1
|
Liu J, Luo D, Huang H, Mu R, Yuan J, Jiang M, Lin C, Xiang H, Lin X, Song H, Zhang Y. Hippo cooperates with p53 to regulate lung airway mucous cell metaplasia. Dis Model Mech 2024; 17:dmm052074. [PMID: 39428818 PMCID: PMC11603118 DOI: 10.1242/dmm.052074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024] Open
Abstract
Airway mucous cell metaplasia is a significant feature of many chronic airway diseases, such as chronic obstructive pulmonary disease, cystic fibrosis and asthma. However, the mechanisms underlying this process remain poorly understood. Here, we employed in vivo mouse genetic models to demonstrate that Hippo and p53 (encoded by Trp53) cooperate to modulate the differentiation of club cells into goblet cells. We revealed that ablation of Mst1 (Stk4) and Mst2 (Stk3), encoding the core components of Hippo signaling, significantly reduces mucous metaplasia in the lung airways in a lipopolysaccharide (LPS)-induced lung inflammation murine model while promoting club cell proliferation in a Yap (Yap1)-dependent manner. Additionally, we showed that deleting Mst1/2 is sufficient to suppress p53 deficiency-mediated goblet cell metaplasia. Finally, single-cell RNA-sequencing analysis revealed downregulation of YAP and p53 signaling in goblet cells in human airways. These findings underscore the important role of Hippo and p53 signaling in regulating airway mucous metaplasia.
Collapse
Affiliation(s)
- Jiangying Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haidi Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongzi Mu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianghong Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Jiang
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, Zhejiang, China
| | - Chuwen Lin
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Honggang Xiang
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai 201299, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University Shanghai, Shanghai 200438, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC V6B 5A6, Canada
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai 201299, China
| |
Collapse
|
2
|
Easter M, Hirsch MJ, Harris E, Howze PH, Matthews EL, Jones LI, Bollenbecker S, Vang S, Tyrrell DJ, Sanders YY, Birket SE, Barnes JW, Krick S. FGF receptors mediate cellular senescence in the cystic fibrosis airway epithelium. JCI Insight 2024; 9:e174888. [PMID: 38916962 PMCID: PMC11383597 DOI: 10.1172/jci.insight.174888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
The number of adults living with cystic fibrosis (CF) has already increased significantly because of drastic improvements in life expectancy attributable to advances in treatment, including the development of highly effective modulator therapy. Chronic airway inflammation in CF contributes to morbidity and mortality, and aging processes like inflammaging and cell senescence influence CF pathology. Our results show that single-cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr-knockout (Cftr-/-) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1, attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging population with CF.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Elex Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Patrick Henry Howze
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Emma Lea Matthews
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Luke I. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Shia Vang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Daniel J. Tyrrell
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | | | - Susan E. Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| |
Collapse
|
3
|
An R, Ni Z, Xie E, Rey FE, Kendziorski C, Thibeault SL. Single-cell view into the role of microbiota shaping host immunity in the larynx. iScience 2024; 27:110156. [PMID: 38974468 PMCID: PMC11225822 DOI: 10.1016/j.isci.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.
Collapse
Affiliation(s)
- Ran An
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| | - Zijian Ni
- Department of Statistics, College of Letters and Sciences , UW-Madison, Madison, WI, USA
| | - Elliott Xie
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Federico E. Rey
- Department of Bacteriology, College of Agriculture and Life Sciences, UW-Madison, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Susan L. Thibeault
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Kitamura T, Misu M, Yoshikawa M, Ouji Y. Differentiation of embryonic stem cells into lung-like cells using lung-derived matrix sheets. Biochem Biophys Res Commun 2023; 686:149197. [PMID: 37924668 DOI: 10.1016/j.bbrc.2023.149197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Various extracellular matrix (ECM) in the lungs regulate tissue development and homeostasis, as well as provide support for cell structures. However, few studies regarding the effects of lung cell differentiation using lung-derived ECM (LM) alone have been reported. The present study investigated the capability of lung-derived matrix sheets (LMSs) to induce lung cell differentiation using mouse embryonic stem (ES) cells. Expressions of lung-related cell markers were significantly upregulated in ES-derived embryoid bodies (EBs) cultured on an LMS for two weeks. Moreover, immunohistochemical analysis of EBs grown on LMSs revealed differentiation of various lung-related cells. These results suggest that an LMS can be used to promote differentiation of stem cells into lung cells.
Collapse
Affiliation(s)
- Tomotaka Kitamura
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
5
|
Berg M, Petoukhov I, van den Ende I, Meyer KB, Guryev V, Vonk JM, Carpaij O, Banchero M, Hendriks RW, van den Berge M, Nawijn MC. FastCAR: fast correction for ambient RNA to facilitate differential gene expression analysis in single-cell RNA-sequencing datasets. BMC Genomics 2023; 24:722. [PMID: 38030970 PMCID: PMC10687889 DOI: 10.1186/s12864-023-09822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cell type-specific differential gene expression analyses based on single-cell transcriptome datasets are sensitive to the presence of cell-free mRNA in the droplets containing single cells. This so-called ambient RNA contamination may differ between samples obtained from patients and healthy controls. Current ambient RNA correction methods were not developed specifically for single-cell differential gene expression (sc-DGE) analyses and might therefore not sufficiently correct for ambient RNA-derived signals. Here, we show that ambient RNA levels are highly sample-specific. We found that without ambient RNA correction, sc-DGE analyses erroneously identify transcripts originating from ambient RNA as cell type-specific disease-associated genes. We therefore developed a computationally lean and intuitive correction method, Fast Correction for Ambient RNA (FastCAR), optimized for sc-DGE analysis of scRNA-Seq datasets generated by droplet-based methods including the 10XGenomics Chromium platform. FastCAR uses the profile of transcripts observed in libraries that likely represent empty droplets to determine the level of ambient RNA in each individual sample, and then corrects for these ambient RNA gene expression values. FastCAR can be applied as part of the data pre-processing and QC in sc-DGE workflows comparing scRNA-Seq data in a health versus disease experimental design. We compared FastCAR with two methods previously developed to remove ambient RNA, SoupX and CellBender. All three methods identified additional genes in sc-DGE analyses that were not identified in the absence of ambient RNA correction. However, we show that FastCAR performs better at correcting gene expression values attributed to ambient RNA, resulting in a lower frequency of false-positive observations. Moreover, the use of FastCAR in a sc-DGE workflow increases the cell-type specificity of sc-DGE analyses across disease conditions.
