1
|
Xu JC, Wu K, Ma RQ, Li JH, Tao J, Hu Z, Fan XY. Establishment of an in vitro model of monocyte-like THP-1 cells for trained immunity induced by bacillus Calmette-Guérin. BMC Microbiol 2024; 24:130. [PMID: 38643095 PMCID: PMC11031977 DOI: 10.1186/s12866-024-03191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/10/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Mycobacteria bloodstream infections are common in immunocompromised people and usually have disastrous consequences. As the primary phagocytes in the bloodstream, monocytes and neutrophils play critical roles in the fight against bloodstream mycobacteria infections. In contrast to macrophages, the responses of monocytes infected with the mycobacteria have been less investigated. RESULTS In this study, we first established a protocol for infection of non-adherent monocyte-like THP-1 cells (i.e. without the differentiation induced by phorbol 12-myristate 13-acetate (PMA) by bacillus Calmette-Guérin (BCG). Via the protocol, we were then capable of exploring the global transcriptomic profiles of non-adherent THP-1 cells infected with BCG, and found that NF-κB, MAPK and PI3K-Akt signaling pathways were enhanced, as well as some inflammatory chemokine/cytokine genes (e.g. CCL4, CXCL10, TNF and IL-1β) were up-regulated. Surprisingly, the Akt-HIF-mTOR signaling pathway was also activated, which induces trained immunity. In this in vitro infection model, increased cytokine responses to lipopolysaccharides (LPS) restimulation, higher cell viability, and decreased Candida albicans loads were observed. CONCLUSIONS We have first characterized the transcriptomic profiles of BCG-infected non-adherent THP-1 cells, and first developed a trained immunity in vitro model of the cells.
Collapse
Affiliation(s)
- Jin-Chuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Kang Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- Shanghai R & S Biotech. Co., Ltd, Shanghai, China
- Zhejiang Free Trade Area R & S Biomedical Technology Co., Ltd, Zhoushan, Zhejiang, China
| | - Rui-Qing Ma
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jian-Hui Li
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jie Tao
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Poladian N, Orujyan D, Narinyan W, Oganyan AK, Navasardyan I, Velpuri P, Chorbajian A, Venketaraman V. Role of NF-κB during Mycobacterium tuberculosis Infection. Int J Mol Sci 2023; 24:1772. [PMID: 36675296 PMCID: PMC9865913 DOI: 10.3390/ijms24021772] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) causes tuberculosis infection in humans worldwide, especially among immunocompromised populations and areas of the world with insufficient funding for tuberculosis treatment. Specifically, M. tb is predominantly exhibited as a latent infection, which poses a greater risk of reactivation for infected individuals. It has been previously shown that M. tb infection requires pro-inflammatory and anti-inflammatory mediators to manage its associated granuloma formation via tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interferon-γ (IFN-γ), and caseum formation via IL-10, respectively. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) has been found to play a unique mediator role in providing a pro-inflammatory response to chronic inflammatory disease processes by promoting the activation of macrophages and the release of various cytokines such as IL-1, IL-6, IL-12, and TNF-α. NF-κB's role is especially interesting in its mechanism of assisting the immune system's defense against M. tb, wherein NF-κB induces IL-2 receptors (IL-2R) to decrease the immune response, but has also been shown to crucially assist in keeping a granuloma and bacterial load contained. In order to understand NF-κB's role in reducing M. tb infection, within this literature review we will discuss the dynamic interaction between M. tb and NF-κB, with a focus on the intracellular signaling pathways and the possible side effects of NF-κB inactivation on M. tb infection. Through a thorough review of these interactions, this review aims to highlight the role of NF-κB in M. tb infection for the purpose of better understanding the complex immune response to M. tb infection and to uncover further potential therapeutic methods.
Collapse
Affiliation(s)
- Nicole Poladian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - William Narinyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Armani K. Oganyan
- College of Osteopathic Medicine, Des Moines University, 3200 Grand Ave, Des Moines, IA 50312, USA
| | - Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Prathosh Velpuri
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
3
|
Kumar S, Bhaskar A, Patnaik G, Sharma C, Singh DK, Kaushik SR, Chaturvedi S, Das G, Dwivedi VP. Intranasal immunization with peptide-based immunogenic complex enhances BCG vaccine efficacy in a murine model of tuberculosis. JCI Insight 2021; 6:145228. [PMID: 33444288 PMCID: PMC7934935 DOI: 10.1172/jci.insight.145228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Prime-boost immunization strategies are required to control the global tuberculosis (TB) pandemic, which claims approximately 3 lives every minute. Here, we have generated an immunogenic complex against Mycobacterium tuberculosis (M.tb), consisting of promiscuous T cell epitopes (M.tb peptides) and TLR ligands assembled in liposomes. Interestingly, this complex (peptide–TLR agonist–liposomes; PTL) induced significant activation of CD4+ T cells and IFN-γ production in the PBMCs derived from PPD+ healthy individuals as compared with PPD– controls. Furthermore, intranasal delivery of PTL significantly reduced the bacterial burden in the infected mice by inducing M.tb-specific polyfunctional (IFN-γ+IL-17+TNF-α+IL-2+) immune responses and long-lasting central memory responses, thereby reducing the risk of TB recurrence in DOTS-treated infected animals. The transcriptome analysis of peptide-stimulated immune cells unveiled the molecular basis of enhanced protection. Furthermore, PTL immunization significantly boosted the Bacillus Calmette-Guerin–primed (BCG-primed) immune responses against TB. The greatly enhanced efficacy of the BCG-PTL vaccine model in controlling pulmonary TB projects PTL as an adjunct vaccine against TB.
