular pH and PCr index at the completion of exercise. CONCLUSIONS The findings are consistent with the notion that BCAAs affect muscle energy metabolism during exercise in patients with COPD.
Collapse
|
33
|
Cano NJ, Walrand S, Guillet C, Boirie Y. Acides aminés et insuffisances d’organes (hépatique, rénale et respiratoire). NUTR CLIN METAB 2008. [DOI: 10.1016/j.nupar.2008.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Rutten EPA, Engelen MPKJ, Gosker H, Bast A, Cosemans K, Vissers YLJ, Wouters EFM, Deutz NEP, Schols AMWJ. Metabolic and functional effects of glutamate intake in patients with chronic obstructive pulmonary disease (COPD). Clin Nutr 2008; 27:408-15. [PMID: 18433945 DOI: 10.1016/j.clnu.2008.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/21/2008] [Accepted: 03/04/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIMS Patients with chronic obstructive pulmonary disease (COPD) often suffer from skeletal muscle weakness due to muscle wasting and altered muscle metabolism. Decreased muscle glutamate concentration in COPD is consistently reported and is associated with decreased muscle glutathione concentration and early lactic acidosis. We hypothesized that an increased availability of glutamate via glutamate ingestion increases muscle glutamate concentration leading to acute improvements in skeletal muscle energy metabolism and function. METHODS Two experiments were conducted. In experiment 1, in two groups of 6 male COPD patients (FEV(1): 44.8+/-3.4%pred) and 6 healthy controls, blood samples and muscle biopsies were taken at 0 and 80 min after repeated glutamate (30 mg/kg BW) or control ingestion (1.25 ml/kg BW), and after 20 min cycling at 50% peak workload. In experiment 2, in 10 COPD patients (FEV(1): 36.1+/-2.5%pred), the effect of the two drinks was tested on cycle endurance time and contractile quadriceps fatigue measured by magnetic stimulation before and after cycling at 75% peak workload. RESULTS Glutamate ingestion increased plasma (p<0.01) but not muscle glutamate concentration. Muscle total and reduced glutathione and plasma lactate concentration were not affected by glutamate ingestion. Glutamate ingestion did not influence contractile muscle fatigue and endurance time. CONCLUSION Continuous oral glutamate ingestion for 80 min did not lead to an acute effect on skeletal muscle substrate metabolism and muscle performance in COPD patients and in age-matched healthy controls.
Collapse
Affiliation(s)
- Erica P A Rutten
- Department of Respiratory Medicine, University of Maastricht, Maastricht, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wouters EF, Celis MP, Breyer MK, Rutten EP, Graat-Verboom L, Spruit MA. Co-morbid manifestations in COPD. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.rmedu.2007.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Cepelak I, Dodig S, Romic D, Ruljancic N, Popovic-Grle S, Malic A. Enzyme Catalytic Activities in Chronic Obstructive Pulmonary Disease. Arch Med Res 2006; 37:624-9. [PMID: 16740433 DOI: 10.1016/j.arcmed.2006.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 01/27/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Altered muscle amino acid metabolism resulting in skeletal muscle dysfunction is one of the systemic effects of chronic obstructive pulmonary disease (COPD) associated with systemic oxidative stress and inflammation. The aim of the study was to investigate the existence and extent of changes in the activities of the enzymes catalyzing transamination reactions (aminotransferases), the enzyme involved in bone rearrangement (alkaline phosphatase), and the enzyme reflecting hypoxia that is characteristic of these patients (lactate dehydrogenase). In addition, the effect of cigarette smoking on these enzyme activities was also assessed. METHODS Enzyme activities such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyltransferase and lactate dehydrogenase were determined by standard analysis in sera of 29 COPD patients (FEV(1) = 46.6 +/- 12.1%) and 58 healthy subjects (21 nonsmokers, 17 ex-smokers and 20 smokers). RESULTS The activity of aspartate aminotransferase and alanine aminotransferase was significantly decreased, and the activity of lactate dehydrogenase increased in sera of COPD patients as compared with the group of healthy nonsmokers. According to centile values, the activity of alkaline phosphatase, gamma-glutamyltransferase and lactate dehydrogenase was increased in 50, 5, and 50% of COPD patients, respectively. CONCLUSIONS Study results revealed significant changes in the activities of transamination enzymes in patient sera, thus supporting the reports on altered amino acid metabolism in skeletal muscle in COPD. The elevated activity of alkaline phosphatase provides additional evidence for altered bone rearrangement in these patients. Smoking was not found to have any major effect on these enzyme activities in the present study.