Collapse
Affiliation(s)
- Marijn Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute, for Asthma and COPD (GRIAC), Groningen, The Netherlands.
| | | | | | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Victor Guryev
- University of Groningen, University Medical Center Groningen, Groningen Research Institute, for Asthma and COPD (GRIAC), Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute, for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Orestes Carpaij
- University of Groningen, University Medical Center Groningen, Groningen Research Institute, for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Banchero
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute, for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute, for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute, for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
6
|
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, Carvajal-Gonzalez JM. Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. Int J Mol Sci 2023; 24:14789. [PMID: 37834236 PMCID: PMC10573127 DOI: 10.3390/ijms241914789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| |
Collapse
|
7
|
Chen M, Wang J, Yuan M, Long M, Sun Y, Wang S, Luo W, Zhou Y, Zhang W, Jiang W, Chao J. AT2 cell-derived IgA trapped by the extracellular matrix in silica-induced pulmonary fibrosis. Int Immunopharmacol 2023; 122:110545. [PMID: 37390644 DOI: 10.1016/j.intimp.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Pulmonary fibrosis is an interstitial lung disease caused by various factors such as exposure to workplace environmental contaminants, drugs, or X-rays. Epithelial cells are among the driving factors of pulmonary fibrosis. Immunoglobulin A (IgA), traditionally thought to be secreted by B cells, is an important immune factor involved in respiratory mucosal immunity. In the current study, we found that lung epithelial cells are involved in IgA secretion, which, in turn, promotes pulmonary fibrosis. Spatial transcriptomics and single-cell sequencing suggest that Igha transcripts were highly expressed in the fibrotic lesion areas of lungs from silica-treated mice. Reconstruction of B-cell receptor (BCR) sequences revealed a new cluster of AT2-like epithelial cells with a shared BCR and high expression of genes related to IgA production. Furthermore, the secretion of IgA by AT2-like cells was trapped by the extracellular matrix and aggravated pulmonary fibrosis by activating fibroblasts. Targeted blockade of IgA secretion by pulmonary epithelial cells may be a potential strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Mengling Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jing Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Yuheng Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sha Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Luo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun Zhou
- Department of Health Management, School of Health Science, West Yunnan University of Applied Sciences, Dali, Yunnan, China
| | - Wei Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China.
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China; School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China.
| |
Collapse
|
8
|
Abdelgied M, Uhl K, Chen OG, Schultz C, Tripp K, Peraino AM, Paithankar S, Chen B, Tamae Kakazu M, Castillo Bahena A, Jager TE, Lawson C, Chesla DW, Pestov N, Modyanov NN, Prokop J, Neubig RR, Uhal BD, Girgis RE, Li X. Targeting ATP12A, a Nongastric Proton Pump α Subunit, for Idiopathic Pulmonary Fibrosis Treatment. Am J Respir Cell Mol Biol 2023; 68:638-650. [PMID: 36780662 PMCID: PMC10257074 DOI: 10.1165/rcmb.2022-0264oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a pathological condition of unknown etiology that results from injury to the lung and an ensuing fibrotic response that leads to the thickening of the alveolar walls and obliteration of the alveolar space. The pathogenesis is not clear, and there are currently no effective therapies for IPF. Small airway disease and mucus accumulation are prominent features in IPF lungs, similar to cystic fibrosis lung disease. The ATP12A gene encodes the α-subunit of the nongastric H+, K+-ATPase, which functions to acidify the airway surface fluid and impairs mucociliary transport function in patients with cystic fibrosis. It is hypothesized that the ATP12A protein may play a role in the pathogenesis of IPF. The authors' studies demonstrate that ATP12A protein is overexpressed in distal small airways from the lungs of patients with IPF compared with normal human lungs. In addition, overexpression of the ATP12A protein in mouse lungs worsened bleomycin induced experimental pulmonary fibrosis. This was prevented by a potassium competitive proton pump blocker, vonoprazan. These data support the concept that the ATP12A protein plays an important role in the pathogenesis of lung fibrosis. Inhibition of the ATP12A protein has potential as a novel therapeutic strategy in IPF treatment.