Collapse
Affiliation(s)
- Santosh Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ashima Bhaskar
- Signal Transduction Laboratory-1, National Institute of Immunology, New Delhi, India
| | - Gautam Patnaik
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chetan Sharma
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dhiraj Kumar Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sandeep Rai Kaushik
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shivam Chaturvedi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Gobardhan Das
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
4
|
Endothelin-1 Induces Mesothelial Mesenchymal Transition and Correlates with Pleural Fibrosis in Tuberculous Pleural Effusions. J Clin Med 2019; 8:jcm8040426. [PMID: 30925731 PMCID: PMC6517891 DOI: 10.3390/jcm8040426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelin (ET)-1 is involved in various fibrotic diseases. However, its implication in pleural fibrosis remains unknown. We aimed to study the profibrotic role of ET-1 in tuberculous pleural effusion (TBPE). The pleural effusion ET-1 levels were measured among 68 patients including transudative pleural effusion (TPE, n = 12), parapneumonic pleural effusion (PPE, n = 20), and TBPE (n = 36) groups. Pleural fibrosis, defined as radiological residual pleural thickening (RPT) and shadowing, was measured at 12-month follow-up. Additionally, the effect of ET-1 on mesothelial mesenchymal transition (MMT) and extracellular matrix (ECM) producion in human pleural mesothelial cells (PMCs) was assessed. Our findings revealed that effusion ET-1 levels were significantly higher in TBPE than in TPE and PPE, and were markedly higher in TBPE patients with RPT >10 mm than those with RPT ≤10 mm. ET-1 levels correlated substantially with residual pleural shadowing and independently predicted RPT >10 mm in TBPE. In PMCs, ET-1 time-dependently induced MMT with upregulation of α-smooth muscle actin and downregulation of E-cadherin, and stimulated ECM production; furthermore, ET receptor antagonists effectively abrogated these effects. In conclusion, ET-1 induces MMT and ECM synthesis in human PMCs and correlates with pleural fibrosis in TBPE. This study confers a novel insight into the pathogenesis and potential therapies for fibrotic pleural diseases.
Collapse
|
5
|
Sharma B, Upadhyay R, Dua B, Khan NA, Katoch VM, Bajaj B, Joshi B. Mycobacterium tuberculosis secretory proteins downregulate T cell activation by interfering with proximal and downstream T cell signalling events. BMC Immunol 2015; 16:67. [PMID: 26552486 PMCID: PMC4640201 DOI: 10.1186/s12865-015-0128-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/20/2015] [Indexed: 01/18/2023] Open
Abstract
Background Mycobacterium tuberculosis (M. tuberculosis) modulates host immune response, mainly T cell responses for its own survival leading to disease or latent infection. The molecules and mechanisms utilized to accomplish immune subversion by M. tuberculosis are not fully understood. Understanding the molecular mechanism of T cell response to M. tuberculosis is important for development of efficacious vaccine against TB. Methods Here, we investigated effect of M. tuberculosis antigens Ag85A and ESAT-6 on T cell signalling events in CD3/CD28 induced Peripheral blood mononuclear cells (PBMCs) of PPD+ve healthy individuals and pulmonary TB patients. We studied CD3 induced intracellular calcium mobilization in PBMCs of healthy individuals and TB patients by spectrofluorimetry, CD3 and CD28 induced activation of mitogen activated protein kinases (MAPKs) in PBMCs of healthy individuals and TB patients by western blotting and binding of transcription factors NFAT and NFκB by Electrophorectic mobility shift assay (EMSA). Results We observed CD3 triggered modulations in free intracellular calcium concentrations in PPD+ve healthy individuals and pulmonary TB patients after the treatment of M. tuberculosis antigens. As regards the downstream signalling events, phosphorylation of MAPKs, Extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38 was curtailed by M. tuberculosis antigens in TB patients whereas, in PPD+ve healthy individuals only ERK1/2 phosphorylation was inhibited. Besides, the terminal signalling events like binding of transcription factors NFAT and NFκB was also altered by M. tuberculosis antigens. Altogether, our results suggest that M. tuberculosis antigens, specifically ESAT-6, interfere with TCR/CD28-induced upstream as well as downstream signalling events which might be responsible for defective IL-2 production which further contributed in T-cell unresponsiveness, implicated in the progression of disease. Conclusion To the best of our knowledge, this is the first study to investigate effect of Ag85A and ESAT-6 on TCR- and TCR/CD28- induced upstream and downstream signalling events of T-cell activation in TB patients. This study showed the effect of secretory antigens of M. tuberculosis in the modulation of T cell signalling pathways. This inflection is accomplished by altering the proximal and distal events of signalling cascade which could be involved in T-cell dysfunctioning during the progression of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12865-015-0128-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhawna Sharma
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Dr.M.Miyazaki Marg, Tajganj, Agra, 282001, India.
