1
|
Schultz A, Balaguruswamy S, Dentice R, Dobler CC, Geake J, Gibson P, Goulter P, Jayaram L, Laird PJ, Middleton PG, Seale H. Thoracic Society of Australia and New Zealand position statement: The safe clinical use of sputum induction for bio-sampling of the lower airways in children and adults. Respirology 2024; 29:372-378. [PMID: 38556839 DOI: 10.1111/resp.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Sputum induction is widely used in clinical settings for collection of biological samples from the lower airways. However, in recent years sputum induction has been associated with serious adverse events and even death. This position statement was commissioned by the Thoracic Society of Australia and New Zealand to address major adverse events of two deaths associated with sputum induction that have occurred in Australia in 2021, and outlines best practice for the safe use of sputum induction. The statement resulted from systematic literature searches by a multi-disciplinary group including respiratory physicians, nurses and physiotherapists (paediatric and adults focused). Consumers had input to an advanced draft of the position statement. The position statement covers indications for sputum induction, informed consent, scope of practice of personnel administering the procedure, infection control considerations, details about the sputum induction procedure, safety considerations and risk assessment in clinical settings.
Collapse
Affiliation(s)
- André Schultz
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Division of Paediatrics, Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Sathya Balaguruswamy
- Department of Respiratory and Sleep Medicine, Westmead Hospital, Sydney, New South Wales, Australia
| | - Ruth Dentice
- Department of Physiotherapy, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Claudia C Dobler
- Institute for Evidence-Based Healthcare, Bond University, Gold Coast, Queensland, Australia
- Department of Respiratory Medicine, Liverpool Hospital, Sydney, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - James Geake
- Department of Thoracic and Sleep Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Peter Gibson
- Centre of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, University of Newcastle, New Lambton Heights, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Patricia Goulter
- Physiotherapy Department, Te Whatu Ora (Health New Zealand), Wellington, New Zealand
| | - Lata Jayaram
- Department of Respiratory and Sleep Medicine, Western Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Victoria, Australia
| | - Pamela J Laird
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Division of Paediatrics, Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Department Physiotherapy, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Peter G Middleton
- Westmead Clinical School, University of Sydney, Department of Respiratory and Sleep Medicine, Westmead Hospital, Sydney, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Helen Seale
- Department of Physiotherapy, The Prince Charles Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Woodall M, Tarran R, Lee R, Anfishi H, Prins S, Counsell J, Vergani P, Hart S, Baines D. Expression of gain-of-function CFTR in cystic fibrosis airway cells restores epithelial function better than wild-type or codon-optimized CFTR. Mol Ther Methods Clin Dev 2023; 30:593-605. [PMID: 37701179 PMCID: PMC10494266 DOI: 10.1016/j.omtm.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023]
Abstract
Class Ia/b cystic fibrosis transmembrane regulator (CFTR) variants cause severe lung disease in 10% of cystic fibrosis (CF) patients and are untreatable with small-molecule pharmaceuticals. Genetic replacement of CFTR offers a cure, but its effectiveness is limited in vivo. We hypothesized that enhancing protein levels (using codon optimization) and/or activity (using gain-of-function variants) of CFTR would more effectively restore function to CF bronchial epithelial cells. Three different variants of the CFTR protein were tested: codon optimized (high codon adaptation index [hCAI]), a gain-of-function (GOF) variant (K978C), and a combination of both (hˆK978C). In human embryonic kidney (HEK293T) cells, initial results showed that hCAI and hˆK978C produced greater than 10-fold more CFTR protein and displayed ∼4-fold greater activity than wild-type (WT) CFTR. However, functionality was profoundly different in CF bronchial epithelial cells. Here, K978C CFTR more potently restored essential epithelial functions (anion transport, airway surface liquid height, and pH) than WT CFTR. hCAI and hˆK978C CFTRs had limited impact because of mislocalization in the cell. These data provide a proof of principle showing that GOF variants may be more effective than codon-optimized forms of CFTR for CF gene therapy. Video abstract
Collapse
Affiliation(s)
- Maximillian Woodall
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Rhianna Lee
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Hafssa Anfishi
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Stella Prins
- Neuroscience, Physiology, & Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - John Counsell
- Genetics & Genomic Medicine Department, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Paola Vergani
- Neuroscience, Physiology, & Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Stephen Hart
- Genetics & Genomic Medicine Department, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Deborah Baines
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
3
|
Esther CR, O'Neal WK, Anderson WH, Kesimer M, Ceppe A, Doerschuk CM, Alexis NE, Hastie AT, Barr RG, Bowler RP, Wells JM, Oelsner EC, Comellas AP, Tesfaigzi Y, Kim V, Paulin LM, Cooper CB, Han MK, Huang YJ, Labaki WW, Curtis JL, Boucher RC. Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in COPD. Chest 2022; 161:1239-1249. [PMID: 34801592 PMCID: PMC9131049 DOI: 10.1016/j.chest.2021.10.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Improved understanding of the pathways associated with airway pathophysiologic features in COPD will identify new predictive biomarkers and novel therapeutic targets. RESEARCH QUESTION Which physiologic pathways are altered in the airways of patients with COPD and will predict exacerbations? STUDY DESIGN AND METHODS We applied a mass spectrometric panel of metabolomic biomarkers related to mucus hydration and inflammation to sputa from the multicenter Subpopulations and Intermediate Outcome Measures in COPD Study. Biomarkers elevated in sputa from patients with COPD were evaluated for relationships to measures of COPD disease severity and their ability to predict future exacerbations. RESULTS Sputum supernatants from 980 patients were analyzed: 77 healthy nonsmokers, 341 smokers with preserved spirometry, and 562 patients with COPD (178 with Global Initiative on Chronic Obstructive Lung Disease [GOLD] stage 1 disease, 303 with GOLD stage 2 disease, and 81 with GOLD stage 3 disease) were analyzed. Biomarkers from multiple pathways were elevated in COPD and correlated with sputum neutrophil counts. Among the most significant analytes (false discovery rate, 0.1) were sialic acid, hypoxanthine, xanthine, methylthioadenosine, adenine, and glutathione. Sialic acid and hypoxanthine were associated strongly with measures of disease severity, and elevation of these biomarkers was associated with shorter time to exacerbation and improved prediction models of future exacerbations. INTERPRETATION Biomarker evaluation implicated pathways involved in mucus hydration, adenosine metabolism, methionine salvage, and oxidative stress in COPD airway pathophysiologic characteristics. Therapies that target these pathways may be of benefit in COPD, and a simple model adding sputum-soluble phase biomarkers improves prediction of pulmonary exacerbations. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01969344; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Charles R Esther
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wayne H Anderson
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Agathe Ceppe
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Claire M Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Neil E Alexis
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Annette T Hastie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - J Michael Wells
- Lung Health Center, Division of Pulmonary Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth C Oelsner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Alejandro P Comellas
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA
| | - Yohannes Tesfaigzi
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Victor Kim
- Pulmonary and Critical Care Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Laura M Paulin
- Department of Medicine and Epidemiology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Hanover, NH
| | - Christopher B Cooper
- Department of Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, MI
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, MI
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, MI
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, MI; Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
4
|
Payton AD, Perryman AN, Hoffman JR, Avula V, Wells H, Robinette C, Alexis NE, Jaspers I, Rager JE, Rebuli ME. Cytokine signature clusters as a tool to compare changes associated with tobacco product use in upper and lower airway samples. Am J Physiol Lung Cell Mol Physiol 2022; 322:L722-L736. [PMID: 35318855 PMCID: PMC9054348 DOI: 10.1152/ajplung.00299.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Inhalation exposure to cigarette smoke and e-cigarette aerosol is known to alter the respiratory immune system, particularly cytokine signaling. In assessments of health impacts of tobacco product use, cytokines are often measured using a variety of sample types, from serum to airway mucosa. However, it is currently unclear whether and how well cytokine levels from different sample types and the airway locations they represent are correlated, making comparing studies that utilize differing sample types challenging. To address this challenge, we compared baseline cytokine signatures in upper and lower airways and systemic samples and evaluated how groups of coexpressed cytokines change with tobacco product use. Matched nasal lavage fluid (NLF), nasal epithelial lining fluid (NELF), sputum, and circulating serum samples were collected from 14 nonsmokers, 13 cigarette smokers, and 17 e-cigarette users and analyzed for levels of 22 cytokines. Individual cytokine signatures were first compared across each sample type, followed by identification of cytokine clusters within each sample type. Identified clusters were then evaluated for potential alterations following tobacco product use using eigenvector analyses. Individual cytokine signatures in the respiratory tract were significantly correlated (NLF, NELF, and sputum) compared with randomly permutated signatures, whereas serum was not significantly different from random permutations. Cytokine clusters that were similar across airway sample types were modified by tobacco product use, particularly e-cigarettes, indicating a degree of uniformity in terms of how cytokine host defense and immune cell recruitment responses cooperate in the upper and lower airways. Overall, cluster-based analyses were found to be especially useful in small cohort assessments, providing higher sensitivity than individual signatures to detect biologically meaningful differences between tobacco use groups. This novel cluster analysis approach revealed that eigencytokine patterns in noninvasive upper airway samples simulate cytokine patterns in lower airways.
Collapse
Affiliation(s)
- Alexis D Payton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexia N Perryman
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jessica R Hoffman
- Curriculum for the Environment and Ecology, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Heather Wells
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carole Robinette
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Khan MA, Rajendram R, Al-Harbi A, Al-Ghamdi M, Masuadi E, Obaidi M, Al-Jahdali H. The diagnostic yield and safety of sputum induction in suspected pulmonary tuberculosis: The experience of a single tertiary care center in Saudi Arabia. Int J Mycobacteriol 2021; 10:388-392. [PMID: 34916456 DOI: 10.4103/ijmy.ijmy_203_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Sputum smear microscopy examination and culture for tuberculosis (TB) remain a fundamental tool of diagnosis but may be negative up to 50% case of active pulmonary TB. Bronchoscopy to obtain sputum is invasive and not readily available. Alternative methods of obtaining sputum specimens are crucial in suspected pulmonary TB cases who are unable to expectorate. In this context, it may be beneficial to stimulate sputum production by administering a mist of hypertonic saline produced by ultrasonic nebulization. The aims of the study are to describe the experience of a tertiary center in Saudi Arabia with sputum induction (SI) for the investigation of patients suspected to have sputum scare TB. Methods A retrospective cohort study was performed. All patients suspected of sputum scare TB and investigated with SI were included. Standard descriptive statistics were used. Categorical data presented as frequency were compared using the Chi square test. Continuous data presented as mean ± standard deviation were compared using Student's t test. Sensitivity, specificity, and predictive values were calculated. Results Of 252 patients with suspected TB who underwent SI, 78 (31%) were ultimately diagnosed to have TB. Culture of induced sputum confirmed the diagnosis of TB in 44 (56.4%) of these patients. However, the diagnosis of TB would have been missed in 13.5% of the cohort if no further investigations were done. The incidence of complications was low. No patients required hospitalization or specialist intervention. Conclusions SI is safe well tolerated and inexpensive. It may reduce the need for bronchoscopy in patients with suspected sputum scare TB. However, around 20% of TB can be missed by SI unless further investigations are performed. Hence, patients suspected to have sputum scare TB in whom the risk of bronchoscopy is high, a clinical decision on the appropriateness of empirical therapy is often required.
