1
|
Ognean ML, Anciuc-Crauciuc M, Galiș R, Stepan AE, Stepan MD, Bănescu C, Grosu F, Kramer BW, Cucerea M. ABCA3 c.838C>T (p.Arg280Cys, R280C) and c.697C>T (p.Gln233Ter, Q233X, Q233*) as Causative Variants for RDS: A Family Case Study and Literature Review. Biomedicines 2024; 12:2390. [PMID: 39457702 PMCID: PMC11505159 DOI: 10.3390/biomedicines12102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Respiratory distress syndrome (RDS) is the primary cause of respiratory failure in preterm infants, but it also affects 5-7% of term infants. Dysfunctions in pulmonary surfactant metabolism, resulting from mutations of the lung surfactant genes, are rare diseases, ranging from fatal neonatal RDS to interstitial lung disease, associated with increased morbidity and mortality. This study aims to clarify the clinical significance of ABCA3 variants found in a specific family case, as existing data in the literature are inconsistent. Material and Methods: A family case report was conducted; targeted panel genetic testing identified a variant of the SFTPB gene and two variants of ABCA3 genes. Comprehensive research involving a systematic review of PubMed, Google Scholar databases, and genome browsers was used to clarify the pathogenicity of the two ABCA3 variants found in the index patient. Advanced prediction tools were employed to assess the pathogenicity of the two ABCA3 variants, ensuring the validity and reliability of our findings. Results: The index case exhibited fatal neonatal RDS. Genetic testing revealed the presence of the SFTPB p.Val267Ile variant, which was not previously reported but is a benign variant based on family genetic testing and history. Additionally, two ABCA3 gene variants were identified: c.697C>T, not yet reported, and c.838C>T. These variants were found to affect ABCA3 protein function and were likely associated with neonatal RDS. Prediction tools and data from nine other cases in the literature supported this conclusion. Conclusions: Based on in silico predictors, an analysis of the presented family, and cases described in the literature, it is reasonable to consider reclassifying the two ABCA3 variants identified in the index case as pathogenic/pathogenic. Reclassification will improve genetic counseling accuracy and facilitate correct diagnosis.
Collapse
Affiliation(s)
- Maria Livia Ognean
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Neonatology Department, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Mădălina Anciuc-Crauciuc
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| | - Radu Galiș
- Department of Neonatology, Emergency County Hospital Bihor, Oradea University, 410087 Oradea, Romania;
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Alex-Emilian Stepan
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Claudia Bănescu
- Genetic Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania
| | - Florin Grosu
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Imaging Department, Lucian Blaga University, 550169 Sibiu, Romania
| | - Boris W. Kramer
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Manuela Cucerea
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|
2
|
Gandhi CK, Depicolzuane LC, Chen C, Roberts CM, Sicher N, Johnson Wegerson K, Thomas NJ, Wu R, Floros J. Association of SNP-SNP interactions of surfactant protein genes with severity of respiratory syncytial virus infection in children. Physiol Genomics 2024; 56:691-697. [PMID: 39222066 PMCID: PMC11495184 DOI: 10.1152/physiolgenomics.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The severity of respiratory syncytial virus (RSV) may be linked to host genetic susceptibility. Surfactant protein (SP) genetic variants have been associated with RSV severity, but the impact of single-nucleotide polymorphism (SNP)-SNP interactions remains unexplored. Therefore, we used a novel statistical model to investigate the association of SNP-SNP interactions of SFTP genes with RSV severity in two- and three-interaction models. We analyzed available genotype and clinical data from prospectively enrolled 405 children diagnosed with RSV, categorizing them into moderate or severe RSV groups. Using Wang's statistical model, we studied significant associations of SNP-SNP interactions with RSV severity in a case-control design. We observed, first, association of three interactions with increased risk of severe RSV in a two-SNP model. One intragenic interaction was between SNPs of SFTPA2, and the other two were intergenic, involving SNPs of hydrophilic and hydrophobic SPs alone. We also observed, second, association of 22 interactions with RSV severity in a three-SNP model. Among these, 20 were unique, with 12 and 10 interactions associated with increased or decreased risk of RSV severity, respectively, and included at least one SNP of either SFTPA1 or SFTPA2. All interactions were intergenic except one, among SNPs of SFTPA1. The remaining interactions were either among SNPs of hydrophilic SPs alone (n = 8) or among SNPs of both hydrophilic or hydrophobic SPs (n = 11). Our findings indicate that SNPs of all SFTPs may contribute to genetic susceptibility to RSV severity. However, the predominant involvement of SFTPA1 and/or SFTPA2 SNPs in these interactions underscores their significance in RSV severity.NEW & NOTEWORTHY Although surfactant protein (SP) genetic variants are associated with respiratory syncytial virus (RSV) severity, the impact of single-nucleotide polymorphism (SNP)-SNP interactions of SP genes remained unexplored. Using advanced statistical models, we uncovered 22 SNP-SNP interactions associated with RSV severity, with notable involvement of SFTPA1 and SFTPA2 SNPs. This highlights the comprehensive role of all SPs in genetic susceptibility to RSV severity, shedding light on potential avenues for targeted interventions.
Collapse
Affiliation(s)
- Chintan K Gandhi
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Lynnlee C Depicolzuane
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Chixiang Chen
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Catherine M Roberts
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Natalie Sicher
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Katelyn Johnson Wegerson
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Neal J Thomas
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Rongling Wu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Joanna Floros
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
- Department of Obstetrics and Gynecology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
3
|
Casey A, Fiorino EK, Wambach J. Innovations in Childhood Interstitial and Diffuse Lung Disease. Clin Chest Med 2024; 45:695-715. [PMID: 39069332 PMCID: PMC11366208 DOI: 10.1016/j.ccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Children's interstitial and diffuse lung diseases (chILDs) are a heterogenous and diverse group of lung disorders presenting during childhood. Infants and children with chILD disorders present with respiratory signs and symptoms as well as diffuse lung imaging abnormalities. ChILD disorders are associated with significant health care resource utilization and high morbidity and mortality. The care of patients with chILD has been improved through multidisciplinary care, multicenter collaboration, and the establishment of patient research networks in the United Stated and abroad. This review details past and current innovations in the diagnosis and clinical care of children with chILD.
Collapse
Affiliation(s)
- Alicia Casey
- Department of Pediatrics, Division of Pulmonary Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Elizabeth K Fiorino
- Department of Science Education and Pediatrics, Donald and Barabara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jennifer Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KMO, Commisso C, Smith DM, Sun X, Carlin AF, Sidman RL, Croker BA, Snyder EY. A therapy for suppressing canonical and noncanonical SARS-CoV-2 viral entry and an intrinsic intrapulmonary inflammatory response. Proc Natl Acad Sci U S A 2024; 121:e2408109121. [PMID: 39028694 PMCID: PMC11287264 DOI: 10.1073/pnas.2408109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 07/21/2024] Open
Abstract
The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.
Collapse
Affiliation(s)
- Sandra L. Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
| | - Rachael N. McVicar
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Elizabeth M. Kwong
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Alex E. Clark
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Asuka Alvarado
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Bethany A. Grimmig
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Ruslan Nuryyev
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Randee E. Young
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Jamie C. Lee
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Weiqi Peng
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Yanfang P. Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Eric Griffis
- Nikon Imaging Center, University of California San Diego, La Jolla, CA92093
| | - Cameron J. Nowell
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC3052, Australia
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Suzie Alarcon
- La Jolla Institute for Immunology, La Jolla, CA92037
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA92093
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Molecular and Translational Sciences, Monash University Clayton, Clayton, VIC3168, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Molecular and Translational Sciences, Monash University Clayton, Clayton, VIC3168, Australia
| | - Cheska M. Galapate
- Sanford Burnham Prebys Medical Discovery Institute Cell & Molecular Biology of Cancer, La Jolla, CA92037
| | - Koen M. O. Galenkamp
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Cosimo Commisso
- Sanford Burnham Prebys Medical Discovery Institute Cell & Molecular Biology of Cancer, La Jolla, CA92037
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Aaron F. Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Richard L. Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Ben A. Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Evan Y. Snyder
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| |
Collapse
|
5
|
Wambach JA, Wegner DJ, Kitzmiller J, White FV, Heins HB, Yang P, Paul AJ, Granadillo JL, Eghtesady P, Kuklinski C, Turner T, Fairman K, Stone K, Wilson T, Breman A, Smith J, Schroeder MC, Neidich JA, Whitsett JA, Cole FS. Homozygous, Intragenic Tandem Duplication of SFTPB Causes Neonatal Respiratory Failure. Am J Respir Cell Mol Biol 2024; 70:78-80. [PMID: 38156804 PMCID: PMC10768837 DOI: 10.1165/rcmb.2023-0156le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Affiliation(s)
| | | | | | | | | | - Ping Yang
- Washington University School of MedicineSt. Louis, Missouri
| | | | | | | | | | - Tiffany Turner
- Indiana University School of MedicineIndianapolis, Indiana
| | - Korre Fairman
- Indiana University School of MedicineIndianapolis, Indiana
| | - Kristyne Stone
- Indiana University School of MedicineIndianapolis, Indiana
| | | | - Amy Breman
- Indiana University School of MedicineIndianapolis, Indiana
| | | | | | | | | | | |
Collapse
|
6
|
Thomas SP, Domm JM, van Vloten JP, Xu L, Vadivel A, Yates JGE, Pei Y, Ingrao J, van Lieshout LP, Jackson SR, Minott JA, Achuthan A, Mehrani Y, McAusland TM, Zhang W, Karimi K, Vaughan AE, de Jong J, Kang MH, Thebaud B, Wootton SK. A promoterless AAV6.2FF-based lung gene editing platform for the correction of surfactant protein B deficiency. Mol Ther 2023; 31:3457-3477. [PMID: 37805711 PMCID: PMC10727957 DOI: 10.1016/j.ymthe.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.