Collapse
Affiliation(s)
| | - Katie Uhl
- Department of Pediatrics and Human Development and
| | | | - Chad Schultz
- Department of Pediatrics and Human Development and
| | - Kaylie Tripp
- Department of Pediatrics and Human Development and
| | | | | | - Bin Chen
- Department of Pediatrics and Human Development and
- Department of Pharmacology and Toxicology and
| | - Maximiliano Tamae Kakazu
- Department of Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Division of Pulmonary and Critical Care Medicine
| | | | - Tara E. Jager
- Richard Devos Heart and Lung Transplant Program, Spectrum Health, Grand Rapids, Michigan
| | - Cameron Lawson
- Richard Devos Heart and Lung Transplant Program, Spectrum Health, Grand Rapids, Michigan
| | | | - Nikolay Pestov
- Department of Physiology and Pharmacology and Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Health Science Campus, Toledo, Ohio
| | - Nikolai N. Modyanov
- Department of Physiology and Pharmacology and Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Health Science Campus, Toledo, Ohio
| | - Jeremy Prokop
- Department of Pediatrics and Human Development and
- Department of Pharmacology and Toxicology and
| | | | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Reda E. Girgis
- Department of Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Division of Pulmonary and Critical Care Medicine
- Richard Devos Heart and Lung Transplant Program, Spectrum Health, Grand Rapids, Michigan
| | - Xiaopeng Li
- Department of Pediatrics and Human Development and
| |
Collapse
|
9
|
Rustam S, Hu Y, Mahjour SB, Rendeiro AF, Ravichandran H, Urso A, D’Ovidio F, Martinez FJ, Altorki NK, Richmond B, Polosukhin V, Kropski JA, Blackwell TS, Randell SH, Elemento O, Shaykhiev R. A Unique Cellular Organization of Human Distal Airways and Its Disarray in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 207:1171-1182. [PMID: 36796082 PMCID: PMC10161760 DOI: 10.1164/rccm.202207-1384oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Rationale: Remodeling and loss of distal conducting airways, including preterminal and terminal bronchioles (pre-TBs/TBs), underlie progressive airflow limitation in chronic obstructive pulmonary disease (COPD). The cellular basis of these structural changes remains unknown. Objectives: To identify biological changes in pre-TBs/TBs in COPD at single-cell resolution and determine their cellular origin. Methods: We established a novel method of distal airway dissection and performed single-cell transcriptomic profiling of 111,412 cells isolated from different airway regions of 12 healthy lung donors and pre-TBs of 5 patients with COPD. Imaging CyTOF and immunofluorescence analysis of pre-TBs/TBs from 24 healthy lung donors and 11 subjects with COPD were performed to characterize cellular phenotypes at a tissue level. Region-specific differentiation of basal cells isolated from proximal and distal airways was studied using an air-liquid interface model. Measurements and Main Results: The atlas of cellular heterogeneity along the proximal-distal axis of the human lung was assembled and identified region-specific cellular states, including SCGB3A2+ SFTPB+ terminal airway-enriched secretory cells (TASCs) unique to distal airways. TASCs were lost in COPD pre-TBs/TBs, paralleled by loss of region-specific endothelial capillary cells, increased frequency of CD8+ T cells normally enriched in proximal airways, and augmented IFN-γ signaling. Basal cells residing in pre-TBs/TBs were identified as a cellular origin of TASCs. Regeneration of TASCs by these progenitors was suppressed by IFN-γ. Conclusions: Altered maintenance of the unique cellular organization of pre-TBs/TBs, including loss of the region-specific epithelial differentiation in these bronchioles, represents the cellular manifestation and likely the cellular basis of distal airway remodeling in COPD.
Collapse
Affiliation(s)
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | | | - Andre F. Rendeiro
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Andreacarola Urso
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | - Frank D’Ovidio
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | | | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York
| | - Bradley Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Scott H. Randell
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
10
|
Blackburn JB, Li NF, Bartlett NW, Richmond BW. An update in club cell biology and its potential relevance to chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L652-L665. [PMID: 36942863 PMCID: PMC10110710 DOI: 10.1152/ajplung.00192.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Club cells are found in human small airways where they play an important role in immune defense, xenobiotic metabolism, and repair after injury. Over the past few years, data from single-cell RNA sequencing (scRNA-seq) studies has generated new insights into club cell heterogeneity and function. In this review, we integrate findings from scRNA-seq experiments with earlier in vitro, in vivo, and microscopy studies and highlight the many ways club cells contribute to airway homeostasis. We then discuss evidence for loss of club cells or club cell products in the airways of patients with chronic obstructive pulmonary disease (COPD) and discuss potential mechanisms through which this might occur.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ngan Fung Li
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bradley W Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
11
|
Kurotani R, Ono S, Miyano Y, Nakayama S, Liu H, Aibara D, Sakahara S, Sato M, Sato K, Inoue S, Shibata Y, Lee MP, Abe H, Kimura S. Secretoglobin 3A2 protects lung from developing cigarette smoke-induced pulmonary emphysema. Int J Biochem Cell Biol 2023; 157:106390. [PMID: 36796505 PMCID: PMC10118454 DOI: 10.1016/j.biocel.2023.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Secretoglobin (SCGB) 3A2 is a bioactive molecule exhibiting various functions such as improving allergic airway inflammation and pulmonary fibrosis and promoting bronchial branching and proliferation during lung development. To determine if and how SCGB3A2 is involved in chronic obstructive pulmonary disease (COPD), a multifactorial disease with both airway and emphysematous lesions, a COPD mouse model was created by exposing Scgb3a2-deficient (KO), Scgb3a2-lung-specific overexpressing (TG), and wild type (WT) mice to cigarette smoke (CS) for 6 months. The KO mice showed loss of lung structure under control condition, and CS exposure resulted in more expansion of airspace and destruction of alveolar wall than WT mouse lungs. In contrast, TG mouse lungs showed no significant changes after CS exposure. SCGB3A2 increased the expression and phosphorylation of signal transducers and activators of transcription (STAT)1 and STAT3, and the expression of α1-antitrypsin (A1AT) in mouse lung fibroblast-derived MLg cells and mouse lung epithelial-derived MLE-15 cells. In MLg cells, A1AT expression was decreased in Stat3-knockdown cells, and increased upon Stat3 overexpression. STAT3 formed a homodimer when cells were stimulated with SCGB3A2. Chromatin immunoprecipitation and reporter assays demonstrated that STAT3 binds to specific binding sites on the Serpina1a gene encoding A1AT and upregulates its transcription in lung tissues of mice. Furthermore, nuclear localization of phosphorylated STAT3 upon SCGB3A2 stimulation was detected by immunocytochemistry. These findings demonstrate that SCGB3A2 protects the lungs from the development of CS-induced emphysema by regulating A1AT expression through STAT3 signaling.