Collapse
Affiliation(s)
- Mohammed Ayaz Khan
- College of Medicine, King Saud University for Health Sciences; King Abdullah International Medical Research Centre; Department of Medicine, Division of Pulmonary, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Rajkumar Rajendram
- College of Medicine, King Saud University for Health Sciences; King Abdullah International Medical Research Centre;Department of Medicine, Internal Medicine Division, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Abdullah Al-Harbi
- College of Medicine, King Saud University for Health Sciences; King Abdullah International Medical Research Centre; Department of Medicine, Division of Pulmonary, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Majed Al-Ghamdi
- College of Medicine, King Saud University for Health Sciences; King Abdullah International Medical Research Centre; Department of Medicine, Division of Pulmonary, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Emad Masuadi
- College of Medicine, King Saud University for Health Sciences; King Abdullah International Medical Research Centre; Department of Medicine, Internal Medicine Division, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Mostafa Obaidi
- College of Medicine, King Saud University for Health Sciences; King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Hamdan Al-Jahdali
- College of Medicine, King Saud University for Health Sciences; King Abdullah International Medical Research Centre; Department of Medicine, Division of Pulmonary, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Woodall M, Reidel B, Kesimer M, Tarran R, Baines DL. Culture with apically applied healthy or disease sputum alters the airway surface liquid proteome and ion transport across human bronchial epithelial cells. Am J Physiol Cell Physiol 2021; 321:C954-C963. [PMID: 34613844 PMCID: PMC8714986 DOI: 10.1152/ajpcell.00234.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Airway secretions contain many signaling molecules and peptides/proteins that are
not found in airway surface liquid (ASL) generated by normal human bronchial
epithelial cells (NHBEs) in vitro. These play a key role in innate defense and
mediate communication between the epithelium, the immune cells, and the external
environment. We investigated how culture of NHBE with apically applied
secretions from healthy or diseased (cystic fibrosis, CF) lungs affected
epithelial function with a view to providing better in vitro models of the in
vivo environment. NHBEs from 6 to 8 different donors were cultured at air-liquid
interface (ALI), with apically applied sputum from normal healthy donors (normal
lung sputum; NLS) or CF donors (CFS) for 2–4 h, 48 h, or with sputum
reapplied over 48 h. Proteomics analysis was carried out on the sputa and on the
NHBE ASL before and after culture with sputa. Transepithelial electrical
resistance (TEER), short circuit current (Isc), and changes to ASL
height were measured. There were 71 proteins common to both sputa but not ASL.
The protease:protease inhibitor balance was increased in CFS compared with NLS
and ASL. Culture of NHBE with sputa for 48 h identified additional factors not
present in NLS, CFS, or ASL alone. Culture with either NLS or CFS for 48 h
increased cystic fibrosis transmembrane regulator (CFTR) activity,
calcium-activated chloride channel (CaCC) activity, and changed ASL height.
These data indicate that culture with healthy or disease sputum changes the
proteomic profile of ASL and ion transport properties of NHBE and this may
increase physiological relevance when using in vitro airway models.
Collapse
Affiliation(s)
- Maximillian Woodall
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Boris Reidel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| |
Collapse
|
7
|
Jakwerth CA, Chaker AM, Guerth F, Oelsner M, Pechtold L, Zur Bonsen LS, Ullmann JT, Krauss-Etschmann S, Erb A, Kau J, Plaschke M, Winkler M, Kurz A, Kloss A, Esser-von Bieren J, Schmidt-Weber CB, Zissler UM. Sputum microRNA-screening reveals Prostaglandin EP3 receptor as selective target in allergen-specific immunotherapy. Clin Exp Allergy 2021; 51:1577-1591. [PMID: 34514658 DOI: 10.1111/cea.14013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2 levels were measured using ELISA. RESULTS Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2 levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.
Collapse
Affiliation(s)
- Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Lisa Pechtold
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Lynn S Zur Bonsen
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Marlene Winkler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Alexandra Kurz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Antonia Kloss
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| |
Collapse
|
8
|
Bennett WD, Burbank A, Almond M, Wu J, Ceppe A, Hernandez M, Boucher RC, Peden DB. Acute and durable effect of inhaled hypertonic saline on mucociliary clearance in adult asthma. ERJ Open Res 2021; 7:00062-2021. [PMID: 34109248 PMCID: PMC8184161 DOI: 10.1183/23120541.00062-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Impaired mucus clearance and airway mucus plugging have been shown to occur in moderate-severe asthma, especially during acute exacerbations. In cystic fibrosis, where airway mucus is dehydrated, it has been shown that inhaled hypertonic saline (HS) produces both acute and sustained enhancement of mucociliary clearance (MCC). The current study was designed to assess the acute and sustained effect of inhaled 7% HS on MCC in adult asthma. METHODS Well-controlled, moderate-severe female asthmatic patients (n=8) were screened with a single test dose of albuterol (four puffs by metered-dose inhaler) followed by HS (7% sodium chloride, 4 mL using PARI LC Star nebuliser). Spirometry was measured pre-treatment and 5 and 30 min post-treatment for safety. MCC was measured using γ-scintigraphy on three separate visits: at baseline, during inhalation and 4 h after a single dose of HS. RESULTS MCC was acutely enhanced during HS treatment; mean±sd clearance over 60 min of dynamic imaging (Ave60Clr) was 8.9±7.9% (baseline) versus 23.4±7.6% (acute HS) (p<0.005). However, this enhancement was not maintained over a 4-h period where post-HS treatment Ave60Clr was 9.3±8.2%. In this small cohort we found no decrements in lung function up to 30 min post-treatment (forced expiratory volume in 1 s 97.4±10.0% predicted pre-treatment and 98.9±10.7% predicted 30 min post-treatment). CONCLUSION While MCC was rapidly enhanced during 7% HS treatment there was no effect on MCC at 4 h post-treatment. While these findings may not support aerosolised HS use for maintenance therapy, they do suggest a benefit of treating acute exacerbations in patients with moderate-severe asthma.
Collapse
Affiliation(s)
- William D. Bennett
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pulmonary and Critical Care Medicine, Dept of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Burbank
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Allergy and Immunology, Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martha Almond
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jihong Wu
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Agathe Ceppe
- Pulmonary and Critical Care Medicine, Dept of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle Hernandez
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Allergy and Immunology, Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C. Boucher
- Pulmonary and Critical Care Medicine, Dept of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B. Peden
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Allergy and Immunology, Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Arjomandi M, Balmes JR, Frampton MW, Bromberg P, Rich DQ, Stark P, Alexis NE, Costantini M, Hollenbeck-Pringle D, Dagincourt N, Hazucha MJ. Respiratory Responses to Ozone Exposure. MOSES (The Multicenter Ozone Study in Older Subjects). Am J Respir Crit Care Med 2019; 197:1319-1327. [PMID: 29232153 DOI: 10.1164/rccm.201708-1613oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Acute respiratory effects of low-level ozone exposure are not well defined in older adults. OBJECTIVES MOSES (The Multicenter Ozone Study in Older Subjects), although primarily focused on acute cardiovascular effects, provided an opportunity to assess respiratory responses to low concentrations of ozone in older healthy adults. METHODS We performed a randomized crossover, controlled exposure study of 87 healthy adults (59.9 ± 4.5 yr old; 60% female) to 0, 70, and 120 ppb ozone for 3 hours with intermittent exercise. Outcome measures included spirometry, sputum markers of airway inflammation, and plasma club cell protein-16 (CC16), a marker of airway epithelial injury. The effects of ozone exposure on these outcomes were evaluated with mixed-effect linear models. A P value less than 0.01 was chosen a priori to define statistical significance. MEASUREMENTS AND MAIN RESULTS The mean (95% confidence interval) FEV1 and FVC increased from preexposure values by 2.7% (2.0-3.4) and 2.1% (1.3-2.9), respectively, 15 minutes after exposure to filtered air (0 ppb). Exposure to ozone reduced these increases in a concentration-dependent manner. After 120-ppb exposure, FEV1 and FVC decreased by 1.7% (1.1-2.3) and 0.8% (0.3-1.3), respectively. A similar concentration-dependent pattern was still discernible 22 hours after exposure. At 4 hours after exposure, plasma CC16 increased from preexposure levels in an ozone concentration-dependent manner. Sputum neutrophils obtained 22 hours after exposure showed a marginally significant increase in a concentration-dependent manner (P = 0.012), but proinflammatory cytokines (IL-6, IL-8, and tumor necrosis factor-α) were not significantly affected. CONCLUSIONS Exposure to ozone at near ambient levels induced lung function effects, airway injury, and airway inflammation in older healthy adults. Clinical trial registered with www.clinicaltrials.gov (NCT01487005).
Collapse
Affiliation(s)
- Mehrdad Arjomandi
- 1 San Francisco Veterans Affairs Medical Center, San Francisco, California.,2 Department of Medicine, University of California at San Francisco, San Francisco, California
| | - John R Balmes
- 2 Department of Medicine, University of California at San Francisco, San Francisco, California.,3 Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | - Mark W Frampton
- 4 Department of Medicine.,5 Department of Environmental Medicine, and
| | - Philip Bromberg
- 6 Department of Medicine and.,7 Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | - David Q Rich
- 4 Department of Medicine.,5 Department of Environmental Medicine, and.,8 Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York
| | - Paul Stark
- 9 New England Research Institute, Watertown, Massachusetts; and
| | - Neil E Alexis
- 10 Department of Pediatrics, School of Medicine, and.,7 Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | - Milan J Hazucha
- 6 Department of Medicine and.,7 Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Øya E, Solhaug A, Bølling AK, Øvstebø R, Steensen TB, Afanou AKJ, Holme JA. Pro-inflammatory responses induced by A. fumigatus and A. versicolor in various human macrophage models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:483-501. [PMID: 31116698 DOI: 10.1080/15287394.2019.1619114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposure to mold-contaminated indoor air has been associated with various respiratory diseases, and there is a need for experimental data to confirm these associations. The pro-inflammatory properties of well-characterized aerosolized spores and hyphal fragments from Aspergillus fumigatus and Aspergillus versicolor were examined and compared using various human macrophage cell models including phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages (THP-1 Ma), primary peripheral blood monocyte-derived macrophages (MDM), and primary airway macrophages (AM) from induced sputum. X-ray treated samples of the two mold species induced different responses with A. fumigatus displaying the most potent induction of pro-inflammatory responses. While hyphal fragments from A. fumigatus were more potent than spores, similar responses were produced by the two growth stages of A. versicolor. THP-1 Ma was the most sensitive model releasing a broad range of cytokines/chemokines. MDM exhibited a similar cytokine/chemokine profile as THP-1 Ma, except for a low-quantity release of interleukin-1β (IL-1β). In contrast, AM appeared to be nonresponsive and yielded a different pattern of pro-inflammatory markers. Toll-like receptor (TLR)4, but also to a certain degree TLR2, was involved in several responses induced by spores and aerosolized hyphal fragments of A. fumigatus in MDM. Taken together, MDM seems to be the most promising experimental macrophage model. Abbreviations: AF: A. fumigatus, Aspergillus fumigatus; AV: A. versicolor, Aspergillus versicolor; AM: Airway Macrophage; CBA: Cytometric Bead Array; CD: Cluster of Differentiation; DTT: dithiothreitol; ELISA: Enzyme Linked Immunosorbent Assay; FBS: fetal bovine serum; GM-CSF: Granulocyte macrophage colony-stimulating factor; IL-1β: Interleukin-1beta; MDM: Monocyte-Derived Macrophages; NF-κB: Nuclear Factor kappa light chain enhancer of activated B cells; NLR: NOD-like Receptor; PAMP: Pathogen Associated Molecular Pattern; PMA: Phorbol 12-myristate 13-acetate; PRR: Pattern Recognition Receptor; THP-1: Human leukemia monocyte cell line; TLR: Toll-like Receptor; TNF-α: Tumor Necrosis Factor- alpha.
