1
|
Sicher N, Aldrich B, Zhang S, Mazur L, Juarez S, Lehman E, Liu D, Gandhi CK. Surfactant protein levels and genetic variants as biomarkers for COVID-19 severity in children. Am J Physiol Lung Cell Mol Physiol 2025; 328:L350-L356. [PMID: 39832502 DOI: 10.1152/ajplung.00318.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/10/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Since its outbreak, the novel coronavirus (COVID-19) has significantly impacted the pediatric population. Pulmonary surfactant dysfunction has been linked to other respiratory diseases in children and COVID-19 in adults, but its role in COVID-19 severity remains unclear. We hypothesized that elevated surfactant protein (SP) levels and single nucleotide polymorphisms (SNPs) of SP genes are associated with severe COVID-19 in children. We enrolled 325 COVID-19 positive children and categorized them as having mild or severe disease. Plasma SP-A, SP-B, and SP-D levels were measured. DNA was extracted and genotyped for SNPs in five SP genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD. Quantile regression was used to compare SP levels between groups, and receiver operating curve analysis determined an optimal cutoff value of SP level for predicting severe COVID-19. Logistic regression evaluated the odds ratio (OR) for severe disease and associations between SNPs and COVID-19 severity. We found that increased plasma SP-A levels, but not SP-B or SP-D, were significantly associated with severe COVID-19. No significant correlation was observed between age and SP levels. A plasma SP-A level of 10 ng/mL was identified as the optimal cutoff for predicting severe COVID-19, with an OR of 5.9, indicating that children with SP-A levels above this threshold are nearly six times more likely to develop severe COVID-19 disease. In addition, the rs8192340 of SFTPC was associated with decreased risk of severe COVID-19 before, but not after, Bonferroni correction. These findings suggest that plasma SP-A may serve as a potential biomarker for severe COVID-19 in children.NEW & NOTEWORTHY Surfactant dysfunction is linked to other pulmonary diseases, but its role in pediatric coronavirus (COVID-19) is unclear. We found elevated plasma surfactant protein (SP)-A levels, but not SP-B or SP-D, significantly associated with severe COVID-19. A plasma SP-A threshold of 10 ng/mL predicted severe COVID-19. The rs8192340 of SFTPC was associated with decreased risk of severe COVID-19 before, but not after, Bonferroni correction. These findings suggest plasma SP-A may serve as a potential biomarker for pediatric COVID-19 severity.
Collapse
Affiliation(s)
- Natalie Sicher
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Brycen Aldrich
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Shaoyi Zhang
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Lauren Mazur
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Susan Juarez
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Erik Lehman
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Dajiang Liu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Chintan K Gandhi
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
2
|
Mapelli M, Salvioni E, Mattavelli I, Banfi C, Ghilardi S, Greco A, Biondi ML, Rovai S, Mancini E, Harari S, Agostoni P. Surfactant-derived protein type B: a new biomarker linked to respiratory failure and lung damage in mild to moderate SARS-CoV-2 pneumonia. ERJ Open Res 2024; 10:00301-2024. [PMID: 39588076 PMCID: PMC11587118 DOI: 10.1183/23120541.00301-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024] Open
Abstract
Background The COVID-19 pandemic has led to significant concern due to its impact on human health, particularly through pneumonia-induced lung damage. Surfactant proteins A and D (SP-A and SP-D) are implicated in COVID-19 lung damage, but the role of surfactant protein B (SP-B) remains unclear. Methods We conducted a single-centre, prospective observational study involving 73 hospitalised COVID-19 pneumonia patients. SP-B levels were measured within 48 h of admission, alongside SP-A and SP-D in a subset. Clinical data were collected, and follow-up visits were conducted after 6 months. Results At hospitalisation, circulating immature SP-B levels measured in 73 patients (median 26.31 arbitrary units (AU) (interquartile range 14.27-41.31)) correlated significantly with lung involvement (r=0.447, p<0.001) and oxygen support requirement (p=0.005). SP-B levels did not predict mechanical ventilation or intensive care unit admission. SP-B decreased significantly (p<0.001) from 25.53 AU (14.36-41.46) at the acute hospitalisation to 12.73 AU (9.12-20.23) at the 6-month follow-up, whereas SP-A and SP-D did not change significantly. Immature SP-B (but not SP-A and SP-D) was confirmed to be significantly associated with the need for oxygen support (n=26, 58%) during the hospitalisation (p<0.05). Conclusion Immature SP-B emerges as a potential biomarker for COVID-19 pneumonia severity and prognosis. Its dynamic changes suggest utility in monitoring disease progression and long-term outcomes, despite limitations in predicting hard end-points. Larger studies are needed to validate these findings and understand the underlying mechanisms of surfactant protein dysregulation in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Massimo Mapelli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | | | | | | | | | - Sara Rovai
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Sergio Harari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria, MultiMedica IRCCS, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Lavis P, Garabet A, Cardozo AK, Bondue B. The fibroblast activation protein alpha as a biomarker of pulmonary fibrosis. Front Med (Lausanne) 2024; 11:1393778. [PMID: 39364020 PMCID: PMC11446883 DOI: 10.3389/fmed.2024.1393778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare, chronic, and progressive interstitial lung disease with an average survival of approximately 3 years. The evolution of IPF is unpredictable, with some patients presenting a relatively stable condition with limited progression over time, whereas others deteriorate rapidly. In addition to IPF, other interstitial lung diseases can lead to pulmonary fibrosis, and up to a third have a progressive phenotype with the same prognosis as IPF. Clinical, biological, and radiological risk factors of progression were identified, but no specific biomarkers of fibrogenesis are currently available. A recent interest in the fibroblast activation protein alpha (FAPα) has emerged. FAPα is a transmembrane serine protease with extracellular activity. It can also be found in a soluble form, also named anti-plasmin cleaving enzyme (APCE). FAPα is specifically expressed by activated fibroblasts, and quinoline-based specific inhibitors (FAPI) were developed, allowing us to visualize its distribution in vivo by imaging techniques. In this review, we discuss the use of FAPα as a useful biomarker for the progression of lung fibrosis, by both its assessment in human fluids and/or its detection by imaging techniques and immunohistochemistry.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
| | - Ani Garabet
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Department of Pneumology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- European Reference Network for Rare Pulmonary Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
4
|
Moda M, Sumikawa H, Shintani R, Takeuchi N, Kagawa T, Takimoto T, Arai T. Natural history of indolent-anti-synthetase syndrome-associated interstitial lung disease. Respir Investig 2024; 62:872-878. [PMID: 39084070 DOI: 10.1016/j.resinv.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Anti-synthetase syndrome-associated interstitial lung disease (ASS-ILD) may occur without myositis. Although a recent Japanese guide proposed a watch-and-wait approach for chronic ASS-ILD without obvious progression, the natural history of this subgroup and the appropriateness of the watch-and-wait approach remain unclear. We aimed to describe the natural history of ASS-ILD, that is sufficiently indolent to be a candidate for the watch-and-wait approach. METHODS Among consecutive patients with ASS-ILD, we retrospectively identified those without myositis, acute/subacute onset, and significant lung function impairment, which qualified them as indolent-ASS-ILD cases, and described their natural course. Additionally, we evaluated the risk factors for fibrosis progression on computed tomography (CT) using the Cox proportional hazards model. RESULTS Among 80 patients with ASS-ILD, we identified 33 with indolent-ASS-ILD, all of whom were initially followed up with a watch-and-wait approach. Among 30 patients with sufficient follow-up data, 27 (90%) showed a stable course without treatment over 24 months. Subsequently, four patients experienced ≥10% relative forced vital capacity (FVC) decline without treatment during a median follow-up duration of 81 months. Seven patients showed fibrosis progression with >10% increase in the total lung area on CT. Higher levels of Krebs von den Lungen-6 (KL-6) and surfactant protein-D (SP-D) were associated with fibrosis progression on CT. CONCLUSION Most patients with indolent-ASS-ILD did not experience ≥10% relative FVC decline over five years without treatment. However, fibrosis progression on CT, which seemed to precede significant FVC decline, occurred more frequently, especially in patients with higher KL-6 and SP-D levels.
Collapse
Affiliation(s)
- Mitsuhiro Moda
- Department of Respiratory Medicine, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka, 591-8555, Japan
| | - Hiromitsu Sumikawa
- Department of Radiology, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka, 591-8555, Japan
| | - Ryota Shintani
- Department of Respiratory Medicine, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka, 591-8555, Japan
| | - Naoko Takeuchi
- Department of Respiratory Medicine, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka, 591-8555, Japan
| | - Tomoko Kagawa
- Department of Respiratory Medicine, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka, 591-8555, Japan
| | - Takayuki Takimoto
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka, 591-8555, Japan
| | - Toru Arai
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka, 591-8555, Japan.
| |
Collapse
|
5
|
Sakuma N, Abe M, Ishii D, Kawasaki T, Arakawa N, Matsuyama S, Saito Y, Suzuki T, Tatsumi K. Serum stratifin measurement is useful for evaluating disease severity and outcomes in patients with acute exacerbation of interstitial lung disease: a retrospective study. BMC Pulm Med 2024; 24:364. [PMID: 39075455 PMCID: PMC11285470 DOI: 10.1186/s12890-024-03184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Serum levels of stratifin (SFN), a member of the 14-3-3 protein family, increase in patients with drug-induced lung injury associated with diffuse alveolar damage. Therefore, we hypothesised that SFN levels would be higher in those experiencing acute exacerbation of interstitial lung disease (AE-ILD). A secondary analysis was also planned to determine whether SFN levels could discriminate survival in those with AE. METHODS Thirty-two patients with clinically stable ILD (CS-ILD) and 22 patients with AE-ILD were examined to assess whether high serum SFN levels were associated with AE-ILD and whether SFN levels reflected disease severity or prognosis in patients with AE-ILD. RESULTS Serum SFN levels were higher in the AE-ILD group than in the CS-ILD group (8.4 ± 7.6 vs. 1.3 ± 1.2 ng/mL, p < 0.001). The cut-off value of the serum SFN concentration for predicting 90-day and 1-year survival was 6.6 ng/mL. SFN levels were higher in patients who died within 90 days and 1 year than in patients who survived beyond these time points (13.5 ± 8.7 vs. 5.6 ± 5.3 ng/mL; p = 0.011 and 13.1 ± 7.5 vs. 3.1 ± 1.9 ng/mL; p < 0.001, respectively) in the AE-ILD group. When this cut-off value was used, the 90-day and 1-year survival rates were significantly better in the population below the cut-off value than in those above the cut-off value (p = 0.0017 vs. p < 0.0001). CONCLUSIONS High serum SFN levels are associated with AE-ILD and can discriminate survival in patients with AE-ILD.
Collapse
Grants
- 24mk0121256h0502 the Japan Agency for Medical Research and Developmen
- 24mk0121256h0502 the Japan Agency for Medical Research and Developmen
- 24mk0121256h0502 the Japan Agency for Medical Research and Developmen
- 24mk0121256h0502 the Japan Agency for Medical Research and Developmen
- 24mk0121256h0502 the Japan Agency for Medical Research and Developmen
- 24mk0121256h0502 the Japan Agency for Medical Research and Developmen
- 243fa627003h0003 AMED
- 243fa627003h0003 AMED
- 243fa627003h0003 AMED
- 243fa627003h0003 AMED
- 243fa627003h0003 AMED
- 243fa627003h0003 AMED
- 20FC1027 the Intractable Respiratory Diseases and Pulmonary Hypertension Research Group, Ministry of Health, Labor and Welfare, Japan
- 20FC1027 the Intractable Respiratory Diseases and Pulmonary Hypertension Research Group, Ministry of Health, Labor and Welfare, Japan
- 20FC1027 the Intractable Respiratory Diseases and Pulmonary Hypertension Research Group, Ministry of Health, Labor and Welfare, Japan
- 20FC1027 the Intractable Respiratory Diseases and Pulmonary Hypertension Research Group, Ministry of Health, Labor and Welfare, Japan
- 20FC1027 the Intractable Respiratory Diseases and Pulmonary Hypertension Research Group, Ministry of Health, Labor and Welfare, Japan
- 20FC1027 the Intractable Respiratory Diseases and Pulmonary Hypertension Research Group, Ministry of Health, Labor and Welfare, Japan
Collapse
Affiliation(s)
- Noriko Sakuma
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan.
| | - Mitsuhiro Abe
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Daisuke Ishii
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Noriaki Arakawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kanagawa, 210-9501, Japan
| | - Shinichiro Matsuyama
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kanagawa, 210-9501, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kanagawa, 210-9501, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| |
Collapse
|
6
|
Okaba K, Inokuchi G, Horioka K, Iwase H, Inoue H, Motomura A, Ishii N, Moue C, Shiomi T, Yajima D. Forensic application of three interstitial pneumonia markers: search for new pneumonia markers in dead bodies. Int J Legal Med 2024; 138:1583-1592. [PMID: 38379061 DOI: 10.1007/s00414-024-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
In forensic cases, detailed identification of pneumonia is important. Our objective was to statistically determine the applicability of three interstitial lung disease (ILD) markers for forensic diagnosis using serum collected from dead bodies with various postmortem intervals (PMIs). We retrospectively analyzed the levels of postmortem serum Krebs von den Lungen-6 (KL-6) and pulmonary surfactant-associated proteins A and D (SP-A and SP-D) using 221 samples obtained during forensic autopsy at our facility from 2019 to 2023. We evaluated the diagnostic efficacy of ILD markers for various pneumonias against the pathological diagnosis, and examined the assessment of the severity of ILD. When comparing the ILD group with bacterial pneumonia (BP) versus the control group, there was a significant increase in KL-6 in the ILD group. When comparing the severe ILD (SILD) group with the mild ILD (MILD) group, there was a significant increase in KL-6 and SP-D in the SILD group. The optimal cutoff values for differentiating SILD were 607.0 U/mL for KL-6, 55.5 ng/mL for SP-A, and 160.0 ng/mL for SP-D, and the sensitivity/specificity (%) of KL-6, SP-A, and SP-D for SILD were 84.1/95.2, 55.6/85.7, and 66.7/74.6, respectively. This is the first study to examine KL-6 in postmortem serum in forensic medicine. By analyzing dead bodies with various PMIs, our results confirmed statistically that postmortem serum KL-6 specifically detects ILD, postmortem serum SP-A has high sensitivity to lung injury, and postmortem serum SP-D is potentially useful in assessing the severity of ILD.