| | - Rajni Upadhyay
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Dr.M.Miyazaki Marg, Tajganj, Agra, 282001, India.
| | - Bhavyata Dua
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Dr.M.Miyazaki Marg, Tajganj, Agra, 282001, India.
| | - Naim Akhtar Khan
- UPRES EA 4183 Lipides & Signalisation Cellulaire, Faculté des Sciences de la vie, Université de Bourgogne, 6, Boulevard Gabriel, Dijon, 21000, France.
| | - Vishwa Mohan Katoch
- Formerly in Department of Health Research and ICMR, Ansari Nagar, New Delhi-29, India.
| | - Bharat Bajaj
- State TB Training & Demonstration Centre, S.N. Medical College Campus, Agra, 282 002, India.
| | - Beenu Joshi
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Dr.M.Miyazaki Marg, Tajganj, Agra, 282001, India.
| |
Collapse
|
6
|
Mycobacterium tuberculosis Upregulates TNF-α Expression via TLR2/ERK Signaling and Induces MMP-1 and MMP-9 Production in Human Pleural Mesothelial Cells. PLoS One 2015; 10:e0137979. [PMID: 26367274 PMCID: PMC4569295 DOI: 10.1371/journal.pone.0137979] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 08/24/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF)-α and matrix metalloproteinases (MMPs) are elevated in pleural fluids of tuberculous pleuritis (TBP) where pleural mesothelial cells (PMCs) conduct the first-line defense against Mycobacterium tuberculosis (MTB). However, the clinical implication of TNF-α and MMPs in TBP and the response of PMCs to MTB infection remain unclear. METHODS We measured pleural fluid levels of TNF-α and MMPs in patients with TBP (n = 18) or heart failure (n = 18) as controls. Radiological scores for initial effusion amount and residual pleural fibrosis at 6-month follow-up were assessed. In vitro human PMC experiments were performed to assess the effect of heat-killed M. tuberculosis H37Ra (MTBRa) on the expression of TNF-α and MMPs. RESULTS As compared with controls, the effusion levels of TNF-α, MMP-1 and MMP-9 were significantly higher and correlated positively with initial effusion amount in patients with TBP, while TNF-α and MMP-1, but not MMP-9, were positively associated with residual pleural fibrosis of TBP. Moreover, effusion levels of TNF-α had positive correlation with those of MMP-1 and MMP-9 in TBP. In cultured PMCs, MTBRa enhanced TLR2 and TLR4 expression, activated ERK signaling, and upregulated TNF-α mRNA and protein expression. Furthermore, knockdown of TLR2, but not TLR4, significantly inhibited ERK phosphorylation and TNF-α expression. Additionally, both MTBRa and TNF-α markedly induced MMP-1 and MMP-9 synthesis in human PMCs, and TNF-α neutralization substantially reduced the production of MMP-1, but not MMP-9, in response to MTBRa stimulation. CONCLUSION MTBRa activates TLR2/ERK signalings to induce TNF-α and elicit MMP-1 and MMP-9 in human PMCs, which are associated with effusion volume and pleural fibrosis and may contribute to pathogenesis of TBP. Further investigation of manipulation of TNF-α and MMP expression in pleural mesothelium may provide new insights into the mechanisms and rational treatment strategies for TBP.
Collapse
|
7
|
Xu G, Jia H, Li Y, Liu X, Li M, Wang Y. Hemolytic phospholipase Rv0183 of Mycobacterium tuberculosis induces inflammatory response and apoptosis in alveolar macrophage RAW264.7 cells. Can J Microbiol 2011; 56:916-24. [PMID: 21076482 DOI: 10.1139/w10-079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The metabolic pathway of phospholipids is one of the most important physiologic pathways in Mycobacterium tuberculosis, a typical intracellular bacterium. The hemolytic phospholipase lip gene (Rv0183) is one of 24 phospholipase genes that have been demonstrated to play critical roles in the metabolism of phospholipids in M. tuberculosis. Quantitative RT-PCR and flow cytometry were used to elucidate the immunological and pathogenic implications of the Rv0183 gene on the inflammatory response following persistent expression of Rv0183 in mouse alveolar macrophage RAW264.7 cells. Our results demonstrate that a time-course-dependent ectopic expression of Rv0183 significantly elevated the expression of IL-6, NF-κB, TLR-2, TLR-6, TNFα, and MyD88 in these alveolar macrophage cells. Furthermore, the persistent expression of Rv0183 induced RAW264.7 cell apoptosis in vitro. These findings demonstrate that the expression of Rv0183 induces an inflammatory response and cell apoptosis in the host cells, suggesting that Rv0183 may play an important role in the virulence and pathogenesis of M. tuberculosis infection.