Collapse
Affiliation(s)
- Elisabeth Øya
- a Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| | - Anita Solhaug
- b Toxinology Research Group , Norwegian Veterinary Institute , Oslo , Norway
| | - Anette K Bølling
- a Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| | - Reidun Øvstebø
- c Department for Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Tonje B Steensen
- a Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| | - Anani K J Afanou
- d Department for the Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Jørn A Holme
- a Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
11
|
Henderson AG, Anderson WH, Ceppe A, Coakley RD, Button B, Alexis NE, Peden DB, Lazarowski ER, Davis CW, Fuller F, Almond M, Qaqish B, Kesimer M, Boucher RC. Mucus Hydration in Subjects with Stable Chronic Bronchitis: A Comparison of Spontaneous and Induced Sputum. COPD 2019; 15:572-580. [PMID: 30712400 DOI: 10.1080/15412555.2019.1566892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mucus hydration is important in mucus clearance and lung health. This study sought to test the relative utility of spontaneous sputum (SS) versus the reasonably noninvasive induced sputum (IS) samples for measurement of mucus hydration. SS and IS samples were collected over a 2-day study interval. Sputum was induced with escalating inhaled nebulized 3-5% hypertonic saline. Viscous portions of the samples ("plugs") were utilized for percent solids and total mucin analyses. Cytokines, nucleotides/nucleosides and cell differentials were measured in plugs diluted into 0.1% Sputolysin. Overall, 61.5% of chronic bronchitis (CB) subjects produced a SS sample and 95.2% an IS sample. Total expectorate sample weights were less for the SS (0.94 ± 0.98 g) than the IS (2.67 ± 2.33 g) samples. Percent solids for the SS samples (3.56% ± 1.95; n = 162) were significantly greater than the IS samples (3.08% ± 1.81; n = 121), p = 0.133. Total mucin concentrations also exhibited a dilution of the IS samples: SS = 4.15 ± 3.23 mg/ml (n = 62) versus IS= 3.34 ± 2.55 mg/ml (n = 71) (p = 0.371). Total mucins (combined SS and IS) but not percent solids, were inversely associated with FEV1 percent predicted (p = 0.052) and FEV1,/FVC % (p = 0.035). There were no significant differences between sample types in cytokine or differential cell counts. The probability of sample collections was less for SS than IS samples. Measurements of hydration revealed modest dilution of the IS samples compared to SS. Thus for measurements of mucus hydration, both SS and IS samples appear to be largely interchangeable.
Collapse
Affiliation(s)
- Ashley G Henderson
- a Pulmonary and Critical Care Medicine, Department of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Wayne H Anderson
- b Pulmonary and Critical Care Medicine, Department of Medicine and Marsico Lung Institute , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Agathe Ceppe
- a Pulmonary and Critical Care Medicine, Department of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Raymond D Coakley
- a Pulmonary and Critical Care Medicine, Department of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Brian Button
- c Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Neil E Alexis
- d Marsico Lung Institute, Center for Environmental Medicine, Asthma and Lung Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - David B Peden
- d Marsico Lung Institute, Center for Environmental Medicine, Asthma and Lung Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Eduardo R Lazarowski
- c Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - C W Davis
- c Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Fred Fuller
- e Division of Urology , NC Memorial Hospital, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Martha Almond
- a Pulmonary and Critical Care Medicine, Department of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Bahjat Qaqish
- f Department of Statistics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Mehmet Kesimer
- c Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Richard C Boucher
- c Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| |
Collapse
|
12
|
Bargagli E, Di Masi M, Perruzza M, Vietri L, Bergantini L, Torricelli E, Biadene G, Fontana G, Lavorini F. The pathogenetic mechanisms of cough in idiopathic pulmonary fibrosis. Intern Emerg Med 2019; 14:39-43. [PMID: 30269188 DOI: 10.1007/s11739-018-1960-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/24/2018] [Indexed: 01/07/2023]
Abstract
Idiopathic pulmonary fibrosis is a peripheral subpleural interstitial lung disorder limited to the lung not involving the airways. It has a poor prognosis (survival less than 5 years) and commonly an interstitial pneumonia radiological pattern. Patients complain of a chronic dry cough in 80% of cases. A cough is often the first symptom of this rare disease, preceding dyspnea by years, and is associated with a poor prognosis, high dyspnea scores and low FVC percentages. The pathogenetic mechanisms leading to coughing in IPF are unclear. This review focuses on recent evidence of cough pathophysiology in this disease. Gastroesophageal reflux may promote coughing in IPF patients; bile salts and pepsin may be abundant in BAL of these patients, inducing overproduction of TGF-β by airway epithelial cells and mesenchymal transition with fibroblast recruitment/activation and extracellular matrix deposition. Patients have an enhanced cough reflex to capsaicin and substance P with respect to control subjects. Moreover, patients with the MUC5B polymorphism show more severe coughing as MUC5B encodes for the dominant mucin in the honeycomb cysts of IPF patients. Comorbidities, including asthma, gastroesophageal reflux, hypersensitivity pneumonitis, bronchiectasis, chronic obstructive pulmonary disease and emphysema, can induce coughing in IPF patients. There is no clear explanation of the causes of coughing in IPF. Further research into the pathophysiology of IPF and the pathogenetic mechanisms of coughing is necessary to improve survival and quality of life.
Collapse
Affiliation(s)
- Elena Bargagli
- Section of Respiratory Diseases and Lung Transplantation, Department of Clinical Medicine and Neurosciences, Siena University Hospital, Siena, Italy.
| | - Maria Di Masi
- Section of Respiratory Medicine, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Marco Perruzza
- Section of Respiratory Diseases and Lung Transplantation, Department of Clinical Medicine and Neurosciences, Siena University Hospital, Siena, Italy
| | - Lucia Vietri
- Section of Respiratory Diseases and Lung Transplantation, Department of Clinical Medicine and Neurosciences, Siena University Hospital, Siena, Italy
| | - Laura Bergantini
- Section of Respiratory Diseases and Lung Transplantation, Department of Clinical Medicine and Neurosciences, Siena University Hospital, Siena, Italy
| | - Elena Torricelli
- Section of Respiratory Medicine, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Giulia Biadene
- Section of Respiratory Medicine, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Giovanni Fontana
- Section of Respiratory Medicine, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Federico Lavorini
- Section of Respiratory Medicine, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Bølling AK, Steensen TB, Alexis NE, Sikkeland LIB. Isolating and culturing of sputum macrophages: A potential ex vivo/in vitro model. Exp Lung Res 2018; 44:312-322. [PMID: 30465455 DOI: 10.1080/01902148.2018.1539788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE This paper aimed to test whether induced sputum samples acquired from human volunteers could be used to isolate and culture airway macrophages for in vitro exposures. This was assessed in terms of the culturing success rate, culture purity, viability and responsiveness of cultured cells. MATERIALS AND METHODS The isolation and culturing procedure was performed over three days. On Day 1, induced sputum samples were obtained, processed and seeded in culture wells. Differential cell counts and viability tests were performed to allow for calculation of viable macrophage numbers and appropriate sample dilution. After a 1 h rest, seeded wells were washed to remove non-adherent cells, resulting in macrophage isolation. Then, cells rested overnight (Day 1-Day 2), before in vitro exposure for 2-24 h (Day 2-Day 3). The criteria for progressing into the culturing procedure was cell viability >40% and total cell number >106. Successful culturing was evaluated based on cell attachment (N = 40). Culture purity by differential cell analysis and viability was monitored during culturing (N = 4-8). Macrophage responsivity was assessed by measurement of inflammatory cytokine gene expression (N = 4) and cytokine levels (N = 6) following in vitro exposure to lipopolysaccharide (LPS) (2-24 h) and live bacteria (S. aureus) (4h). RESULTS Overall, 88% (35/40) of the samples acquired were suitable for isolation, and 80% (32/40) were successfully progressed through the 2-3 day culturing protocol. Macrophage purity (88%) and viability (85%) were adequate. Moreover, cultured macrophages were responsive to in vitro stimulation with LPS and viable S. aureus showing positive mRNA responses for TNFα, IL-1β and IL-8 and release of IL-1β, respectively. CONCLUSION Sputum macrophage isolation by plate adherence and subsequent culturing of sputum macrophages was successfully performed and represents a promising in vitro model for examination of airway macrophage behavior.
Collapse
Affiliation(s)
- Anette Kocbach Bølling
- a Domain of Infection Control and Environmental Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Tonje Berg Steensen
- a Domain of Infection Control and Environmental Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Neil E Alexis
- b Asthma and Lung Biology , Center for Environmental Medicine , Chapel Hill , North Carolina , USA
| | - Liv Ingunn Bjoner Sikkeland
- c Department of Respiratory Medicine , Rikshospitalet, Oslo University Hospital AND University of Oslo , Oslo , Norway
| |
Collapse
|
14
|
Taylor SL, O'Farrell HE, Simpson JL, Yang IA, Rogers GB. The contribution of respiratory microbiome analysis to a treatable traits model of care. Respirology 2018; 24:19-28. [PMID: 30282116 DOI: 10.1111/resp.13411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/13/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022]
Abstract
The composition of the airway microbiome in patients with chronic airway diseases, such as severe asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis and cystic fibrosis (CF), has the potential to inform a precision model of clinical care. Patients with these conditions share overlapping disease characteristics, including airway inflammation and airflow limitation. The clinical management of chronic respiratory conditions is increasingly moving away from a one-size-fits-all model based on primary diagnosis, towards care targeting individual disease traits, and is particularly useful for subgroups of patients who respond poorly to conventional therapies. Respiratory microbiome analysis is an important potential contributor to such a 'treatable traits' approach, providing insight into both microbial drivers of airways disease, and the selective characteristics of the changing lower airway environment. We explore the potential to integrate respiratory microbiome analysis into a treatable traits model of clinical care and provide a practical guide to the application and clinical interpretation of respiratory microbiome analysis.
Collapse
Affiliation(s)
- Steven L Taylor
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah E O'Farrell
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jodie L Simpson
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Geraint B Rogers
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
15
|
Lavrich KS, Speen AM, Ghio AJ, Bromberg PA, Samet JM, Alexis NE. Macrophages from the upper and lower human respiratory tract are metabolically distinct. Am J Physiol Lung Cell Mol Physiol 2018; 315:L752-L764. [PMID: 30091382 DOI: 10.1152/ajplung.00208.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function and cell surface phenotype of lung macrophages vary within the respiratory tract. Alterations in the bioenergetic profile of macrophages may also be influenced by their location within the respiratory tract. This study sought to characterize the bioenergetic profile of macrophages sampled from different locations within the respiratory tract at baseline and in response to ex vivo xenobiotic challenge. Surface macrophages recovered from healthy volunteers by induced sputum and by bronchial and bronchoalveolar lavage were profiled using extracellular flux analyses. Oxygen consumption and extracellular acidification rates were measured at rest and after stimulation with lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), or 1,2-naphthoquinone (1,2-NQ). Oxygen consumption and extracellular acidification rates were highly correlated for all macrophage samples. Induced sputum macrophages had relatively higher oxygen consumption and extracellular acidification rates and were largely reliant on glycolysis. In contrast, bronchial fraction and bronchoalveolar macrophages depended more heavily on mitochondrial respiration. Bronchoalveolar macrophages showed elevated LPS-induced cytokine responses. Unlike their autologous peripheral blood monocytes, lung macrophages from any source did not display bioenergetic changes following LPS stimulation. The protein kinase C activator PMA did not affect mitochondrial respiration, whereas the air pollutant 1,2-NQ induced marked mitochondrial dysfunction in bronchoalveolar and bronchial fraction macrophages. The bioenergetic characteristics of macrophages from healthy individuals are dependent on their location within the respiratory tract. These findings establish a regional bioenergetic profile for macrophages from healthy human airways that serves as a reference for changes that occur in disease.