Collapse
Affiliation(s)
- Sylvia P Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jakob M Domm
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Liqun Xu
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Arul Vadivel
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joelle Ingrao
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Sergio R Jackson
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adithya Achuthan
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrew E Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jondavid de Jong
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Martin H Kang
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bernard Thebaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
7
|
Yan Z. In vivo genome editing shows promise for treating pulmonary diseases. Mol Ther 2023; 31:3361. [PMID: 37967562 PMCID: PMC10727971 DOI: 10.1016/j.ymthe.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Ziying Yan
- Department of Anatomy & Cell Biology, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
8
|
Peers de Nieuwburgh M, Wambach JA, Griese M, Danhaive O. Towards personalized therapies for genetic disorders of surfactant dysfunction. Semin Fetal Neonatal Med 2023; 28:101500. [PMID: 38036307 PMCID: PMC10753445 DOI: 10.1016/j.siny.2023.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Genetic disorders of surfactant dysfunction are a rare cause of chronic, progressive or refractory respiratory failure in term and preterm infants. This review explores genetic mechanisms underpinning surfactant dysfunction, highlighting specific surfactant-associated genes including SFTPB, SFTPC, ABCA3, and NKX2.1. Pathogenic variants in these genes contribute to a range of clinical presentations and courses, from neonatal hypoxemic respiratory failure to childhood interstitial lung disease and even adult-onset pulmonary fibrosis. This review emphasizes the importance of early recognition, thorough phenotype assessment, and assessment of variant functionality as essential prerequisites for treatments including lung transplantation. We explore emerging treatment options, including personalized pharmacological approaches and gene therapy strategies. In conclusion, this comprehensive review offers valuable insights into the pathogenic mechanisms of genetic disorders of surfactant dysfunction, genetic fundamentals, available and emerging therapeutic options, and underscores the need for further research to develop personalized therapies for affected infants and children.
Collapse
Affiliation(s)
- Maureen Peers de Nieuwburgh
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Jennifer A Wambach
- Washington University School of Medicine/St. Louis Children's Hospital, One Children's Place, St. Louis, Missouri, USA.
| | - Matthias Griese
- Pediatric Pulmonology, Dr von Hauner Children's Hospital, University-Hospital, German Center for Lung Research (DZL), Munich, Germany.
| | - Olivier Danhaive
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium; Division of Neonatology, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Ruan T, Lu W, Zeng S, Yue Y, Zhou R, Ying J, Tang Y, Qu Y, Mu D. Cumulative evidence of the genetic association between SP-B C1580T polymorphisms and risk of neonatal respiratory distress syndrome. J Matern Fetal Neonatal Med 2023; 36:2240469. [PMID: 37527966 DOI: 10.1080/14767058.2023.2240469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Objective: Surfactant protein SP-B, an important protein in pulmonary surfactant, is required for the stabilization of surfactant films in the lung and maintenance of postnatal lung function. Although the association between SP-B polymorphisms and the risk of neonatal respiratory distress syndrome (RDS) has been evaluated, the results have been inconsistent. We investigated the association between SP-B polymorphisms and the risk of neonatal RDS.Methods: Relevant studies were systematically searched in PubMed, EMBASE, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) electronic databases until June 2022. Data were collected independently by two reviewers and converted to odds ratios (ORs) with 95% confidence intervals (CIs). Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias assessment were performed using Stata 12.1 software and Review Manager 5.3.Results: Fourteen studies were included. SP-B C1580T polymorphism was significantly associated with neonatal RDS in five genetic models (T vs. C: OR = 0.70, 95% CI 0.57-0.86, I2 = 78%; TT vs. CC: OR = 0.63, 95% CI 0.53-0.86, I2 = 39%; CT vs. CC: OR = 0.65, 95% CI 0.50-0.84, I2 = 54%; TT + CT vs. CC: OR = 0.62, 95% CI 0.49-0.78, I2 = 59%; TT vs. CC + CT: OR = 0.78, 95% CI 0.67-0.91, I2 = 43%). The CT and TT genotypes may decrease the risk of RDS in neonates. Subgroup analyses revealed that the association of SP-B C1580T polymorphism with neonatal RDS was stable, independent of preterm birth and Hardy-Weinberg equilibrium. In addition, the Han Chinese were more likely to be affected by SP-B C1580T polymorphisms than Caucasians and Finnish.Conclusions: Our findings suggest that SP-B C1580T polymorphism may be a protective factor against neonatal RDS.
Collapse
Affiliation(s)
- Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Wenting Lu
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Zeng
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Tang
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
- Ultrasonic Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, Liu K, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KM, Commisso C, Smith DM, Sun X, Carlin AF, Croker BA, Snyder EY. The lung employs an intrinsic surfactant-mediated inflammatory response for viral defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525578. [PMID: 36747824 PMCID: PMC9900938 DOI: 10.1101/2023.01.26.525578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.
Collapse
|
11
|
Ben Messaoud N, Barreiros dos Santos M, Trocado V, Nogueira-Silva C, Queirós R. A novel label-free electrochemical immunosensor for detection of surfactant protein B in amniotic fluid. Talanta 2023; 251:123744. [DOI: 10.1016/j.talanta.2022.123744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
|
12
|
Sitaraman S, Alysandratos KD, Wambach JA, Limberis MP. Gene Therapeutics for Surfactant Dysfunction Disorders: Targeting the Alveolar Type 2 Epithelial Cell. Hum Gene Ther 2022; 33:1011-1022. [PMID: 36166236 PMCID: PMC9595619 DOI: 10.1089/hum.2022.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic disorders of surfactant dysfunction result in significant morbidity and mortality, among infants, children, and adults. Available medical interventions are limited, nonspecific, and generally ineffective. As such, the need for effective therapies remains. Pathogenic variants in the SFTPB, SFTPC, and ABCA3 genes, each of which encode proteins essential for proper pulmonary surfactant production and function, result in interstitial lung disease in infants, children, and adults, and lead to morbidity and early mortality. Expression of these genes is predominantly limited to the alveolar type 2 (AT2) epithelial cells present in the distal airspaces of the lungs, thus providing an unequivocal cellular origin of disease pathogenesis. While several treatment strategies are under development, a gene-based therapeutic holds great promise as a definitive therapy. Importantly for clinical translation, the genes associated with surfactant dysfunction are both well characterized and amenable to a gene-therapeutic-based strategy. This review focuses on the pathophysiology associated with these genetic disorders of surfactant dysfunction, and also provides an overview of the current state of gene-based therapeutics designed to target and transduce the AT2 cells.
Collapse
Affiliation(s)
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer A. Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | | |
Collapse
|
13
|
Depicolzuane LC, Roberts CM, Thomas NJ, Anderson-Fears K, Liu D, Barbosa JPP, Souza FR, Pimentel AS, Floros J, Gandhi CK. Hydrophilic But Not Hydrophobic Surfactant Protein Genetic Variants Are Associated With Severe Acute Respiratory Syncytial Virus Infection in Children. Front Immunol 2022; 13:922956. [PMID: 35903101 PMCID: PMC9317530 DOI: 10.3389/fimmu.2022.922956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection-related hospitalization in the first year of life. Surfactant dysfunction is central to pathophysiologic mechanisms of various pulmonary diseases including RSV. We hypothesized that RSV severity is associated with single nucleotide polymorphisms (SNPs) of surfactant proteins (SPs). We prospectively enrolled 405 RSV-positive children and divided them into moderate and severe RSV disease. DNA was extracted and genotyped for sixteen specific SP gene SNPs. SP-A1 and A2 haplotypes were assigned. The association of RSV severity with SP gene SNPs was investigated by multivariate logistic regression. A likelihood ratio test was used to test the goodness of fit between two models (one with clinical and demographic data alone and another that included genetic variants). p ≤ 0.05 denotes statistical significance. A molecular dynamics simulation was done to determine the impact of the SFTPA2 rs1965708 on the SP-A behavior under various conditions. Infants with severe disease were more likely to be younger, of lower weight, and exposed to household pets and smoking, as well as having co-infection on admission. A decreased risk of severe RSV was associated with the rs17886395_C of the SFTPA2 and rs2243639_A of the SFTPD, whereas an increased risk was associated with the rs1059047_C of the SFTPA1. RSV severity was not associated with SNPs of SFTPB and SFTPC. An increased risk of severe RSV was associated with the 1A0 genotype of SFTPA2 in its homozygous or heterozygous form with 1A3. A molecular dynamic simulation study of SP-A variants that differ in amino acid 223, an important amino acid change (Q223K) between 1A0 and 1A3, showed no major impact on the behavior of these two variants except for higher thermodynamic stability of the K223 variant. The likelihood ratio test showed that the model with multi-allelic variants along with clinical and demographic data was a better fit to predict RSV severity. In summary, RSV severity was associated with hydrophilic (but not with hydrophobic) SPs gene variants. Collectively, our findings show that SP gene variants may play a key role in RSV infection and have a potential role in prognostication.