Collapse
Affiliation(s)
- Keisuke Okaba
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan.
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Go Inokuchi
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kie Horioka
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
- Department of Forensic Medicine, Research Unit of Internal Medicine, Medical Research Center, University of Oulu, Oulu, Finland
| | - Hirotaro Iwase
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Inoue
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Ayumi Motomura
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Namiko Ishii
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chihiro Moue
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Takayuki Shiomi
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Daisuke Yajima
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Sumi T, Sekikawa M, Koshino Y, Nagayama D, Nagahisa Y, Matsuura K, Shijubou N, Kamada K, Suzuki K, Ikeda T, Michimata H, Watanabe H, Yamada Y, Osuda K, Tanaka Y, Chiba H. Risk factors for severe immune-related pneumonitis after nivolumab plus ipilimumab therapy for non-small cell lung cancer. Thorac Cancer 2024; 15:1572-1581. [PMID: 38828610 PMCID: PMC11246787 DOI: 10.1111/1759-7714.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The efficacy of anti-CTLA-4 antibody (ipilimumab) plus anti-programmed cell death 1 antibody (nivolumab) in treating advanced non-small cell lung cancer (NSCLC) is impeded by an elevated risk of severe immune-related adverse events. However, our understanding of associations among pre-existing fibrosis, emphysematous changes, and objective indicators as predictive factors is limited for severe pneumonitis in NSCLC patients receiving this combination therapy. Thus, we retrospectively investigated these associations, including overall tumor burden, before treatment initiation in the Japanese population. METHODS We focused on patients (n = 76) with pre-existing interstitial lung disease (ILD) to identify predictors of severe pneumonitis. Variables included age, sex, smoking status, programmed cell death ligand 1 expression, overall tumor burden, chest computed tomography-confirmed fibrosis, serum markers, and respiratory function test results. RESULTS Severe pneumonitis was more frequent in patients with squamous cell carcinoma, fibrosis, low diffusing capacity for carbon monoxide (%DLCO), and high surfactant protein D (SP-D) level. Notably, squamous cell carcinoma, baseline %DLCO, and SP-D level were significant risk factors. Our findings revealed the nonsignificance of tumor burden (≥85 mm) in predicting severe pneumonitis, emphasizing the importance of pre-existing ILD. Conversely, in cases without pre-existing fibrosis, severe pneumonitis was not associated with %DLCO or SP-D level (93.2% vs. 91.9%, and 63.3 vs. 40.9 ng/mL, respectively) and was more common in patients with a large overall tumor burden (97.5 vs. 70.0 mm). CONCLUSION Vigilant monitoring and early intervention are crucial for patients with squamous cell carcinoma, high SP-D level, or low %DLCO undergoing ipilimumab plus nivolumab therapy.
Collapse
Affiliation(s)
- Toshiyuki Sumi
- Department of Pulmonary Medicine, Hakodate Goryoukaku Hospital, Hakodate, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motoki Sekikawa
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Koshino
- Department of Pulmonary Medicine, Hakodate Goryoukaku Hospital, Hakodate, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Daiki Nagayama
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Nagahisa
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keigo Matsuura
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Shijubou
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koki Kamada
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keito Suzuki
- Department of Pulmonary Medicine, Hakodate Goryoukaku Hospital, Hakodate, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takumi Ikeda
- Department of Pulmonary Medicine, Hakodate Goryoukaku Hospital, Hakodate, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Haruhiko Michimata
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Watanabe
- Department of Pulmonary Medicine, Hakodate Goryoukaku Hospital, Hakodate, Japan
| | - Yuichi Yamada
- Department of Pulmonary Medicine, Hakodate Goryoukaku Hospital, Hakodate, Japan
| | - Koichi Osuda
- Division of Radiology, Hakodate Goryoukaku Hospital, Hakodate, Japan
| | - Yusuke Tanaka
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
D’Agnano V, Mariniello DF, Ruotolo M, Quarcio G, Moriello A, Conte S, Sorrentino A, Sanduzzi Zamparelli S, Bianco A, Perrotta F. Targeting Progression in Pulmonary Fibrosis: An Overview of Underlying Mechanisms, Molecular Biomarkers, and Therapeutic Intervention. Life (Basel) 2024; 14:229. [PMID: 38398739 PMCID: PMC10890660 DOI: 10.3390/life14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Interstitial lung diseases comprise a heterogenous range of diffuse lung disorders, potentially resulting in pulmonary fibrosis. While idiopathic pulmonary fibrosis has been recognized as the paradigm of a progressive fibrosing interstitial lung disease, other conditions with a progressive fibrosing phenotype characterized by a significant deterioration of the lung function may lead to a burden of significant symptoms, a reduced quality of life, and increased mortality, despite treatment. There is now evidence indicating that some common underlying biological mechanisms can be shared among different chronic fibrosing disorders; therefore, different biomarkers for disease-activity monitoring and prognostic assessment are under evaluation. Thus, understanding the common pathways that induce the progression of pulmonary fibrosis, comprehending the diversity of these diseases, and identifying new molecular markers and potential therapeutic targets remain highly crucial assignments. The purpose of this review is to examine the main pathological mechanisms regulating the progression of fibrosis in interstitial lung diseases and to provide an overview of potential biomarker and therapeutic options for patients with progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Michela Ruotolo
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Alessandro Moriello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Stefano Conte
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Antonio Sorrentino
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | | | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| |
Collapse
|
9
|
Shaheen T, Rehman A, Abeed AHA, Waqas M, Aslam A, Azeem F, Qasim M, Afzal M, Azhar MF, Attia KA, Abushady AM, Ercisli S, Nahid N. Identification and expression analysis of SBP-Box-like ( SPL) gene family disclose their contribution to abiotic stress and flower budding in pigeon pea ( Cajanus cajan). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23237. [PMID: 38354689 DOI: 10.1071/fp23237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024]
Abstract
The SPL gene family (for Squamosa Promoter-binding like Proteins) represents specific transcription factors that have significant roles in abiotic stress tolerance, development and the growth processes of different plants, including initiation of the leaf, branching and development of shoot and fruits. The SPL gene family has been studied in different plant species; however, its role is not yet fully explored in pigeon pea (Cajanus cajan ). In the present study, 11 members of the CcSPL gene family were identified in C. cajan . The identified SPLs were classified into nine groups based on a phylogenetic analysis involving SPL protein sequences from C. cajan , Arabidopsis thaliana , Cicer arietinum , Glycine max , Phaseolus vulgaris , Vigna unguiculata and Arachis hypogaea . Further, the identification of gene structure, motif analysis, domain analysis and presence of cis -regulatory elements in the SPL family members were studied. Based on RNA-sequencing data, gene expression analysis was performed, revealing that CcSPL2.1, 3 and 13A were significantly upregulated for salt-tolerance and CcSPL14 and 15 were upregulated in a salt-susceptible cultivar. Real-time qPCR validation indicated that CcSPL3, 4, 6 and 13A were upregulated under salt stress conditions. Therefore, molecular docking was performed against the proteins of two highly expressed genes (CcSPL3 and CcSPL14 ) with three ligands: abscisic acid, gibberellic acid and indole-3-acetic acid. Afterward, their binding affinity was obtained and three-dimensional structures were predicted. In the future, our study may open avenues for harnessing CcSPL genes in pigeon pea for enhanced abiotic stress resistance and developmental traits.
Collapse
Affiliation(s)
- Tayyaba Shaheen
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Abdul Rehman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Muhammad Waqas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosystem Management - Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Afzal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Farooq Azhar
- Department of Forestry and Range Management, Faculty of Agricultural Sciences and Technology, Bahauddin Zakaria University, Multan 60800, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Riyadh 11451, Saudi Arabia
| | - Asmaa M Abushady
- Biotechnology School, Nile University, 26th July Corridor, Sheikh Zayed City, Giza 12588, Egypt; and Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
10
|
Ishikawa T, Nishikiori H, Mori Y, Fujino K, Saito A, Takahashi M, Kuronuma K, Hinotsu S, Chiba H. The impact of respiratory reactance in oscillometry on survival in patients with idiopathic pulmonary fibrosis. BMC Pulm Med 2024; 24:10. [PMID: 38167026 PMCID: PMC10763674 DOI: 10.1186/s12890-023-02776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a poor prognosis. Pulmonary function tests (PFTs) aid in evaluating the disease status of IPF. The clinical significance of oscillometry measurements in interstitial lung diseases has recently been reported. Our previous study showed that respiratory reactance (Xrs) measured by oscillometry reflected disease severity and predicted subsequent lung capacity decline in patients with IPF. However, the direct impact of Xrs on survival needs to be determined, and there are currently no reference values in oscillometry to predict prognosis. Therefore, this study aimed to investigate the association between oscillometry measurements, particularly Xrs, and survival in patients with IPF and to determine the cutoff values of Xrs that predict 3-year survival. METHODS We analyzed the relationship between the measured values of PFT and oscillometry derived from 178 patients with IPF. Univariate and multivariate Cox proportional hazards analyses were performed to investigate the relationships between clinical indices at the time of the first oscillometry and survival. We performed the time-dependent receiver operating characteristic (ROC) curve analysis to set the optimized cutoff values of Xrs for 3-year survival prediction. We examined the discriminating power of cutoff values of Xrs on survival using the Kaplan-Meier method and the log-rank test. RESULTS Xrs components, especially in the inspiratory phase (In), significantly correlated with the PFT values. In the multivariate analyses, Xrs (all of reactance at 5 Hz [X5], resonant frequency [Fres], and low-frequency reactance area [ALX] in the inspiratory phase) had a significant impact on survival (X5, p = 0.003; Fres, p = 0.016; ALX, p = 0.003) independent of age, sex, and other prognostic factors derived from the univariate analysis. The area under the ROC curve was 0.765, 0.759, and 0.766 for X5 In, Fres In, and ALX In, with cutoff values determined at - 0.98, 10.67, and 5.32, respectively. We found significant differences in survival after dividing patients using each of the cutoff values of Xrs. CONCLUSIONS In patients with IPF, Xrs measured by oscillometry significantly impacted survival. We also determined the cutoff values of Xrs to discriminate patients with poor prognoses.