Collapse
Affiliation(s)
- Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - Adam M Speen
- Curriculum in Toxicology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - Andrew J Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
16
|
Koc-Günel S, Schubert R, Zielen S, Rosewich M. Cell distribution and cytokine levels in induced sputum from healthy subjects and patients with asthma after using different nebulizer techniques. BMC Pulm Med 2018; 18:115. [PMID: 30005648 PMCID: PMC6045886 DOI: 10.1186/s12890-018-0683-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sputum induction is an important noninvasive method for analyzing bronchial inflammation in patients with asthma and other respiratory diseases. Most frequently, ultrasonic nebulizers are used for sputum induction, but breath-controlled nebulizers may target the small airways more efficiently. This treatment may produce a cell distribution similar to bronchoalveolar lavage (less neutrophils and more macrophages) and provide deeper insights into the underlying lung pathology. The goal of the study was to compare both types of nebulizer devices and their efficacy in inducing sputum to measure bronchial inflammation, i.e., cell composition and cytokines, in patients with mild allergic asthma and healthy controls. METHODS The population of this study consisted of 20 healthy control subjects with a median age of 17 years, range: 8-25 years, and 20 patients with a median age of 12 years, range: 8-24 years, presenting with mild, controlled allergic asthma who were not administered an inhaled steroid treatment. We induced sputum in every individual using both devices on two separate days. The sputum weight, the cell composition and cytokine levels were analyzed using a cytometric bead assay (CBA) and by real-time quantitative PCR (qRT-PCR). RESULTS We did not observe significant differences in the weight, cell distribution or cytokine levels in the sputum samples induced by both devices. In addition, the Bland-Altman correlation revealed good concordance of the cell distribution. As expected, eosinophils and IL-5 levels were significantly elevated in patients with asthma. CONCLUSIONS The hypothesis that sputum induction with a breath-controlled "smart" nebulizer is more efficient and different from an ultrasonic nebulizer was not confirmed. The Bland-Altman correlations showed good concordance when comparing the two devices. TRIAL REGISTRATION NCT01543516 Retrospective registration date: March 5, 2012.
Collapse
Affiliation(s)
- Sinem Koc-Günel
- Department for Children and Adolescents, Division for Allergology, Pneumology and Cystic Fibrosis, University Hospital Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Department of Internal Medicine, Division of Pneumology, University Hospital Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.
| | - Ralf Schubert
- Department for Children and Adolescents, Division for Allergology, Pneumology and Cystic Fibrosis, University Hospital Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Division for Allergology, Pneumology and Cystic Fibrosis, University Hospital Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Martin Rosewich
- Department for Children and Adolescents, Division for Allergology, Pneumology and Cystic Fibrosis, University Hospital Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Giddings O, Esther CR. Mapping targetable inflammation and outcomes with cystic fibrosis biomarkers. Pediatr Pulmonol 2017; 52:S21-S28. [PMID: 28714611 PMCID: PMC5664212 DOI: 10.1002/ppul.23768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 01/01/2023]
Abstract
Cystic fibrosis is characterized by an overly exuberant neutrophilic inflammatory response to pathogens and other stimuli that starts very early in disease. The overwhelming nature of this response is a primary cause of remodeling and destruction of the airways, suggesting that anti-inflammatory therapies could be beneficial in CF. However, finding therapies that can effectively reduce the inflammatory response without compromising host defenses remains elusive. New approaches towards mapping inflammatory targets promise to aid in developing novel therapeutic strategies and improve outcomes in individuals with CF.
Collapse
Affiliation(s)
- Olivia Giddings
- Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Soliman Atta MS, Baess AI, Mohammad Abdullah MH. Comparative study between bronchoalveolar lavage and induced sputum in the diagnosis of inflammatory lung diseases. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2017. [DOI: 10.4103/ejb.ejb_78_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Alexis NE, Bennett W, Peden DB. Safety and benefits of inhaled hypertonic saline following airway challenges with endotoxin and allergen in asthmatics. J Asthma 2017; 54:957-960. [PMID: 28095128 DOI: 10.1080/02770903.2016.1278019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine whether induced sputum (IS) with hypertonic saline inhalation is safe to use in asthmatics within 24 hours of two commonly used airway challenges, namely endotoxin and dust mite allergen, and to assess whether IS can enhance mucociliary clearance (MCC) rates in asthmatics. METHODS IS (three 7-minute inhalation periods of 3%, 4%, and 5% hypertonic saline) was employed before (N = 29) and within 24 hours of inhaled challenges with endotoxin (N = 13) and dust mite allergen (N = 12) in a cohort of mild to moderate asthmatics. Safety was assessed by lung function (Forced Expiratory Volume in 1 second; FEV1) and MCC was measured using a radiolabeled gamma scintigraphy method (Tcm99 sulfur colloid). IS was performed pre and post MCC. RESULTS No significant lung function decrement was observed before or after inhaled challenges with endotoxin or dust mite allergen. IS significantly enhanced MCC rates before and after inhaled endotoxin challenge. CONCLUSION Based on a small cohort, IS is safe to use in mild to moderate asthmatics before and within 24 hours of inhaled challenges with endotoxin and dust mite allergen. Furthermore, IS has beneficial effects on host defense function in asthmatics by enhancing MCC rates.
Collapse
Affiliation(s)
- Neil E Alexis
- a Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Center for Environmental Medicine , Asthma and Lung Biology, University of North Carolina Chapel Hill , Chapel Hill , NC , USA
| | - William Bennett
- b Center for Environmental Medicine , Asthma and Lung Biology, Division of Allergy and Immunology, University of North Carolina School of Medicine , Chapel Hill , NC , USA
| | - David Blaine Peden
- b Center for Environmental Medicine , Asthma and Lung Biology, Division of Allergy and Immunology, University of North Carolina School of Medicine , Chapel Hill , NC , USA
| |
Collapse
|
20
|
Rebuli ME, Speen AM, Clapp PW, Jaspers I. Novel applications for a noninvasive sampling method of the nasal mucosa. Am J Physiol Lung Cell Mol Physiol 2016; 312:L288-L296. [PMID: 28011618 DOI: 10.1152/ajplung.00476.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Reliable methods for sampling the nasal mucosa provide clinical researchers with key information regarding respiratory biomarkers of exposure and disease. For quick and noninvasive sampling of the nasal mucosa, nasal lavage (NL) collection has been widely used as a clinical tool; however, limitations including volume variability, sample dilution, and storage prevent NL collection from being used in nonlaboratory settings and analysis of low abundance biomarkers. In this study, we optimize and validate a novel methodology using absorbent Leukosorb paper cut to fit the nasal passage to extract epithelial lining fluid (ELF) from the nasal mucosa. The ELF sampling method limits the dilution of soluble mediators, allowing quantification of both high- and low-abundance soluble biomarkers such as IL-1β, IL-8, IL-6, interferon gamma-induced protein 10 (IP-10), and neutrophil elastase. Additionally, we demonstrate that this method can successfully detect the presence of respiratory pathogens such as influenza virus and markers of antibiotic-resistant bacteria in the nasal mucosa. Efficacy of ELF collection by this method is not diminished in consecutive-day sampling, and percent recovery of both recombinant IL-8 and soluble mediators are not changed despite freezing or room temperature storage for 24 h. Our results indicate that ELF collection using Leukosorb paper sampling of ELF provides a sensitive, easy-to-use, and reproducible methodology to collect concentrated amounts of soluble biomarkers from the nasal mucosa. Moreover, the methodology described herein improves upon the standard NL collection method and provides researchers with a novel tool to assess changes in nasal mucosal host defense status.
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Adam M Speen
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Phillip W Clapp
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; .,Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and.,Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Santini G, Mores N, Shohreh R, Valente S, Dabrowska M, Trové A, Zini G, Cattani P, Fuso L, Mautone A, Mondino C, Pagliari G, Sala A, Folco G, Aiello M, Pisi R, Chetta A, Losi M, Clini E, Ciabattoni G, Montuschi P. Exhaled and non-exhaled non-invasive markers for assessment of respiratory inflammation in patients with stable COPD and healthy smokers. J Breath Res 2016; 10:017102. [PMID: 26814886 DOI: 10.1088/1752-7155/10/1/017102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We aimed at comparing exhaled and non-exhaled non-invasive markers of respiratory inflammation in patients with chronic obstructive pulmonary disease (COPD) and healthy subjects and define their relationships with smoking habit. Forty-eight patients with stable COPD who were ex-smokers, 17 patients with stable COPD who were current smokers, 12 healthy current smokers and 12 healthy ex-smokers were included in a cross-sectional, observational study. Inflammatory outcomes, including prostaglandin (PG) E2 and 15-F2t-isoprostane (15-F2t-IsoP) concentrations in exhaled breath condensate (EBC) and sputum supernatants, fraction of exhaled nitric oxide (FENO) and sputum cell counts, and functional (spirometry) outcomes were measured. Sputum PGE2 was elevated in both groups of smokers compared with ex-smoker counterpart (COPD: P < 0.02; healthy subjects: P < 0.03), whereas EBC PGE2 was elevated in current (P = 0.0065) and ex-smokers with COPD (P = 0.0029) versus healthy ex-smokers. EBC 15-F2t-IsoP, a marker of oxidative stress, was increased in current and ex-smokers with COPD (P < 0.0001 for both) compared with healthy ex-smokers, whereas urinary 15-F2t-IsoP was elevated in both smoker groups (COPD: P < 0.01; healthy subjects: P < 0.02) versus healthy ex-smokers. FENO was elevated in ex-smokers with COPD versus smoker groups (P = 0.0001 for both). These data suggest that the biological meaning of these inflammatory markers depends on type of marker and biological matrix in which is measured. An approach combining different types of outcomes can be used for assessing respiratory inflammation in patients with COPD. Large studies are required to establish the clinical utility of this strategy.
Collapse
Affiliation(s)
- Giuseppe Santini
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brugha R, Mushtaq N, McCarthy NE, Stagg AJ, Grigg J. Respiratory tract dendritic cells in paediatric asthma. Clin Exp Allergy 2015; 45:624-31. [PMID: 25411998 DOI: 10.1111/cea.12457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Airway dendritic cells (DC) are critical mediators of lung inflammation in asthma, but the characteristics of DC in the airways of healthy children, and children with asthma, are currently unknown. OBJECTIVE We sought to identify changes in DC subset distribution and activation profile in paediatric asthma using flow cytometry to analyse induced sputum samples obtained from healthy and asthmatic children. METHODS Lung function and atopic status were determined by spirometry and skin prick testing. Induced sputum samples were analysed using 7-colour flow cytometry to identify airway DC populations (lineage(-) HLA-DR(+) sputum cells expressing either CD11c as conventional DC or CD123 as plasmacytoid DC). RESULTS Sputum samples containing lower airway plugs were obtained from 10 healthy children and 8 children with asthma. Lineage(-) HLA-DR(+) DC were successfully identified in all samples, and DC comprised a significantly higher proportion of sputum cells in children with asthma compared with age-matched healthy controls (1.29% vs. 0.67%, P = 0.02). DC expression of the costimulatory marker CD86 was significantly reduced in asthmatic children (73.4% vs. 59.7%, P = 0.04). Sputum DC also included numerous CD1c(+) cells (mean 57% of the total DC population) and low frequencies of cells expressing the subset markers CD141 or CD123, although the proportions of these did not differ between groups. CONCLUSIONS Airway DC can be identified and characterized non-invasively using flow cytometry to analyse paediatric sputum samples. Our data reveal that children with steroid-treated asthma exhibit increased frequency of airway DC with reduced expression of the costimulatory marker CD86, suggesting altered trafficking and/or maturation of these cells either due to asthma or steroid therapies.