Collapse
Affiliation(s)
- Lynnlee C. Depicolzuane
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Catherine M. Roberts
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Neal J. Thomas
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Keenan Anderson-Fears
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Dajiang Liu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | | | - Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
- Department of Obstetrics & Gynecology, The Pennsylvania State College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros, ; Chintan K. Gandhi,
| | - Chintan K. Gandhi
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros, ; Chintan K. Gandhi,
| |
Collapse
|
14
|
Walther FJ, Waring AJ. Aerosol Delivery of Lung Surfactant and Nasal CPAP in the Treatment of Neonatal Respiratory Distress Syndrome. Front Pediatr 2022; 10:923010. [PMID: 35783301 PMCID: PMC9240419 DOI: 10.3389/fped.2022.923010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2023] Open
Abstract
After shifting away from invasive mechanical ventilation and intratracheal instillation of surfactant toward non-invasive ventilation with nasal CPAP and less invasive surfactant administration in order to prevent bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome, fully non-invasive surfactant nebulization is the next Holy Grail in neonatology. Here we review the characteristics of animal-derived (clinical) and new advanced synthetic lung surfactants and improvements in nebulization technology required to secure optimal lung deposition and effectivity of non-invasive lung surfactant administration. Studies in surfactant-deficient animals and preterm infants have demonstrated the safety and potential of non-invasive surfactant administration, but also provide new directions for the development of synthetic lung surfactant destined for aerosol delivery, implementation of breath-actuated nebulization and optimization of nasal CPAP, nebulizer circuit and nasal interface. Surfactant nebulization may offer a truly non-invasive option for surfactant delivery to preterm infants in the near future.
Collapse
Affiliation(s)
- Frans J. Walther
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Alan J. Waring
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Mikolajcikova S, Lasabova Z, Holubekova V, Skerenova M, Zibolenova J, Matasova K, Zibolen M, Calkovska A. The Common Haplotype GATGACA in Surfactant-Protein B Gene Is Protective for Respiratory Distress Syndrome in Preterm Neonates. Front Pediatr 2022; 10:851042. [PMID: 35692980 PMCID: PMC9174893 DOI: 10.3389/fped.2022.851042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory distress syndrome (RDS), a disorder of primary surfactant deficiency resulting in pulmonary insufficiency, remains a significant problem for preterm neonates. Associations between genetic variants of surfactant proteins and RDS have been reported, but haplotypes of the surfactant protein B gene (SFTPB) have not been studied. The aim of the study was to prove the hypothesis that certain haplotypes of SFTPB may be protective or risk factors for RDS. Methods The study was performed with 149 preterm infants, born <34 weeks of gestation, with 86 infants with mild RDS or without RDS (control group) and 63 infants with severe RDS (patient group). RDS was considered severe if multiple doses of exogenous surfactant and/or mechanical ventilation within the first 72 h of life were needed. The venous blood sample was used for the analysis of gene polymorphisms associated with RDS, genotyping, and haplotype estimation. Multivariate logistic regression analysis and the odds ratio were calculated to detect the contribution of the studied variables to the development of RDS. Results A new association of the common single nucleotide polymorphism (SNP) rs2304566 with RDS in premature infants was detected. Analysis of rs2304566 polymorphisms using a logistic regression model showed that there are two significant predictors inversely related to the occurrence of RDS (Apgar score of 5 min, CT and TT genotype in rs2304566 polymorphism). Gestational age, birth weight, and sex have border significance. Moreover, in the patient group, the frequency of the GATGACA haplotype in the SFTPB gene was lower (p = 0.037), and the GATGGCA haplotype was higher (p = 0.059) in comparison with the control group. Conclusion The common haplotype GATGACA of the SFTPB gene can be protective against RDS in preterm infants. The trend of a higher frequency of GATGGCA in the SFTPB gene in infants with severe RDS suggests that this haplotype may be a risk factor for RDS susceptibility.
Collapse
Affiliation(s)
- Silvia Mikolajcikova
- Clinic of Neonatology, Jessenius Faculty of Medicine, Comenius University and University Hospital, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Maria Skerenova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Jana Zibolenova
- Department of Public Health, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Katarina Matasova
- Clinic of Neonatology, Jessenius Faculty of Medicine, Comenius University and University Hospital, Martin, Slovakia
| | - Mirko Zibolen
- Clinic of Neonatology, Jessenius Faculty of Medicine, Comenius University and University Hospital, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| |
Collapse
|
16
|
Gandhi CK, Thomas NJ, Meixia Y, Spear D, Fu C, Zhou S, Wu R, Keim G, Yehya N, Floros J. SNP–SNP Interactions of Surfactant Protein Genes in Persistent Respiratory Morbidity Susceptibility in Previously Healthy Children. Front Genet 2022; 13:815727. [PMID: 35401703 PMCID: PMC8989419 DOI: 10.3389/fgene.2022.815727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
We studied associations of persistent respiratory morbidity (PRM) at 6 and 12 months after acute respiratory failure (ARF) in previously healthy children with single-nucleotide polymorphisms (SNPs) of surfactant protein (SP) genes. Of the 250 enrolled subjects, 155 and 127 were followed at 6 and 12 months after an ARF episode, respectively. Logistic regression analysis and SNP–SNP interaction models were used. We found that 1) in the multivariate analysis, an increased risk at 6 and 12 months was associated with rs1124_A and rs4715_A of SFTPC, respectively; 2) in a single SNP model, increased and decreased risks of PRM at both timepoints were associated with rs1124 of SFTPC and rs721917 of SFTPD, respectively; an increased risk at 6 months was associated with rs1130866 of SFTPB and rs4715 of SFTPC, and increased and decreased risks at 12 months were associated with rs17886395 of SFTPA2 and rs2243639 of SFTPD, respectively; 3) in a two-SNP model, PRM susceptibility at both timepoints was associated with a number of intergenic interactions between SNPs of the studied SP genes. An increased risk at 12 months was associated with one intragenic (rs1965708 and rs113645 of SFTPA2) interaction; 4) in a three-SNP model, decreased and increased risks at 6 and 12 months, respectively, were associated with an interaction among rs1130866 of SFTPB, rs721917 of SFTPD, and rs1059046 of SFTPA2. A decreased risk at 6 months was associated with an interaction among the same SNPs of SFTPB and SFTPD and the rs1136450 of SFTPA1. The findings revealed that SNPs of all SFTPs appear to play a role in long-term outcomes of ARF survivors and may serve as markers for disease susceptibility.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Neal J. Thomas
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ye Meixia
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Debbie Spear
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chenqi Fu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shouhao Zhou
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Garrett Keim
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nadir Yehya
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros,
| |
Collapse
|
17
|
A dominant negative variant of RAB5B disrupts maturation of surfactant protein B and surfactant protein C. Proc Natl Acad Sci U S A 2022; 119:2105228119. [PMID: 35121658 PMCID: PMC8832968 DOI: 10.1073/pnas.2105228119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
The Rab5 GTPase functions in early endosome (EE) fusion in the endocytic pathway. Here, we propose that RAB5B also has a noncanonical vesicular fusion function in the regulated secretion pathway that produces mature surfactant proteins SP-B and SP-C in the lung. This function was revealed from investigation of a proband with interstitial lung disease suggestive of a surfactant dysfunction disorder who carried a de novo Asp136His variant in the RAB5B gene. Our modeling in C. elegans provided information on the genetic and cell biological mechanism, and analyses of proband and normal lung biopsies suggested a function for RAB5B and EEs in surfactant protein processing/trafficking. This work indicates that RAB5B p.Asp136His causes a surfactant dysfunction disorder. Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5. Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband’s lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative–acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.
Collapse
|
18
|
Delestrain C, Aissat A, Nattes E, Gibertini I, Lacroze V, Simon S, Decrouy X, de Becdelièvre A, Fanen P, Epaud R. Deciphering an isolated lung phenotype of NKX2-1 frameshift pathogenic variant. Front Pediatr 2022; 10:978598. [PMID: 36733766 PMCID: PMC9888430 DOI: 10.3389/fped.2022.978598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND to perform a functional analysis of a new NK2 homeobox 1 (NKX2-1) variant (c.85_86del denominated NKX2-1DEL) identified in a family presenting with isolated respiratory disease, in comparison to another frameshift variant (c.254dup denominated NKX2-1DUP) identified in a subject with classical brain-lung-thyroid syndrome. METHODS pathogenic variants were introduced into the pcDNA3-1(+)-wt-TTF1 plasmid. The proteins obtained were analyzed by western blot assay. Subcellular localization was assessed by confocal microscopy in A549 and Nthy cells. Transactivation of SFTPA, SFTPB, SFTPC, and ABCA3 promoters was assessed in A549 cells. Thyroglobulin promoter activity was measured with the paired box gene 8 (PAX8) cofactor in Nthy cells. RESULTS The two sequence variants were predicted to produce aberrant proteins identical from the 86th amino acid, with deletion of their functional homeodomain, including the nuclear localization signal. However, 3D conformation prediction of the conformation prediction of the mutant protein assumed the presence of a nuclear localization signal, a bipartite sequence, confirmed by confocal microscopy showing both mutant proteins localized in the nucleus and cytoplasm. Transcriptional activity with SFTPA, SFTPB, SFTPC, ABCA3 and thyroglobulin promoters was significantly decreased with both variants. However, with NKX2-1DEL, thyroglobulin transcriptional activity was maintained with the addition of PAX8. CONCLUSION These results provide novel insights into understanding the molecular mechanism of phenotypes associated with NKX2-1 pathogenic variants.