Collapse
Affiliation(s)
- Tatsuru Ishikawa
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Yuki Mori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Keiko Fujino
- Department of Urology, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Mamoru Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Shiro Hinotsu
- Department of Biostatistics and Data Management, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
11
|
Okamoto M, Fujimoto K, Johkoh T, Kawaguchi A, Mukae H, Sakamoto N, Ogura T, Ikeda S, Kondoh Y, Yamano Y, Komiya K, Umeki K, Nishikiori H, Tanino Y, Tsuda T, Arai N, Komatsu M, Sakamoto S, Yatera K, Inoue Y, Miyazaki Y, Hashimoto S, Shimizu Y, Hozumi H, Ohnishi H, Handa T, Hattori N, Kishaba T, Kato M, Inomata M, Ishii H, Hamada N, Konno S, Zaizen Y, Azuma A, Suda T, Izuhara K, Hoshino T. A prospective cohort study of periostin as a serum biomarker in patients with idiopathic pulmonary fibrosis treated with nintedanib. Sci Rep 2023; 13:22977. [PMID: 38151520 PMCID: PMC10752870 DOI: 10.1038/s41598-023-49180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
This study investigated the utility of periostin, a matricellular protein, as a prognostic biomarker in patients with idiopathic pulmonary fibrosis (IPF) who received nintedanib. Monomeric and total periostin levels were measured by enzyme-linked immunosorbent assay in 87 eligible patients who participated in a multicenter prospective study. Forty-three antifibrotic drug-naive patients with IPF described in previous studies were set as historical controls. Monomeric and total periostin levels were not significantly associated with the change in forced vital capacity (FVC) or diffusing capacity of the lungs for carbon monoxide (DLCO) during any follow-up period. Higher monomeric and total periostin levels were independent risk factors for overall survival in the Cox proportional hazard model. In the analysis of nintedanib effectiveness, higher binarized monomeric periostin levels were associated with more favorable suppressive effects on decreased vital capacity (VC) and DLCO in the treatment group compared with historical controls. Higher binarized levels of total periostin were associated with more favorable suppressive effects on decreased DLCO but not VC. In conclusion, higher periostin levels were independently associated with survival and better therapeutic effectiveness in patients with IPF treated with nintedanib. Periostin assessments may contribute to determining therapeutic strategies for patients with IPF.
Collapse
Affiliation(s)
- Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
- Department of Respirology, NHO Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-0065, Japan.
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Inabasou 3-1-69, Amagasaki, Hyogo, 660-0064, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takashi Ogura
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Yokohama, Kanagawa-ku, Kanagawa, 236-0051, Japan
| | - Satoshi Ikeda
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Yokohama, Kanagawa-ku, Kanagawa, 236-0051, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake, Seto, Aichi, 489-0065, Japan
| | - Yasuhiko Yamano
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake, Seto, Aichi, 489-0065, Japan
| | - Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Kenji Umeki
- Department of Respiratory Medicine, Tenshindo Hetsugi Hospital, 5956 Nakahetsugi, Oita, 879-7761, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1-West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Toru Tsuda
- Kirigaoka Tsuda Hospital, 3-9-20 Kirigaoka, Kitakyushu, Fukuoka, 802-0052, Japan
| | - Naoki Arai
- Department of Respiratory Medicine, National Hospital Organization Ibarakihigashi National Hospital, 825 Terunuma, Tokai-mura, Ibaraki, 319-1113, Japan
| | - Masamichi Komatsu
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1 Omorinishi, Tokyo, 143-8541, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Sakai, Osaka, 591-8555, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, 113-8510, Japan
| | - Seishu Hashimoto
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho, Tenri, Nara, 632-8552, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, 321-0293, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hiroshi Ohnishi
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, 185-1 Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoo Kishaba
- Department of Respiratory Medicine, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa, 904-2293, Japan
| | - Motoyasu Kato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Tokyo, 113-8421, Japan
| | - Minoru Inomata
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Tokyo, 150-8935, Japan
| | - Hiroshi Ishii
- Department of Respiratory Medicine, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyouin, Chikushino, Fukuoka, 818-8502, Japan
| | - Naoki Hamada
- Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Fukuoka, 814-0180, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshiaki Zaizen
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Arata Azuma
- Respirology and Clinical Research Center, Mihara General Hospital and Nippon Medical School, Tokorozawa, Saitama, 359-0045, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
12
|
Klay D, Kazemier KM, van der Vis JJ, Smits HM, Grutters JC, van Moorsel CHM. New Insights via RNA Profiling of Formalin-Fixed Paraffin-Embedded Lung Tissue of Pulmonary Fibrosis Patients. Int J Mol Sci 2023; 24:16748. [PMID: 38069069 PMCID: PMC10706203 DOI: 10.3390/ijms242316748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
In sporadic idiopathic pulmonary fibrosis (sIPF) and pulmonary fibrosis caused by a mutation in telomere (TRG-PF) or surfactant related genes (SRG-PF), there are a number of aberrant cellular processes known that can lead to fibrogenesis. We investigated whether RNA expression of genes involved in these processes differed between sIPF, TRG-PF, and SRG-PF and whether expression levels were associated with survival. RNA expression of 28 genes was measured in lung biopsies of 26 sIPF, 17 TRG-PF, and 6 SRG-PF patients. Significant differences in RNA expression of TGFBR2 (p = 0.02) and SFTPA2 (p = 0.02) were found between sIPF, TRG-PF, and SRG-PF. Patients with low (
Collapse
Affiliation(s)
- Dymph Klay
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Karin M. Kazemier
- Center of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joanne J. van der Vis
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Department of Clinical Chemistry, ILD Center of Excellence, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Hidde M. Smits
- Center of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jan C. Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Coline H. M. van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| |
Collapse
|
13
|
Matama G, Okamoto M, Fujimoto K, Johkoh T, Tominaga M, Mukae H, Sakamoto N, Komiya K, Umeki K, Komatsu M, Shimizu Y, Takahashi K, Tokisawa S, Zaizen Y, Matsuo N, Nouno T, Kaieda S, Ida H, Izuhara K, Hoshino T. Periostin Is a Biomarker of Rheumatoid Arthritis-Associated Interstitial Lung Disease. J Clin Med 2023; 12:7100. [PMID: 38002712 PMCID: PMC10672657 DOI: 10.3390/jcm12227100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Periostin was investigated as a biomarker for rheumatoid arthritis-associated interstitial lung disease (RA-ILD). This prospective study measured serum monomeric and total periostin, Klebs von den Lungen-6 (KL-6), surfactant protein D (SP-D), and lactate dehydrogenase (LDH) in 19 patients with RA-ILD, 20 RA without ILD, and 137 healthy controls (HC). All biomarkers were higher in RA-ILD than HC or RA without ILD. KL-6 accurately detected ILD in RA patients (area under curve [AUC] = 0.939) and moderately detected SP-D and monomeric and total periostin (AUC = 0.803, =0.767, =0.767, respectively). Monomeric and total periostin were negatively correlated with normal lung area and positively correlated with honeycombing, reticulation, fibrosis score, and the traction bronchiectasis grade but not inflammatory areas. Serum levels of SP-D, KL-6, and LDH did not correlate with the extent of those fibrotic areas on high-resolution CT. Serum monomeric and total periostin were higher in patients with RA-ILD with definite usual interstitial pneumonia pattern compared with other ILD patterns. Immunohistochemical analyses of biopsy or autopsy lung tissues from RA-ILD during the chronic phase and acute exacerbation showed that periostin was expressed in fibroblastic foci but not inflammatory or dense fibrosis lesions. Periostin is a potential biomarker for diagnosis, evaluating fibrosis, and deciding therapeutic strategies for patients with RA-ILD.
Collapse
Affiliation(s)
- Goushi Matama
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
| | - Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Jigyohama 1-8-1, Chuou-ku, Fukuoka 810-0065, Japan
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Inabasou 3-1-69, Amagasaki 660-0064, Japan
| | - Masaki Tominaga
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8501, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8501, Japan
| | - Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Idaigaoka 1-1, Hasama-Machi, Yufu 879-5593, Japan
| | - Kenji Umeki
- Department of Respiratory Medicine, Tenshindo Hetsugi Hospital, Nihongi 5956, Nakahetsugi 879-7761, Japan
| | - Masamichi Komatsu
- First Department of Internal Medicine, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Kitakobayashi 880, Mibu 321-0293, Japan
| | - Koichiro Takahashi
- Department of Respirology, Saga Medical School, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Saeko Tokisawa
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
| | - Yoshiaki Zaizen
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Jigyohama 1-8-1, Chuou-ku, Fukuoka 810-0065, Japan
| | - Takashi Nouno
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Jigyohama 1-8-1, Chuou-ku, Fukuoka 810-0065, Japan
| | - Shinjiro Kaieda
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
| | - Hiroaki Ida
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Ashahi-Machi 67, Kurume 830-0011, Japan; (G.M.)
| |
Collapse
|
14
|
Zamfir AS, Zabara ML, Arcana RI, Cernomaz TA, Zabara-Antal A, Marcu MTD, Trofor A, Zamfir CL, Crișan-Dabija R. Exploring the Role of Biomarkers Associated with Alveolar Damage and Dysfunction in Idiopathic Pulmonary Fibrosis-A Systematic Review. J Pers Med 2023; 13:1607. [PMID: 38003922 PMCID: PMC10672103 DOI: 10.3390/jpm13111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of interstitial lung diseases (ILDs), marked by an ongoing, chronic fibrotic process within the lung tissue. IPF leads to an irreversible deterioration of lung function, ultimately resulting in an increased mortality rate. Therefore, the focus has shifted towards the biomarkers that might contribute to the early diagnosis, risk assessment, prognosis, and tracking of the treatment progress, including those associated with epithelial injury. METHODS We conducted this review through a systematic search of the relevant literature using established databases such as PubMed, Scopus, and Web of Science. Selected articles were assessed, with data extracted and synthesized to provide an overview of the current understanding of the existing biomarkers for IPF. RESULTS Signs of epithelial cell damage hold promise as relevant biomarkers for IPF, consequently offering valuable support in its clinical care. Their global and standardized utilization remains limited due to a lack of comprehensive information of their implications in IPF. CONCLUSIONS Recognizing the aggressive nature of IPF among interstitial lung diseases and its profound impact on lung function and mortality, the exploration of biomarkers becomes pivotal for early diagnosis, risk assessment, prognostic evaluation, and therapy monitoring.
Collapse
Affiliation(s)
- Alexandra-Simona Zamfir
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Mihai Lucian Zabara
- Department of Surgery, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Clinic of Surgery (II), St. Spiridon Emergency Hospital, 700111 Iasi, Romania
| | - Raluca Ioana Arcana
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Doctoral School of the Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Tudor Andrei Cernomaz
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Andreea Zabara-Antal
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Doctoral School of the Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Marius Traian Dragoș Marcu
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Antigona Trofor
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Carmen Lăcrămioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Radu Crișan-Dabija
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
15
|
Sakamoto S, Suzuki A, Homma S, Usui Y, Shimizu H, Sekiya M, Miyoshi S, Nakamura Y, Urabe N, Isshiki T, Kurosaki A, Kishi K. Outcomes and prognosis of progressive pulmonary fibrosis in patients with antineutrophil cytoplasmic antibody-positive interstitial lung disease. Sci Rep 2023; 13:17616. [PMID: 37848575 PMCID: PMC10582016 DOI: 10.1038/s41598-023-45027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Approximately one-third of fibrosing interstitial lung diseases exhibit progressive pulmonary fibrosis (PPF), a clinicopathological condition distinct yet resembling idiopathic pulmonary fibrosis (IPF). PPF in ANCA-positive ILD (ANCA-ILD) is poorly documented. To clarify incidence, predictors of PPF in ANCA-ILD, and their prognostic impact, 56 patients with ANCA-ILD were followed for ≥ 1 year (April 2004 to April 2021). PPF was defined per ATS/ERS/JRS/ALAT PPF 2022 guideline. We compared PPF and non-PPF in 38 patients with pulmonary function tests and ≥ 1 year follow up. ANCA-ILD (19 male, 19 female; mean age 72 years) comprised 21 patients with microscopic polyangiitis ILD (MPA-ILD) and 17 with ANCA-positive IP without systemic vasculitis (ANCA-IP). PPF occurred in 15/38 (39.5%) overall, and 27% of patients with MPA-ILD and 53% with ANCA-IP. Patient characteristics did not differ between PPF and non-PPF, however, the survival was significantly worse in patients with PPF than those with non-PPF. On multivariate regression analysis, higher age, higher serum SP-D level, and lower baseline %FVC were associated with PPF. In ANCA-ILD, 39.5% of patients demonstrated PPF, which is associated with increased mortality. Predictors of PPF were older age, higher SP-D, and lower baseline %FVC.
Collapse
Affiliation(s)
- Susumu Sakamoto
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan.
| | - Aika Suzuki
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Sakae Homma
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Yusuke Usui
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Hiroshige Shimizu
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Muneyuki Sekiya
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Shion Miyoshi
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Yasuhiko Nakamura
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Naohisa Urabe
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Takuma Isshiki
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| | - Atsuko Kurosaki
- Department of Diagnostic Radiology, Fukujuji Hospital, Kiyose, Tokyo, Japan
| | - Kazuma Kishi
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ota-Ku Omori Nisi, Tokyo, 143-8541, Japan
| |
Collapse
|
16
|
Karampitsakos T, Juan-Guardela BM, Tzouvelekis A, Herazo-Maya JD. Precision medicine advances in idiopathic pulmonary fibrosis. EBioMedicine 2023; 95:104766. [PMID: 37625268 PMCID: PMC10469771 DOI: 10.1016/j.ebiom.2023.104766] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular, genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of precision medicine have shown that "a one-size-fits-all approach" to the management of chronic lung diseases is no longer appropriate. While precision medicine approaches have revolutionized the management of other diseases such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and highlight barriers to translate these research findings into clinical practice.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
17
|
Oldham JM, Johnson KW, Albers GJ, Calamita E, Mah J, Ghai P, Hewitt RJ, Maher TM, Molyneaux PL, Huang M, Byrne AJ. Airway soluble CSF1R predicts progression in patients with idiopathic pulmonary fibrosis. ERJ Open Res 2023; 9:00690-2022. [PMID: 37465557 PMCID: PMC10350676 DOI: 10.1183/23120541.00690-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 07/20/2023] Open
Abstract
This study provides the first evidence for a role of airway sCSF1R in IPF https://bit.ly/3KTBrCA.