Collapse
Affiliation(s)
- Ivana Cepelak
- Department of Medical Biochemistry and Hematology, School of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
37
|
Rutten EPA, Engelen MPKJ, Wouters EFM, Deutz NEP, Schols AMWJ. Effect of glutamate ingestion on whole-body glutamate turnover in healthy elderly and patients with chronic obstructive pulmonary disease. Nutrition 2006; 22:496-503. [PMID: 16531008 DOI: 10.1016/j.nut.2005.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 11/30/2005] [Accepted: 12/22/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Decreased whole-body glutamate turnover is found in healthy elderly and in patients with chronic obstructive pulmonary disease (COPD). Glutamate supplementation as an option to increase whole-body glutamate turnover and, hence, glutamate availability has never been investigated. In the present study, we developed a protocol based on repeated glutamate ingestion to increase plasma glutamate concentration to a steady-state level without inducing toxic side effects and to evaluate the effect of repeated glutamate ingestion on whole-body glutamate turnover in patients with COPD and healthy elderly. METHODS In part 1, the response of plasma glutamate concentration was determined in young healthy volunteers who repeatedly ingested a glutamate solution. The tolerance of the glutamate drink was evaluated in 26 healthy volunteers by a food tolerance questionnaire. In part 2, eight male patients with COPD and eight healthy elderly ingested the glutamate drink, an isomolar amount of a glutamine drink, or only water to test the effect on plasma glutamate concentration and whole-body glutamate turnover. RESULTS In part 1, repeated ingestion of 30 mg of glutamate per kilogram of body weight every 20 min increased plasma glutamate concentration five-fold to steady-state level within 80 min and without any side effects. In part 2, repeated ingestion of glutamate significantly increased whole-body glutamate turnover in healthy controls and patients with COPD, although the increase was smaller in patients with COPD than in controls. CONCLUSION We found that repeated ingestion of 30 mg of glutamate per kilogram of body weight every 20 min can increase glutamate availability in healthy elderly and patients with COPD, who are likely more dependent on external glutamate ingestion than are young adults.
Collapse
Affiliation(s)
- Erica P A Rutten
- Department of Respiratory Medicine, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Rutten EPA, Franssen FME, Engelen MPKJ, Wouters EFM, Deutz NEP, Schols AMWJ. Greater whole-body myofibrillar protein breakdown in cachectic patients with chronic obstructive pulmonary disease. Am J Clin Nutr 2006; 83:829-34. [PMID: 16600935 DOI: 10.1093/ajcn/83.4.829] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Experimental studies indicate that greater skeletal muscle protein breakdown is a trigger for the cachexia that often is prevalent in chronic obstructive pulmonary disease (COPD). OBJECTIVE We compared myofibrillar protein breakdown (MPB) with whole-body (WB) protein breakdown (PB) in 9 cachectic COPD patients [x +/- SEM forced expiratory volume in 1 s (FEV(1)): 48 +/- 4% of predicted], 7 noncachectic COPD patients (FEV(1): 53 +/- 5% of predicted), and 7 age-matched healthy control subjects, who were matched by body mass index with the noncachectic patients. DESIGN After the subjects fasted overnight (10 h) and discontinued the maintenance medication, a primed constant and continuous infusion protocol was used to infuse L-[ring-(2)H(5)]-phenylalanine and L-[ring-(2)H(2)]-tyrosine to measure WB protein turnover and L-[(2)H(3)]-3-methylhistidine to measure WB MPB. Three arterialized venous blood samples were taken between 80 and 90 min of infusion to measure amino acid concentrations and tracer enrichments. RESULTS Body composition, WB protein turnover, and WB MPB did not differ significantly between the noncachectic COPD and control subjects. Cachectic COPD patients had lower fat mass and fat-free mass values (both: P < 0.01) than did the noncachectic COPD patients. WB MPB was significantly (P < 0.05) higher in the cachectic COPD group (18 +/- 3 nmol . kg(-1) . min(-1)) than in the combined control and noncachectic COPD groups (10 +/- 1 nmol . kg(-1) . min(-1)), but WB protein turnover did not differ significantly between the groups. Correlations with fat-free mass were significant (P < 0.05) for plasma glutamate and branched-chain amino acids, and that for WB MPB trended toward significance (P = 0.07). CONCLUSION Cachexia in clinically stable patients with moderate COPD is characterized by increased WB MPB, which indicates that myofibrillar protein wasting is an important target for nutritional and pharmacologic modulation.