Collapse
Affiliation(s)
- R Brugha
- Asthma UK Centre for Applied Research, Centre for Paediatrics, Blizard Institute, Queen Mary, University of London, London, UK
| | | | | | | | | |
Collapse
|
23
|
Esther CR, Coakley RD, Henderson AG, Zhou YH, Wright FA, Boucher RC. Metabolomic Evaluation of Neutrophilic Airway Inflammation in Cystic Fibrosis. Chest 2015; 148:507-515. [PMID: 25611918 DOI: 10.1378/chest.14-1800] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Metabolomic evaluation of cystic fibrosis (CF) airway secretions could identify metabolites and metabolic pathways involved in neutrophilic airway inflammation that could serve as biomarkers and therapeutic targets. METHODS Mass spectrometry (MS)-based metabolomics was performed on a discovery set of BAL fluid samples from 25 children with CF, and targeted MS methods were used to identify and quantify metabolites related to neutrophilic inflammation. A biomarker panel of these metabolites was then compared with neutrophil counts and clinical markers in independent validation sets of lavage from children with CF and adults with COPD compared with control subjects. RESULTS Of the 7,791 individual peaks detected by positive-mode MS metabolomics discovery profiling, 338 were associated with neutrophilic inflammation. Targeted MS determined that many of these peaks were generated by metabolites from pathways related to the metabolism of purines, polyamines, proteins, and nicotinamide. Analysis of the independent validation sets verified that, in subjects with CF or COPD, several metabolites, particularly those from purine metabolism and protein catabolism pathways, were strongly correlated with neutrophil counts and were related to clinical markers, including airway infection and lung function. CONCLUSIONS MS metabolomics identified multiple metabolic pathways associated with neutrophilic airway inflammation. These findings provide insight into disease pathophysiology and can serve as the basis for developing disease biomarkers and therapeutic interventions for airways diseases.
Collapse
Affiliation(s)
- Charles R Esther
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Raymond D Coakley
- Cystic Fibrosis and Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ashley G Henderson
- Cystic Fibrosis and Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yi-Hui Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fred A Wright
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard C Boucher
- Cystic Fibrosis and Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
24
|
Anderson WH, Coakley RD, Button B, Henderson AG, Zeman KL, Alexis NE, Peden DB, Lazarowski ER, Davis CW, Bailey S, Fuller F, Almond M, Qaqish B, Bordonali E, Rubinstein M, Bennett WD, Kesimer M, Boucher RC. The Relationship of Mucus Concentration (Hydration) to Mucus Osmotic Pressure and Transport in Chronic Bronchitis. Am J Respir Crit Care Med 2015; 192:182-90. [PMID: 25909230 PMCID: PMC4532825 DOI: 10.1164/rccm.201412-2230oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/22/2015] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. OBJECTIVES We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. METHODS We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. MEASUREMENTS AND RESULTS CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. CONCLUSIONS Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Brian Button
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | | | - Kirby L. Zeman
- Marsico Lung Institute/Center for Environmental Medicine, Asthma, and Lung Biology
| | - Neil E. Alexis
- Marsico Lung Institute/Center for Environmental Medicine, Asthma, and Lung Biology
| | - David B. Peden
- Marsico Lung Institute/Center for Environmental Medicine, Asthma, and Lung Biology
| | | | | | - Summer Bailey
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Fred Fuller
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Martha Almond
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Michael Rubinstein
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William D. Bennett
- Pulmonary and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute/Center for Environmental Medicine, Asthma, and Lung Biology
| | | | - Richard C. Boucher
- Pulmonary and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute/Cystic Fibrosis Research Center
| |
Collapse
|
25
|
Bennett WD, Wu J, Fuller F, Balcazar JR, Zeman KL, Duckworth H, Donn KH, O'Riordan TG, Boucher RC, Donaldson SH. Duration of action of hypertonic saline on mucociliary clearance in the normal lung. J Appl Physiol (1985) 2015; 118:1483-90. [PMID: 25911685 DOI: 10.1152/japplphysiol.00404.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 04/17/2015] [Indexed: 11/22/2022] Open
Abstract
Inhalation of hypertonic saline (HS) acutely enhances mucociliary clearance (MC) in both health and disease. In patients with cystic fibrosis (CF), repeated use of HS causes a sustained improvement in MC as well as clinical benefit. The pharmacodynamic duration of activity on MC may be an important determinant of its therapeutic potential in other airways diseases. Before moving toward testing the clinical benefits of HS for non-CF indications, we sought to assess the duration of pharmacodynamic effects of HS in healthy subjects by performing radiotracer clearance studies at baseline, 30-min post-HS administration, and 4-h post-HS administration. Indeed, acceleration of MC was observed when measured 30 min after HS inhalation. This acceleration was most pronounced in the first 30 min after inhaling the radiotracer in the central lung region (mean Ave30Clr = 15.5 vs. 8.6% for 30-min post-HS treatment vs. mean baseline, respectively, P < 0.005), suggesting that acute HS effects were greatest in the larger bronchial airways. In contrast, when MC was measured 4 h after HS administration, all indices of central lung region MC were slower than at baseline: Ave30Clr = 5.9% vs. 8.6% (P = 0.10); Ave90Clr = 12.4% vs. 16.8% (P < 0.05); clearance through 3 h = 29.4 vs. 43.7% (P < 0.002); and clearance through 6 h = 39.4 vs. 50.2% (P < 0.02). This apparent slowing of MC in healthy subjects 4-h post-HS administration may reflect depletion of airway mucus following acute HS administration.
Collapse
Affiliation(s)
- W D Bennett
- Center for Environmental Medicine, Asthma, and Lung Biology and
| | - J Wu
- Center for Environmental Medicine, Asthma, and Lung Biology and
| | - F Fuller
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, North Carolina
| | - J R Balcazar
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, North Carolina
| | - K L Zeman
- Center for Environmental Medicine, Asthma, and Lung Biology and
| | - H Duckworth
- Center for Environmental Medicine, Asthma, and Lung Biology and
| | - K H Donn
- Parion Sciences, Incorporated, Durham, North Carolina; and
| | | | - R C Boucher
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, North Carolina
| | - S H Donaldson
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
26
|
Esther CR, Alexis NE, Picher M. Regulation of airway nucleotides in chronic lung diseases. Subcell Biochem 2014; 55:75-93. [PMID: 21560045 DOI: 10.1007/978-94-007-1217-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulating reports of abnormal ATP and adenosine (ADO) levels in the airway secretions of patients with asthma, chronic pulmonary obstructive diseases, cystic fibrosis and idiopathic pulmonary fibrosis. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by excessive inflammation. This chapter reviews the challenges of assessing airway purines in human subjects, and identifies the general trend in aberrant airway composition. Most diseases are associated with an accumulation of ATP and/or ADO in bronchoalveolar lavage, sputum or exhaled breadth condensate. Intriguing is the case of cystic fibrosis patients, which do not accumulate airway ADO, but its precursor, AMP. This observation launched the investigation of ectonucleotidases as target proteins for the correction of airway purine levels in chronic respiratory diseases. This chapter exposes the extensive rearrangement of the enzymatic network taking place in diseased airways, and identifies signaling pathways likely involved in the aberrant regulation of the airway purines.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | |
Collapse
|
27
|
Di Stefano A, Caramori G, Barczyk A, Vicari C, Brun P, Zanini A, Cappello F, Garofano E, Padovani A, Contoli M, Casolari P, Durham AL, Chung KF, Barnes PJ, Papi A, Adcock I, Balbi B. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax 2014; 69:516-24. [PMID: 24430176 PMCID: PMC4219154 DOI: 10.1136/thoraxjnl-2012-203062] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background In models of COPD, environmental stressors induce innate immune responses, inflammasome activation and inflammation. However, the interaction between these responses and their role in driving pulmonary inflammation in stable COPD is unknown. Objectives To investigate the activation of innate immunity and inflammasome pathways in the bronchial mucosa and bronchoalveolar lavage (BAL) of patients with stable COPD of different severity and control healthy smokers and non-smokers. Methods Innate immune mediators (interleukin (IL)-6, IL-7, IL-10, IL-27, IL-37, thymic stromal lymphopoietin (TSLP), interferon γ and their receptors, STAT1 and pSTAT1) and inflammasome components (NLRP3, NALP7, caspase 1, IL-1β and its receptors, IL-18, IL-33, ST2) were measured in the bronchial mucosa using immunohistochemistry. IL-6, soluble IL-6R, sgp130, IL-7, IL-27, HMGB1, IL-33, IL-37 and soluble ST2 were measured in BAL using ELISA. Results In bronchial biopsies IL-27+ and pSTAT1+ cells are increased in patients with severe COPD compared with control healthy smokers. IL-7+ cells are increased in patients with COPD and control smokers compared with control non-smokers. In severe stable COPD IL-7R+, IL-27R+ and TSLPR+ cells are increased in comparison with both control groups. The NALP3 inflammasome is not activated in patients with stable COPD compared with control subjects. The inflammasome inhibitory molecules NALP7 and IL-37 are increased in patients with COPD compared with control smokers. IL-6 levels are increased in BAL from patients with stable COPD compared with control smokers with normal lung function whereas IL-1β and IL-18 were similar across all groups. Conclusions Increased expression of IL-27, IL-37 and NALP7 in the bronchial mucosa may be involved in progression of stable COPD.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO) e Tradate, Pavia, Italy
| | - Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Adam Barczyk
- Katedra i Klinika Pneumonologii Slaskiego Uniwersytetu Medycznego w Katowicach, Slaskiego, Poland
| | - Chiara Vicari
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO) e Tradate, Pavia, Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
| | - Andrea Zanini
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO) e Tradate, Pavia, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Anatomia Umana, Università di Palermo, Palermo, Italy Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy Istituto Paolo Sotgiu, Libera Università degli Studi di Scienze Umane e Tecnologiche, Lugano, Switzerland
| | - Elvira Garofano
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Anna Padovani
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Marco Contoli
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Paolo Casolari
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Andrew L Durham
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Alberto Papi
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Ian Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO) e Tradate, Pavia, Italy
| |
Collapse
|
28
|
|
29
|
Esther CR, Olsen BM, Lin FC, Fine J, Boucher RC. Exhaled breath condensate adenosine tracks lung function changes in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 304:L504-9. [PMID: 23355385 PMCID: PMC3627937 DOI: 10.1152/ajplung.00344.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/21/2013] [Indexed: 01/28/2023] Open
Abstract