Collapse
Affiliation(s)
- Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan.
| | - Sotaro Ono
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Yuki Miyano
- Genome Informatics Unit, Institute for Promotion of Medical Science Research, Yamagata University School of Medicine, Yamagata, Japan
| | - Shun Nakayama
- Department of Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan; Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Huaitian Liu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA; Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Daisuke Aibara
- Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, USA; Faculty of Pharmaceutical Science, Fukuoka University, Japan
| | - Satoshi Sakahara
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Shioko Kimura
- Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
12
|
Li X, Wei S, Deng L, Tao H, Liu M, Zhao Z, Du X, Li Y, Hou J. Sex-biased molecular differences in lung adenocarcinoma are ethnic and smoking specific. BMC Pulm Med 2023; 23:99. [PMID: 36964522 PMCID: PMC10039609 DOI: 10.1186/s12890-023-02387-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Sex-related differences in cancer epidemiology, tumor biology, immune system activity, and pharmacogenomics have been suggested to be important considerations for precision cancer control. Here we elucidated systematically sex biases in genetic variants, gene expression profiles, and immunological landscapes of lung adenocarcinoma patients (LUADs) with different ancestry and smoking status. METHODS Somatic mutation and mRNA expression data of Asian and Non-Asian LUADs were obtained from public databases. Sex-biased genetic mutations, gene expression, biological pathways, and immune infiltration were identified in the context of smoking status and race. RESULTS Among nonsmokers, male-biased mutations were prevalent in Asian LUADs, while few sex-biased mutations were detected in Non-Asian LUADs. EGFR was the only mutation whose frequency was significantly higher in females than males in both Asian and Non-Asian nonsmokers. More genes exhibited sex-biased expression in Non-Asian LUADs compared to Asian LUADs. Moreover, genes distinctly expressed in females were mainly related to immune-related pathways, whereas those in males were more involved in activation of DNA repair, E2F_targets, and MYC_targets pathways. We also detected sex-specific immune infiltration in the context of genetic variation. In EGFR-mutant LUADs, males had a significantly increased infiltration of CD8 + T cells, whereas resting CD4 + memory T cells were more abundant in females. Additionally, in KRAS-mutant LUADs, CD8 + and CD4 + T cells were more abundant in females than males. In addition, we detected all female patients with high SCGB3A2 expression were exclusively sensitive to immunotherapy, while this phenomenon was not observed in male patients. CONCLUSIONS Our findings provided evidence that sex-related molecular and cellular components are involved in shaping tumor distinct genetic and immune features, which might have important impact on personalized targeted and immune therapy.
Collapse
Affiliation(s)
- Xuetao Li
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Liaoyuan Deng
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - HongYan Tao
- Department of Pulmonary Diseases, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Mingkai Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Yujun Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Jun Hou
- Center for Medical Research On Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
13
|
Surina, Tanggis, Suzuki T, Hisata S, Fujita K, Fujiwara S, Liu F, Fukushima N, Suzuki T, Mato N, Hagiwara K. Patient-derived spheroids and patient-derived organoids simulate evolutions of lung cancer. Heliyon 2023; 9:e13829. [PMID: 36895411 PMCID: PMC9988482 DOI: 10.1016/j.heliyon.2023.e13829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer cells harbor many genetic mutations and gene expression profiles different from normal cells. Patient-derived cancer cells (PDCC) are preferred materials in cancer study. We established patient-derived spheroids (PDSs) and patient-derived organoids (PDOs) from PDCCs isolated from the malignant pleural effusion in 8 patients. The morphologies suggested that PDSs may be a model of local cancer extensions, while PDOs may be a model of distant cancer metastases. The gene expression profiles differed between PDSs and PDOs: Gene sets related to inflammatory responses and EMT were antithetically regulated in PDSs or in PDOs. PDSs demonstrated an attenuation of the pathways that contribute to the enhancement of transforming growth factor beta (TGF-β) induced epithelial mesenchymal transition (EMT), while PDOs demonstrated an attenuation of it. Taken together, PDSs and PDOs have differences in both the interaction to the immune systems and to the stroma. PDSs and PDOs will provide a model system that enable intimate investigation of the behavior of cancer cells in the body.
Collapse
Affiliation(s)
- Surina
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
| | - Tanggis
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Tomoko Suzuki
- Department of Pathology, Jichi Medical University Hospital, Tochigi, Japan
| | - Shu Hisata
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazutaka Fujita
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Satomi Fujiwara
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Fangyuan Liu
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia, China
| | | | - Takuji Suzuki
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoko Mato
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Koichi Hagiwara
- Pulmonary Medicine, Cardiovascular and Pulmonary Diseases, Programs of Clinical and Community Medicine, Jichi Medical University Graduate School of Medicine, Tochigi, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
14
|
Sountoulidis A, Marco Salas S, Braun E, Avenel C, Bergenstråhle J, Theelke J, Vicari M, Czarnewski P, Liontos A, Abalo X, Andrusivová Ž, Mirzazadeh R, Asp M, Li X, Hu L, Sariyar S, Martinez Casals A, Ayoglu B, Firsova A, Michaëlsson J, Lundberg E, Wählby C, Sundström E, Linnarsson S, Lundeberg J, Nilsson M, Samakovlis C. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat Cell Biol 2023; 25:351-365. [PMID: 36646791 PMCID: PMC9928586 DOI: 10.1038/s41556-022-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/23/2022] [Indexed: 01/18/2023]
Abstract
The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Collapse
Affiliation(s)
- Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christophe Avenel
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jonas Theelke
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marco Vicari
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Liontos
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xesus Abalo
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Žaneta Andrusivová
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michaela Asp
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sanem Sariyar
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Ayoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Alexandra Firsova
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden.
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden.