Collapse
Affiliation(s)
- Céline Delestrain
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France
| | - Abdel Aissat
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Département de Génétique, AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Créteil, France
| | - Elodie Nattes
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France.,Département de Génétique, AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Créteil, France
| | - Isabelle Gibertini
- Département de Pédiatrie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Valérie Lacroze
- AP-HM, Hôpital de la Conception, Service de Médecine Néonatale, Marseille, France
| | | | | | - Alix de Becdelièvre
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Département de Génétique, AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Créteil, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Département de Génétique, AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Créteil, France
| | - Ralph Epaud
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France
| |
Collapse
|
19
|
Genetic Testing for Neonatal Respiratory Disease. CHILDREN-BASEL 2021; 8:children8030216. [PMID: 33799761 PMCID: PMC8001923 DOI: 10.3390/children8030216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Genetic mechanisms are now recognized as rare causes of neonatal lung disease. Genes potentially responsible for neonatal lung disease include those encoding proteins important in surfactant function and metabolism, transcription factors important in lung development, proteins involved in ciliary assembly and function, and various other structural and immune regulation genes. The phenotypes of infants with genetic causes of neonatal lung disease may have some features that are difficult to distinguish clinically from more common, reversible causes of lung disease, and from each other. Multigene panels are now available that can allow for a specific diagnosis, providing important information for treatment and prognosis. This review discusses genes in which abnormalities are known to cause neonatal lung disease and their associated phenotypes, and advantages and limitations of genetic testing.
Collapse
|
20
|
Gandhi CK, Chen C, Amatya S, Yang L, Fu C, Zhou S, Wu R, Buendía-Roldan I, Selman M, Pardo A, Floros J. SNP and Haplotype Interaction Models Reveal Association of Surfactant Protein Gene Polymorphisms With Hypersensitivity Pneumonitis of Mexican Population. Front Med (Lausanne) 2021; 7:588404. [PMID: 33469544 PMCID: PMC7813780 DOI: 10.3389/fmed.2020.588404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 01/21/2023] Open
Abstract
Background: Hypersensitivity pneumonitis (HP) is an interstitial lung disease caused by inhalation of common environmental organic particles. Surfactant proteins (SPs) play a role in innate immunity and surfactant function. We hypothesized that single nucleotide polymorphisms (SNPs) or haplotypes of the SP genes associate with HP. Methods: Seventy-five HP patients caused by avian antigen and 258 controls, asymptomatic antigen exposed and non-exposed were enrolled. SNP association was performed using logistic regression analysis and SNP-SNP interaction models. Results: Based on odds ratio, regression analyses showed association of (a) rs7316_G, 1A3 (protective) compared to antigen exposed; (b) male sex, smoking, rs721917_T and rs1130866_T (protective) compared to non-exposed controls with HP; (c) compared to antigen exposed, 25 interactions associated with HP in a three-SNP model; (d) compared to non-exposed, (i) rs1136451 associated with increased, whereas rs1136450 and rs1130866 associated with lower HP risk, (ii) 97 interactions associated with HP in a three-SNP model. The majority of SNP-SNP interactions associated with increased HP risk involved SNPs of the hydrophilic SPs, whereas, the majority of interactions associated with lower HP risk involved SNPs of both hydrophilic and hydrophobic SPs; (e) haplotypes of SP genes associated with HP risk. Conclusions: The complexity of SNPs interactions of the SFTP genes observed indicate that the lung inflammatory response to avian antigens is modulated by a complex gene interplay rather than by single SNPs.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chixiang Chen
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shaili Amatya
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenqi Fu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shouhao Zhou
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ivette Buendía-Roldan
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Moisés Selman
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Annie Pardo
- Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Obstetrics & Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
21
|
Sever N, Miličić G, Bodnar NO, Wu X, Rapoport TA. Mechanism of Lamellar Body Formation by Lung Surfactant Protein B. Mol Cell 2020; 81:49-66.e8. [PMID: 33242393 DOI: 10.1016/j.molcel.2020.10.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/14/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Breathing depends on pulmonary surfactant, a mixture of phospholipids and proteins, secreted by alveolar type II cells. Surfactant requires lamellar bodies (LBs), organelles containing densely packed concentric membrane layers, for storage and secretion. LB biogenesis remains mysterious but requires surfactant protein B (SP-B), which is synthesized as a precursor (pre-proSP-B) that is cleaved during trafficking into three related proteins. Here, we elucidate the functions and cooperation of these proteins in LB formation. We show that the N-terminal domain of proSP-B is a phospholipid-binding and -transfer protein whose activities are required for proSP-B export from the endoplasmic reticulum (ER) and sorting to LBs, the conversion of proSP-B into lipoprotein particles, and neonatal viability in mice. The C-terminal domain facilitates ER export of proSP-B. The mature middle domain, generated after proteolytic cleavage of proSP-B, generates the striking membrane layers characteristic of LBs. Together, our results lead to a mechanistic model of LB biogenesis.
Collapse
Affiliation(s)
- Navdar Sever
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Goran Miličić
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Nicholas O Bodnar
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Testoni G, Olmeda B, Duran J, López-Rodríguez E, Aguilera M, Hernández-Álvarez MI, Prats N, Pérez-Gil J, Guinovart JJ. Pulmonary glycogen deficiency as a new potential cause of respiratory distress syndrome. Hum Mol Genet 2020; 29:3554-3565. [PMID: 33219378 DOI: 10.1093/hmg/ddaa249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/14/2022] Open
Abstract
The glycogenin knockout mouse is a model of Glycogen Storage Disease type XV. These animals show high perinatal mortality (90%) due to respiratory failure. The lungs of glycogenin-deficient embryos and P0 mice have a lower glycogen content than that of wild-type counterparts. Embryonic lungs were found to have decreased levels of mature surfactant proteins SP-B and SP-C, together with incomplete processing of precursors. Furthermore, non-surviving pups showed collapsed sacculi, which may be linked to a significantly reduced amount of surfactant proteins. A similar pattern was observed in glycogen synthase1-deficient mice, which are devoid of glycogen in the lungs and are also affected by high perinatal mortality due to atelectasis. These results indicate that glycogen availability is a key factor for the burst of surfactant production required to ensure correct lung expansion at the establishment of air breathing. Our findings confirm that glycogen deficiency in lungs can cause respiratory distress syndrome and suggest that mutations in glycogenin and glycogen synthase 1 genes may underlie cases of idiopathic neonatal death.
Collapse
Affiliation(s)
- Giorgia Testoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute of Hospital 12 de Octubre, Complutense University, 28040 Madrid, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Elena López-Rodríguez
- Institute of Functional Anatomy Wilhelm-Waldeyer-Haus, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - María Isabel Hernández-Álvarez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute of Hospital 12 de Octubre, Complutense University, 28040 Madrid, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Leng L, Cao R, Ma J, Mou D, Zhu Y, Li W, Lv L, Gao D, Zhang S, Gong F, Zhao L, Qiu B, Xiang H, Hu Z, Feng Y, Dai Y, Zhao J, Wu Z, Li H, Zhong W. Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples. Signal Transduct Target Ther 2020; 5:240. [PMID: 33060566 PMCID: PMC7557250 DOI: 10.1038/s41392-020-00355-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has emerged as a global health emergency due to its association with severe pneumonia and relative high mortality. However, the molecular characteristics and pathological features underlying COVID-19 pneumonia remain largely unknown. To characterize molecular mechanisms underlying COVID-19 pathogenesis in the lung tissue using a proteomic approach, fresh lung tissues were obtained from newly deceased patients with COVID-19 pneumonia. After virus inactivation, a quantitative proteomic approach combined with bioinformatics analysis was used to detect proteomic changes in the SARS-CoV-2-infected lung tissues. We identified significant differentially expressed proteins involved in a variety of fundamental biological processes including cellular metabolism, blood coagulation, immune response, angiogenesis, and cell microenvironment regulation. Several inflammatory factors were upregulated, which was possibly caused by the activation of NF-κB signaling. Extensive dysregulation of the lung proteome in response to SARS-CoV-2 infection was discovered. Our results systematically outlined the molecular pathological features in terms of the lung response to SARS-CoV-2 infection, and provided the scientific basis for the therapeutic target that is urgently needed to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ling Leng
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, 102206, Beijing, China
| | - Danlei Mou
- Department of Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, 102206, Beijing, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Luye Lv
- Institute of NBC Defense, 102205, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Shikun Zhang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Feng Gong
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Bintao Qiu
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Haiping Xiang
- Department of Radiology, Beijing YouAn Hospital, Capital Medical of University, 100069, Beijing, China
| | - Zhongjie Hu
- Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Yingmei Feng
- Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Yan Dai
- Department of Respiratory and Critical Care Medicine, Nanyang Central Hospital, 473000, Henan, China
| | - Jiang Zhao
- Department of Respiratory and Critical Care Medicine, Nanyang Central Hospital, 473000, Henan, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Hongjun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical of University, 100069, Beijing, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China.
| |
Collapse
|
24
|
Oltvai ZN, Smith EA, Wiens K, Nogee LM, Luquette M, Nelson AC, Wikenheiser-Brokamp KA. Neonatal respiratory failure due to novel compound heterozygous mutations in the ABCA3 lipid transporter. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005074. [PMID: 32532878 PMCID: PMC7304364 DOI: 10.1101/mcs.a005074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
The ATP-binding cassette transporter member A3 (ABCA3) is a lipid transporter with a critical function in pulmonary surfactant biogenesis. Biallelic loss-of-function mutations in ABCA3 result in severe surfactant deficiency leading to neonatal respiratory failure with death in the first year of life. Herein, we describe a newborn with severe respiratory distress at birth progressing to respiratory failure requiring transplant. This patient was found to have a maternally inherited frameshift loss-of-function ABCA3 mutation and a paternally inherited synonymous variant in ABCA3 predicted to create a cryptic splice site. Additional studies showed reduced ABCA3 expression in hyperplastic alveolar epithelial type II cells and lamellar body alterations characteristic of ABCA3 deficiency, leading to a diagnosis of autosomal recessive ABCA3-related pulmonary surfactant dysfunction. This case highlights the need for an integrated, comprehensive approach for the diagnosis of inherited diseases when in silico modeling is utilized in the interpretation of key novel genetic mutations.