Collapse
Affiliation(s)
- Erica P A Rutten
- Department of Respiratory Medicine, Maastricht University, PO Box 5800, 6202 AZ Maastricht, Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Rutten EPA, Engelen MPKJ, Castro CLN, Wouters EFM, Schols AMWJ, Deutz NEP. Decreased whole-body and splanchnic glutamate metabolism in healthy elderly men and patients with chronic obstructive pulmonary disease in the postabsorptive state and in response to feeding. J Nutr 2005; 135:2166-70. [PMID: 16140893 DOI: 10.1093/jn/135.9.2166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Decreased plasma and muscle glutamate concentrations have been observed in patients with chronic obstructive pulmonary disease (COPD), suggesting disturbances in glutamate metabolism. The present study was conducted to further examine glutamate metabolism in 8 male COPD patients (68 +/- 4 y) by measurement of whole-body (WB) glutamate production and splanchnic glutamate extraction in the postabsorptive state as well as in response to feeding. Because COPD is particularly prevalent in the elderly and aging per se may also affect glutamate metabolism, 2 male control groups were included: 8 healthy elderly (63 +/- 3 y) and 8 young (22 +/- 1 y) subjects. On 2 test days, the stable isotope L-15N-glutamate was infused i.v. or enterally according to a primed constant and continuous infusion protocol. After 90 min of infusion, subjects ingested a carbohydrate-protein drink (28% milk protein, 72% maltodextrin) every 20 min for 2 h. Arterialized-venous blood samples were taken at the end of the postabsorptive and feeding periods. Postabsorptive WB glutamate production and splanchnic glutamate extraction were significantly lower in the elderly and COPD patients than in the young (P < 0.01). Feeding further decreased WB endogenous glutamate production in the elderly and COPD patients, with COPD patients tending (P = 0.07) to have a greater decrease. Splanchnic glutamate extraction increased during feeding in the elderly (P < 0.05) but did not change in COPD patients. In conclusion, aging reduces postabsorptive WB endogenous glutamate production and splanchnic glutamate extraction. COPD does not affect postabsorptive WB glutamate metabolism but may influence splanchnic glutamate metabolism during feeding.
Collapse
Affiliation(s)
- Erica P A Rutten
- Department of Respiratory Medicine, University Hospital, Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Troosters T, Casaburi R, Gosselink R, Decramer M. Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2005; 172:19-38. [PMID: 15778487 DOI: 10.1164/rccm.200408-1109so] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Thierry Troosters
- Respiratory Rehabilitation and Respiratory Division, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
41
|
Ionescu AA, Nixon LS, Shale DJ. Cellular proteolysis and systemic inflammation during exacerbation in cystic fibrosis. J Cyst Fibros 2004; 3:253-8. [PMID: 15698944 DOI: 10.1016/j.jcf.2004.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 07/27/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Weight loss indicates a poor prognosis in cystic fibrosis (CF). We hypothesised that fat-free mass (FFM) depletion and increased systemic inflammation would be associated with increased cellular proteolysis during an exacerbation of the respiratory symptoms. Patients were studied prospectively from the beginning of treatment with antibiotics when admitted to the Adults CF Centre. METHODS Twenty six patients with CF were studied at the start and end of antibiotic treatment and 2 weeks later. Mean (95% CI) FEV1 when clinically stable was 54.1 (44.5, 62.6)% predicted. Urinary excretion of Pseudouridine (5-ribosyluracil, PSU) was determined as an indicator of cellular protein breakdown. Body composition was assessed by dual energy X-ray absorptiometry (DXA). RESULTS Patients had increased concentrations of PSU at all assessments (p<0.01). Those with a low FFM had greater PSU (ratio to FFMI) than those with a normal FFM at all assessments. At the start of treatment, PSU was related to FFM, C-reactive protein (CRP) (p<0.05) and tumour necrosis factor (TNF)alpha soluble receptors (sr) I and II (p<0.01). Circulating inflammatory mediators were greater in patients than in healthy subjects at all assessments. CONCLUSION Increased protein breakdown is associated with a low FFM and increased systemic inflammation and it may be a contributory mechanism of poor weight preservation in CF.