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
15
|
Burkhanova U, Harris A, Leir SH. Enhancement of airway epithelial cell differentiation by pulmonary endothelial cell co-culture. Stem Cell Res 2022; 65:102967. [PMID: 36395690 PMCID: PMC9790179 DOI: 10.1016/j.scr.2022.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cross-talk between lung epithelial cells and their microenvironment has an important physiological role in development. Using an in vitro model of differentiation of human induced pluripotent stem cells (iPSCs) to air-liquid interface (ALI)-cultured lung epithelial cells, we investigated the contribution of the microenvironment to maintenance of the lung progenitor cell state. Our protocol modeled in vivo cell-to-matrix and cell-to-cell interactions. These included growth of iPSCs on inserts coated with different basement membrane proteins (collagen I, IV, fibronectin, heparan sulfate or Matrigel plus collagen IV) and co-culture with human pulmonary microvascular endothelial cells (HPMECs). Marker gene expression was measured by RT-qPCR and protein expression and localization was confirmed by immunocytochemistry. The results showed that iPSCs grown on collagen IV had the highest success rate in terms of differentiation to robust ALI-cultured lung epithelial cells, followed by fibronectin, collagen I and heparan sulfate. Coating with Matrigel mixed with collagen IV further increased the success rate to > 97 %. Co-culture of iPSCs with HPMECs enhanced the expression of key airway lineage markers (NKX2.1, KRT5, TP63, MUC5AC, MUC16, FOXJ1, CFTR and SCGB1A1) during ALI culture. Cross-talk between iPSCs and their microenvironment during cell differentiation had a significant effect on lung epithelial cell differentiation in these 3D in vitro models. Both matrix proteins and endothelial cells play critical roles in the differentiation of lung progenitor cells.
Collapse
|
16
|
Application of second-generation sequencing in congenital pulmonary airway malformations. Sci Rep 2022; 12:20459. [PMID: 36443638 PMCID: PMC9705386 DOI: 10.1038/s41598-022-24858-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
To investigate the differential expression of genes in whole transcripts of congenital pulmonary airway malformation (CPAM) using second-generation sequencing (also known as next-generation sequencing, NGS) technology. Children with CPAM were strictly screened after setting the criteria, and grouped by taking CPAM parietal tissue and CPAM lesion tissue respectively, and RNA-Seq libraries were established separately using second-generation sequencing technology, followed by differential expression analysis and GO (gene ontology) functional enrichment analysis, KEGG (Kyoto encyclopedia of genes and genomes, a database) pathway analysis and GSEA (Gene Set Enrichment Analysis) analysis. Five cases were screened from 36 children with CPAM, and high-throughput sequencing was performed to obtain 10 whole transcripts of samples with acceptable sequence quality and balanced gene coverage. One aberrantly expressed sample (3b) was found by analysis of principal components, which was excluded and then subjected to differential expression analysis, and 860 up-regulated genes and 203 down-regulated genes. GO functional enrichment analysis of differentially expressed genes demonstrates the functional class and cellular localization of target genes. The whole transcript of CPAM shows obvious gene up and down-regulation, differentially expressed genes are located in specific cells and belong to different functional categories, and NGS can provide an effective means to study the transcriptional regulation of CPAM from the overall transcriptional level.
Collapse
|
17
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
18
|
Abstract
Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages. Here, we provide a compendium of cells and cell states that exist during homeostasis in normal lungs and the lineage relationships between them. Additionally, we discuss various experimental injury models currently being used to probe the cellular sources-both resident and recruited-that contribute to repair, regeneration, and remodeling following acute and chronic injuries. Finally, we discuss certain maladaptive regeneration-associated cell states and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
19
|
Blackburn JB, Schaff JA, Gutor S, Du RH, Nichols D, Sherrill T, Gutierrez AJ, Xin MK, Wickersham N, Zhang Y, Holtzman MJ, Ware LB, Banovich NE, Kropski JA, Blackwell TS, Richmond BW. Secretory Cells Are the Primary Source of pIgR in Small Airways. Am J Respir Cell Mol Biol 2022; 67:334-345. [PMID: 35687143 PMCID: PMC9447142 DOI: 10.1165/rcmb.2021-0548oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Jacob A. Schaff
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Sergey Gutor
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Rui-Hong Du
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - David Nichols
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Taylor Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Matthew K. Xin
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Nancy Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Michael J. Holtzman
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Bradley W. Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
20
|
McGrath JJC, Cass SP. Secretory RAS cells: A novel AT2 progenitor in the human transitional bronchioles. Allergy 2022; 77:2866-2868. [PMID: 35665940 DOI: 10.1111/all.15402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Joshua J C McGrath
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, New York, USA.,Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Steven P Cass
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK.,School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
21
|
Zhang CYK, Ahmed M, Huszti E, Levy L, Hunter SE, Boonstra KM, Moshkelgosha S, Sage AT, Azad S, Ghany R, Yeung JC, Crespin OM, Singer LG, Keshavjee S, Martinu T. Utility of bile acids in large airway bronchial wash versus bronchoalveolar lavage as biomarkers of microaspiration in lung transplant recipients: a retrospective cohort study. Respir Res 2022; 23:219. [PMID: 36028826 PMCID: PMC9419323 DOI: 10.1186/s12931-022-02131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Bronchoalveolar lavage (BAL) is a key tool in respiratory medicine for sampling the distal airways. BAL bile acids are putative biomarkers of pulmonary microaspiration, which is associated with poor outcomes after lung transplantation. Compared to BAL, large airway bronchial wash (LABW) samples the tracheobronchial space where bile acids may be measurable at more clinically relevant levels. We assessed whether LABW bile acids, compared to BAL bile acids, are more strongly associated with poor clinical outcomes in lung transplant recipients. Methods Concurrently obtained BAL and LABW at 3 months post-transplant from a retrospective cohort of 61 lung transplant recipients were analyzed for taurocholic acid (TCA), glycocholic acid (GCA), and cholic acid by mass spectrometry and 10 inflammatory proteins by multiplex immunoassay. Associations between bile acids with inflammatory proteins and acute lung allograft dysfunction were assessed using Spearman correlation and logistic regression, respectively. Time to chronic lung allograft dysfunction and death were evaluated using multivariable Cox proportional hazards and Kaplan–Meier methods. Results Most bile acids and inflammatory proteins were higher in LABW than in BAL. LABW bile acids correlated with inflammatory proteins within and between sample type. LABW TCA and GCA were associated with acute lung allograft dysfunction (OR = 1.368; 95%CI = 1.036–1.806; P = 0.027, OR = 1.064; 95%CI = 1.009–1.122; P = 0.022, respectively). No bile acids were associated with chronic lung allograft dysfunction. Adjusted for risk factors, LABW TCA and GCA predicted death (HR = 1.513; 95%CI = 1.014–2.256; P = 0.042, HR = 1.597; 95%CI = 1.078–2.366; P = 0.020, respectively). Patients with LABW TCA in the highest tertile had worse survival compared to all others. Conclusions LABW bile acids are more strongly associated than BAL bile acids with inflammation, acute lung allograft dysfunction, and death in lung transplant recipients. Collection of LABW may be useful in the evaluation of microaspiration in lung transplantation and other respiratory diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02131-5.