Collapse
Affiliation(s)
- Zoltán N Oltvai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York 14642, USA
| | - Eric A Smith
- Medical Science Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219, USA
| | - Katie Wiens
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lawrence M Nogee
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Mark Luquette
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine and The Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219, USA
| |
Collapse
|
25
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
26
|
Gandhi CK, Chen C, Wu R, Yang L, Thorenoor N, Thomas NJ, DiAngelo SL, Spear D, Keim G, Yehya N, Floros J. Association of SNP-SNP Interactions of Surfactant Protein Genes with Pediatric Acute Respiratory Failure. J Clin Med 2020; 9:jcm9041183. [PMID: 32326132 PMCID: PMC7231046 DOI: 10.3390/jcm9041183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
The hallmarks of pediatric acute respiratory failure (ARF) are dysregulated inflammation and surfactant dysfunction. The objective is to study association of surfactant protein (SP) genes’ single nucleotide polymorphisms (SNPs) with ARF and its morbidity: pulmonary dysfunction at discharge (PDAD), employing a single-, two-, and three-SNP interaction model. We enrolled 468 newborn controls and 248 children aged ≤ 24 months with ARF; 86 developed PDAD. Using quantitative genetic principles, we tested the association of SP genes SNPs with ARF and PDAD. We observed a dominant effect of rs4715 of the SFTPC on ARF risk. In a three-SNP model, we found (a) 34 significant interactions among SNPs of SFTPA1, SFTPA2, and SFTPC associated with ARF (p = 0.000000002–0.05); 15 and 19 of those interactions were associated with increased and decreased risk for ARF, respectively; (b) intergenic SNP–SNP interactions of both hydrophobic and hydrophilic SP genes associated with PDAD (p = 0.00002–0.03). The majority of intra- and intergenic interactions associated with ARF involve the SFTPA2 SNPs, whereas most of the intra- and intergenic interactions associated with PDAD are of SFTPA1 SNPs. We also observed a dominant effect of haplotypes GG of SFTPA1 associated with increased and AA of SFTPC associated with decreased ARF risk (p = 0.02). To the best of our knowledge, this is the first study showing an association of complex interactions of SP genes with ARF and PDAD. Our data indicate that SP genes polymorphisms may contribute to ARF pathogenesis and subsequent PDAD and/or may serve as markers for disease susceptibility in healthy children.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
| | - Chixiang Chen
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Rongling Wu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nithyananda Thorenoor
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
| | - Neal J. Thomas
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Susan L. DiAngelo
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
| | - Debbie Spear
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
| | - Garrett Keim
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nadir Yehya
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
- Department of Obstetrics & Gynecology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
27
|
Reversal of Surfactant Protein B Deficiency in Patient Specific Human Induced Pluripotent Stem Cell Derived Lung Organoids by Gene Therapy. Sci Rep 2019; 9:13450. [PMID: 31530844 PMCID: PMC6748939 DOI: 10.1038/s41598-019-49696-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.
Collapse
|
28
|
Albert RK, Smith B, Perlman CE, Schwartz DA. Is Progression of Pulmonary Fibrosis due to Ventilation-induced Lung Injury? Am J Respir Crit Care Med 2019; 200:140-151. [PMID: 31022350 PMCID: PMC6635778 DOI: 10.1164/rccm.201903-0497pp] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Bradford Smith
- Department of Bioengineering, University of Colorado, Aurora, Colorado; and
| | - Carrie E. Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Mutations in genes encoding proteins critical for the production and function of pulmonary surfactant cause diffuse lung disease. Timely recognition and diagnosis of affected individuals is important for proper counseling concerning prognosis and recurrence risk. RECENT FINDINGS Involved genes include those encoding for surfactant proteins A, B, and C, member A3 of the ATP-binding cassette family, and for thyroid transcription factor 1. Clinical presentations overlap and range from severe and rapidly fatal neonatal lung disease to development of pulmonary fibrosis well into adult life. The inheritance patterns, course, and prognosis differ depending upon the gene involved, and in some cases the specific mutation. Treatment options are currently limited, with lung transplantation an option for patients with end-stage pulmonary fibrosis. Additional genetic disorders with overlapping pulmonary phenotypes are being identified through newer methods, although these disorders often involve other organ systems. SUMMARY Genetic disorders of surfactant production are rare but associated with significant morbidity and mortality. Diagnosis can be made invasively through clinically available genetic testing. Improved treatment options are needed and better understanding of the molecular pathophysiology may provide insights into treatments for other lung disorders causing fibrosis.
Collapse
Affiliation(s)
- Lawrence M Nogee
- Eudowood Neonatal Pulmonary Division, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Brown NJ, Lin JS, Barron AE. Helical side chain chemistry of a peptoid-based SP-C analogue: Balancing structural rigidity and biomimicry. Biopolymers 2019; 110:e23277. [PMID: 30972750 DOI: 10.1002/bip.23277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
Abstract
Surfactant protein C (SP-C) is an important constituent of lung surfactant (LS) and, along with SP-B, is included in exogenous surfactant replacement therapies for treating respiratory distress syndrome (RDS). SP-C's biophysical activity depends upon the presence of a rigid C-terminal helix, of which the secondary structure is more crucial to functionality than precise side-chain chemistry. SP-C is highly sequence-conserved, suggesting that the β-branched, aliphatic side chains of the helix are also important. Nonnatural mimics of SP-C were created using a poly-N-substituted glycine, or "peptoid," backbone. The mimics included varying amounts of α-chiral, aliphatic side chains and α-chiral, aromatic side chains in the helical region, imparting either biomimicry or structural rigidity. Biophysical studies confirmed that the peptoids mimicked SP-C's secondary structure and replicated many of its surface-active characteristics. Surface activity was optimized by incorporating both structurally rigid and biomimetic side chain chemistries in the helical region indicating that both characteristics are important for activity. By balancing these features in one mimic, a novel analogue was created that emulates SP-C's in vitro surface activity while overcoming many of the challenges related to natural SP-C. Peptoid-based analogues hold great potential for use in a synthetic, biomimetic LS formulation for treating RDS.
Collapse
Affiliation(s)
- Nathan J Brown
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
31
|
Walther FJ, Gordon LM, Waring AJ. Advances in synthetic lung surfactant protein technology. Expert Rev Respir Med 2019; 13:499-501. [PMID: 30817233 DOI: 10.1080/17476348.2019.1589372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Frans J Walther
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Departments of Pediatrics and Medicine , Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance , CA , USA
| | - Larry M Gordon
- b Departments of Pediatrics and Medicine , Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance , CA , USA
| | - Alan J Waring
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Departments of Pediatrics and Medicine , Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance , CA , USA
| |
Collapse
|
32
|
Lin Z, Thorenoor N, Wu R, DiAngelo SL, Ye M, Thomas NJ, Liao X, Lin TR, Warren S, Floros J. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. Front Immunol 2018; 9:2256. [PMID: 30333828 PMCID: PMC6175982 DOI: 10.3389/fimmu.2018.02256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Surfactant proteins (SP) are involved in surfactant function and innate immunity in the human lung. Both lung function and innate immunity are altered in CF, and altered SP levels and genetic association are observed in Cystic Fibrosis (CF). We hypothesized that single nucleotide polymorphisms (SNPs) within the SP genes associate with CF or severity subgroups, either through single SNP or via SNP-SNP interactions between two SNPs of a given gene (intragenic) and/or between two genes (intergenic). We genotyped a total of 17 SP SNPs from 72 case-trio pedigree (SFTPA1 (5), SFTPA2 (4), SFTPB (4), SFTPC (2), and SFTPD (2)), and identified SP SNP associations by applying quantitative genetic principles. The results showed (a) Two SNPs, SFTPB rs7316 (p = 0.0083) and SFTPC rs1124 (p = 0.0154), each associated with CF. (b) Three intragenic SNP-SNP interactions, SFTPB (rs2077079, rs3024798), and SFTPA1 (rs1136451, rs1059057 and rs4253527), associated with CF. (c) A total of 34 intergenic SNP-SNP interactions among the 4 SP genes to be associated with CF. (d) No SNP-SNP interaction was observed between SFTPA1 or SFTPA2 and SFTPD. (e) Equal number of SNP-SNP interactions were observed between SFTPB and SFTPA1/SFTPA2 (n = 7) and SP-B and SFTPD (n = 7). (f) SFTPC exhibited significant SNP-SNP interactions with SFTPA1/SFTPA2 (n = 11), SFTPB (n = 4) and SFTPD (n = 3). (g) A single SFTPB SNP was associated with mild CF after Bonferroni correction, and several intergenic interactions that are associated (p < 0.01) with either mild or moderate/severe CF were observed. These collectively indicate that complex SNP-SNP interactions of the SP genes may contribute to the pulmonary disease in CF patients. We speculate that SPs may serve as modifiers for the varied progression of pulmonary disease in CF and/or its severity.
Collapse
Affiliation(s)
- Zhenwu Lin
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Susan L. DiAngelo
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Meixia Ye
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Neal J. Thomas
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Xiaojie Liao
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Tony R. Lin
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Stuart Warren
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
- Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
33
|
López-Andreu JA, Hidalgo-Santos AD, Fuentes-Castelló MA, Mancheño-Franch N, Cerón-Pérez JA, Esteban-Ricós MJ, Pedrola-Vidal L, Nogee LM. Delayed Presentation and Prolonged Survival of a Child with Surfactant Protein B Deficiency. J Pediatr 2017; 190:268-270.e1. [PMID: 28888561 DOI: 10.1016/j.jpeds.2017.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/26/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
Abstract
Surfactant protein B encoding gene mutations have been related to early onset fatal respiratory distress in full-term neonates. We report a school-aged male child homozygous for a surfactant protein B encoding gene missense mutation who presented after the neonatal period. His respiratory insufficiency responded to high dose intravenous methylprednisolone and hydroxychloroquine.