Collapse
Affiliation(s)
- Alina A Ionescu
- Section of Respiratory and Communicable Diseases, Department of Medicine, University of Wales College of Medicine, UK
| | | | | |
Collapse
|
42
|
Bolton CE, Ionescu AA, Shiels KM, Pettit RJ, Edwards PH, Stone MD, Nixon LS, Evans WD, Griffiths TL, Shale DJ. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004; 170:1286-93. [PMID: 15374843 DOI: 10.1164/rccm.200406-754oc] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We hypothesized that in patients with chronic obstructive pulmonary disease, loss of fat-free mass (FFM) and loss of bone mineral density (BMD) were related to (1) each other and may be clinically inapparent, (2) urinary markers of cellular and bone collagen protein breakdown, and (3) severity of lung disease. Eight-one patients and 38 healthy subjects underwent dual-energy X-ray absorptiometry to determine body composition and BMD. Urinary protein breakdown markers, inflammatory mediators, and their soluble receptors were determined. Thirty-three patients had a low fat-free mass index (kg/m(2)), 17 of whom had a normal body mass index. Thirty-two percent of patients (13% of healthy subjects) had osteoporosis at the hip or lumbar spine. The marker of cellular protein breakdown was elevated in patients and related to lung disease severity and body composition. The marker of bone collagen breakdown was greater in patients with osteoporosis. Inflammatory mediators were elevated in patients. Loss of FFM and loss of BMD were related, occurred commonly, and could be subclinical in patients with chronic obstructive pulmonary disease. Loss of both was greatest with severe lung disease. Increased excretion of cellular and bone collagen protein breakdown products in those with low FFM and BMD indicates a protein catabolic state in these patients.
Collapse
Affiliation(s)
- Charlotte E Bolton
- Section of Respiratory and Communicable Diseases, University of Wales College of Medicine, Academic Centre, Llandough Hospital, Penarth, Vale of Glamorgan CF64 2XX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Melchior D, Sève B, Le Floc'h N. Chronic lung inflammation affects plasma amino acid concentrations in pigs1. J Anim Sci 2004; 82:1091-9. [PMID: 15080331 DOI: 10.2527/2004.8241091x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic changes associated with inflammatory processes and immune response can modify protein and AA requirements. Improved knowledge of these processes will provide opportunities for nutritional intervention to sustain growth and animal defense at the same time. The objective of the study was to identify AA whose metabolism is affected by chronic lung inflammation. Six pairs of littermate piglets were selected at 28 d of age on the basis of their BW. After catheterization of the jugular vein, one littermate received complete Freund's adjuvant (CFA) intravenously, whereas its littermate was injected with a sterile saline solution (CON). Piglets within a litter were pair-fed in order to avoid confounding effects of feed intake and inflammation on plasma AA concentrations. Blood samples were taken after an overnight fast and 2 h after the morning meal for 9 d. Rectal temperature, food consumption, weight gain, plasma haptoglobin, and AA concentrations were measured. The CFA injection decreased food intake, and increased body temperature and plasma haptoglobin concentration. Plasma tryptophan, glutamine, proline, glycine, tyrosine, ornithine, total AA concentrations, and the ratio of tryptophan to large neutral AA were less in CFA than in CON (P < 0.05), independent of time and meal. In contrast, plasma histidine concentration was higher (P < 0.05) in CFA than in CON pigs. Plasma serine, arginine, alanine, asparagine, and total AA concentrations were lower in CFA than in CON pigs only in the fed state (P < 0.05). Among essential AA, only plasma tryptophan concentration was lower (P < 0.01) in CFA than in CON pigs in both fasted and fed state. These results show that chronic lung inflammation affects individual AA differently and suggest that the utilization of some AA increased during chronic lung inflammation in pigs. Activation of tryptophan catabolism enzyme indoleamine 2,3-dioxygenase seems a relevant hypothesis to explain the increased tryptophan utilization, although its incorporation in acute-phase proteins and the existence of other catabolic pathways cannot be excluded.