Measurement of exhaled breath condensate (EBC) biomarkers offers a noninvasive means to assess airway disease, but the ability of EBC biomarkers to track longitudinal changes in disease severity remains unproven. EBC was collected from pediatric patients with cystic fibrosis (CF) during regular clinic visits over 1 yr. EBC biomarkers urea, adenosine (Ado), and phenylalanine (Phe) were measured by mass spectrometry, and biomarker ratios were used to control for variable dilution of airway secretions. EBC biomarker ratios were assessed relative to lung function in longitudinal, multivariate models and compared with sputum inflammatory markers and quality of life assessment (CFQ-R). EBC was successfully analyzed from 51 subjects during 184 visits (3.6 ± 0.9 visits per subject). EBC Ado/urea ratio was reproducible in duplicate samples (r = 0.62, P < 0.01, n = 20) and correlated with sputum neutrophil elastase (β = 2.5, P < 0.05). EBC Ado/urea correlated with the percentage predicted of forced expiratory volume in 1 s in longitudinal, multivariate models (β = -2.9, P < 0.01); EBC Ado/Phe performed similarly (β = -2.1, P < 0.05). In contrast, IL-8 and elastase measured in spontaneously expectorated sputum (n = 57 samples from 25 subjects) and the CFQ-R respiratory scale (n = 90 tests from 47 subjects) were not significantly correlated with lung function. EBC was readily collected in a clinic setting from a wide range of subjects. EBC Ado tracked longitudinal changes in lung function in CF, with results similar to or better than established measures.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
30
|
Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:139-202. [PMID: 23445810 PMCID: PMC5593132 DOI: 10.1016/b978-0-12-407697-6.00004-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosuke Kato
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Kwang C. Kim
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
31
|
Baek HS, Cho J, Kim JH, Oh JW, Lee HB. Ratio of leukotriene e(4) to exhaled nitric oxide and the therapeutic response in children with exercise-induced bronchoconstriction. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 5:26-33. [PMID: 23277875 PMCID: PMC3529225 DOI: 10.4168/aair.2013.5.1.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 04/16/2012] [Accepted: 05/16/2012] [Indexed: 11/20/2022]
Abstract
Purpose This study assessed the association between the ratio of leukotriene E4 (LTE4) to fractional exhaled nitric oxide (FENO) in the response of children with exercise-induced bronchoconstriction (EIB) enrolled in a therapeutic trial with montelukast or inhaled corticosteroid (fluticasone propionate [FP]). Methods Children aged 6 to 18 years with EIB were randomized in a 4-week, placebo-controlled, double-blinded trial with montelukast or FP. Before and after treatment, treadmill exercise challenges were performed. The LTE4 levels in the induced sputum and urine and the FENO levels were measured in subjects before and 30 minutes after the exercise challenges. The same tests were conducted after treatment. Results A total of 24 patients completed the study: 12 in the montelukast group and 12 in FP group. Both study groups displayed a similar postexercise maximum decrease in forced expiratory volume in one second (FEV1) before treatment as well as after treatment. However, there were significant differences in the magnitude of change between the two (Δ; -18.38±14.53% vs. -4.67±8.12% for the montelukast and FP groups, respectively; P=0.021). The Δ logarithmic sputum baseline and postexercise LTE4/FENO ratio were significantly lower in the montelukast group than in the FP group (baseline; -0.09±0.21 vs. -0.024±0.03, P=0.045; postexercise, -0.61±0.33 vs. -0.11±0.28, P=0.023). Conclusions These data indicate that the efficacy of montelukast for preventing a maximum decrease in FEV1 after exercise is significantly higher than that of FP, and the high LTE4/FENO ratio is associated with a greater response to montelukast than to FP for EIB therapy. These results suggest that LTE4 may play an important role in EIB.
Collapse
Affiliation(s)
- Hey-Sung Baek
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
32
|
Fry RC, Rager JE, Zhou H, Zou B, Brickey JW, Ting J, Lay JC, Peden DB, Alexis NE. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways. Respir Res 2012; 13:89. [PMID: 23033980 PMCID: PMC3607990 DOI: 10.1186/1465-9921-13-89] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/21/2012] [Indexed: 11/14/2022] Open
Abstract
Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immuno-inflammatory function and genomic signaling in those with heightened inflammatory responsiveness to ozone is not well understood. Objectives Determine baseline predictors and post exposure discriminators for the immuno-inflammatory response to ozone in inflammatory responsive adult volunteers. Methods Sputum induction was performed on 27 individuals before and after a two hour chamber exposure to 0.4 ppm ozone. Subjects were classified as inflammatory responders or non-responders to ozone based on their PMN response. Innate immune function, inflammatory cell and cytokine modulation and transcriptional signaling pathways were measured in sputum. Results Post exposure, responders showed activated innate immune function (CD16: 31,004 MFI vs 8988 MFI; CD11b: 44,986 MFI vs 24,770 MFI; CD80: 2236 MFI vs 1506 MFI; IL-8: 37,603 pg/ml vs 2828 pg/ml; and IL-1β: 1380 pg/ml vs 318 pg/ml) with muted signaling of immune cell trafficking pathways. In contrast, non-responders displayed decreased innate immune activity (CD16, CD80; phagocytosis: 2 particles/PMN vs 4 particles/PMN) post exposure that was accompanied by a heightened signaling of immune cell trafficking pathways. Conclusions Inflammatory responsive and non responsive individuals to ozone show an inverse relationship between immune cell trafficking and immuno-inflammatory functional responses to ozone. These distinct genomic signatures may further our understanding about ozone-induced morbidity in individuals with different levels of inflammatory responsiveness.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Staples KJ, Hinks TSC, Ward JA, Gunn V, Smith C, Djukanović R. Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17. J Allergy Clin Immunol 2012; 130:1404-12.e7. [PMID: 22981793 DOI: 10.1016/j.jaci.2012.07.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Studies with monocyte-derived macrophages (MDMs) and animal models have suggested a role for alternatively activated (M2) macrophages in asthmatic inflammation, but in vivo evidence for this phenotype in human asthma is lacking. OBJECTIVE To characterize the phenotype of lung macrophages from asthmatic patients in relation to disease severity and treatment. METHODS M2 biomarkers were first identified by using MDMs exposed to T(H)2 cytokines and then used to phenotype sputum and bronchoalveolar lavage (BAL) macrophages from 12 healthy control subjects, 12 patients with mild asthma, and 14 patients with moderate asthma and to assess the effects of corticosteroids and phosphatidylinositol 3-kinase (PI3K) inhibitors. RESULTS Sputum macrophages from asthmatic patients expressed significantly more CCL17 mRNA but less CD163 than macrophages from healthy subjects. However, none of the other M2 biomarkers were differentially expressed in asthmatic patients, and ex vivo BAL cells spontaneously produced similar amounts of M2 cytokines/chemokines (IL-10, CCL17, and CCL22). CCL17 mRNA overexpression correlated weakly but significantly with sputum eosinophilia (P = .0252) and was also observed in macrophages from patients with moderate asthma treated with inhaled steroids, suggesting relative insensitivity to inhibition by corticosteroids. The PI3K inhibitor LY294002 inhibited basal CCL17 release from BAL cells and IL-4-stimulated release from MDMs. CONCLUSIONS This study does not support the existence in human asthma of the full M2 phenotype described to date but points to upregulation of CCL17 in both patients with mild and those with moderate asthma, providing a further source for this ligand of CCR4(+) cells that contributes to airways inflammation. CCL17 expression is corticosteroid resistant but suppressed by PI3K enzyme inhibitors.
Collapse
Affiliation(s)
- Karl J Staples
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
34
|
Harting JR, Gleason A, Romberger DJ, Von Essen SG, Qiu F, Alexis N, Poole JA. Chronic obstructive pulmonary disease patients have greater systemic responsiveness to ex vivo stimulation with swine dust extract and its components versus healthy volunteers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1456-70. [PMID: 23116451 PMCID: PMC4001714 DOI: 10.1080/15287394.2012.722186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by an airway and systemic inflammatory response. Bioaerosols/organic dusts are important agricultural pollutants that may lead to COPD. These environments are complex, containing a rich source of various microbial components. The objective of this study was to determine whether individuals with COPD have enhanced systemic responsiveness to settled swine facility organic dust extract (ODE) or its main pathogenic components (peptidoglycan [PGN], lipopolysaccharide [LPS]) versus healthy volunteers. A modified whole blood assay (WBA) that included occupational levels of ODE and concentrations of LPS and PGN found in ODE was used to determine systemic responsiveness (mediator release), and sputum inflammatory markers were measured to explore for systemic and airway associations. Sputum samples were evaluated for cell counts, and tumor necrosis factor (TNF)-α, interleukin (IL)-8/CXCL8, IL-6, and IL-10. Ex vivo whole blood stimulation with ODE, LPS, and PGN each resulted in significant mediator release in all subjects, with the highest occurring with ODE; PGN resulted in significantly enhanced TNF-α and IL-8 as compared to LPS. COPD subjects demonstrated greater systemic responsiveness using the modified WBA versus healthy controls. Within COPD subjects, blood baseline TNF-α, IL-8, and IL-10 and ODE-, PGN-, and LPS-stimulated IL-8 levels significantly correlated with lung function. In conclusion, dust-induced mediator release was robust, and PGN, in part, resembled dust-induced mediator release. Subjects with COPD demonstrated increased mediator release following ex vivo whole blood stimulation with bioaerosol components, suggesting that circulating blood cells in COPD subjects may be primed to respond greater to microbial/inflammatory insult.
Collapse
Affiliation(s)
- Janel R. Harting
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Angela Gleason
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Debra J. Romberger
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | | | - Fang Qiu
- College of Public Health, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Neil Alexis
- University of North Carolina School of Medicine, Center for Environmental Medicine, Asthma & Lung Biology, Chapel Hill, NC 27599-7310
| | - Jill A. Poole
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| |
Collapse
|
35
|
Surfactant protein A and albumin in particles in exhaled air. Respir Med 2011; 106:197-204. [PMID: 22100538 DOI: 10.1016/j.rmed.2011.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 02/04/2023]
Abstract
In this study we test the hypothesis that endogenous particles in exhaled air (PEx), non-invasively sampled from lower airways, are well suited for the analysis of respiratory tract lining fluid (RTLF) proteins, i.e., surfactant protein A (SP-A) and albumin. Ten healthy volunteers were included in the study and participated in two sampling sessions. Blood, exhaled breath condensate (EBC) and PEx were collected at each session. 100 L of breath were collected for each exhaled sample. Serum and exhaled samples were analyzed for SP-A using an in-house ELISA. Albumin was analyzed in exhaled samples using a commercial ELISA kit. SP-A detection rates were 100%, 21%, and 89% for PEx, EBC and serum, respectively. Albumin was detected in PEx, but not in EBC. SP-A measurements in PEx showed good repeatability with an intra-individual coefficient of variation of 13%. Both SP-A and albumin showed significant correlation to mass of PEx (r(s) = 0.93, p < 0.001 and r(s) = 0.86, p = 0.003, respectively). Sampling and analysis of PEx is a valid non-invasive method to monitor RTLF proteins sampled from the lower respiratory tract, as demonstrated here by example of SP-A and albumin analysis.