Collapse
Affiliation(s)
- Juan A López-Andreu
- Pediatric Respiratory and Allergy Section, University and Polytechnic Hospital La Fe, Valencia, Spain.
| | - Antonio D Hidalgo-Santos
- Pediatric Respiratory and Allergy Section, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | - Juan A Cerón-Pérez
- Department of Clinical Genetics, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Maria J Esteban-Ricós
- Section of Pediatric Radiology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Laia Pedrola-Vidal
- Department of Clinical Genetics, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Lawrence M Nogee
- Eudowood Neonatal Pulmonary Division, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
34
|
Ebina-Shibuya R, Matsumoto M, Kuwahara M, Jang KJ, Sugai M, Ito Y, Funayama R, Nakayama K, Sato Y, Ishii N, Okamura Y, Kinoshita K, Kometani K, Kurosaki T, Muto A, Ichinose M, Yamashita M, Igarashi K. Inflammatory responses induce an identity crisis of alveolar macrophages, leading to pulmonary alveolar proteinosis. J Biol Chem 2017; 292:18098-18112. [PMID: 28916727 DOI: 10.1074/jbc.m117.808535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/06/2017] [Indexed: 01/14/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a severe respiratory disease characterized by dyspnea caused by accumulation of surfactant protein. Dysfunction of alveolar macrophages (AMs), which regulate the homeostasis of surfactant protein, leads to the development of PAP; for example, in mice lacking BTB and CNC homology 2 (Bach2). However, how Bach2 helps prevent PAP is unknown, and the cell-specific effects of Bach2 are undefined. Using mice lacking Bach2 in specific cell types, we found that the PAP phenotype of Bach2-deficient mice is due to Bach2 deficiency in more than two types of immune cells. Depletion of hyperactivated T cells in Bach2-deficient mice restored normal function of AMs and ameliorated PAP. We also found that, in Bach2-deficient mice, hyperactivated T cells induced gene expression patterns that are specific to other tissue-resident macrophages and dendritic cells. Moreover, Bach2-deficient AMs exhibited a reduction in cell cycle progression. IFN-γ released from T cells induced Bach2 expression in AMs, in which Bach2 then bound to regulatory regions of inflammation-associated genes in myeloid cells. Of note, in AMs, Bach2 restricted aberrant responses to excessive T cell-induced inflammation, whereas, in T cells, Bach2 puts a brake on T cell activation. Moreover, Bach2 stimulated the expression of multiple histone genes in AMs, suggesting a role of Bach2 in proper histone expression. We conclude that Bach2 is critical for the maintenance of AM identity and self-renewal in inflammatory environments. Treatments targeting T cells may offer new therapeutic strategies for managing secondary PAP.
Collapse
Affiliation(s)
- Risa Ebina-Shibuya
- From the Department of Biochemistry.,the Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Sendai, Miyagi 980-8574, Japan
| | - Mitsuyo Matsumoto
- From the Department of Biochemistry.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, Miyagi 980-8575, Japan
| | - Makoto Kuwahara
- the Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kyoung-Jin Jang
- the Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Yoshidakonoe-machi, Sakyo-ku, Kyoto 606-8501, Japan.,the Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, Matsuokashimoaizuki 23-3, Yoshida-gun Eiheiji-cho, Fukui 980-1193, Japan
| | - Manabu Sugai
- the Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Yoshidakonoe-machi, Sakyo-ku, Kyoto 606-8501, Japan.,the Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, Matsuokashimoaizuki 23-3, Yoshida-gun Eiheiji-cho, Fukui 980-1193, Japan
| | - Yoshiaki Ito
- the Cancer Stem Cells and Biology Programme, Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Ryo Funayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, Miyagi 980-8575, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, Miyagi 980-8575, Japan
| | | | | | - Yasunobu Okamura
- the Graduate School of Information Sciences, Tohoku University, Aoba 6-3-09, Aramaki, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kinoshita
- the Graduate School of Information Sciences, Tohoku University, Aoba 6-3-09, Aramaki, Sendai, Miyagi 980-8579, Japan
| | - Kohei Kometani
- the RIKEN Center for Integrative Medical Sciences, Suehiro-cho 1-7-22, Yokohama Tsurumi-ku, Kanagawa 230-0045, Japan, and
| | - Tomohiro Kurosaki
- the RIKEN Center for Integrative Medical Sciences, Suehiro-cho 1-7-22, Yokohama Tsurumi-ku, Kanagawa 230-0045, Japan, and.,the WPI Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
| | | | - Masakazu Ichinose
- the Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Sendai, Miyagi 980-8574, Japan
| | - Masakatsu Yamashita
- the Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kazuhiko Igarashi
- From the Department of Biochemistry, .,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
35
|
Gupta A, Zheng SL. Genetic disorders of surfactant protein dysfunction: when to consider and how to investigate. Arch Dis Child 2017; 102:84-90. [PMID: 27417306 DOI: 10.1136/archdischild-2012-303143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 01/02/2023]
Abstract
Genetic mutations affecting proteins required for normal surfactant protein function are a rare cause of respiratory disease. The genes identified that cause respiratory disease are surfactant protein B, surfactant protein C, ATP binding cassette number A3 and thyroid transcription factor-1. Surfactant protein dysfunction syndromes are highly variable in their onset and presentation, and are dependent on the genes involved and environmental factors. This heterogeneous group of conditions can be associated with significant morbidity and mortality. Presentation may be in a full-term neonate with acute and progressive respiratory distress with a high mortality or later in childhood or adulthood with signs and symptoms of interstitial lung disease. Genetic testing for these disorders is now available, providing a non-invasive diagnostic test. Other useful investigations include radiological imaging and lung biopsy. This review will provide an overview of the genetic and clinical features of surfactant protein dysfunction syndromes, and discuss when to suspect this diagnosis, how to investigate it and current treatment options.
Collapse
Affiliation(s)
- Atul Gupta
- Department of Paediatric Respiratory Medicine, King's College Hospital and King's College London, London, UK
| | - Sean Lee Zheng
- Department of Paediatric Respiratory Medicine, King's College Hospital and King's College London, London, UK
| |
Collapse
|
36
|
Liu Y, Zhang Y, Jiang Q, Rao M, Sheng Z, Zhang Y, Du W, Hao H, Zhao X, Xu Z, Liu J, Zhu H. Identification of Valid Housekeeping Genes for Real-Time Quantitative PCR Analysis of Collapsed Lung Tissues of Neonatal Somatic Cell Nuclear Transfer-Derived Cattle. Cell Reprogram 2016; 17:360-7. [PMID: 26393896 DOI: 10.1089/cell.2015.0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cloned calves produced by somatic cell nuclear transfer frequently suffer alveolar collapse as newborns. To study the underlying pathophysiological mechanisms responsible for this phenomenon, the expression profiles of numerous genes involved in lung development need to be investigated. Quantitative real-time PCR is commonly adopted in gene expression analysis. However, selection of an appropriate reference gene for normalization is critical for obtaining reliable and accurate results. Seven housekeeping genes-β-glucuronidase (GUSB), phosphoglycerate kinase 1 (PGK1), β-2-microglobolin (B2M), peptidylprolyl isomerase A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), TATA-box binding protein (TBP), and 5.8S ribosomal RNA (5.8S rRNA)-were selected and evaluated as candidates. Their gene expression levels in the collapsed lungs of deceased neonate cloned calves and normal lung derived from normal calves were assessed. The ranking of gene expression stability was estimated by the geNorm, NormFinder, and BestKeeper programs. 5.8S rRNA and PPIA were determined to be the most stable reference genes by geNorm and BestKeeper, whereas the combination of GAPDH and TBP was suggested as reference genes by NormFinder. Taking these results into account, we conclude that 5.8S rRNA and PPIA could be the most reliable reference genes for studying the genes involved in alveolar collapse. Moreover, 5.8S rRNA could be represented as a uniform reference gene in similar cases.
Collapse
Affiliation(s)
- Yan Liu
- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193, China .,4 These authors contributed equally to this work
| | - Yunhai Zhang
- 2 Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University , Hefei 230036, China .,4 These authors contributed equally to this work
| | - Qiuling Jiang
- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193, China
| | - Man Rao
- 3 Geno-Ming Bioscience , Beijing, 101101, China
| | - Zheya Sheng
- 3 Geno-Ming Bioscience , Beijing, 101101, China
| | - Yu Zhang
- 2 Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University , Hefei 230036, China
| | - Weihua Du
- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193, China
| | - Haisheng Hao
- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193, China
| | - Xueming Zhao
- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193, China
| | - Zhe Xu
- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193, China
| | - Jianning Liu
- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193, China
| | - Huabin Zhu
- 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing, 100193, China
| |
Collapse
|
37
|
Luo Y, Chen H, Ren S, Li N, Mishina Y, Shi W. BMP signaling is essential in neonatal surfactant production during respiratory adaptation. Am J Physiol Lung Cell Mol Physiol 2016; 311:L29-38. [PMID: 27190064 DOI: 10.1152/ajplung.00391.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
Deficiency in pulmonary surfactant results in neonatal respiratory distress, and the known genetic mutations in key components of surfactant only account for a small number of cases. Therefore, determining the regulatory mechanisms of surfactant production and secretion, particularly during the transition from prenatal to neonatal stages, is essential for better understanding of the pathogenesis of human neonatal respiratory distress. We have observed significant increase of bone morphogenetic protein (BMP) signaling in neonatal mouse lungs immediately after birth. Using genetically manipulated mice, we then studied the relationship between BMP signaling and surfactant production in neonates. Blockade of endogenous BMP signaling by deleting Bmpr1a (Alk3) or Smad1 in embryonic day 18.5 in perinatal lung epithelial cells resulted in severe neonatal respiratory distress and death, accompanied by atelectasis in histopathology and significant reductions of surfactant protein B and C, as well as Abca3, whereas prenatal lung development was not significantly affected. We then identified a new BMP-Smad1 downstream target, Nfatc3, which is known as an important transcription activator for surfactant proteins and Abca3. Furthermore, activation of BMP signaling in cultured lung epithelial cells was able to promote endogenous Nfatc3 expression and also stimulate the activity of an Nfatc3 promoter that contains a Smad1-binding site. Therefore, our study suggests that the BMP-Alk3-Smad1-Nfatc3 regulatory loop plays an important role in enhancing surfactant production in neonates, possibly helping neonatal respiratory adaptation from prenatal amniotic fluid environment to neonatal air breathing.