Collapse
Affiliation(s)
- Justin M. Oldham
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Gesa J. Albers
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Emily Calamita
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jordina Mah
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Poonam Ghai
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Richard J. Hewitt
- National Heart and Lung Institute, Imperial College London, London, UK
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, London, UK
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, UK
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Adam J. Byrne
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
18
|
Wang Q, Xie Z, Wan N, Yang L, Jin Z, Jin F, Huang Z, Chen M, Wang H, Feng J. Potential biomarkers for diagnosis and disease evaluation of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2023; 136:1278-1290. [PMID: 37130223 PMCID: PMC10309524 DOI: 10.1097/cm9.0000000000002171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Indexed: 05/04/2023] Open
Abstract
ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by progressive lung fibrogenesis and histological features of usual interstitial pneumonia. IPF has a poor prognosis and presents a spectrum of disease courses ranging from slow evolving disease to rapid deterioration; thus, a differential diagnosis remains challenging. Several biomarkers have been identified to achieve a differential diagnosis; however, comprehensive reviews are lacking. This review summarizes over 100 biomarkers which can be divided into six categories according to their functions: differentially expressed biomarkers in the IPF compared to healthy controls; biomarkers distinguishing IPF from other types of interstitial lung disease; biomarkers differentiating acute exacerbation of IPF from stable disease; biomarkers predicting disease progression; biomarkers related to disease severity; and biomarkers related to treatment. Specimen used for the diagnosis of IPF included serum, bronchoalveolar lavage fluid, lung tissue, and sputum. IPF-specific biomarkers are of great clinical value for the differential diagnosis of IPF. Currently, the physiological measurements used to evaluate the occurrence of acute exacerbation, disease progression, and disease severity have limitations. Combining physiological measurements with biomarkers may increase the accuracy and sensitivity of diagnosis and disease evaluation of IPF. Most biomarkers described in this review are not routinely used in clinical practice. Future large-scale multicenter studies are required to design and validate suitable biomarker panels that have diagnostic utility for IPF.
Collapse
Affiliation(s)
- Qing Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Zhaoliang Xie
- Respiratory Department of Sanming Yong’an General Hospital, Sanming, Fujian 366000, China
| | - Nansheng Wan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lei Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhixian Jin
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Fang Jin
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoming Huang
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Min Chen
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Huiming Wang
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
19
|
Shin H, Park S, Hong J, Baek AR, Lee J, Kim DJ, Jang AS, Chin SS, Jeong SH, Park SW. Overexpression of fatty acid synthase attenuates bleomycin induced lung fibrosis by restoring mitochondrial dysfunction in mice. Sci Rep 2023; 13:9044. [PMID: 37270622 DOI: 10.1038/s41598-023-36009-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Proper lipid metabolism is crucial to maintain alveolar epithelial cell (AEC) function, and excessive AEC death plays a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The mRNA expression of fatty acid synthase (FASN), a key enzyme in the production of palmitate and other fatty acids, is downregulated in the lungs of IPF patients. However, the precise role of FASN in IPF and its mechanism of action remain unclear. In this study, we showed that FASN expression is significantly reduced in the lungs of IPF patients and bleomycin (BLM)-treated mice. Overexpression of FASN significantly inhibited BLM-induced AEC death, which was significantly potentiated by FASN knockdown. Moreover, FASN overexpression reduced BLM-induced loss of mitochondrial membrane potential and the production of mitochondrial reactive oxygen species (ROS). Oleic acid, a fatty acid component increased by FASN overexpression, inhibited BLM-induced cell death in primary murine AECs and rescue BLM induced mouse lung injury/fibrosis. FASN transgenic mice exposed to BLM exhibited attenuated lung inflammation and collagen deposition compared to controls. Our findings suggest that defects in FASN production may be associated with the pathogenesis of IPF, especially mitochondrial dysfunction, and augmentation of FASN in the lung may have therapeutic potential in preventing lung fibrosis.
Collapse
Affiliation(s)
- Hyesun Shin
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Ae-Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Junehyuk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Do-Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - An-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-do, South Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gachon University of Medicine and Science, Gil Medical Center, Incheon, Korea
| | - Sung-Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea.
| |
Collapse
|
20
|
Rai M, Parthasarathi A, Beeraka NM, Kaleem Ullah M, Malamardi S, Padukudru S, Siddaiah JB, Uthaiah CA, Vishwanath P, Chaya SK, Ramaswamy S, Upadhyay S, Ganguly K, Mahesh PA. Circulatory Serum Krebs von Den Lungen-6 and Surfactant Protein-D Concentrations Predict Interstitial Lung Disease Progression and Mortality. Cells 2023; 12:cells12091281. [PMID: 37174681 PMCID: PMC10177381 DOI: 10.3390/cells12091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
There is a need for biomarkers to predict outcomes, including mortality, in interstitial lung disease (ILD). Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D) are associated with lung damage and fibrosis in all ILDs and are related to important clinical outcomes. Though these two biomarkers have been associated with ILD outcomes, there are no studies that have evaluated their predictive potential in combination. This study aims to determine whether KL-6 and SP-D are linked to poor disease outcomes and mortality. Additionally, we plan to examine whether changes in KL-6 and SP-D concentrations correspond with changes in lung function and whether serial measurements improve their predictive potential to identify disease progression and mortality. Forty-four patients with ILD participated in a prospective 6-month longitudinal observational study. ILD patients who succumbed had the highest KL-6 levels (3990.4 U/mL (3490.0-4467.6)) and highest SP-D levels (256.1 ng/mL (217.9-260.0)), followed by those who deteriorated: KL-6 levels 1357.0 U/mL (822.6-1543.4) and SP-D levels 191.2 ng/mL (152.8-210.5). The generalized linear model (GLM) analysis demonstrated that changes in forced vital capacity (FVC), diffusing capacity of lungs for carbon monoxide (DLCO), forced expiratory volume in 1 s (FEV1), and partial pressure of arterial oxygen (PaO2) were correlated to changes in KL6 (p = 0.016, 0.014, 0.027, 0.047) and SP-D (p = 0.008, 0.012, 0.046, 0.020), respectively. KL-6 (odds ratio (OR): 2.87 (1.06-7.79)) and SPD (OR: 1.76 (1.05-2.97)) were independent predictors of disease progression, and KL-6 (hazard ratio (HR): 3.70 (1.46-9.41)) and SPD (HR: 2.58 (1.01-6.59)) were independent predictors of death by Cox regression analysis. Combined biomarkers (KL6 + SPD + CT + FVC) had the strongest ability to predict disease progression (AUC: 0.797) and death (AUC: 0.961), on ROC analysis. Elevated KL-6 and SPD levels are vital biomarkers for predicting the severity, progression, and outcomes of ILD. High baseline levels or an increase in levels over a six-month follow-up despite treatment indicate a poor prognosis. Combining KL6 and SPD with conventional measures yields a more potent prognostic indicator. Clinical studies are needed to test additional interventions, and future research will determine if this combined biomarker benefits different ethnicities globally.
Collapse
Affiliation(s)
- Meghna Rai
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Ashwaghosha Parthasarathi
- Allergy, Asthma, and Chest Centre, Krishnamurthypuram, Mysuru 570004, India
- Rutgers Centre for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901-1293, USA
| | - Narasimha M Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu 515721, Andhra Pradesh, India
| | - Mohammed Kaleem Ullah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sowmya Malamardi
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
- School of Psychology & Public Health, College of Science Health and Engineering, La Trobe University, Melbourne 3086, Australia
| | - Sunag Padukudru
- Yenepoya Medical College, Yenepoya University, Mangalore 575018, Karnataka, India
| | - Jayaraj Biligere Siddaiah
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Chinnappa A Uthaiah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Prashant Vishwanath
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Sindaghatta Krishnarao Chaya
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Subramanian Ramaswamy
- Department of Clinical Immunology & Rheumatology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
21
|
Fu S, Song X, Tang X, Qian X, Du Z, Hu Y, Xu X, Zhang M. Synergistic effect of constituent drugs of Baibutang on improving Yin-deficiency pulmonary fibrosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116050. [PMID: 36535334 DOI: 10.1016/j.jep.2022.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baibutang (BBT) is an ancient prescription for the treatment of pulmonary fibrosis. Previous experiments have shown that BBT had a good therapeutic effect on pulmonary fibrosis. However, there had been no study on the synergy between drugs composed of BBT. Due to the interaction between the constituent drugs, exploring their synergy profile is of great significance for explaining the essence of BBT's efficacy in improving pulmonary fibrosis. AIM OF THE STUDY Based on the pharmacodynamic value, this study aimed to explore a method for the evaluation of the synergy profile between constituent drugs in traditional Chinese medicine (TCM) compounds. MATERIALS AND METHODS Nine herbs of BBT were divided into Zhikeqingre (ZK), Yangyinyiqi (YY) and Lishijianpi (LS) groups. A rat model of Yin-deficiency pulmonary fibrosis induced by thyroxine-bleomycin was used to evaluate the effects of BBT and the three groups. The pathological changes of lung tissue and the changes of biomarkers associated with fibrosis, Yin-deficiency and water-fluid metabolism were detected. After standardization of pharmacodynamics value (PV), the compatibility coefficient (CC) of the three groups, the relative PV (RPV) and contribution value (CV) of each group on every index were calculated. RESULTS The average CC on fibrosis indexes was 0.44, indicating that 44% of the efficacy of BBT came from the synergistic effect of the three groups. ZK group had the highest RPV (0.80) in improving fibrosis indexes such as histopathological changes, α-SMA, collagen-I and renin-angiotensin system. The average CC on Yin-deficiency indexes was 0.25, and YY group had the highest RPV (0.96) in improving deficiency indexes such as body temperature, cAMP/cGMP ratio, and PDEs, PGE2 and COX-2 levels. The average CC on water-fluid metabolism indexes was 0.15, and LS group had the highest RPV (1.52) in improving water-fluid metabolism indexes such as aquaporins, mucins, and surfactant proteins. The results also showed that 29% of the improvement effect of BBT on all indexes came from the synergistic effect of the three groups, and the contribution of ZK, YY and LS groups to the efficacy of BBT were 25%, 25% and 21%, respectively. CONCLUSION The established semiquantitative method can clearly and simply evaluate the synergy of the three groups in BBT, which will help to promote the research on the synergy of TCM compounds and other multiple-components combinations.
Collapse
Affiliation(s)
- San Fu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Xianrui Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Xiaoyan Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Xiuhui Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Zesen Du
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Yingying Hu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Xianghong Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Mian Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
22
|
Omori I, Sumida H, Sugimori A, Sakakibara M, Urano-Takaoka M, Iwasawa O, Saito H, Matsuno A, Sato S. Serum cold-inducible RNA-binding protein levels as a potential biomarker for systemic sclerosis-associated interstitial lung disease. Sci Rep 2023; 13:5017. [PMID: 36977758 PMCID: PMC10050418 DOI: 10.1038/s41598-023-32231-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractSystemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrotic, inflammatory, and vascular dysfunction. Danger-associated molecular patterns (DAMPs)-mediated inflammasome activation has been reported to be involved in the pathogenesis of SSc. Cold-inducible RNA-binding protein (CIRP) is newly identified as a DAMP. Here we examined the clinical significance of serum levels of CIRP in 60 patients with SSc and 20 healthy control patients (HCs) using an enzyme-linked immunosorbent assay. Serum CIRP levels in diffuse cutaneous SSc (dcSSc) patients were significantly increased compared with limited cutaneous SSc (lcSSc) patients or HCs. When examining the relationship with SSc-specific parameters, serum CIRP levels with the presence of interstitial lung disease (ILD) were higher than those without ILD. In detail, serum CIRP levels correlated negatively with the percent predicted diffusing capacity for carbon monoxide and positively with levels of Krebs von den Lungen-6. In addition, elevated serum CIRP levels declined along with decreased SSc-ILD activity in patients who received immunosuppressive therapy. These results suggest that CIRP may play a role in the development of ILD in SSc. Moreover, CIRP could serve as a useful serological marker of SSc-ILD in terms of disease activity and therapeutic effects.