Collapse
Affiliation(s)
- D Melchior
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche sur le Veau et le Porc, 35590 Saint Gilles, France
| | | | | |
Collapse
|
44
|
Gamble E, Grootendorst DC, Brightling CE, Troy S, Qiu Y, Zhu J, Parker D, Matin D, Majumdar S, Vignola AM, Kroegel C, Morell F, Hansel TT, Rennard SI, Compton C, Amit O, Tat T, Edelson J, Pavord ID, Rabe KF, Barnes NC, Jeffery PK. Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003; 168:976-82. [PMID: 12816740 DOI: 10.1164/rccm.200212-1490oc] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cilomilast (Ariflo), a new oral phosphodiesterase-4 selective inhibitor, improves lung function in chronic obstructive pulmonary disease (COPD). We have evaluated its antiinflammatory effects in 59 patients with COPD randomized to receive cilomilast, 15 mg two times a day, or placebo for 12 weeks. Induced sputum differential cell counts were obtained at baseline and at five further visits. Interleukin-8 and neutrophil elastase were measured in sputum supernatant. Bronchial biopsies obtained at baseline and at Week 10 were immunostained and counted for neutrophils, CD8+ and CD4+ T-lymphocyte subsets, and CD68+ macrophages. Cells expressing the genes for interleukin-8 and tumor necrosis factor-alpha were identified by in situ hybridization and quantified. Compared with placebo, analysis of variance (ANOVA) of the change from baseline showed that cilomilast did not alter any sputum endpoint or FEV1. However, bronchial biopsies demonstrated that cilomilast treatment was associated with reductions in CD8+ (p = 0.001; ANOVA) and CD68+ cells (p < 0.05; ANOVA). In addition, by Poisson analysis, comparison of cell counts analyzed as a ratio of active to placebo demonstrated reductions of CD8+ (48% p < 0.01) and CD68+ (47% p = 0.001) cells. This is the first demonstration of reduction by any agent of airway tissue inflammatory cells characteristic of COPD. Phosphodiesterase-4 inhibitors represent a promising new class of substances for use in antiinflammatory treatment of this disease.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- Adult
- Aged
- Aged, 80 and over
- Anti-Inflammatory Agents/immunology
- Anti-Inflammatory Agents/therapeutic use
- Antigens, CD/analysis
- Antigens, CD/drug effects
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/drug effects
- Biopsy
- Bronchodilator Agents/immunology
- Bronchodilator Agents/therapeutic use
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Carboxylic Acids
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cyclohexanecarboxylic Acids
- Double-Blind Method
- Female
- Forced Expiratory Volume/drug effects
- Humans
- Interleukin-8/analysis
- Interleukin-8/immunology
- Leukocyte Count
- Leukocyte Elastase/analysis
- Leukocyte Elastase/drug effects
- Male
- Middle Aged
- Nitriles
- Phosphodiesterase Inhibitors/immunology
- Phosphodiesterase Inhibitors/therapeutic use
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Sputum/chemistry
- Sputum/cytology
- Treatment Outcome
Collapse
Affiliation(s)
- Elizabeth Gamble
- Department of Pulmonology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Engelen MPKJ, Schols AMWJ. Altered amino acid metabolism in chronic obstructive pulmonary disease: new therapeutic perspective? Curr Opin Clin Nutr Metab Care 2003; 6:73-8. [PMID: 12496683 DOI: 10.1097/00075197-200301000-00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Wasting of muscle mass, commonly present in patients with chronic obstructive pulmonary disease, is a complex process involving changes in the control of intermediary metabolism as well as in muscle cell status. Although research exploring intermediary metabolism in chronic obstructive pulmonary disease is still in its infancy, there is an increased interest in a potential role for amino acids in modulating muscle anabolism. This review aims at summarizing and critically evaluating the available clinical studies examining alterations in amino acid profile in plasma and skeletal muscle of patients with chronic obstructive pulmonary