Collapse
Affiliation(s)
- Guangxian Xu
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | | | | | | | | | | |
Collapse
|
8
|
Chiu SC, Tsao SW, Hwang PI, Vanisree S, Chen YA, Yang NS. Differential functional genomic effects of anti-inflammatory phytocompounds on immune signaling. BMC Genomics 2010; 11:513. [PMID: 20868472 PMCID: PMC2997007 DOI: 10.1186/1471-2164-11-513] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 09/24/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Functional comparative genomic analysis of the cellular immunological effects of different anti-inflammatory phytocompounds is considered as a helpful approach to distinguish the complex and specific bioactivities of candidate phytomedicines. Using LPS-stimulated THP-1 monocytes, we characterize here the immunomodulatory activities of three single phytocompounds (emodin, shikonin, and cytopiloyne) and a defined phytocompound mixture extracted from Echinacea plant (BF/S+L/Ep) by focused DNA microarray analysis of selected immune-related genes. RESULTS Shikonin and emodin significantly inhibited the early expression (within 0.5 h) of approximately 50 genes, notably cytokines TNF-α, IL-1β and IL-4, chemokines CCL4 and CCL8, and inflammatory modulators NFATC3 and PTGS2. In contrast, neither cytopiloyne nor BF/S+L/Ep inhibited the early expression of these 50 genes, but rather inhibited most late-stage expression (~12 h) of another immune gene subset. TRANSPATH database key node analysis identified the extracellular signal-regulated kinase (ERK) 1/2 activation pathway as the putative target of BF/S+L/Ep and cytopiloyne. Western blot confirmed that delayed inactivation of the ERK pathway was indeed demonstrable for these two preparations during the mid-stage (1 to 4 h) of LPS stimulation. We further identified ubiquitin pathway regulators, E6-AP and Rad23A, as possible key regulators for emodin and shikonin, respectively. CONCLUSION The current focused DNA microarray approach rapidly identified important subgenomic differences in the pattern of immune cell-related gene expression in response to specific anti-inflammatory phytocompounds. These molecular targets and deduced networks may be employed as a guide for classifying, monitoring and manipulating the molecular and immunological specificities of different anti-inflammatory phytocompounds in key immune cell systems and for potential pharmacological application.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, 91 Hsueh-Shih Rd, Taichung 40402, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Tang NLS, Fan HPY, Chang KC, Ching JKL, Kong KPS, Yew WW, Kam KM, Leung CC, Tam CM, Blackwell J, Chan CY. Genetic association between a chemokine gene CXCL-10 (IP-10, interferon gamma inducible protein 10) and susceptibility to tuberculosis. Clin Chim Acta 2009; 406:98-102. [PMID: 19523460 PMCID: PMC7124215 DOI: 10.1016/j.cca.2009.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 11/07/2022]
Abstract
Background Previous studies showed that activation of CXCL-10 and other chemokines were prominent in many infectious diseases. These chemokines are components of innate immune response to respiratory tract pathogens. We examined the promoter variants of CXCL-10 and their role in predisposition to tuberculosis (TB). Methods The promoter 1.8 kb of CXCL-10 was sequenced in 24 healthy Chinese individuals to identify genetic polymorphisms. Three tagging SNPs in CXCL-10 promoter (− 1447A > G, − 872G > A, − 135G > A) were selected, and genotyping were performed in 240 TB patients and 176 healthy Chinese subjects. Disease associations were examined by χ2 and Fisher exact test. Results A promoter SNP (− 135G > A) with minor allele frequency of 0.1 showed a moderate association with TB both in genotype analysis (p = 0.01) and allelic analysis (p = 0.03); other tagging SNPs (− 1447A > G, − 872G > A) were not associated with TB. The odd ratio of the protective allele − 135G > A was 0.51(C.I 0.29 − 0.91) for homozygotes and heterozygotes carriers of the A allele. Conclusion A new potential protective SNP (− 135G > A) for TB is identified in the promoter of chemokine gene, CXCL-10. Interestingly, the exact same allele has been shown to enhance IP-10 transactivation and susceptibility to Hepatitis B virus infection in a recent publication. This SNP, located at 14 bp upstream of a NF-kB binding site, might also account for the susceptibility to TB. Our results expanded the clinical significance of this SNP in CXCL-10 promoter.