Collapse
|
23
|
Optimizing Screening for Early Disease Detection in Familial Pulmonary Fibrosis (FLORIS): A Prospective Cohort Study Design. J Clin Med 2023; 12:jcm12020674. [PMID: 36675603 PMCID: PMC9862447 DOI: 10.3390/jcm12020674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Background: Familial pulmonary fibrosis (FPF) can be defined as pulmonary fibrosis in two or more first-degree family members. The first-degree family members of FPF patients are at high risk of developing FPF and are eligible for screening. Reproducible studies investigating risk factors for disease are much needed. Methods: Description of the screening study protocol for a single-center, prospective cohort study; the study will include 200 asymptomatic, first-degree family members of patients with FPF who will undergo three study visits in two years. The primary objective is determining the diagnostic value of parameters for detection of early FPF; the secondary objectives are determining the optimal timing of the screening interval and gaining insight into the natural history of early FPF. The presence of interstitial lung disease (ILD) changes on high-resolution computed tomography of the chest is indicative of preclinical ILD; the changes are determined at baseline. The comparison between the group with and without ILD changes is made for clinical parameters (pulmonary function, presence of digital clubbing, presence of Velcro-like crackles, blood count, liver- and kidney-function testing, patient-reported cough and dyspnea score) and exploratory parameters. Discussion: This study will be the first large-size, prospective, longitudinal cohort study for yearly screening of asymptomatic family members of FPF patients investigating the diagnostic value of parameters, including lung function, to detect early FPF. More effective screening strategies could advance early disease detection.
Collapse
|
24
|
Kim JS, Kim J, Yin X, Hiura GT, Anderson MR, Hoffman EA, Raghu G, Noth I, Manichaikul A, Rich SS, Smith BM, Podolanczuk AJ, Garcia CK, Barr RG, Prince MR, Oelsner EC. Associations of hiatus hernia with CT-based interstitial lung changes: the MESA Lung Study. Eur Respir J 2023; 61:2103173. [PMID: 35777776 PMCID: PMC10203882 DOI: 10.1183/13993003.03173-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hiatus hernia (HH) is prevalent in adults with pulmonary fibrosis. We hypothesised that HH would be associated with markers of lung inflammation and fibrosis among community-dwelling adults and stronger among MUC5B (rs35705950) risk allele carriers. METHODS In the Multi-Ethnic Study of Atherosclerosis, HH was assessed from cardiac and full-lung computed tomography (CT) scans performed at Exam 1 (2000-2002, n=3342) and Exam 5 (2010-2012, n=3091), respectively. Percentage of high attenuation areas (HAAs; percentage of voxels with attenuation between -600 and -250 HU) was measured from cardiac and lung scans. Interstitial lung abnormalities (ILAs) were examined from Exam 5 scans (n=2380). Regression models were used to examine the associations of HH with HAAs, ILAs and serum matrix metalloproteinase-7 (MMP-7), and adjusted for age, sex, race/ethnicity, educational attainment, smoking, height, weight and scanner parameters for HAA analysis. RESULTS HH detected from Exam 5 scans was associated with a mean percentage difference in HAAs of 2.23% (95% CI 0.57-3.93%) and an increase of 0.48% (95% CI 0.07-0.89%) per year, particularly in MUC5B risk allele carriers (p-value for interaction=0.02). HH was associated with ILAs among those <80 years of age (OR for ILAs 1.78, 95% CI 1.14-2.80) and higher serum MMP-7 level among smokers (p-value for smoking interaction=0.04). CONCLUSIONS HH was associated with more HAAs over time, particularly among MUC5B risk allele carriers, and ILAs in younger adults, and may be a risk factor in the early stages of interstitial lung disease.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jinhye Kim
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Westchester Medical Center, Valhalla, NY, USA
| | - Xiaorui Yin
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Grant T Hiura
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Eric A Hoffman
- Department of Radiology, Carver School of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, NY, USA
| | - Christine Kim Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martin R Prince
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Sofíudóttir BK, Harders SMW, Lage-Hansen PR, Christensen R, Munk HL, Sorensen GL, Davidsen JR, Ellingsen T. Using thoracic ultrasound to detect interstitial lung disease in patients with rheumatoid arthritis: a protocol for the diagnostic test accuracy AURORA study. BMJ Open 2022; 12:e067434. [PMID: 36564119 PMCID: PMC9791457 DOI: 10.1136/bmjopen-2022-067434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Pulmonary diseases are significant contributors to morbidity and mortality in patients with rheumatoid arthritis (RA). RA-associated interstitial lung disease (RA-ILD) may be prevalent in up to 30% and clinically evident in 10% of patients with RA. Feasible methods to detect concomitant ILD in RA are warranted. Our objective is to determine the diagnostic accuracy of thoracic ultrasound (TUS) for ILD in patients with RA with respiratory symptoms, by using chest high-resolution CT (HRCT) as the reference standard. Further, we aim to evaluate the diagnostic accuracy for the promising blood biomarkers surfactant protein-D and microfibrillar-associated protein 4 in the detection of ILD in this group of patients. METHODS AND ANALYSIS By use of a standardised 14 zone protocol patients suspected of having RA-ILD will undergo TUS as index test performed by a junior resident in rheumatology (BKS), who is certified by the European Respiratory Society in performing TUS assessments. Participants form a consecutive series of up to 80 individuals in total. The anonymised TUS images will be stored and scored by the junior resident as well as two senior rheumatologists, who have received training in TUS, and a TUS-experienced pulmonologist. HRCT will be used as the gold standard for ILD diagnosis (reference standard). The two basic measures for quantifying the diagnostic test accuracy of the TUS test are the sensitivity and specificity in comparison to the HRCT. ETHICS AND DISSEMINATION Data will be collected and stored in the Research Electronic Data Capture database. The study is approved by the Committees on Health Research Ethics and the Danish Data Protection Agency. The project is registered at clinicaltrials.gov (NCT05396469, pre-results) and data will be published in peer-reviewed journals.
Collapse
Affiliation(s)
- Bjørk Khaliqi Sofíudóttir
- Department of Rheumatology, PUlmo-REuma Clinic OUH (PURE), Odense University Hospital, Odense, Syddanmark, Denmark
- Section for Biostatistics and Evidence-Based Research, Parker Instituttet, Frederiksberg, Hovedstaden, Denmark
| | - Stefan M W Harders
- Department of Radiology, Odense University Hospital, Odense, Syddanmark, Denmark
| | | | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, Parker Instituttet, Frederiksberg, Hovedstaden, Denmark
| | - Heidi Lausten Munk
- Department of Rheumatology, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Grith Lykke Sorensen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS) and PUlmo-REuma Clinic OUH (PURE), Department of Respiratory Medicine, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Torkell Ellingsen
- Department of Rheumatology, PUlmo-REuma Clinic OUH (PURE), Odense University Hospital, Odense, Syddanmark, Denmark
| |
Collapse
|
26
|
Patel H, Shah JR, Patel DR, Avanthika C, Jhaveri S, Gor K. Idiopathic pulmonary fibrosis: Diagnosis, biomarkers and newer treatment protocols. Dis Mon 2022:101484. [DOI: 10.1016/j.disamonth.2022.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Fedorchenko Y, Zimba O. CAN PULMONARY SURFACTANT PROTEINS BE RELIABLE INDICATORS OF COVID-19-ASSOCIATED PULMONARY INJURY? CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2022. [DOI: 10.47316/cajmhe.2022.3.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 pandemic is still raging all over the world. New variants of the coronavirus emerge and infect recovered from previous infections, vaccinated, and unvaccinated subjects. One aspect remains unchanged that is the lungs are the main targets of the pandemic coronavirus. This challenging situation requires the search for reliable predictive markers of severe and complicated course of the disease. Serum surfactant proteins are known to correlate with pulmonary injury severity in numerous diseases. Measurement of such protein levels may help timely predict the risk. Surfactant proteins can also be helpful diagnostic purposes in COVID-19.
Collapse
|
28
|
Assessment of diagnostic utility of serum hemeoxygenase-1 measurement for acute exacerbation of interstitial pneumonias. Sci Rep 2022; 12:12935. [PMID: 35902685 PMCID: PMC9334264 DOI: 10.1038/s41598-022-17290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to evaluate whether serum heme oxygenase (HO)-1 could be a reliable blood biomarker for diagnosing acute exacerbations (AEs) of both idiopathic interstitial pneumonia (IIP) and secondary interstitial pneumonia (SIP). Serum HO-1 levels of newly diagnosed patients with IP were measured, and the relationships between serum HO-1 and other serum biomarkers and high-resolution CT scores, were evaluated. Blood samples were collected from 90 patients with IIP, including 32 having an AE, and 32 with SIP, including 9 having an AE. The patients having an AE had significantly higher HO-1 levels than those not having an AE (35.2 ng/mL vs. 16.4 ng/mL; p < 0.001). On receiver operating characteristics (ROC) curve analysis for serum HO-1 ability to detect an AE, the area under the ROC curve (AUC) was 0.87 in patients with IIPs and 0.86 in those with SIPs. Also, in patients with both IIPs and SIPs, the combination of the serum HO-1 level and the GGO score showed favorable AUCs (IIPs: 0.92, SIPs: 0.83), though HO-1-not-including model (combination of LDH and GGO) also showed acceptable AUCs. Serum HO-1 could be a clinically useful biomarker for the accurate diagnosis of patients with AEs.
Collapse
|
29
|
Kim K, Shin D, Lee G, Bae H. Loss of SP-A in the Lung Exacerbates Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms23105292. [PMID: 35628104 PMCID: PMC9141401 DOI: 10.3390/ijms23105292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and common chronic lung disease that is pathologically characterized by the destruction of lung architecture and the accumulation of extracellular matrix in the lung. Previous studies have shown an association between lung surfactant protein (SP) and the pathogenesis of IPF, as demonstrated by mutations and the altered expression of SP in patients with IPF. However, the role of SP in the development of lung fibrosis is poorly understood. In this study, the role of surfactant protein A (SP-A) was explored in experimental lung fibrosis induced with a low or high dose of bleomycin (BLM) and CRISPR/Cas9-mediated genetic deletion of SP-A. Our results showed that lung SP-A deficiency in mice promoted the development of fibrotic damage and exacerbated inflammatory responses to the BLM challenge. In vitro experiments with murine lung epithelial LA-4 cells demonstrated that in response to transforming growth factor-β1 (TGF-β1), LA-4 cells had a decreased protein expression of SP-A. Furthermore, exogenous SP administration to LA-4 cells inhibited the TGF-β1-induced upregulation of fibrotic markers. Overall, these findings suggest a novel antifibrotic mechanism of SP-A in the development of lung fibrosis, which indicates the therapeutic potential of the lung SP-A in preventing the development of IPF.
Collapse
Affiliation(s)
- Kyunghwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea; (K.K.); (G.L.)
| | - Dasom Shin
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea;
| | - Gaheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea; (K.K.); (G.L.)
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea;
- Correspondence:
| |
Collapse
|
30
|
The Prognostic Value of Krebs von den Lungen-6 and Surfactant Protein-A Levels in the Patients with Interstitial Lung Disease. J Transl Int Med 2021; 9:212-222. [PMID: 34900632 PMCID: PMC8629416 DOI: 10.2478/jtim-2021-0040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives The highly variable clinical course of interstitial lung disease (ILD) makes it difficult to predict patient prognosis. Serum surfactant protein-A (SP-A) and Krebs von den Lungen-6 (KL-6) are known prognostic biomarkers. However, the clinical or pathophysiological differences in patients with these biomarkers have not been well evaluated. We investigated the clinical and pathophysiological differences through the comparison of SP-A and KL-6 levels before and after treatment. Methods This study included retrospective data from 91 patients who were treated for ILD between August 2015 and September 2019. Serum SP-A and KL-6 levels were measured before and after treatment. The patients were followed up for 3 months. Results Changes in the serum biomarkers (Delta SP-A and Delta KL-6) were found to be significantly correlated (rs = 0.523, P < 0.001); Delta SP-A and Delta KL-6 were inversely correlated with changes in pulmonary function (% predicted values of diffusing capacity for carbon monoxide [DLCO], forced vital capacity [FVC], and forced expiratory volume in 1 s [FEV1]). Patients were divided into four groups based on their Delta SP-A and Delta KL-6 levels in a cluster analysis (G1, G2, G3, and G4). Both SP-A and KL-6 were elevated in the G1 group, with all the patients enrolled classified as progressive or unchanged, and 86.4% of patients showed improved disease activity in the G4 group, where both SP-A and KL-6 levels were reduced. In the G2 group, only SP-A levels decreased post-treatment, indicating an improvement in respiratory function; the patients were not at the end stage of the disease. Only the SP-A levels increased in the G3 group with immunosuppressive treatment. Conclusions Reduced serum SP-A and/or KL-6 levels are associated with improved lung function in patients with ILD. Some patients only showed a decrease in SP-A levels could prognosis an improvement in respiratory function. When only SP-A is increased, it may imply that the patients are at an early stage of disease progression. As a result, for proper disease monitoring, measuring both markers is important.