Collapse
Affiliation(s)
- Yongfeng Luo
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hui Chen
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Siying Ren
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Nan Li
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan, Ann Arbor, Michigan
| | - Wei Shi
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California;
| |
Collapse
|
38
|
Chen YJ, Wambach JA, DePass K, Wegner DJ, Chen SK, Zhang QY, Heins H, Cole FS, Hamvas A. Population-based frequency of surfactant dysfunction mutations in a native Chinese cohort. World J Pediatr 2016; 12:190-5. [PMID: 26547207 DOI: 10.1007/s12519-015-0047-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Rare mutations in surfactant-associated genes contribute to neonatal respiratory distress syndrome. The frequency of mutations in these genes in the Chinese population is unknown. METHODS We obtained blood spots from the Guangxi Neonatal Screening Center in Nanning, China that included Han (n=443) and Zhuang (n=313) ethnic groups. We resequenced all exons of the surfactant proteins-B (SFTPB), -C (SFTPC), and the ATP-binding cassette member A3 (ABCA3) genes and compared the frequencies of 5 common and all rare variants. RESULTS We found minor differences in the frequencies of the common variants in the Han and Zhuang cohorts. We did not find any rare mutations in SFTPB or SFTPC, but we found three ABCA3 mutations in the Han [minor allele frequency (MAF)=0.003] and 7 in the Zhuang (MAF=0.011) cohorts (P=0.10). The ABCA3 mutations were unique to each cohort; five were novel. The collapsed carrier rate of rare ABCA3 mutations in the Han and Zhuang populations combined was 1.3%, which is significantly lower than that in the United States (P<0.001). CONCLUSION The population-based frequency of mutations in ABCA3 in south China newborns is significantly lower than that in United States. The contribution of these rare ABCA3 mutations to disease burden in the south China population is still unknown.
Collapse
Affiliation(s)
- Yu-Jun Chen
- Division of Neonatology, Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Jennifer Anne Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Kelcey DePass
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Daniel James Wegner
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Shao-Ke Chen
- Department of Pediatrics, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Qun-Yuan Zhang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - Hillary Heins
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Francis Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Aaron Hamvas
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA. .,Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, 225 E. Chicago Ave, Box No. 45, Chicago, IL, 60611, USA.
| |
Collapse
|
39
|
O'Reilly R, Kilner D, Ashworth M, Aurora P. Diffuse lung disease in infants less than 1 year of age: Histopathological diagnoses and clinical outcome. Pediatr Pulmonol 2015; 50:1000-8. [PMID: 25603783 DOI: 10.1002/ppul.23124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/18/2014] [Accepted: 09/28/2014] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Interstitial lung disease (ILD) in infants is rare. Clinical and radiological features are often non-specific, and overlap with growth disorders and infection. In infants with severe respiratory compromise, lung biopsy is often necessary to guide acute management, but the risk and diagnostic yield of this procedure is incompletely understood. AIMS To retrospectively review infants undergoing open lung biopsy for suspected ILD at a large referral center; to determine morbidity and mortality related to the procedure; and to describe subsequent diagnosis and outcome. METHODS Lung biopsies performed in infants (aged <1 year) between January 1, 2005 and March 31, 2012 were identified and clinical data were collected. Biopsies were reclassified using the ChILD classification for diffuse lung disorders in infants. RESULTS Twenty-seven infants were identified, with the number of biopsies performed increasing each year over the study period. There was no mortality and negligible morbidity associated with biopsy. Diagnoses seen were similar to those reported by the ChILD network. Histopathological diagnosis was not compatible with life in the absence of lung transplant in 6/27 (22%) of infants. Of the 14 children longitudinally followed up (median 0.5 (0.4 - 5.81) years), only four continued to require supplemental oxygen. CONCLUSION Lung biopsy in infants with suspected ILD is safe, and histopathological diagnosis frequently assists treatment decisions, particularly with regard to withdrawal of care.
Collapse
Affiliation(s)
- Ruth O'Reilly
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK
| | - David Kilner
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK
| | - Michael Ashworth
- Department of Pathology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK.,Portex Respiratory Unit, UCL Institute of Child Health, London, UK
| |
Collapse
|
40
|
Borowski KS, Clark EAS, Lai Y, Wapner RJ, Sorokin Y, Peaceman AM, Iams JD, Leveno KJ, Harper M, Caritis SN, Miodovnik M, Mercer BM, Thorp JM, O'Sullivan MJ, Ramin SM, Carpenter MW, Rouse DJ, Sibai B. Neonatal Genetic Variation in Steroid Metabolism and Key Respiratory Function Genes and Perinatal Outcomes in Single and Multiple Courses of Corticosteroids. Am J Perinatol 2015; 32:1126-32. [PMID: 26445141 PMCID: PMC4860012 DOI: 10.1055/s-0035-1549217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of the study is to evaluate the association of steroid metabolism and respiratory gene polymorphisms in neonates exposed to antenatal corticosteroids (ACS) with respiratory outcomes, small for gestational age (SGA), and response to repeat ACS. STUDY DESIGN This candidate gene study is a secondary analysis of women enrolled in a randomized controlled trial of single versus weekly courses of ACS. Nineteen single nucleotide polymorphisms (SNPs) in 13 steroid metabolism and respiratory function genes were evaluated. DNA was extracted from placenta or fetal cord serum and analyzed with TaqMan genotyping. Each SNP was evaluated for association via logistic regression with respiratory distress syndrome (RDS), continuous positive airway pressure (CPAP)/ventilator use (CPV), and SGA. RESULTS CRHBP, CRH, and CRHR1 minor alleles were associated with an increased risk of SGA. HSD11B1 and SCNN1B minor alleles were associated with an increased likelihood of RDS. Carriage of minor alleles in SerpinA6 was associated with an increased risk of CPV. CRH and CRHR1 minor alleles were associated with a decreased likelihood of CPV. CONCLUSION Steroid metabolism and respiratory gene SNPs are associated with respiratory outcomes and SGA in patients exposed to ACS. Risks for respiratory outcomes are affected by minor allele carriage as well as by treatment with multiple ACS.
Collapse
Affiliation(s)
- K S Borowski
- Departments of Obstetrics and Gynecology, University of Iowa, Iowa City, Iowa
| | | | - Y Lai
- The George Washington University Biostatistics Center, Washington, District of Columbia
| | - R J Wapner
- Drexel University, Philadelphia, Pennsylvania
| | - Y Sorokin
- Wayne State University, Detroit, Michigan
| | - A M Peaceman
- Departments of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois
| | - J D Iams
- Departments of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - K J Leveno
- Departments of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - M Harper
- Departments of Obstetrics and Gynecology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - S N Caritis
- Departments of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - B M Mercer
- Departments of Obstetrics and Gynecology, Case Western Reserve University-MetroHealth Medical Center, Cleveland, Ohio
| | - J M Thorp
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - S M Ramin
- The University of Texas Health Science Center at Houston, Houston, Texas
| | - M W Carpenter
- Departments of Obstetrics and Gynecology, Brown University, Providence, Rhode Island
| | - D J Rouse
- University of Alabama at Birmingham, Birmingham, Alabama
| | - B Sibai
- Departments of Obstetrics and Gynecology, University of Tennessee, Memphis, Tennessee
| |
Collapse
|
41
|
Lock MC, McGillick EV, Orgeig S, Zhang S, McMillen IC, Morrison JL. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung. J Histochem Cytochem 2015; 63:866-78. [PMID: 26297137 DOI: 10.1369/0022155415600201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 07/21/2015] [Indexed: 11/22/2022] Open
Abstract
Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung's ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro-SP-B and pro-SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia (MCL,EVM,SZ,CMM,JLM)
| | - Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia (MCL,EVM,SZ,CMM,JLM),Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia (EVM,SO)
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia (EVM,SO)
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia (MCL,EVM,SZ,CMM,JLM)
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia (MCL,EVM,SZ,CMM,JLM)
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia (MCL,EVM,SZ,CMM,JLM)
| |
Collapse
|
42
|
Regulatory Rewiring in a Cross Causes Extensive Genetic Heterogeneity. Genetics 2015; 201:769-77. [PMID: 26232408 DOI: 10.1534/genetics.115.180661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic heterogeneity occurs when individuals express similar phenotypes as a result of different underlying mechanisms. Although such heterogeneity is known to be a potential source of unexplained heritability in genetic mapping studies, its prevalence and molecular basis are not fully understood. Here we show that substantial genetic heterogeneity underlies a model phenotype--the ability to grow invasively--in a cross of two Saccharomyces cerevisiae strains. The heterogeneous basis of this trait across genotypes and environments makes it difficult to detect causal loci with standard genetic mapping techniques. However, using selective genotyping in the original cross, as well as in targeted backcrosses, we detected four loci that contribute to differences in the ability to grow invasively. Identification of causal genes at these loci suggests that they act by changing the underlying regulatory architecture of invasion. We verified this point by deleting many of the known transcriptional activators of invasion, as well as the gene encoding the cell surface protein Flo11 from five relevant segregants and showing that these individuals differ in the genes they require for invasion. Our work illustrates the extensive genetic heterogeneity that can underlie a trait and suggests that regulatory rewiring is a basic mechanism that gives rise to this heterogeneity.