Collapse
Affiliation(s)
- Nelson Leung-Sang Tang
- Department of Chemical Pathology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 2005; 173:803-10. [PMID: 16339919 DOI: 10.1164/rccm.200508-1294oc] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE T-cell responses during tuberculosis (TB) help contain Mycobacterium tuberculosis in vivo but also cause collateral damage to host tissues. Immune regulatory mechanisms may limit this immunopathology, and suppressed cellular immune responses in patients with TB suggest the presence of regulatory activity. CD4+CD25(high) regulatory T cells mediate suppressed cellular immunity in several chronic infections but have not been described in TB. OBJECTIVE To determine whether regulatory T cells are increased in patients with TB and whether they suppress cellular immune responses. METHODS We compared the frequency of circulating regulatory T cells in 27 untreated patients with TB and 23 healthy control subjects using two specific markers: cell-surface CD25 expression and FoxP3 mRNA expression in peripheral blood mononuclear cells. MEASUREMENTS AND MAIN RESULTS We detected a threefold increase in the frequency of CD4 + CD25(high) T cells (p < 0.001) and a 2.2-fold increase in FoxP3 expression (p = 0.006) in patients with TB, and there was a positive correlation between these markers (r = 0.58, p < 0.001). Increased expression of interleukin-10 and transforming growth factor-beta1 mRNA was also detected in patients with TB but did not correlate with regulatory T-cell markers. Ex vivo depletion of CD4 + CD25(high) cells from peripheral blood mononuclear cells resulted in increased numbers of M. tuberculosis antigen-specific IFN-gamma-producing T cells in seven of eight patients with TB (p = 0.005). Finally, FoxP3 expression was increased 2.3-fold in patients with extrapulmonary TB compared with patients with purely pulmonary TB (p = 0.01) and was amplified 2.6-fold at disease sites relative to blood (p = 0.043). CONCLUSIONS Regulatory T cells are expanded in patients with TB and may contribute to suppression of Th1-type immune responses.
Collapse
Affiliation(s)
- Valerie Guyot-Revol
- Tuberculosis Immunology Group, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Level 7, Oxford OX3 9DU, UK
| | | | | | | | | |
Collapse
|
11
|
Renaud SJ, Postovit LM, Macdonald-Goodfellow SK, McDonald GT, Caldwell JD, Graham CH. Activated macrophages inhibit human cytotrophoblast invasiveness in vitro. Biol Reprod 2005; 73:237-43. [PMID: 15800179 DOI: 10.1095/biolreprod.104.038000] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Pre-eclampsia is associated with inadequate cytotrophoblast invasion and remodeling of the uterine spiral arterioles, as well as by an aberrant maternal immune response. This study determined the effect of activated macrophages and one of its products, tumor necrosis factor (TNF)-alpha, on cytotrophoblast invasiveness. Coculture with human lipopolysaccharide-activated macrophages decreased the ability of immortalized HTR-8/ SVneo human trophoblast cells to invade through reconstituted extracellular matrix (P < 0.05). This effect of activated macrophages on trophoblast invasiveness was paralleled by abrogation of a 55-kDa caseinolytic activity corresponding to prourokinase plasminogen activator (pro-uPA) and an increased secretion of plasminogen activator inhibitor 1 (PAI1), as determined by gel zymography and ELISA, respectively. Coculture with nonactivated macrophages did not significantly affect trophoblast invasiveness or pro-uPA and PAI1 secretion. Activated macrophages secreted detectable levels of TNF, and administration of exogenous TNF significantly decreased trophoblast invasiveness (P < 0.05), increased the secretion of PAI1 (P < 0.01), and completely inhibited the pro-uPA-associated caseinolytic activity by binding to the TNF receptor 1. Moreover, addition of up to 10 ng/ml of TNF did not increase the rate of apoptosis in HTR-8/SVneo cells. Finally, the increased secretion of PAI1 by trophoblast cells cocultured with activated macrophages was significantly inhibited when a neutralizing anti-TNF antibody was added to the cocultures. These results suggest that the aberrant presence of activated macrophages around uterine vessels may contribute to inadequate trophoblast invasion and remodeling of the uterine spiral arterioles. Thus, the presence of activated macrophages may be important in the etiology of pre-eclampsia.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
12
|
Song CH, Lee JS, Kim HJ, Park JK, Paik TH, Jo EK. Interleukin-8 is differentially expressed by human-derived monocytic cell line U937 infected with Mycobacterium tuberculosis H37Rv and Mycobacterium marinum. Infect Immun 2003; 71:5480-7. [PMID: 14500465 PMCID: PMC201049 DOI: 10.1128/iai.71.10.5480-5487.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Mycobacterium marinum is closely related to Mycobacterium tuberculosis H37Rv genomically, the clinical outcome in humans is quite different for M. marinum and M. tuberculosis infections. We investigated possible factors in the host macrophages for determining differential pathological responses to M. tuberculosis and M. marinum using an in vitro model of mycobacterial infection. Using suppression-subtractive hybridization, we identified 12 differentially expressed genes in the human monocytic cell line U937 infected with M. tuberculosis and M. marinum. Of those genes, the most frequently recovered transcript encoded interleukin-8 (IL-8). Northern hybridization revealed that IL-8 mRNA was highly upregulated in M. tuberculosis-infected U937 cells compared with M. marinum-infected cells. In addition, enzyme-linked immunosorbent assay showed that IL-8 protein secretion was significantly elevated in M. tuberculosis-infected U937 cells, human primary monocytes, and monocyte-derived macrophages compared with that in M. marinum-infected cells. The depressed IL-8 expression was unique in M. marinum-infected cells compared with cells infected with other strains of mycobacteria, including M. tuberculosis H37Ra, Mycobacterium bovis BCG, or Mycobacterium smegmatis. When the expression of NF-kappaB was assessed in mycobacterium-infected U937 cells, IkappaBalpha proteins were significantly degraded in M. tuberculosis-infected cells compared with M. marinum-infected cells. Collectively, these results suggest that differential IL-8 expression in human macrophages infected with M. tuberculosis and M. marinum may be critically associated with distinct host responses in tuberculosis. Additionally, our data indicate that differential signal transduction pathways may underlie the distinct patterns of IL-8 secretion in cells infected by the two mycobacteria.