Collapse
|
31
|
Tomassetti S, Colby TV, Wells AU, Poletti V, Costabel U, Matucci-Cerinic M. Bronchoalveolar lavage and lung biopsy in connective tissue diseases, to do or not to do? Ther Adv Musculoskelet Dis 2021; 13:1759720X211059605. [PMID: 34900002 PMCID: PMC8664307 DOI: 10.1177/1759720x211059605] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Bronchoalveolar lavage and lung biopsy (LBx) are helpful in patients with connective tissue diseases (CTD) and interstitial lung diseases (ILD) regardless of cause, including infectious, noninfectious, immunologic, or malignant. The decision whether to perform only bronchoalveolar lavage (BAL), and eventually a subsequent LBx in case of a nondiagnostic lavage, or one single bronchoscopy combining both sampling methods depends on the clinical suspicion, on patient’s characteristics (e.g. increased biopsy risk) and preferences, and on the resources and biopsy techniques available locally (e.g. regular forceps versus cryobiopsy). In CTD-ILD, BAL has major clinical utility in excluding infections and in the diagnosis of specific patterns of acute lung damage (e.g. alveolar hemorrhage, diffuse alveolar damage, and organizing pneumonia). LBx is indicated to exclude neoplasm or diagnose lymphoproliferative lung disorders that in CTD patients are more common than in the general population. Defining BAL cellularity and characterizing the CTD-ILD histopathologic pattern by LBx can be helpful in the differential diagnosis of cases without established CTD [e.g. ILD preceding full-blown CTD, interstitial pneumonia with autoimmune features (IPAF)], but the prognostic and theragnostic role of those findings remains unclear. Few studies in the pretranscriptomics era have investigated the diagnostic and prognostic role of BAL and LBx in CTD-ILD, and it is reasonable to hypothesize that future studies conducted applying innovative techniques on BAL and LBx might open new and unexpected avenues in pathogenesis, diagnosis, and treatment approach to CTD-ILD. This is particularly desirable now that a new drug treatment era is emerging, in which we have more than one therapeutic choice (immunosuppressive agents, antifibrotic drugs, and biological agents). We hope that future research will pave the path toward precision medicine providing data for a more accurate ILD-CTD endotyping that will guide the physicians through targeted therapeutic choices, rather than to the approximative approach ‘one drug fits them all’.
Collapse
Affiliation(s)
- Sara Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital and University of Florence, 50121 Florence, Italy
| | - Thomas V Colby
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Athol U Wells
- ILD Unit, Pulmonary Medicine, Royal Brompton Hospital, London, UK
| | - Venerino Poletti
- Department of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Medicine Essen, Essen, Germany
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, ItalyUnit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
32
|
Samarelli AV, Masciale V, Aramini B, Coló GP, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, Manicardi L, Moretti A, Tabbì L, Guaitoli G, Cerri S, Dominici M, Clini E. Molecular Mechanisms and Cellular Contribution from Lung Fibrosis to Lung Cancer Development. Int J Mol Sci 2021; 22:12179. [PMID: 34830058 PMCID: PMC8624248 DOI: 10.3390/ijms222212179] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease (ILD) of unknown aetiology, with a median survival of 2-4 years from the time of diagnosis. Although IPF has unknown aetiology by definition, there have been identified several risks factors increasing the probability of the onset and progression of the disease in IPF patients such as cigarette smoking and environmental risk factors associated with domestic and occupational exposure. Among them, cigarette smoking together with concomitant emphysema might predispose IPF patients to lung cancer (LC), mostly to non-small cell lung cancer (NSCLC), increasing the risk of lung cancer development. To this purpose, IPF and LC share several cellular and molecular processes driving the progression of both pathologies such as fibroblast transition proliferation and activation, endoplasmic reticulum stress, oxidative stress, and many genetic and epigenetic markers that predispose IPF patients to LC development. Nintedanib, a tyrosine-kinase inhibitor, was firstly developed as an anticancer drug and then recognized as an anti-fibrotic agent based on the common target molecular pathway. In this review our aim is to describe the updated studies on common cellular and molecular mechanisms between IPF and lung cancer, knowledge of which might help to find novel therapeutic targets for this disease combination.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Valentina Masciale
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Beatrice Aramini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Thoracic Surgery Unit, Department of Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 34 Carlo Forlanini Street, 47121 Forlì, Italy
| | - Georgina Pamela Coló
- Laboratorio de Biología del Cáncer INIBIBB-UNS-CONICET-CCT, Bahía Blanca 8000, Argentina;
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giorgia Guaitoli
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Massimo Dominici
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
33
|
Shoji T, Niida Y, Osawa T, Matsumoto R, Sakurai K, Suzuki M, Matsuno Y, Konno S. Resolution of multifocal micronodular pneumocyte hyperplasia with everolimus in a patient with tuberous sclerosis complex. Respir Med Case Rep 2021; 34:101526. [PMID: 34703757 PMCID: PMC8524238 DOI: 10.1016/j.rmcr.2021.101526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
A woman with a diagnosis of tuberous sclerosis complex (TSC) presented with TSC2 gene mutation and various manifestations, including epilepsy, renal angiomyolipomas (AML), and pathologically confirmed multifocal micronodular pneumocyte hyperplasia (MMPH). With oral administration of everolimus, a mammalian target of rapamycin (mTOR) inhibitor, MMPH and AML were markedly reduced. Further, after starting treatment with everolimus, serum levels of surfactant protein (SP)-A and SP-D, which reflect type II pneumocyte hyperplasia, decreased to the normal range. At the time of writing of this manuscript, 6 years after starting everolimus, MMPH lesions did not relapse and SP-A/D remained the low levels. This is the first case of everolimus efficacy shown for histologically confirmed MMPH in genetically determined TSC patient, with time course of serum SP-A and SP-D.
Collapse
Affiliation(s)
- Tetsuaki Shoji
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Takahiro Osawa
- Department of Urology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuji Matsumoto
- Department of Urology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kotaro Sakurai
- Department of Psychiatry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Corresponding author. Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
34
|
Serial Measurements of Circulating KL-6, SP-D, MMP-7, CA19-9, CA-125, CCL18, and Periostin in Patients with Idiopathic Pulmonary Fibrosis Receiving Antifibrotic Therapy: An Exploratory Study. J Clin Med 2021; 10:jcm10173864. [PMID: 34501312 PMCID: PMC8432145 DOI: 10.3390/jcm10173864] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and inevitably fatal disease with a heterogeneous clinical course. This study aimed to evaluate the usefulness of circulating biomarkers in routine IPF clinical practice. We conducted an exploratory study in a cohort of 28 IPF subjects qualified for anti-fibrotic therapy with up to 24 months serial measurements of seven IPF biomarkers, including those that are well-established, Krebs von den Lungen-6 (KL-6), surfactant protein D (SP-D), matrix metalloproteinase 7 (MMP-7), and more recently introduced ones, cancer antigen 19-9 (CA19-9), cancer antigen 125 (CA-125), chemokine (C-C motif) ligand 18 (CCL18), and periostin. Among studied biomarkers, SP-D had the highest diagnostic accuracy to differentiate IPF subjects from controls, followed by MMP-7 and KL-6. At each study timepoint, KL-6 levels correlated inversely with forced vital capacity % predicted (FVC% pred.), and transfer factor of the lung for carbon monoxide % predicted (TL,CO% pred.), while SP-D levels correlated inversely with FVC% pred. and TL,CO% pred. at 24 months of anti-fibrotic therapy. Baseline KL-6 and CA19-9 concentrations were significantly elevated in patients with progressive disease in comparison to patients with stable disease. In addition, in the progressors subgroup CA19-9 concentrations significantly increased over the second year of study follow-up. In patients with progressive disease, we observed a significant inverse correlation between a change in SP-D levels and a change in FVC% pred. in the first year of treatment, whereas in the second year a significant inverse correlation between a change in KL-6 levels and a change in FVC% pred. was noted. Our study findings support the view that both well-established IPF biomarkers, including KL-6, SP-D, and MMP-7, and more recently introduced ones, like CA19-9, have the potential to support clinical practice in IPF.
Collapse
|
35
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
36
|
Stainer A, Faverio P, Busnelli S, Catalano M, Della Zoppa M, Marruchella A, Pesci A, Luppi F. Molecular Biomarkers in Idiopathic Pulmonary Fibrosis: State of the Art and Future Directions. Int J Mol Sci 2021; 22:6255. [PMID: 34200784 PMCID: PMC8230407 DOI: 10.3390/ijms22126255] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), the most lethal form of interstitial pneumonia of unknown cause, is associated with a specific radiological and histopathological pattern (the so-called "usual interstitial pneumonia" pattern) and has a median survival estimated to be between 3 and 5 years after diagnosis. However, evidence shows that IPF has different clinical phenotypes, which are characterized by a variable disease course over time. At present, the natural history of IPF is unpredictable for individual patients, although some genetic factors and circulating biomarkers have been associated with different prognoses. Since in its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. Two drugs, pirfenidone and nintedanib, have been shown to modify the disease course by slowing down the decline in lung function. It is also known that 5-10% of the IPF patients may be affected by episodes of acute and often fatal decline. The acute worsening of disease is sometimes attributed to identifiable conditions, such as pneumonia or heart failure; but many of these events occur without an identifiable cause. These idiopathic acute worsenings are termed acute exacerbations of IPF. To date, clinical biomarkers, diagnostic, prognostic, and theranostic, are not well characterized. However, they could become useful tools helping facilitate diagnoses, monitoring disease progression and treatment efficacy. The aim of this review is to cover molecular mechanisms underlying IPF and research into new clinical biomarkers, to be utilized in diagnosis and prognosis, even in patients treated with antifibrotic drugs.
Collapse
Affiliation(s)
- Anna Stainer
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Paola Faverio
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Sara Busnelli
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Martina Catalano
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
| | - Matteo Della Zoppa
- Pulmonology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Alberto Pesci
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Fabrizio Luppi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| |
Collapse
|
37
|
Fukui Y, Nakamura K, Hirabayashi M, Miyagawa T, Toyama S, Omatsu J, Awaji K, Ikawa T, Norimatsu Y, Yoshizaki A, Sato S, Asano Y. Serum vasohibin-1 levels: A potential marker of dermal and pulmonary fibrosis in systemic sclerosis. Exp Dermatol 2021; 30:951-958. [PMID: 33682189 DOI: 10.1111/exd.14321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
Vasohibin-1 (VASH-1) is a potent anti-angiogenic factor mainly produced by endothelial cells. In addition, VASH-1 prevents TGF-β-dependent activation of renal fibroblasts. Since systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy and fibrosis of multiple organs, VASH-1 may be involved in the development of this disease. In this study, we investigated the potential role of VASH-1 in SSc by evaluating the clinical correlation between serum VASH-1 levels and the expression of VASH-1 in SSc-involved skin. Serum VASH-1 levels were higher in SSc patients, especially those with diffuse cutaneous involvement, than in healthy controls and positively correlated with skin score. Furthermore, SSc patients with interstitial lung disease had significantly elevated levels of serum VASH-1 as compared to those without. Importantly, serum VASH-1 levels correlated inversely with both the percentage of predicted vital capacity and the percentage of predicted diffusion lung capacity for carbon monoxide and positively with serum KL-6 levels, but not serum surfactant protein D levels. In SSc-involved skin, VASH1 mRNA was remarkably upregulated compared with healthy control skin, but the major source of VASH-1 was not clear. Fli1 deficiency, a predisposing factor inducing SSc-like endothelial properties, did not affect VASH-1 expression in human dermal microvascular endothelial cells. Collectively, these results suggest that VASH-1 upregulation in the skin and sera is linked to dermal and pulmonary fibrotic changes in SSc, while the contribution of VASH-1 to SSc vasculopathy seems to be limited.
Collapse
Affiliation(s)
- Yuki Fukui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Hara Y, Nakashima K, Nagasawa R, Murohashi K, Tagami Y, Aoki A, Okudela K, Kaneko T. Heme Oxygenase-1 in Patients With Interstitial Lung Disease: A Review of the Clinical Evidence. Am J Med Sci 2021; 362:122-129. [PMID: 33587911 DOI: 10.1016/j.amjms.2021.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
The clinical course and rate of progression of interstitial lung disease (ILD) are extremely variable among patients. For the purpose of monitoring disease activity, ILD diagnosis, and predicting disease prognosis, there are various biomarkers, including symptoms, physiological, radiological, and pathological findings, and peripheral blood and bronchoalveolar lavage fluid results. Of these, blood biomarkers such as sialylated carbohydrate antigen, surfactant proteins-A and -D, CC-chemokine ligand 18, matrix metalloprotease-1 and -7, CA19-9, and CA125 have been previously proposed. In the future, heme oxygenase-1 (HO-1) may also become a candidate ILD biomarker; it is a 32-kDa heat shock protein converting heme to carbon monoxide, biliverdin/bilirubin, and free iron to play a role in the pulmonary cytoprotective reaction in response to various stimuli. Recent research suggests that HO-1 can increase in lung tissues of patients with ILD, reflecting anti-inflammatory M2 macrophage activation, and the measurement of HO-1 levels in peripheral blood can be useful for evaluating the severity of lung damage in ILD and for predicting subsequent fibrosis formation.