Collapse
|
36
|
Lay JC, Peden DB, Alexis NE. Flow cytometry of sputum: assessing inflammation and immune response elements in the bronchial airways. Inhal Toxicol 2011; 23:392-406. [PMID: 21639708 DOI: 10.3109/08958378.2011.575568] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The evaluation of sputum leukocytes by flow cytometry (FCM) is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. OBJECTIVE To develop a gating strategy based on specific antibody panels in combination with light scatter properties for flow cytometric evaluation of sputum cells. METHODS Healthy and mild asthmatic volunteers underwent sputum induction. Manually selected mucus "plug" material was treated with dithiothreitol, filtered and total leukocytes acquired. Multicolor FCM was performed using specific gating strategies based on light scatter properties, differential expression of CD45 and cell lineage markers to discriminate leukocytes from squamous epithelial cells and debris. RESULTS The combination of forward scatter and CD45 expression reliably segregated sputum leukocytes from contaminating squamous epithelial cells and debris. Overlap of major leukocyte populations (neutrophils, macrophages/monocytes) required the use of specific antibodies (e.g. CD16, CD64, CD14, HLA-DR) that differentiated granulocytes from monocytes and macrophages. These gating strategies allowed identification of small populations of eosinophils, CD11c+ myeloid dendritic cells, B-cells and natural killer cells. CONCLUSIONS Multicolor FCM can be successfully applied to sputum samples to identify and characterize leukocyte populations residing on the surfaces of the central airways. CLINICAL RELEVANCE This research describes detailed methods to overcome difficulties associated with FCM of sputum samples, which previously has been lacking in the literature. FCM of sputum samples can provide valuable information on inflammation and immunological response elements in the bronchial airways for both clinical diagnostic and research applications and can be a useful tool in inhalation toxicology for assessing health effects of inhaled environmental pollutants.
Collapse
Affiliation(s)
- John C Lay
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, USA.
| | | | | |
Collapse
|
37
|
Kim CS, Alexis NE, Rappold AG, Kehrl H, Hazucha MJ, Lay JC, Schmitt MT, Case M, Devlin RB, Peden DB, Diaz-Sanchez D. Lung function and inflammatory responses in healthy young adults exposed to 0.06 ppm ozone for 6.6 hours. Am J Respir Crit Care Med 2011; 183:1215-21. [PMID: 21216881 PMCID: PMC3114053 DOI: 10.1164/rccm.201011-1813oc] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/07/2011] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Exposure to ozone causes a decrease in spirometric lung function and an increase in airway inflammation in healthy young adults at concentrations as low as 0.08 ppm, close to the National Ambient Air Quality Standard for ground level ozone. OBJECTIVES To test whether airway effects occur below the current ozone standard and if they are more pronounced in potentially susceptible individuals, such as those deficient in the antioxidant gene glutathione S-transferase mu 1 (GSTM1). METHODS Pulmonary function and subjective symptoms were measured in 59 healthy young adults (19-35 yr) immediately before and after exposure to 0.0 (clean air, CA) and 0.06 ppm ozone for 6.6 hours in a chamber while undergoing intermittent moderate exercise. The polymorphonuclear neutrophil (PMN) influx was measured in 24 subjects 16 to 18 hours postexposure. MEASUREMENTS AND MAIN RESULTS Subjects experienced a significantly greater (P = 0.008) change in FEV(1) (± SE) immediately after exposure to 0.06 ppm ozone compared with CA (-1.71 ± 0.50% vs. -0.002 ± 0.46%). The decrement in FVC was also greater (P = 0.02) after ozone versus CA (-2.32 ± 0.41% vs. -1.13 ± 0.34%). Similarly, changes in %PMN were greater after ozone (54.0 ± 4.6%) than CA (38.3 ± 3.7%) exposure (P < 0.001). Symptom scores were not different between ozone versus CA. There were no significant differences in changes in FEV(1), FVC, and %PMN between subjects with GSTM1-positive and GSTM1-null genotypes. CONCLUSIONS Exposure of healthy young adults to 0.06 ppm ozone for 6.6 hours causes a significant decrement of FEV(1) and an increase in neutrophilic inflammation in the airways. GSTM1 genotype alone appears to have no significant role in modifying the effects.
Collapse
Affiliation(s)
- Chong S Kim
- Environmental Public Health Division (MD-58B), National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Esther CR, Lazaar AL, Bordonali E, Qaqish B, Boucher RC. Elevated airway purines in COPD. Chest 2011; 140:954-960. [PMID: 21454402 DOI: 10.1378/chest.10-2471] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Adenosine and related purines have established roles in inflammation, and elevated airway concentrations are predicted in patients with COPD. However, accurate airway surface purine measurements can be confounded by stimulation of purine release during collection of typical respiratory samples. METHODS Airway samples were collected noninvasively as exhaled breath condensate (EBC) from 36 healthy nonsmokers (NS group), 28 healthy smokers (S group), and 89 subjects with COPD (29 with GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II, 29 with GOLD stage III, and 31 with GOLD stage IV) and analyzed with mass spectrometry for adenosine, adenosine monophosphate (AMP), and phenylalanine, plus urea as a dilution marker. Variable dilution of airway secretions in EBC was controlled using ratios to urea, and airway surface concentrations were calculated using EBC to serum urea-based dilution factors. RESULTS EBC adenosine to urea ratios were similar in NS (0.20 ± 0.21) and S (0.22 ± 0.20) groups but elevated in those with COPD (0.32 ± 0.30, P < .01 vs NS). Adenosine to urea ratios were highest in the most severely affected cohort (GOLD IV, 0.35 ± 0.34, P < .01 vs NS) and negatively correlated with FEV(1) (r = -0.27, P < .01). Elevated AMP to urea ratios were also observed in the COPD group (0.58 ± 0.97 COPD, 0.29 ± 0.35 NS, P < .02), but phenylalanine to urea ratios were similar in all groups. Airway surface adenosine concentrations calculated in a subset of subjects were 3.2 ± 2.7 μM in those with COPD (n = 28) relative to 1.7 ± 1.5 μM in the NS group (n = 16, P < .05). CONCLUSIONS Airway purines are present on airway surfaces at physiologically significant concentrations, are elevated in COPD, and correlate with markers of COPD severity. Purinergic signaling pathways are potential therapeutic targets in COPD, and EBC purines are potential noninvasive biomarkers.
Collapse
Affiliation(s)
- Charles R Esther
- Department of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Aili L Lazaar
- COPD Discovery Medicine, Respiratory Therapy Area, GlaxoSmithKline, King of Prussia, PA
| | - Elena Bordonali
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bahjat Qaqish
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard C Boucher
- CF/Pulmonary Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
39
|
Bennett WD, Daviskas E, Hasani A, Mortensen J, Fleming J, Scheuch G. Mucociliary and cough clearance as a biomarker for therapeutic development. J Aerosol Med Pulm Drug Deliv 2011; 23:261-72. [PMID: 20804426 DOI: 10.1089/jamp.2010.0823] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A workshop/symposium on “Mucociliary and Cough Clearance (MCC/CC) as a Biomarker for Therapeutic Development” was held on October 21–22, 2008, in Research Triangle Park, NC, to discuss the methods for measurement of MCC/CC and how they may be optimized for assessing new therapies designed to improve clearance of airway secretions from the lungs. The utility of MCC/CC as a biomarker for disease progression and therapeutic intervention is gaining increased recognition as a valuable tool in the clinical research community. A number of investigators currently active in using MCC/CC for diagnostic or therapeutic evaluation presented details of their methodologies. Attendees participating in the workshop discussions included those interested in the physiology of MCC/CC, some of who use in vitro or animal methods for its study, pharmaceutical companies developing muco-active therapies, and many who were interested in establishing the methods in their own clinical laboratory. This review article summarizes the presentations for the in vivo human MCC/CC methods and the discussions both at and subsequent to the workshop between the authors to move forward on a number of questions raised at the workshop.
Collapse
Affiliation(s)
- William D Bennett
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Wells JM, Wilhelm AM, Vishin S. Recommended Reading from the University of Alabama Fellows. Am J Respir Crit Care Med 2011; 183:411-412. [DOI: 10.1164/rccm.201008-1346rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Alexis NE, Lay JC, Hazucha M, Harris B, Hernandez ML, Bromberg PA, Kehrl H, Diaz-Sanchez D, Kim C, Devlin RB, Peden DB. Low-level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans. Inhal Toxicol 2011; 22:593-600. [PMID: 20384440 DOI: 10.3109/08958371003596587] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of low-level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known; however, much less is known about the inflammatory and immunomodulatory effects of low-level ozone in the airways. Techniques such as induced sputum and flow cytometry make it possible to examine airways inflammatory responses and changes in immune cell surface phenotypes following low-level ozone exposure. The purpose of this study was to determine if exposure to 0.08 parts per million ozone for 6.6 h induces inflammation and modifies immune cell surface phenotypes in the airways of healthy adult subjects. Fifteen normal volunteers underwent an established 0.08 part per million ozone exposure protocol to characterize the effect of ozone on airways inflammation and immune cell surface phenotypes. Induced sputum and flow cytometry were used to assess these endpoints 24 h before and 18 h after exposure. The results showed that exposure to 0.08 ppm ozone for 6.6 h induced increased airway neutrophils, monocytes, and dendritic cells and modified the expression of CD14, HLA-DR, CD80, and CD86 on monocytes 18 h following exposure. Exposure to 0.08 parts per million ozone is associated with increased airways inflammation and promotion of antigen-presenting cell phenotypes 18 hours following exposure. These findings need to be replicated in a similar experiment that includes a control air exposure.
Collapse
Affiliation(s)
- Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, 104 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jönsson LS, Nielsen J, Broberg K. Gene expression analysis in induced sputum from welders with and without airway-related symptoms. Int Arch Occup Environ Health 2010; 84:105-13. [PMID: 20862590 DOI: 10.1007/s00420-010-0579-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 08/23/2010] [Indexed: 11/25/2022]
Abstract
PURPOSE To identify changes in gene expression in the airways among welders, with and without lower airway symptoms, working in black steel. METHODS Included were 25 male, non-smoking welders. Each welder was sampled twice; before exposure (after vacation), and after 1 month of exposure. From the welders (14 symptomatic, of whom 7 had asthma-like symptoms), RNA from induced sputum was obtained for gene expression analysis. Messenger RNA from a subset of the samples (n = 7) was analysed with microarray technology to identify genes of interest. These genes were further analysed using quantitative PCR (qPCR; n = 22). RESULTS By comparing samples before and after exposure, the microarray analysis resulted in several functional annotation clusters: the one with the highest enrichment score contained "response to wounding", "inflammatory response" and "defence response". Seven genes were analysed by qPCR: granulocyte colony-stimulating factor 3 receptor (CSF3R), superoxide dismutase 2, interleukin 8, glutathione S-transferase pi 1, tumour necrosis factor alpha-induced protein 6 (TNFAIP6), interleukin 1 receptor type II and matrix metallopeptidase 25 (MMP25). Increased levels of CSF3R, TNFAIP6 and MMP25 were indicated among asthmatic subjects compared to non-symptomatic subjects, although the differences did not reach significance. CONCLUSIONS Workers' exposure to welding fumes changed gene expression in the lower airways in genes involved in inflammatory and defence response. Thus, microarray and qPCR technique can demonstrate markers of exposure to welding fumes and possible disease-related markers. However, further studies are needed to verify genes involved and to further characterise the mechanism for welding fumes-associated lower airway symptoms.