Collapse
Affiliation(s)
- Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Mun-hwa-dong, Jung-ku, Daejeon 301-747, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Prabhakar S, Qiao Y, Hoshino Y, Weiden M, Canova A, Giacomini E, Coccia E, Pine R. Inhibition of response to alpha interferon by Mycobacterium tuberculosis. Infect Immun 2003; 71:2487-97. [PMID: 12704120 PMCID: PMC153238 DOI: 10.1128/iai.71.5.2487-2497.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We previously reported that infection by Mycobacterium tuberculosis, the causative agent of tuberculosis, leads to secretion of alpha/beta interferon (IFN-alpha/beta). While IFN-alpha/beta ordinarily stimulates formation of signal transducer and stimulator of transcription-1 (STAT-1) homodimers and IFN-stimulated gene factor-3 (ISGF-3), only ISGF-3 is found in infected human monocytes and macrophages. We have now investigated the basis for this unusual profile of transcription factor activation and its consequences for regulation of transcription, as well as the impact of infection on response to IFN-alpha. After infection, IFN-alpha stimulation of STAT-1 homodimers is inhibited in monocytes and macrophages, while stimulation of ISGF-3 increases in monocytes but tends to decline in macrophages. Effects of infection on the abundance of ISGF-3 subunits, STAT-1, STAT-2, and interferon regulatory factor 9, and on tyrosine phosphorylation of STAT-1 and STAT-2 explain the observed changes in DNA-binding activity, which correlate with increased or inhibited transcription of genes regulated by ISGF-3 and STAT-1. Infection by Mycobacterium bovis BCG does not inhibit IFN-alpha-stimulated tyrosine phosphorylation of STAT-1, formation of homodimers, or transcription of genes regulated by STAT-1 homodimers, suggesting that inhibition of the response to IFN-alpha/beta by M. tuberculosis is an aspect of pathogenicity. Thus, this well-known feature of infection by pathogenic viruses may also be a strategy employed by pathogenic bacteria.
Collapse
|
14
|
Méndez-Samperio P, Ayala H, Vázquez A. NF-kappaB is involved in regulation of CD40 ligand expression on Mycobacterium bovis bacillus Calmette-Guérin-activated human T cells. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:376-82. [PMID: 12738634 PMCID: PMC154977 DOI: 10.1128/cdli.10.3.376-382.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interaction between CD40L (CD154) on activated T cells and its receptor CD40 on antigen-presenting cells has been reported to be important in the resolution of infection by mycobacteria. However, the mechanism(s) by which Mycobacterium bovis bacillus Calmette-Guérin (BCG) up-regulates membrane expression of CD40L molecules is poorly understood. This study was done to investigate the role of the nuclear factor kappaB (NF-kappaB) signaling pathway in the regulation of CD40L expression in human CD4(+) T cells stimulated with BCG. Specific pharmacologic inhibition of the NF-kappaB pathway revealed that this signaling cascade was required in the regulation of CD40L expression on the surface of BCG-activated CD4(+) T cells. These results were further supported by the fact that treatment of BCG-activated CD4(+) T cells with these pharmacological inhibitors significantly down-regulated CD40L mRNA. In this study, inhibitor kappaBalpha (IkappaBalpha) and IkappaBbeta protein production was not affected by the chemical protease inhibitors and, more importantly, BCG led to the rapid but transient induction of NF-kappaB activity. Our results also indicated that CD40L expression on BCG-activated CD4(+) T cells resulted from transcriptional up-regulation of the CD40L gene by a mechanism which is independent of de novo protein synthesis. Interestingly, BCG-induced activation of NF-kappaB and the increased CD40L cell surface expression were blocked by the protein kinase C (PKC) inhibitors 1-[5-isoquinolinesulfonyl]-2-methylpiperazine and salicylate, both of which block phosphorylation of IkappaB. Moreover, rottlerin a Ca(2+)-independent PKC isoform inhibitor, significantly down-regulated CD40L mRNA in BCG-activated CD4(+) T cells. These data strongly suggest that CD40L expression by BCG-activated CD4(+) T cells is regulated via the PKC pathway and by NF-kappaB DNA binding activity.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala, México D. F. 11340, México.