disease. RECENT FINDINGS All studies show pronounced alterations in plasma and muscle amino acid status in patients with chronic obstructive pulmonary disease but no consistent "disease specific" pattern for most amino acids. Variability is likely influenced by the heterogeneity of the disease with respect to lung function and nutritional state. Nevertheless, general consistency exists in chronic obstructive pulmonary disease with respect to (1) a reduced plasma branched-chain amino acid level, and (2) a decreased muscle glutamate concentration. Alterations in branched-chain amino acid metabolism appear to be influenced by the degree of muscle wasting, while the reduction in muscle glutamate is related to the diffusing capacity as a hallmark of emphysema. The reduction in glutamate status is associated with reduced muscle glutathione levels and appears to be linked to enhanced glycolysis as evidenced from an accelerated increase in plasma lactate during exercise. SUMMARY Underlying mechanisms of the observed alterations in amino acid profile in chronic obstructive pulmonary disease, and the influences of disease associated mediators such as chronic low-grade inflammation and (chronic and intermittent) hypoxia are speculative and need to be explored in experimental study designs.
Collapse
Affiliation(s)
- Mariëlle P K J Engelen
- Department of Pulmonology, University Hospital Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | |
Collapse
|
46
|
Abstract
The role of body cell mass wasting, muscle wasting, and changes in muscle metabolism in the pathogenesis of chronic obstructive pulmonary disease is reviewed.
Collapse
Affiliation(s)
- E F M Wouters
- Department of Pulmonology, University Hospital Maastricht, The Netherlands.
| |
Collapse
|
47
|
Marquis K, Debigaré R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, Maltais F. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002; 166:809-13. [PMID: 12231489 DOI: 10.1164/rccm.2107031] [Citation(s) in RCA: 553] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study was undertaken to test the hypothesis that a reduction in midthigh muscle cross-sectional area obtained by CT scan (MTCSA(CT)) is a better predictor of mortality in chronic obstructive pulmonary disease (COPD) than low body mass index (BMI). We also wished to evaluate whether anthropometric measurements could be used to estimate MTCSA(CT). One hundred forty-two patients with COPD (age = 65 +/- 9 years, mean +/- SD, 26 F, BMI = 26 +/- 6 kg/m(2), FEV(1) = 42 +/- 16% predicted) were recruited from September 1995 to April 2000 with a mean follow-up of 41 +/- 18 months. The primary end-point was all-cause mortality during the study period. A Cox proportional hazards regression model was used to predict mortality using the following independent variables: age, sex, daily use of corticosteroid, FEV(1), DL(CO), BMI, thigh circumference, MTCSA(CT), peak exercise workrate, Pa(O2), and Pa(CO2). Only MTCSA(CT) and FEV(1) were found to be significant predictors of mortality (p = 0.0008 and p = 0.01, respectively). A second analysis was also performed with FEV(1) and MTCSA(CT) dichotomized. Patients were divided into four subgroups based on FEV(1) (< or >or= 50% predicted) and MTCSA(CT) (< or >or= 70 cm(2)). Compared with patients with an FEV(1) >or= 50% predicted and a MTCSA(CT) >or= 70 cm(2), those with an FEV(1) < 50% predicted and a MTCSA(CT) >or= 70 cm(2) had a mortality odds ratio of 3.37 (95% confidence interval, 0.41-28.00), whereas patients with an FEV(1) < 50% predicted and a MTCSA(CT) < 70 cm(2) had a mortality odds ratio of 13.16 (95% confidence interval, 1.74-99.20). MTCSA(CT) could not be estimated with sufficient accuracy from anthropometric measurements. In summary, we found in this cohort of patients with COPD that (1) MTCSA(CT) was a better predictor of mortality than BMI, and (2) MTCSA had a strong impact on mortality in patients with an FEV(1) < 50% predicted. These findings suggest that the assessment of body composition may be useful in the clinical evaluation of these patients.