Collapse
Affiliation(s)
- Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan.
| | - Kentaro Nakashima
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Yoichi Tagami
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama City, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| |
Collapse
|
39
|
Ikeda K, Chiba H, Nishikiori H, Azuma A, Kondoh Y, Ogura T, Taguchi Y, Ebina M, Sakaguchi H, Miyazawa S, Suga M, Sugiyama Y, Nukiwa T, Kudoh S, Takahashi H. Serum surfactant protein D as a predictive biomarker for the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: a post-hoc analysis of the phase 3 trial in Japan. Respir Res 2020; 21:316. [PMID: 33256760 PMCID: PMC7706186 DOI: 10.1186/s12931-020-01582-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disorder with a variable disease course. The recent advancement of antifibrotic therapy has increased the need for reliable and specific biomarkers. This study aimed to assess alveolar epithelial biomarkers as predictors for the efficacy of the antifibrotic drug pirfenidone. Methods We conducted a post-hoc analysis of the prospective, multicenter, randomized, placebo-controlled, phase 3 trial of pirfenidone in Japan (total, n = 267; pirfenidone, n = 163; placebo, n = 104). Logistic regression analysis was performed to extract parameters that predicted disease progression, defined by a ≥ 10% relative decline in vital capacity (VC) from baseline and/or death, at week 52. For assessment of serum surfactant protein (SP)-D, SP-A and Krebs von den Lungen (KL)-6, all patients were dichotomized by the median concentration of each biomarker at baseline to the high and low biomarker subgroups. Associations of these concentrations were examined with changes in VC at each time point from baseline up to week 52, along with progression-free survival (PFS). Additionally, the effect of pirfenidone treatment on serial longitudinal concentrations of these biomarkers were evaluated. Results In the multivariate logistic regression analysis, body mass index (BMI), %VC and SP-D in the pirfenidone group, and BMI and %VC in the placebo group were indicated as predictors of disease progression. Pirfenidone treatment reduced the decline in VC with statistical significance in the low SP-D and low SP-A subgroups over most of the treatment period, and also prolonged PFS in the low SP-D and low KL-6 subgroups. Furthermore, SP-D levels over time course were reduced in the pirfenidone group from as early as week 8 until the 52-week treatment period compared with the placebo group. Conclusions Serum SP-D was the most consistent biomarker for the efficacy of pirfenidone in the cohort trial of IPF. Serial measurements of SP-D might have a potential for application as a pharmacodynamic biomarker. Trial registration The clinical trial was registered with the Japan Pharmaceutical Information Center (JAPIC) on September 13, 2005 (registration No. JapicCTI-050121; http://Clinicaltrials.jp)
Collapse
Affiliation(s)
- Kimiyuki Ikeda
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan.
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | | | | | - Takashi Ogura
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | - Masahito Ebina
- Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | - Shoji Kudoh
- Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | | |
Collapse
|
40
|
Rapidly progressive organizing pneumonia associated with COVID-19. Respir Med Case Rep 2020; 31:101295. [PMID: 33224726 PMCID: PMC7671928 DOI: 10.1016/j.rmcr.2020.101295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
We report a case of clinically diagnosed secondary organizing pneumonia (SOP) associated with coronavirus disease 2019 (COVID-19). A 70-year-old woman who had been diagnosed with COVID-19 was admitted to Hokkaido University Hospital. Although her fever, cough, dyspnea, and serum C-reactive protein levels improved, she developed rapidly progressive respiratory failure and computed tomography revealed the development of bilateral lung consolidation. Her dyspnea was relieved, and her oxygenation levels and radiological findings improved after commencing corticosteroid treatment. Blood biomarkers for interstitial lung disease, Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D), showed different responses during the clinical course of her disease. Evaluation of serial changes in levels of KL-6 and SP-D may help diagnose and monitor COVID-19-associated organizing pneumonia (OP). Clinicians should be aware that SOP can develop in response to COVID-19 and that these patients may benefit from the use of steroids.
Collapse
|
41
|
Khor YH, Ng Y, Barnes H, Goh NSL, McDonald CF, Holland AE. Prognosis of idiopathic pulmonary fibrosis without anti-fibrotic therapy: a systematic review. Eur Respir Rev 2020; 29:29/157/190158. [PMID: 32759374 PMCID: PMC9488716 DOI: 10.1183/16000617.0158-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 01/17/2023] Open
Abstract
In addition to facilitating healthcare delivery planning, reliable information about prognosis is essential for treatment decisions in patients with idiopathic pulmonary fibrosis (IPF). This review aimed to evaluate the prognosis of patients with IPF without anti-fibrotic therapy. We included all cohort studies and the placebo arms of randomised controlled trials (RCTs) in IPF and follow-up of ≥12 months. Two reviewers independently evaluated studies for inclusion, assessed risk of bias and extracted data. A total of 154 cohort studies and 16 RCTs were included. The pooled proportions of mortality were 0.12 (95% CI 0.09–0.14) at 1–2 years, 0.38 (95% CI 0.34–0.42) between 2–5 years, and 0.69 (95% CI 0.59–0.78) at ≥5 years. The pooled mean overall survival was 4 years (95% CI 3.7–4.6) for studies with a follow-up duration of 10 years. At <2 years, forced vital capacity and diffusing capacity of the lung for carbon monoxide declined by a mean of 6.76% predicted (95% CI −8.92 −4.61) and 3% predicted (95% CI −5.14 −1.52), respectively. Although heterogeneity was high, subgroup analyses revealed lower pooled proportions of mortality at 1 year in the RCT participants (0.07 (95% CI 0.05–0.09)) versus cohort study participants (0.14 (95% CI 0.12–0.17)). This review provides comprehensive information on the prognosis of IPF, which can inform treatment discussions with patients and comparisons for future studies with new therapies. Without anti-fibrotic therapy, patients with IPF have a mortality rate of 31% at ≥5 years, and a mean overall survival of 4 years over 10 years of follow-uphttp://bit.ly/2SDiZSb
Collapse
Affiliation(s)
- Yet H Khor
- Dept of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Australia .,Institute for Breathing and Sleep, Heidelberg, Australia.,School of Medicine, University of Melbourne, Melbourne, Australia.,Dept of Respiratory Medicine, Alfred Health, Melbourne, Australia
| | - Yvonne Ng
- Monash Lung and Sleep, Monash Health, Clayton, Australia
| | - Hayley Barnes
- Dept of Respiratory Medicine, Alfred Health, Melbourne, Australia
| | - Nicole S L Goh
- Dept of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Australia.,Institute for Breathing and Sleep, Heidelberg, Australia.,School of Medicine, University of Melbourne, Melbourne, Australia.,Dept of Respiratory Medicine, Alfred Health, Melbourne, Australia
| | - Christine F McDonald
- Dept of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Australia.,Institute for Breathing and Sleep, Heidelberg, Australia.,School of Medicine, University of Melbourne, Melbourne, Australia
| | - Anne E Holland
- Institute for Breathing and Sleep, Heidelberg, Australia.,Dept of Physiotherapy, Alfred Health and Monash University, Melbourne, Australia
| |
Collapse
|
42
|
Norman KC, O'Dwyer DN, Salisbury ML, DiLillo KM, Lama VN, Xia M, Gurczynski SJ, White ES, Flaherty KR, Martinez FJ, Murray S, Moore BB, Arnold KB. Identification of a unique temporal signature in blood and BAL associated with IPF progression. Sci Rep 2020; 10:12049. [PMID: 32694604 PMCID: PMC7374599 DOI: 10.1038/s41598-020-67956-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and heterogeneous interstitial lung disease of unknown origin with a low survival rate. There are few treatment options available due to the fact that mechanisms underlying disease progression are not well understood, likely because they arise from dysregulation of complex signaling networks spanning multiple tissue compartments. To better characterize these networks, we used systems-focused data-driven modeling approaches to identify cross-tissue compartment (blood and bronchoalveolar lavage) and temporal proteomic signatures that differentiated IPF progressors and non-progressors. Partial least squares discriminant analysis identified a signature of 54 baseline (week 0) blood and lung proteins that differentiated IPF progression status by the end of 80 weeks of follow-up with 100% cross-validation accuracy. Overall we observed heterogeneous protein expression patterns in progressors compared to more homogenous signatures in non-progressors, and found that non-progressors were enriched for proteomic processes involving regulation of the immune/defense response. We also identified a temporal signature of blood proteins that was significantly different at early and late progressor time points (p < 0.0001), but not present in non-progressors. Overall, this approach can be used to generate new hypothesis for mechanisms associated with IPF progression and could readily be translated to other complex and heterogeneous diseases.
Collapse
Affiliation(s)
- Katy C Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 , USA
| | - David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Margaret L Salisbury
- Division of Allergy, Department of Medicine, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 , USA
| | - Vibha N Lama
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Meng Xia
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J Gurczynski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fernando J Martinez
- Department of Internal Medicine, Weill Cornell School of Medicine, New York, NY, USA
| | - Susan Murray
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 , USA.
| |
Collapse
|
43
|
Ebata S, Yoshizaki A, Fukasawa T, Asano Y, Oba K, Sato S. Rapid decrease of serum surfactant protein-D levels predicts the reactivity of rituximab therapy in systemic sclerosis-associated interstitial lung disease. J Dermatol 2020; 47:796-800. [PMID: 32383266 DOI: 10.1111/1346-8138.15379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder characterized by vascular damage and excessive fibrosis. SSc-associated interstitial lung disease (ILD) is a leading cause of death in SSc. Several studies have shown the efficacy of rituximab (RTX) in SSc-ILD, but no study has examined the relation between RTX reactivity and change of serum marker levels. In this study we examined the relation between change of serum surfactant protein-D (SP-D) levels and change of percentage forced vital capacity (FVC) in 11 SSc-ILD patients with anti-topoisomerase I antibody treated by RTX. Serum SP-D levels were significantly decreased compared with baseline at 2 weeks after first RTX infusion in good responders (P = 0.04), while not in poor responders (P = 0.77). Moreover, ΔSP-D at 2 weeks negatively correlated with Δ%FVC at 24 weeks (P = 0.001). In conclusion, we suggested that the rapid decrease of SP-D levels may be a predictive marker of RTX effect against SSc-ILD.
Collapse
Affiliation(s)
- Satoshi Ebata
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, and Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Kaieda S, Gono T, Masui K, Nishina N, Sato S, Kuwana M. Evaluation of usefulness in surfactant protein D as a predictor of mortality in myositis-associated interstitial lung disease. PLoS One 2020; 15:e0234523. [PMID: 32525903 PMCID: PMC7289364 DOI: 10.1371/journal.pone.0234523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Surfactant protein D (SP-D) is considered a serum biomarker of various forms of interstitial lung disease (ILD). In this study, we examined the utility of SP-D as a predictive biomarker for mortality in patients with ILD associated with polymyositis/dermatomyositis (PM/DM) using large-scale multicentre cohort data. Methods We enrolled 381 patients with incident PM/DM-associated ILD in a multicentre retrospective cohort based on the availability of serum SP-D at the baseline. Demographic and clinical characteristics as well as the presence of autoantibodies to melanoma differentiation-associated gene 5 (MDA5) and aminoacyl tRNA synthetase were measured at the time of diagnosis, and follow-up survival data were collected prospectively. Results Seventy-eight patients died during the median observation period of 18 months, and the majority of patients died of ILD. The SP-D levels at baseline were significantly lower (P = 0.02) in a non-survivor subset than in a survivor subset among the entire enrolled patients. However, the SP-D levels were higher in the non-survivor subset than in the survivor subset based on the stratification by anti-MDA5-positive, anti-ARS-positive and, double-negativity, although there was an only statistically significant difference (P = 0.01) in the double-negative group. Surprisingly, the SP-D levels were within the upper limit of normal, 110 ng/mL, in 54 (87%) of 62 anti-MDA5-positive patients who died. In the double-negative group, the mortality rates were significantly higher (P = 0.002) in a subset with SP-D ≥127.6 ng/mL, the cut-off value for mortality calculated by the receiver operating characteristic curve, than the other subset. All of patients with SP-D <127.6 ng/mL survived. Conclusion Serum SP-D levels behave differently among patients with stratified by anti-MDA5 antibody, anti-ARS antibody and both negativity in PM/DM-associated ILD. Its use in clinical practice should be applied with caution on the basis of the presence or absence of anti-MDA5 antibody or anti-ARS antibody.