| | | | | |
Collapse
|
15
|
Gutiérrez-Pabello JA, McMurray DN, Adams LG. Upregulation of thymosin beta-10 by Mycobacterium bovis infection of bovine macrophages is associated with apoptosis. Infect Immun 2002; 70:2121-7. [PMID: 11895978 PMCID: PMC127845 DOI: 10.1128/iai.70.4.2121-2127.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine macrophages underwent apoptosis as a result of infection with a Mycobacterium bovis field strain. Macrophages infected with a multiplicity of infection (MOI) of 25:1 developed chromatin condensation and DNA fragmentation at 4 h and 8 h, respectively, whereas changes in chromatin condensation induced by MOIs of 10:1 and 1:1 required more time and had a reduced number of apoptotic cells. Not only infected macrophages underwent apoptosis, but also uninfected bystander macrophages became apoptotic. Increased differential expression of thymosin beta-10 was identified in M. bovis-infected bovine macrophages by differential display reverse transcriptase PCR. Phagocytosis of latex beads had no effect on the expression of thymosin beta-10, whereas bacterial suspensions upregulated thymosin beta-10 expression, suggesting that M. bovis or mycobacterial products are essential in the process. Heat-inactivated M. bovis induced a slight increase in thymosin beta-10 mRNA, whereas live virulent and attenuated M. bovis organisms increased the gene expression almost twofold. A mouse macrophage cell line (RAW 264.7) overexpressing the bovine thymosin beta-10 transgene had spontaneous apoptosis at a higher rate (66.5%) than parental cells (4.7%) or RAW cells harboring the empty vector (22.8%). The apoptotic rates of the overexpressing cells were significantly higher when compared with both the empty vector transfected (P < 0.01) and parental cells (P < 0.001). Our evidence suggests that upregulation of thymosin beta-10 in M. bovis-infected macrophages is linked with increased cell death due to apoptosis.
Collapse
Affiliation(s)
- José A Gutiérrez-Pabello
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
16
|
Edwards KM, Cynamon MH, Voladri RK, Hager CC, DeStefano MS, Tham KT, Lakey DL, Bochan MR, Kernodle DS. Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med 2001; 164:2213-9. [PMID: 11751190 DOI: 10.1164/ajrccm.164.12.2106093] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Superoxide dismutase (SOD) is a ubiquitous metalloenzyme in aerobic organisms that catalyzes the conversion of superoxide anion to hydrogen peroxide. Mycobacterium tuberculosis is unusual in that it secretes large quantities of iron-cofactored SOD. To determine the role of SOD in pathogenesis, we constructed mutants of M. tuberculosis H37Rv with reduced SOD production. Compared with controls, SOD-diminished isolates were more susceptible to killing by hydrogen peroxide. The isolates were markedly attenuated, exhibiting nearly 100,000-fold fewer bacilli than virulent control strains in the lungs and spleens of C57BL/6 mice 4 wk after intravenous inoculation. In the lung, SOD-attenuated M. tuberculosis induced robust interstitial mononuclear cell infiltration within 24 h and many cells were apoptotic by TUNEL staining, whereas virulent H37Rv exhibited minimal early inflammatory response and only rare interstitial mononuclear cell apoptosis. During prolonged infections, C57BL/6 mice tolerated SOD-attenuated M. tuberculosis better than BCG, exhibiting 68% greater weight gain, quicker eradication of bacilli from the spleen, and less alveolar lung infiltration. These results establish the importance of SOD in the pathogenesis of tuberculosis. Its effect appears to be mediated in part by inhibiting innate host immune responses, including early mononuclear cell infiltration of infected tissues and apoptosis.