Collapse
Affiliation(s)
- Karine Marquis
- Centre de recherche, Hôpital Laval, Institut Universtaire de Cardiologie et de Pneumologie de L'Université Laval, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Cachexia is a common consequence of chronic illness. The nutritional abnormalities contributing to the clinical picture are often a composite of reduced appetite, dietary factors including protein, energy and micronutrient intake, malabsorption and increased consumption or loss of nutrients. In this article, using chronic heart failure as an example, we have reviewed the potential influences of chronic disease on each of these and how they might lead to the relentless progression of wasting and the poor prognosis associated with it.
Collapse
Affiliation(s)
- Klaus K A Witte
- Academic Cardiology, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, Hull, UK.
| | | |
Collapse
|
49
|
Abstract
Weight loss is a frequent complication in patients with chronic obstructive pulmonary disease (COPD) and is a determining factor of functional capacity, health status, and mortality. Weight loss in COPD is a consequence of increased energy requirements unbalanced by dietary intake. Both metabolic and mechanical inefficiency contribute to the elevated energy expenditure during physical activity, while systemic inflammation is a determinant of hypermetabolism at rest. A disbalance between protein synthesis and protein breakdown may cause a disproportionate depletion of fat-free mass in some patients. Nutritional support is indicated for depleted patients with COPD because it provides not only supportive care, but direct intervention through improvement in respiratory and peripheral skeletal muscle function and in exercise performance. A combination of oral nutritional supplements and exercise or anabolic stimulus appears to be the best treatment approach to obtaining significant functional improvement. Patients responding to this treatment even demonstrated a decreased mortality. Poor response was related to the effects of systemic inflammation on dietary intake and catabolism. The effectiveness of anticatabolic modulation requires further investigation.
Collapse
Affiliation(s)
- Annemie M W J Schols
- Department of Pulmonology, University Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
50
|
Eid AA, Ionescu AA, Nixon LS, Lewis-Jenkins V, Matthews SB, Griffiths TL, Shale DJ. Inflammatory response and body composition in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 164:1414-8. [PMID: 11704588 DOI: 10.1164/ajrccm.164.8.2008109] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Weight loss in chronic obstructive airways disease (COPD) is associated with an increased energy cost of breathing. To determine an association between body composition and the inflammatory response we studied 80 clinically stable patients. Body composition was determined anthropometrically and skeletal muscle mass was determined as the creatinine-height index (CHI). Forty patients had their nitrogen balance determined. Circulating concentrations of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), and their soluble receptors were determined for 68 patients. Body mass index (BMI) was normal (> 20 kg/m(2)) in 55 patients, of whom 17 (31%) had a low CHI (< 80% predicted). A reduced CHI was associated with increased circulating levels of IL-6 (p = 0.001), TNF-alpha (p = 0.032) and their soluble receptors IL-6sr (p = 0.002), TNF-alpha sr1 (p = 0.03), and TNF-alpha sr2 (p = 0.001). Patients with a normal BMI and low CHI had inflammatory mediator levels similar to patients with a low BMI and CHI; both were significantly greater than in those with a normal BMI and CHI. Nitrogen balance was similar between normal and low CHI groups, although nitrogen excretion was significantly increased in the low CHI group. Skeletal muscle loss in COPD is probably multifactorial in origin, but our data suggest a link with systemic inflammation, even when weight loss is inapparent.
Collapse
Affiliation(s)
- A A Eid
- Section of Respiratory Medicine, University of Wales College of Medicine, Penarth, South Glamorgan, UK
| | | | | | | | | | | | | |
Collapse
|