Collapse
Affiliation(s)
- Shinjiro Kaieda
- Department of Medicine, Division of Respirology, Neurology, and Rheumatology, Kurume University School of Medicine, Fukuoka, Japan
| | - Takahisa Gono
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Kenichi Masui
- Department of Anaesthesiology, Showa University School of Medicine, Tokyo, Japan
| | - Naoshi Nishina
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Sato
- Division of Rheumatology, Department of Internal Medicine, Tokai University School of Medicine, Tokyo, Kanagawa, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
45
|
Yoshikawa T, Otsuka M, Chiba H, Ikeda K, Mori Y, Umeda Y, Nishikiori H, Kuronuma K, Takahashi H. Surfactant protein A as a biomarker of outcomes of anti-fibrotic drug therapy in patients with idiopathic pulmonary fibrosis. BMC Pulm Med 2020; 20:27. [PMID: 32005219 PMCID: PMC6995128 DOI: 10.1186/s12890-020-1060-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/23/2020] [Indexed: 01/19/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and fibrosing lung disease with poor prognosis. Pirfenidone and nintedanib are anti-fibrotic drugs used for patients with IPF. These drugs reduce the rate of decline in forced vital capacity (FVC). Serum surfactant protein (SP)-A, SP-D, and Krebs von den Lungen-6 (KL-6) are monitoring and prognostic biomarkers in patients with IPF; however, their relationship with the therapeutic outcomes of anti-fibrotic drugs has not been investigated. We aim to clarify whether serum SP-A, SP-D, and KL-6 reflect therapeutic outcomes of pirfenidone and nintedanib administration in patients with IPF. Methods We retrospectively investigated patients with IPF who were initiated on pirfenidone or nintedanib administration between January 2014 and June 2018 at our hospital. Changes in clinical parameters and serum SP-A, SP-D, and KL-6 levels were evaluated. Patients with ≥10% decline in FVC or ≥ 15% decline in diffusing capacity of the lung for carbon monoxide (DLco) from baseline to 6 months were classified as progression group, while the other patients were classified as stable group. Results Forty-nine patients were included (pirfenidone, 23; nintedanib, 26). Stable group comprised 32 patients, while progression group comprised 17 patients. In the stable group, changes in SP-A and KL-6 from baseline to 3 and 6 months significantly decreased compared with the progression group (SP-A: 3 months − 6.0% vs 16.7%, 6 months − 10.2% vs 20.2%, KL-6: 3 months − 9.2% vs 6.7%, 6 months − 15.0% vs 12.1%, p < 0.05). Changes in SP-A and SP-D levels showed significant negative correlations with the change in %FVC (r = − 0.46 and r = − 0.39, p < 0.01, respectively) and %DLco (r = − 0.67 and r = − 0.54, p < 0.01, respectively). Similar results were also seen in subgroup analysis for both pirfenidone and nintedanib groups. On logistic regression analysis, decrease in SP-A from baseline to 3 months and 6 months was found to predict the outcomes at 6 months (odds ratios: 0.89 and 0.88, respectively). Conclusions Changes in serum SP-A reflected the outcomes of anti-fibrotic drug therapy. Serum SP-A has a potential as a biomarker of therapeutic outcomes of anti-fibrotic drugs.
Collapse
Affiliation(s)
- Takumi Yoshikawa
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kimiyuki Ikeda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yuki Mori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yasuaki Umeda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
46
|
Yamagishi T, Kodaka N, Watanabe K, Nakano C, Oshio T, Niitsuma K, Shimada N, Matsuse H. A retrospective clinical research of relapsed organizing pneumonia. Ann Thorac Med 2020; 15:15-20. [PMID: 32002042 PMCID: PMC6967145 DOI: 10.4103/atm.atm_311_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/21/2019] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Organizing pneumonia (OP) usually responds spectacularly well to initial treatment, but relapses can occur and some cases run a fatal course. Still, the issue of relapse has been addressed in relatively few studies, and predictors have not been clarified. The purpose of this study was to examine the pattern of relapses in OP, to determine whether relapse affects morbidity and mortality, and to identify possible predictors of relapse. METHODS Blood sampling, pulmonary function testing, computed tomography (CT) of the chest, and bronchofiberscopy were performed for all patients and were retrospectively reviewed along with clinical information. Periodical chest CT was conducted and additional chest CT was performed when relapse of OP was clinically suspected. All patients were followed regarding treatment response, treatment duration, and presence of relapse. Results were compared between two groups based on serum concentrations of surfactant protein (SP)-D: normal SP-D and high SP-D. RESULTS Twenty-two patients were analyzed in this study. SP-D showed a negative correlation with percutaneous oxygen saturation and positive correlations with serum lactate dehydrogenase, Krebs von den Lungen (KL)-6, and percentage of lymphocytes in bronchoalveolar lavage (BAL). Prognosis was good for all patients, but relapse was significantly more frequent in the high SP-D group (6 cases) than in the normal SP-D group (0 cases; P = 0.049). Serum KL-6 and percentage of monocytes in BAL were significantly higher, and pulmonary vital capacity and forced expiratory volume in 1 s were significantly lower in the high SP-D group than in the low SP-D group. CONCLUSIONS When treating cases of OP with high serum concentrations of SP-D, attention should be paid to the possibility of relapse.
Collapse
Affiliation(s)
- Toru Yamagishi
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Norio Kodaka
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Kayo Watanabe
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Chihiro Nakano
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Takeshi Oshio
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Kumiko Niitsuma
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Nagashige Shimada
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Hiroto Matsuse
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| |
Collapse
|
47
|
Hanaka T, Kido T, Noguchi S, Yamada S, Noguchi H, Guo X, Nawata A, Wang KY, Oda K, Takaki T, Izumi H, Ishimoto H, Yatera K, Mukae H. The overexpression of peroxiredoxin-4 affects the progression of idiopathic pulmonary fibrosis. BMC Pulm Med 2019; 19:265. [PMID: 31888585 PMCID: PMC6936055 DOI: 10.1186/s12890-019-1032-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is life-threatening. Several serum biomarkers, such as Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D), are clinically used for evaluating AE-IPF, but these biomarkers are not adequate for establishing an early and accurate diagnosis of AE-IPF. Recently, the protective roles of the members of the peroxiredoxin (PRDX) family have been reported in IPF; however, the role of PRDX4 in AE-IPF is unclear. Methods Serum levels of PRDX4 protein, KL-6, SP-D and lactate dehydrogenase (LDH) in 51 patients with stable IPF (S-IPF), 38 patients with AE-IPF and 15 healthy volunteers were retrospectively assessed using enzyme-linked immunosorbent assay. Moreover, as an animal model of pulmonary fibrosis, wild-type (WT) and PRDX4-transgenic (Tg) mice were intratracheally administered with bleomycin (BLM, 2 mg/kg), and fibrotic and inflammatory changes in lungs were evaluated 3 weeks after the intratracheal administration. Results Serum levels of PRDX4 protein, KL-6, SP-D and LDH in patients with S-IPF and AE-IPF were significantly higher than those in healthy volunteers, and those in AE-IPF patients were the highest among the three groups. Using receiver operating characteristic curves, area under the curve values of serum PRDX4 protein, KL-6, SP-D, and LDH for detecting AE-IPF were 0.873, 0.698, 0.675, and 0.906, respectively. BLM-treated Tg mice demonstrated aggravated histopathological findings and poor prognosis compared with BLM-treated WT mice. Moreover, PRDX4 expression was observed in alveolar macrophages and lung epithelial cells of BLM-treated Tg mice. Conclusions PRDX4 is associated with the aggravation of inflammatory changes and fibrosis in the pathogenesis of IPF, and serum PRDX4 may be useful in clinical practice of IPF patients.
Collapse
Affiliation(s)
- Tetsuya Hanaka
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environment Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environment Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan
| | - Shingo Noguchi
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environment Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Aya Nawata
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan
| | - Keishi Oda
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environment Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan
| | - Tsutomu Takaki
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environment Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environment Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka, 807-8555, Japan.
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
48
|
Imtiazul IM, Asma R, Lee JH, Cho NJ, Park S, Song HY, Gil HW. Change of surfactant protein D and A after renal ischemia reperfusion injury. PLoS One 2019; 14:e0227097. [PMID: 31877195 PMCID: PMC6932791 DOI: 10.1371/journal.pone.0227097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is associated with widespread effects on distant organs, including the lungs. Surfactant protein (SP)-A and SP-D are members of the C-type lectin family, which plays a critical role in host defense and regulation of inflammation in a variety of infections. Serum levels of SP-A and SP-D are markers to reflect lung injury in acute respiratory distress syndrome, idiopathic pulmonary fibrosis, and sarcoidosis. We investigated the change of lung-specific markers, including SP-A and SP-D in an AKI mice model. We studied C57BL/6J mice 4 and 24 hours after an episode of ischemic AKI (23 min of renal pedicle clamping and then reperfusion); numerous derangements were present, including SP-A, SP-D, and lung tight-junction protein. Neutrophil infiltration and apoptosis in the lungs increased in ischemic AKI. Receptor for advanced glycation end products (RAGE) in the lungs, a marker of pneumocyte I, was not changed. Lung tight-junction proteins, particularly claudin-4, claudin-18, and anti-junctional adhesion molecule 1 (JAMA-1), were reduced in 24 hours after AKI. Serum SP-A and SP-D significantly increased in ischemic AKI. SP-A and SP-D in the lungs did not increase in ischemic AKI. The immunohistochemistry showed that the expression of SP-A and SP-D was intact in ischemic AKI. SP-A and SP-D in the kidneys were significantly higher in AKI than in the sham. These patterns of SP-A and SP-D in the kidneys were similar to those of serum. AKI induces apoptosis and inflammation in the lungs. Serum SP-A and SP-D increased in ischemic AKI, but these could have originated from the kidneys. So serum SP-A and SP-D could not reflect lung injury in AKI. Further study is needed to reveal how a change in lung tight-junction protein could influence the prognosis in patients with AKI.
Collapse
Affiliation(s)
- Islam Md Imtiazul
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Redwan Asma
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Nam-Jun Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
49
|
Kida Y, Ohshimo S, Kyo M, Hosokawa K, Amatya VJ, Takeshima Y, Shime N. Retrospective immunohistological study of autopsied lungs in patients with acute exacerbation of interstitial pneumonia managed with extracorporeal membrane oxygenation. J Thorac Dis 2019; 11:4436-4443. [PMID: 31903231 DOI: 10.21037/jtd.2019.11.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Acute exacerbation of interstitial pneumonia (AE-IP) is a life-threatening pulmonary condition that involves various pathogeneses. In patients with AE-IP who need mechanical ventilation with high driving pressure and oxygen concentration, veno-venous extracorporeal membrane oxygenation (V-V ECMO) may diminish alveolar epithelial damage by decreasing ventilator settings. The pathophysiological benefit of this therapeutic option is not well investigated. Methods We retrospectively collected 15 autopsied patients with AE-IP who were treated with mechanical ventilation in the intensive care unit (ICU) at Hiroshima University Hospital (Hiroshima, Japan) between 2010 and 2016. The patients were grouped by whether they were managed with mechanical ventilation only (the ventilator group, n=6) or with mechanical ventilation and V-V ECMO (the ECMO group, n=9). Results The median age of the ventilator and ECMO group patients were similar (65 and 64 years, respectively). The severity score APACHE II in the ECMO group (35.0) is significantly higher than that of ventilator group (14.5) (P=0.006). Ventilator days were significantly shorter in the ventilator group (17.5 days) than in the ECMO group (30.0 days) (P=0.04). Compared with the ECMO group, the ventilator group had a stronger Masson-trichrome stain grade (4 vs. 6, P=0.04) and higher immunoreactivity grades for Krebs von den Lungen-6 (4 vs. 6, P=0.04) and IL-8 (3 vs. 6, P=0.02). Between the ventilator and ECMO groups, the immunoreactivity grades of angiopoietin 2 (4 vs. 1, P=0.08) and receptor for advanced glycation end products (2 vs. 1, P=0.52) did not differ. Conclusions The lungs of mechanically ventilated AE-IP patients treated with V-V ECMO had decreased fibrosis, endothelial injury, and inflammation. This finding suggests the lung-protective efficacy of adjunctive V-V ECMO therapy.
Collapse
Affiliation(s)
- Yoshiko Kida
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michihito Kyo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Hosokawa
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
50
|
Jee AS, Sahhar J, Youssef P, Bleasel J, Adelstein S, Nguyen M, Corte TJ. Review: Serum biomarkers in idiopathic pulmonary fibrosis and systemic sclerosis associated interstitial lung disease – frontiers and horizons. Pharmacol Ther 2019; 202:40-52. [DOI: 10.1016/j.pharmthera.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/24/2019] [Indexed: 02/02/2023]
|