Collapse
Affiliation(s)
- K M Edwards
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212-2637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Warwick-Davies J, Watson AJ, Griffin GE, Krishna S, Shattock RJ. Enhancement of Mycobacterium tuberculosis-induced tumor necrosis factor alpha production from primary human monocytes by an activated T-cell membrane-mediated mechanism. Infect Immun 2001; 69:6580-7. [PMID: 11598025 PMCID: PMC100030 DOI: 10.1128/iai.69.11.6580-6587.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis alone induces small, donor-variable amounts of tumor necrosis factor alpha (TNF-alpha) from primary human monocytes in vitro. However, TNF-alpha release is increased 5- to 500-fold when fixed activated T cells (FAT) or their isolated, unfixed membranes are added to this system. This FAT-induced synergy was at least as potent as that induced by gamma interferon (IFN-gamma) at 100 U/ml. FAT-enhanced TNF-alpha production is at least in part transcriptionally mediated, as reflected by quantitative changes in TNF-alpha mRNA between 2 and 6 h poststimulation. Unlike IFN-gamma-cocultured cells, FAT-treated monocytes appeared not to have enhanced TNF-alpha message stability, suggesting that de novo transcription may be involved in this effect. Furthermore, M. tuberculosis alone induced only minimal DNA binding of monocyte NF-kappaB, but cells treated with M. tuberculosis and FAT potentiated NF-kappaB activity more effectively. It is therefore possible that one mechanism by which FAT synergize with M. tuberculosis to stimulate TNF-alpha production is via NF-kappaB-enhanced transcription. These data strongly suggest that in the interaction of cells involved in the immune response to M. tuberculosis, T-cell stimulation of monocyte TNF-alpha production involves a surface membrane interaction(s) as well as soluble mediators.
Collapse
Affiliation(s)
- J Warwick-Davies
- Department of Infectious Diseases, St. George's Hospital Medical School, London, United Kingdom.
| | | | | | | | | |
Collapse
|
18
|
Yamada H, Mizuno S, Reza-Gholizadeh M, Sugawara I. Relative importance of NF-kappaB p50 in mycobacterial infection. Infect Immun 2001; 69:7100-5. [PMID: 11598086 PMCID: PMC100095 DOI: 10.1128/iai.69.11.7100-7105.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To understand the role of NF-kappaB in the development of murine tuberculosis in vivo, NF-kappaB p50 knockout mice were infected with Mycobacterium tuberculosis by placing them in the exposure chamber of an airborne-infection apparatus. These mice developed multifocal necrotic pulmonary lesions or lobar pneumonia. Compared with the levels in wild-type mice, pulmonary inducible nitric oxide synthase, interleukin-2 (IL-2), gamma interferon, and tumor necrosis factor alpha mRNA levels were significantly low but expression of IL-10 and transforming growth factor beta mRNAs were within the normal ranges. The pulmonary IL-6 mRNA expression level was higher. Therefore, NF-kappaB and its interaction with host cells play an important role in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- H Yamada
- Department of Molecular Pathology, The Research Institute of Tuberculosis, Tokyo 204-0022, Japan
| | | | | | | |
Collapse
|
19
|
Raju B, Tung CF, Cheng D, Yousefzadeh N, Condos R, Rom WN, Tse DB. In situ activation of helper T cells in the lung. Infect Immun 2001; 69:4790-8. [PMID: 11447152 PMCID: PMC98566 DOI: 10.1128/iai.69.8.4790-4798.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2000] [Accepted: 05/10/2001] [Indexed: 11/20/2022] Open
Abstract
To better understand the lung and systemic responses of helper T cells mediating memory immunity to Mycobacterium tuberculosis, we used three- and four-color flow cytometry to study the surface phenotype of CD4(+) lymphocytes. Bronchoalveolar lavage (BAL) fluid and peripheral blood (PB) samples were obtained from a total of 25 subjects, including 10 tuberculosis (TB)-infected subjects, 8 purified-protein-derivative-negative subjects, and 7 purified-protein-derivative-positive subjects. In marked contrast to CD4(+) lymphocytes from PB (9% +/- 5% expressing CD45RA and CD29), the majority (55% +/- 16%) of CD4(+) lymphocytes in BAL (ALs) simultaneously expressed CD45RA, a naïve T-cell marker, and CD29, members of the very late activation family. Further evaluation revealed that CD4(+) ALs expressed both CD45RA and CD45RO, a memory T-cell marker. In addition, the proportion of CD4(+) lymphocytes expressing CD69, an early activation marker, was drastically increased in BAL fluid (83% +/- 9%) compared to PB (1% +/- 1%), whereas no significant difference was seen in the expression of CD25, the low-affinity interleukin 2 receptor (34% +/- 15% versus 40% +/- 16%). More importantly, we identified a minor population of CD69(bright) CD25(bright) CD4(+) lymphocytes in BAL (10% +/- 6%) that were consistently absent from PB (1% +/- 1%). Thus, CD4(+) lymphocytes in the lung paradoxically coexpress surface molecules characteristic of naïve and memory helper T cells as well as surface molecules commonly associated with early and late stages of activation. No difference was observed for ALs obtained from TB-infected and uninfected lung segments in this regard. It remains to be determined if these surface molecules are induced by the alveolar environment or if CD4(+) lymphocytes coexpressing this unusual combination of surface molecules are selectively recruited from the circulation. Our data suggest that ex vivo experiments on helper T-cell subsets that display distinctive phenotypes may be pivotal to studies on the human immune response to potential TB vaccines.
Collapse
Affiliation(s)
- B Raju
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|