Collapse
Affiliation(s)
- Lena S Jönsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University Hospital, 221 85, Lund, Sweden
| | | | | |
Collapse
|
43
|
Neveu WA, Allard JL, Raymond DM, Bourassa LM, Burns SM, Bunn JY, Irvin CG, Kaminsky DA, Rincon M. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function. Respir Res 2010; 11:28. [PMID: 20205953 PMCID: PMC2842243 DOI: 10.1186/1465-9921-11-28] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Asthma is a chronic inflammatory disease of the airway that is characterized by a Th2-type of immune response with increasing evidence for involvement of Th17 cells. The role of IL-6 in promoting effector T cell subsets suggest that IL-6 may play a functional role in asthma. Classically IL-6 has been viewed as an inflammatory marker, along with TNFα and IL-1β, rather than as regulatory cytokine. Objective To investigate the potential relationship between IL-6 and other proinflammatory cytokines, Th2/Th17 cytokines and lung function in allergic asthma, and thus evaluate the potential role of IL-6 in this disease. Methods Cytokine levels in induced sputum and lung function were measured in 16 healthy control and 18 mild-moderate allergic asthmatic subjects. Results The levels of the proinflammatory biomarkers TNFα and IL-1β were not different between the control and asthmatic group. In contrast, IL-6 levels were specifically elevated in asthmatic subjects compared with healthy controls (p < 0.01). Hierarchical regression analysis in the total study cohort indicates that the relationship between asthma and lung function could be mediated by IL-6. Among Th2 cytokines only IL-13 (p < 0.05) was also elevated in the asthmatic group, and positively correlated with IL-6 levels (rS = 0.53, p < 0.05). Conclusions In mild-moderate asthma, IL-6 dissociates from other proinflammatory biomarkers, but correlates with IL-13 levels. Furthermore, IL-6 may contribute to impaired lung function in allergic asthma.
Collapse
Affiliation(s)
- Wendy A Neveu
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jacobs L, Emmerechts J, Mathieu C, Hoylaerts MF, Fierens F, Hoet PH, Nemery B, Nawrot TS. Air pollution related prothrombotic changes in persons with diabetes. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:191-6. [PMID: 20123602 PMCID: PMC2831916 DOI: 10.1289/ehp.0900942] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/22/2009] [Indexed: 05/03/2023]
Abstract
BACKGROUND Population studies suggest that persons with diabetes are more sensitive to the effects of particulate matter (PM) air pollution. However, the biological mechanisms of a possible prothrombotic effect underlying this enhanced susceptibility remain largely unknown. OBJECTIVE We hypothesized that exposure to PM causes prothrombotic changes in persons with diabetes, possibly via systemic inflammation. METHODS Our study included 137 nonsmoking adults with diabetes who were outpatients at the University Hospital Leuven. Recent exposure (2 hr before examination) to ambient PM was measured at the entrance of the hospital. Individual chronic exposure to PM was assessed by measuring the area occupied by carbon in airway macrophages obtained by sputum induction. Platelet function was measured ex vivo with the PFA-100 platelet function analyzer, which simulates a damaged blood vessel; we analyzed the function of platelets in primary hemostasis under high shear conditions. Total and differential blood leukocytes were counted. RESULTS Independent of antiplatelet medication, an interquartile range (IQR) increase of 39.2 microg/m3 in PM10 (PM with aerodynamic diameter <or= 10 microm) concentration measured 2 hr before the clinical examination (recent exposure) was associated with a decrease of 21.1 sec [95% confidence interval (CI), 35.3 to 6.8] in the PFA-100 closure time (i.e., increased platelet activation) and an increase in blood leukocytes of 512 per microliter of blood (95% CI, 45.2979). Each area increase of 0.25 microm2 (IQR) in carbon load of airway macrophages (chronic exposure) was associated with an increase of 687 leukocytes per microliter of blood (95% CI, 2241,150). CONCLUSIONS A relevant increase in recent PM exposure was associated with a change in platelet function toward a greater prothrombotic tendency. The magnitude of the change was about two-thirds (in the opposite direction) of the average effect of antiplatelet medication. Diabetic patients showed evidence of proinflammatory response to both recent and chronic exposure to PM air pollution.
Collapse
Affiliation(s)
- Lotte Jacobs
- Occupational and Environmental Medicine, Unit of Lung Toxicology
| | | | - Chantal Mathieu
- Department of Endocrinology, Katholique Universiteit Leuven, Leuven, Belgium
| | | | - Frans Fierens
- Belgian interregional Environment Agency, Brussels, Belgium
| | - Peter H. Hoet
- Occupational and Environmental Medicine, Unit of Lung Toxicology
| | - Benoit Nemery
- Occupational and Environmental Medicine, Unit of Lung Toxicology
- Address correspondence to B. Nemery, K.U. Leuven, Occupational and Environmental Medicine and Pneumology, Unit of Lung Toxicology, Herestraat 49 (O&N 706), B-3000 Leuven, Belgium. Telephone: 32-16-347121. Fax: 32-16-347124. E-mail:
| | - Tim S. Nawrot
- Occupational and Environmental Medicine, Unit of Lung Toxicology
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
45
|
Abstract
Sputum is recognized as a sampling method for the monitoring and assessment of chronic lung diseases such as asthma, COPD (chronic obstructive pulmonary disease) and cystic fibrosis. Sputum samples the central airways and its protein components (e.g. mucins and cytokines), cellular components (e.g. eosinophils and neutrophils) and microbiological components (e.g. viruses and bacteria) can be used as markers of disease severity, exacerbation, susceptibility or progression. This paper describes the basic constituents of induced sputum and how these influence the quantification and identification of novel biomarkers of chronic lung diseases using techniques such as proteomics.
Collapse
|
46
|
Caramori G, Casolari P, Di Gregorio C, Saetta M, Baraldo S, Boschetto P, Ito K, Fabbri LM, Barnes PJ, Adcock IM, Cavallesco G, Chung KF, Papi A. MUC5AC expression is increased in bronchial submucosal glands of stable COPD patients. Histopathology 2009; 55:321-31. [DOI: 10.1111/j.1365-2559.2009.03377.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Loughlin CE, Esther CR, Lazarowski ER, Alexis NE, Peden DB. Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics. Respir Med 2009; 104:29-33. [PMID: 19646854 DOI: 10.1016/j.rmed.2009.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 11/15/2022]
Abstract
BACKGROUND Airway dehydration is a potential trigger of bronchoconstriction in exercise-induced asthma; however, its role in stable asthma has not been explored. Using sputum percent solids, as an indicator of airway hydration, we sought relationships between airway hydration and other known markers of neutrophilic (TH1) and allergic (TH2) inflammation in stable asthma. METHODS Thirty-seven atopic subjects with stable asthma and 15 healthy controls underwent sputum induction. Sputum was analyzed for percent solids, cell counts, cellular and biochemical markers of inflammation and purines. RESULTS Sputum percent solids was significantly elevated in stable asthmatics vs. controls and positively correlated with markers of neutrophilic/TH1-type inflammation (neutrophils, IL-8 and AMP). Sputum percent solids were not correlated with markers of allergic/TH2-type inflammation. These data suggest a direct relationship between neutrophil inflammation and airway hydration in stable asthmatics.
Collapse
Affiliation(s)
- Ceila E Loughlin
- Department of Pediatrics, Division of Pediatric Pulmonology, The School of Medicine, University of North Carolina, 130 Mason Farm Road, 5th floor Bioinformatics Bldg., CB #7217, Chapel Hill, NC 27599-7217, USA.
| | | | | | | | | |
Collapse
|
48
|
Hernandez M, Zhou H, Zhou B, Robinette C, Crissman K, Hatch G, Alexis NE, Peden D. Combination treatment with high-dose vitamin C and alpha-tocopherol does not enhance respiratory-tract lining fluid vitamin C levels in asthmatics. Inhal Toxicol 2009; 21:173-81. [PMID: 18932058 DOI: 10.1080/08958370802161077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Oxidative stress plays a significant role in allergic airway inflammation. Supplementation with alpha-tocopherol (alone or combined with ascorbate/vitamin C) has been assessed as an intervention for allergic airway diseases with conflicting results. Enhancing levels of airway antioxidants with oral supplements has been suggested as an intervention to protect individuals from the effect of inhaled oxidants, although it is unclear whether supplementation changes tocopherol or vitamin C levels in both serum and airway fluids. Our objective was to obtain pilot safety and dosing data from 14 allergic asthmatic volunteers examining the effect of daily combination oral therapy with 500 mg alpha-tocopherol (alpha T) and 2 g vitamin C for 12 wk. We examined serum and airway fluid and cellular levels of alpha- and gamma-tocopherol (gamma T) and vitamin C to plan for future studies of these agents in asthma and allergic rhinitis. Six volunteers completed 12 wk of active treatment with alpha T and vitamin C and 8 completed placebo. Blood and sputum samples were obtained at baseline and at 6 wk and 12 wk of therapy and were analyzed for alpha T, gamma T, and vitamin C levels in the serum, sputum supernatant, and sputum cells. Combination treatment increased serum vitamin C and significantly decreased sputum alpha T and serum gamma T levels. No changes were found in sputum supernatant or sputum cell vitamin C or serum alpha T levels in the active treatment group. In conclusion, supplementation with alpha T and high-dose vitamin C does not augment vitamin C levels in the respiratory-tract lining fluid.
Collapse
Affiliation(s)
- Michelle Hernandez
- The Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, 104 Mason Farm Road, Chapel Hill, NC 27599-7310, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bondesson E, Jansson LT, Bengtsson T, Wollmer P. Exhaled breath condensate—site and mechanisms of formation. J Breath Res 2009; 3:016005. [DOI: 10.1088/1752-7155/3/1/016005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Lay JC, Alexis NE, Zeman KL, Peden DB, Bennett WD. In vivo uptake of inhaled particles by airway phagocytes is enhanced in patients with mild asthma compared with normal volunteers. Thorax 2008; 64:313-20. [PMID: 19052052 DOI: 10.1136/thx.2008.096222] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The uptake of inhaled particulate matter by airway phagocytes is an important defence mechanism contributing to the clearance of potentially toxic substances, including aeroallergens, from the lung. Since airway monocytes and macrophages can also function as antigen presenting cells, their ability to engulf materials deposited on the airway surface is of particular interest in patients with allergic asthma. To determine whether airway mononuclear phagocytes of patients with allergic asthma might have enhanced phagocytic activity, the in vivo uptake of inhaled radiolabelled particles was compared in 10 patients with mild allergic asthma and 8 healthy (non-allergic) individuals. METHODS Phagocyte function was assessed by quantifying the proportion of radioactivity associated with cellular and supernatant fractions of induced sputum 2 h after inhalation of radiolabelled sulfur colloid particles. All subjects were pretreated with albuterol before sputum induction. A standardised breathing pattern was used to target aerosol deposition in the bronchial airways. RESULTS In vivo particle uptake by airway cells was significantly greater in patients with asthma than in healthy volunteers (57.2% (95% CI 46.5% to 67.9%) vs 22.3% (95% CI 4.9% to 39.6%), p<0.01), as was in vitro phagocytosis of opsonised zymosan-A bioparticles. There was also a significant correlation (r = 0.85, p<0.01) between the percentage of sputum mononuclear phagocytes and the percentage uptake of particles in the patients with asthma but not in the control subjects. CONCLUSIONS In vivo particle uptake by airway macrophages is enhanced in persons with mild asthma. Enhanced uptake and processing of particulate antigens could contribute to the pathogenesis and progression of allergic airways disease and may contribute to the increased risk of disease exacerbation associated with particulate exposure.
Collapse
Affiliation(s)
- J C Lay
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC 27599-7310, USA.
| | | | | | | | | |
Collapse
|