Collapse
Affiliation(s)
| | - Musawir Ahmed
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, Toronto, Canada
| | - Liran Levy
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Sarah E Hunter
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Kristen M Boonstra
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Sajad Moshkelgosha
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Andrew T Sage
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Sassan Azad
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Rasheed Ghany
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Jonathan C Yeung
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada
| | - Oscar M Crespin
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada.,Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada.,Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program, University Health Network, Toronto, Canada. .,Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Promises and Challenges of Cell-Based Therapies to Promote Lung Regeneration in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11162595. [PMID: 36010671 PMCID: PMC9406501 DOI: 10.3390/cells11162595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/17/2022] Open
Abstract
The lung epithelium is constantly exposed to harmful agents present in the air that we breathe making it highly susceptible to damage. However, in instances of injury to the lung, it exhibits a remarkable capacity to regenerate injured tissue thanks to the presence of distinct stem and progenitor cell populations along the airway and alveolar epithelium. Mechanisms of repair are affected in chronic lung diseases such as idiopathic pulmonary fibrosis (IPF), a progressive life-threatening disorder characterized by the loss of alveolar structures, wherein excessive deposition of extracellular matrix components cause the distortion of tissue architecture that limits lung function and impairs tissue repair. Here, we review the most recent findings of a study of epithelial cells with progenitor behavior that contribute to tissue repair as well as the mechanisms involved in mouse and human lung regeneration. In addition, we describe therapeutic strategies to promote or induce lung regeneration and the cell-based strategies tested in clinical trials for the treatment of IPF. Finally, we discuss the challenges, concerns and limitations of applying these therapies of cell transplantation in IPF patients. Further research is still required to develop successful strategies focused on cell-based therapies to promote lung regeneration to restore lung architecture and function.
Collapse
|
23
|
Axelsson GT, Gudmundsson G, Pratte KA, Aspelund T, Putman RK, Sanders JL, Gudmundsson EF, Hatabu H, Gudmundsdottir V, Gudjonsson A, Hino T, Hida T, Hobbs BD, Cho MH, Silverman EK, Bowler RP, Launer LJ, Jennings LL, Hunninghake GM, Emilsson V, Gudnason V. The Proteomic Profile of Interstitial Lung Abnormalities. Am J Respir Crit Care Med 2022; 206:337-346. [PMID: 35438610 PMCID: PMC9890263 DOI: 10.1164/rccm.202110-2296oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rationale: Knowledge on biomarkers of interstitial lung disease is incomplete. Interstitial lung abnormalities (ILAs) are radiologic changes that may present in its early stages. Objectives: To uncover blood proteins associated with ILAs using large-scale proteomics methods. Methods: Data from two prospective cohort studies, the AGES-Reykjavik (Age, Gene/Environment Susceptibility-Reykjavik) study (N = 5,259) for biomarker discovery and the COPDGene (Genetic Epidemiology of COPD) study (N = 4,899) for replication, were used. Blood proteins were measured using DNA aptamers, targeting more than 4,700 protein analytes. The association of proteins with ILAs and ILA progression was assessed with regression modeling, as were associations with genetic risk factors. Adaptive Least Absolute Shrinkage and Selection Operator models were applied to bootstrap data samples to discover sets of proteins predictive of ILAs and their progression. Measurements and Main Results: Of 287 associations, SFTPB (surfactant protein B) (odds ratio [OR], 3.71 [95% confidence interval (CI), 3.20-4.30]; P = 4.28 × 10-67), SCGB3A1 (Secretoglobin family 3A member 1) (OR, 2.43 [95% CI, 2.13-2.77]; P = 8.01 × 10-40), and WFDC2 (WAP four-disulfide core domain protein 2) (OR, 2.42 [95% CI, 2.11-2.78]; P = 4.01 × 10-36) were most significantly associated with ILA in AGES-Reykjavik and were replicated in COPDGene. In AGES-Reykjavik, concentrations of SFTPB were associated with the rs35705950 MUC5B (mucin 5B) promoter polymorphism, and SFTPB and WFDC2 had the strongest associations with ILA progression. Multivariate models of ILAs in AGES-Reykjavik, ILAs in COPDGene, and ILA progression in AGES-Reykjavik had validated areas under the receiver operating characteristic curve of 0.880, 0.826, and 0.824, respectively. Conclusions: Novel, replicated associations of ILA, its progression, and genetic risk factors with numerous blood proteins are demonstrated as well as machine-learning-based models with favorable predictive potential. Several proteins are revealed as potential markers of early fibrotic lung disease.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Department of Respiratory Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Thor Aspelund
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | | | | | | | - Hiroto Hatabu
- Department of Radiology, and,Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | | | - Takuya Hino
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tomoyuki Hida
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Brian D. Hobbs
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Michael H. Cho
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Edwin K. Silverman
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Russell P. Bowler
- National Jewish Health, Denver, Colorado;,School of Medicine, University of Colorado, Aurora, Colorado
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, Maryland; and
| | - Lori L. Jennings
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Gary M. Hunninghake
- Pulmonary and Critical Care Division,,Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| |
Collapse
|
24
|
Kimura S, Yokoyama S, Pilon AL, Kurotani R. Emerging role of an immunomodulatory protein secretoglobin 3A2 in human diseases. Pharmacol Ther 2022; 236:108112. [PMID: 35016921 PMCID: PMC9271138 DOI: 10.1016/j.pharmthera.2022.108112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022]
Abstract
Secretoglobin (SCGB) 3A2 was first identified in 2001 as a protein exhibiting similarities in amino acid sequence and gene structure to SCGB1A1, a multi-functional cytokine-like molecule highly expressed in airway epithelial Club cells that was the first identified and extensively studied member of the SCGB gene superfamily. SCGB3A2 is a small secretory protein of ~10 kDa that forms a dimer and a tetramer. SCGB3A2 is predominantly expressed in airway epithelial Club cells, and has anti-inflammatory, growth factor, anti-fibrotic, and anti-cancer activities that influence various lung diseases. This review summarizes the current understanding of SCGB3A2 biological functions and its role in human diseases with emphasis on its mechanisms of actions and signaling pathway.