Collapse
|
43
|
Human Surfactant Proteins A2 (SP-A2) and B (SP-B) Genes as Determinants of Respiratory Distress Syndrome. Indian Pediatr 2015; 52:391-4. [PMID: 26061924 DOI: 10.1007/s13312-015-0643-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study the relationship between SP-A2 and SP-B gene polymorphisms and respiratory distress syndrome in preterm neonates. DESIGN Cross-sectional. SETTING Neonatal intensive care unit and the Molecular Biology unit of the Chemical Pathology Department, Kasr Alainy hospital, Cairo University. PARTICIPANTS Sixty-five preterm infants with respiratory distress syndrome and 50 controls. The genomic DNA was isolated using DNA extraction kits. SYBR Green-based real-time PCR was used to determine the variant genotypes of SP-A2 c.751 G>A and SP-B c.8714 G>C single nucleotide polymorphisms. RESULTS Homozygosity of SP-A (OR 46, 95% CI 14-151) and SP-B (OR 5.2, 95% CI 2.3-11.4) alleles increased the risk of respiratory distress syndrome. The logistic regression model showed that genotypes SP-A2 (OR 164) and SP-B (OR 18) were directly related to the occurrence of respiratory distress syndrome, whereas gestational age (OR 0.57) and 5-minute Apgar score (OR 0.19) were inversely related to its occurrence. CONCLUSIONS There is a possible involvement of SP-A2 and SP-B genes polymorphisms in the genetic predisposition to respiratory distress syndrome.
Collapse
|
44
|
Whitsett JA, Wert SE, Weaver TE. Diseases of pulmonary surfactant homeostasis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:371-93. [PMID: 25621661 DOI: 10.1146/annurev-pathol-012513-104644] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Divisions of Neonatology, Perinatal Biology, and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229; , ,
| | | | | |
Collapse
|
45
|
Kurath-Koller S, Resch B, Kraschl R, Windpassinger C, Eber E. Surfactant Protein B Deficiency Caused by Homozygous C248X Mutation-A Case Report and Review of the Literature. AJP Rep 2015. [PMID: 26199800 PMCID: PMC4502623 DOI: 10.1055/s-0035-1545668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Objective Surfactant protein B (SP-B) deficiency is a rare autosomal recessive disorder that is usually rapidly fatal. The c.397delCinsGAA mutation (121ins2) in exon 4 is found in more than two-thirds of patients. Design We report on a fatal case of SP-B deficiency caused by a homozygous C248X mutation in exon 7 of the SP-B gene. In addition, we provide an update of the current literature. The EMBASE, MEDLINE, and CINAHL databases were systematically searched to identify all papers published in the English and German literature on SP-B deficiency between 1989 and 2013. Results SP-B deficiency is characterized by progressive hypoxemic respiratory failure generally in full-term infants. They present with symptoms of respiratory distress and hypoxemia; chest X-ray resembles hyaline membrane disease. Prenatal diagnosis is possible from amniotic fluid or chorionic villi sampling. Conclusion Thirty-four mutations have been published in the literature. Treatment options are scarce. Gene therapy is hoped to be an option in the future.
Collapse
Affiliation(s)
- Stefan Kurath-Koller
- Division of General Pediatrics, Paediatric Department, Medical University of Graz, Graz, Austria
| | - Bernhard Resch
- Division of Neonatology, Paediatric Department, Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Austria
| | - Raimund Kraschl
- Division of Neonatology, Pediatric Department, General Hospital of Klagenfurt, Klagenfurt, Austria
| | | | - Ernst Eber
- Division of Pulmonology, Paediatric Department, Medical University of Graz, Graz, Austria
| |
Collapse
|
46
|
Interstitial lung disease: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc 2015; 11 Suppl 3:S169-77. [PMID: 24754826 DOI: 10.1513/annalsats.201312-429ld] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Population-based, longitudinal studies spanning decades linking risk factors in childhood, adolescence and early adulthood to incident clinical interstitial lung disease (ILD) events in late adulthood have not been performed. In addition, no observational or randomized clinical trials have been conducted; therefore, there is presently no evidence to support the notion that reduction of risk factor levels in early life prevents ILD events in adult life. Primary prevention strategies are host-directed interventions designed to modify adverse risk factors (i.e., smoking) with the goal of preventing the development of ILD, whereas primordial prevention for ILD can be defined as the elimination of external risk factors (i.e., environmental pollutants). As no ILD primary prevention studies have been previously conducted, we propose that research studies that promote implementation of primary prevention strategies could, over time, make a subset of ILD preventable. Herein, we provide a number of initial steps required for the future implementation of prevention strategies; this statement discusses the rationale and available evidence that support potential opportunities for primordial and primary prevention, as well as fertile areas for future research of preventive intervention in ILD.
Collapse
|
47
|
Hereditary interstitial lung diseases manifesting in early childhood in Japan. Pediatr Res 2014; 76:453-8. [PMID: 25105258 DOI: 10.1038/pr.2014.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/12/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Genetic variations associated with interstitial lung diseases (ILD) have not been extensively studied in Japanese infants. METHODS Forty-three infants with unexplained lung dysfunction were studied. All 43, 22, and 17 infants underwent analyses of surfactant protein (SP)-C gene (SFTPC) and ATP-binding cassette A3 gene (ABCA3), SP-B gene (SFTPB), and SP-B western blotting, respectively. Two and four underwent assessment of granulocyte macrophage colony-stimulating factor-stimulating phosphorylation of signal transducer and activator of transcription-5 (pSTAT-5) and analyses of FOXF1 gene (FOXF1), respectively. RESULTS ILD were diagnosed clinically in nine infants: four, three, and two had interstitial pneumonitis, hereditary pulmonary alveolar proteinosis (hPAP), and alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), respectively. Genetic variations considered responsible were detected in six (67%) of the nine infants with ILD: three with hPAP (SFTPC p.Leu45Arg and p.Gln145fs, and ABCA3 p.Arg1583Trp/p.Val1495CysfsX21), two with interstitial pneumonitis (SFTPC p.Lys63Glu and p.Ser72Asn/p.Gly100Ala), and one with ACD/MPV (FOXF1 p.Leu300ArgfsX79). None showed SFTPB mutations or defects in pSTAT-5. The 17 bronchoalveolar lavage or tracheal aspirates contained enough SP-B protein. CONCLUSION The SP-C abnormality was most prevalent, and SP-B deficiency was rare in Japanese infants with hereditary ILD.
Collapse
|
48
|
Jo HS. Genetic risk factors associated with respiratory distress syndrome. KOREAN JOURNAL OF PEDIATRICS 2014; 57:157-63. [PMID: 24868212 PMCID: PMC4030116 DOI: 10.3345/kjp.2014.57.4.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 03/14/2014] [Indexed: 01/06/2023]
Abstract
Respiratory distress syndrome (RDS) among preterm infants is typically due to a quantitative deficiency of pulmonary surfactant. Aside from the degree of prematurity, diverse environmental and genetic factors can affect the development of RDS. The variance of the risk of RDS in various races/ethnicities or monozygotic/dizygotic twins has suggested genetic influences on this disorder. So far, several specific mutations in genes encoding surfactant-associated molecules have confirmed this. Specific genetic variants contributing to the regulation of pulmonary development, its structure and function, or the inflammatory response could be candidate risk factors for the development of RDS. This review summarizes the background that suggests the genetic predisposition of RDS, the identified mutations, and candidate genetic polymorphisms of pulmonary surfactant proteins associated with RDS.
Collapse
Affiliation(s)
- Heui Seung Jo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
49
|
Hamvas A, Deterding R, Balch WE, Schwartz DA, Albertine KH, Whitsett JA, Cardoso WV, Kotton DN, Kourembanas S, Hagood JS. Diffuse lung disease in children: summary of a scientific conference. Pediatr Pulmonol 2014; 49:400-9. [PMID: 23798474 PMCID: PMC4145861 DOI: 10.1002/ppul.22805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/24/2013] [Indexed: 12/14/2022]
Abstract
A multi-disciplinary scientific conference focused on diffuse and interstitial lung diseases in children was held in La Jolla, CA in June 2012. The conference brought together clinicians (including Pediatric and Adult Pulmonologists, Neonatologists, Pathologists, and Radiologists), clinical researchers, basic scientists, government agency representatives, patient advocates, as well as children affected by diffuse lung disease (DLD) and their families, to review recent scientific developments and emerging concepts in the pathophysiology of childhood DLD. Invited speakers discussed translational approaches, including genetics and proteomics, epigenetics and epigenomics, models of DLD, including animal models and induced pluripotent stem cells, and regenerative medicine approaches. The presentations of the invited speakers are summarized here.
Collapse
Affiliation(s)
- Aaron Hamvas
- Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Danielle Morse
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| |
Collapse
|