Collapse
Affiliation(s)
- Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Shigetoshi Yokoyama
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
25
|
Effects of obesity on CC16 and their potential role in overweight/obese asthma. Respir Res 2022; 23:174. [PMID: 35768822 PMCID: PMC9241210 DOI: 10.1186/s12931-022-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Club cell secretory protein-16 (CC16) is a major anti-inflammatory protein expressed in the airway; however, the potential role of CC16 on overweight/obese asthma has not been assessed. In this study, we examined whether obesity reduces airway/circulatory CC16 levels using experimental and epidemiological studies. Then, we explored the mediatory role of CC16 in the relationship of overweight/obesity with clinical asthma measures. Methods Circulating CC16 levels were assessed by ELISA in three independent human populations, including two groups of healthy and general populations and asthma patients. The percentage of cells expressing club markers in obese vs. non-obese mice and human airways was determined by immunohistochemistry. A causal mediation analysis was conducted to determine whether circulatory CC16 acted as a mediator between overweight/obesity and clinical asthma measures. Results BMI was significantly and monotonously associated with reduced circulating CC16 levels in all populations. The percentage of CC16-expressing cells was reduced in the small airways of both mice and humans with obesity. Finally, mediation analysis revealed significant contributions of circulatory CC16 in the association between BMI and clinical asthma measures; 21.8% of its total effect in BMI’s association with airway hyperresponsiveness of healthy subjects (p = 0.09), 26.4% with asthma severity (p = 0.030), and 23% with the required dose of inhaled corticosteroid (p = 0.042). In logistic regression analysis, 1-SD decrease in serum CC16 levels of asthma patients was associated with 87% increased odds for high dose ICS requirement (p < 0.001). Conclusions We demonstrate that airway/circulating CC16, which is inversely associated with BMI, may mediate development and severity in overweight/obese asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02038-1.
Collapse
|
26
|
Han L, Zhang F, Liu Y, Yu J, Zhang Q, Ye X, Song H, Zheng C, Han B. Uterus globulin associated protein 1 (UGRP1) binds podoplanin (PDPN) to promote a novel inflammation pathway during Streptococcus pneumoniae infection. Clin Transl Med 2022; 12:e850. [PMID: 35652821 PMCID: PMC9161880 DOI: 10.1002/ctm2.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022] Open
Abstract
Background Streptococcus pneumoniae is the major cause of life‐threatening infections. Toll‐like receptors (TLRs) and NOD‐like receptors (NLRs) could recognise S. pneumoniae and regulate the production of pro‐inflammatory cytokines. UGRP1, highly expressed in lung, is predominantly secreted in airways. However, the function of UGRP1 in pneumonia is mainly unknown. Methods and results We showed that upon TLR2/TLR4/NOD2 agonists stimulation or S. pneumoniae infection, treatment with UGRP1 could promote phosphorylation of p65 and enhance IL‐6, IL‐1β and TNFα production in macrophages. We further elucidated that after binding with cell‐surface receptor PDPN, UGRP1 could activate RhoA to enhance interaction of IKKγ and IKKβ, which slightly activated NF‐κB to improve expression of TLR2, MyD88, NOD2 and NLRP3. Deletion of UGRP1 or blocking UGRP1 interaction with PDPN protected mice against S. pneumoniae‐induced severe pneumococcal pneumonia, and activating RhoA with agonist in UGRP1‐deficient mice restored the reduced IL‐6 production. Conclusion We demonstrated that UGRP1–PDPN–RhoA signaling could activate NF‐κB to promote expression of TLR2, MyD88, NOD2 and NLRP3, which enhanced inflammatory cytokines secretion during S. pneumoniae infection. Antibodies, which could interrupt interaction of UGRP1 and PDPN, are potential therapeutics against S. pneumoniae.
Collapse
Affiliation(s)
- Lei Han
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Ye
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Zheng
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Warren R, Dylag AM, Behan M, Domm W, Yee M, Mayer-Pröschel M, Martinez-Sobrido L, O'Reilly MA. Ataxia telangiectasia mutated is required for efficient proximal airway epithelial cell regeneration following influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2022; 322:L581-L592. [PMID: 35196880 PMCID: PMC8993527 DOI: 10.1152/ajplung.00378.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Children and young adults with mutant forms of ataxia telangiectasia mutated (ATM), a kinase involved in DNA damage signaling and mitochondrial homeostasis, suffer from recurrent respiratory infections, immune deficiencies, and obstructive airways disease associated with disorganized airway epithelium. We previously showed in mice how Atm was required to mount a protective immune memory response to influenza A virus [IAV; Hong Kong/X31 (HKx31), H3N2]. Here, Atm wildtype (WT) and knockout (Atm-null) mice were used to investigate how Atm is required to regenerate the injured airway epithelium following IAV infection. When compared with WT mice, naive Atm-null mice had increased airway resistance and reduced lung compliance that worsened during infection before returning to naïve levels by 56 days postinfection (dpi). Although Atm-null lungs appeared pathologically normal before infection by histology, they developed an abnormal proximal airway epithelium after infection that contained E-cadherin+, Sox2+, and Cyp2f2+ cells lacking secretoglobin family 1 A member 1 (Scgb1a1) protein expression. Patchy and low expression of Scgb1a1 were eventually observed by 56 dpi. Genetic lineage tracing in HKx31-infected mice revealed club cells require Atm to rapidly and efficiently restore Scgb1a1 expression in proximal airways. Since Scgb1a1 is an immunomodulatory protein that protects the lung against a multitude of respiratory challenges, failure to efficiently restore its expression may contribute to the respiratory diseases seen in individuals with ataxia telangiectasia.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew M Dylag
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Molly Behan
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
28
|
Huisman C, Norgard MA, Levasseur PR, Krasnow SM, van der Wijst MGP, Olson B, Marks DL. Critical changes in hypothalamic gene networks in response to pancreatic cancer as found by single-cell RNA sequencing. Mol Metab 2022; 58:101441. [PMID: 35031523 PMCID: PMC8851272 DOI: 10.1016/j.molmet.2022.101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood-brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development.
Collapse
Affiliation(s)
- Christian Huisman
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, United States.
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Stephanie M Krasnow
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Medical Scientist Training Program, Oregon Health & Science University, Portland, United States
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, United States; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, United States.
| |
Collapse
|
29
|
Yin W, Liontos A, Koepke J, Ghoul M, Mazzocchi L, Liu X, Lu C, Wu H, Fysikopoulos A, Sountoulidis A, Seeger W, Ruppert C, Günther A, Stainier DYR, Samakovlis C. An essential function for autocrine hedgehog signaling in epithelial proliferation and differentiation in the trachea. Development 2022; 149:274222. [PMID: 35112129 PMCID: PMC8918789 DOI: 10.1242/dev.199804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development. Summary: A conserved autocrine role for HH signaling in tracheal epithelial cell proliferation and differentiation is revealed, suggesting potential new interventions for airway epithelial proliferation and differentiation defects.
Collapse
Affiliation(s)
- Wenguang Yin
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Andreas Liontos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Janine Koepke
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Maroua Ghoul
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Luciana Mazzocchi
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Xinyuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Chunyan Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Haoyu Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Athanasios Fysikopoulos
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Alexandros Sountoulidis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Werner Seeger
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Andreas Günther
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Christos Samakovlis
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
30
|
Ma W, Li W, Xu L, Liu L, Xia Y, Yang L, Da M. Identification of a Gene Prognostic Model of Gastric Cancer Based on Analysis of Tumor Mutation Burden. Pathol Oncol Res 2021; 27:1609852. [PMID: 34566519 PMCID: PMC8460769 DOI: 10.3389/pore.2021.1609852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023]
Abstract
Introduction: Gastric cancer is one of the most common cancers. Although some progress has been made in the treatment of gastric cancer with the improvement of surgical methods and the application of immunotherapy, the prognosis of gastric cancer patients is still unsatisfactory. In recent years, there has been increasing evidence that tumor mutational load (TMB) is strongly associated with survival outcomes and response to immunotherapy. Given the variable response of patients to immunotherapy, it is important to investigate clinical significance of TMB and explore appropriate biomarkers of prognosis in patients with gastric cancer (GC). Material and Methods: All data of patients with gastric cancer were obtained from the database of The Cancer Genome Atlas (TCGA). Samples were divided into two groups based on median TMB. Differently expressed genes (DEGs) between the high- and low-TMB groups were identified and further analyzed. We identified TMB-related genes using Lasso, univariate and multivariate Cox regression analysis and validated the survival result of 11 hub genes using Kaplan-Meier Plotter. In addition, “CIBERSORT” package was utilized to estimate the immune infiltration. Results: Single nucleotide polymorphism (SNP), C > T transition were the most common variant type and single nucleotide variant (SNV), respectively. Patients in the high-TMB group had better survival outcomes than those in the low-TMB group. Besides, eleven TMB-related DEGs were utilized to construct a prognostic model that could be an independent risk factor to predict the prognosis of patients with GC. What’s more, the infiltration levels of CD4+ memory-activated T cells, M0 and M1 macrophages were significantly increased in the high-TMB group compared with the low-TMB group. Conclusions: Herein, we found that patients with high TMB had better survival outcomes in GC. In addition, higher TMB might promote immune infiltration, which could provide new ideas for immunotherapy.
Collapse
Affiliation(s)
- Weijun Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Weidong Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Lei Xu
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China.,The First Clinical Medical College, Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Lu Liu
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China.,The First Clinical Medical College, Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Yu Xia
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China.,First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Liping Yang
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Mingxu Da
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
31
|
Gokey JJ, Snowball J, Sridharan A, Sudha P, Kitzmiller JA, Xu Y, Whitsett JA. YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. iScience 2021; 24:102967. [PMID: 34466790 PMCID: PMC8383002 DOI: 10.1016/j.isci.2021.102967] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/26/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Ventilation is dependent upon pulmonary alveoli lined by two major epithelial cell types, alveolar type-1 (AT1) and 2 (AT2) cells. AT1 cells mediate gas exchange while AT2 cells synthesize and secrete pulmonary surfactants and serve as progenitor cells which repair the alveoli. We developed transgenic mice in which YAP was activated or deleted to determine its roles in alveolar epithelial cell differentiation. Postnatal YAP activation increased epithelial cell proliferation, increased AT1 cell numbers, and caused indeterminate differentiation of subsets of alveolar cells expressing atypical genes normally restricted to airway epithelial cells. YAP deletion increased expression of genes associated with mature AT2 cells. YAP activation enhanced DNA accessibility in promoters of transcription factors and motif enrichment analysis predicted target genes associated with alveolar cell differentiation. YAP participated with KLF5, NFIB, and NKX2-1 to regulate AGER. YAP plays a central role in a transcriptional network that regulates alveolar epithelial differentiation.
Collapse
Affiliation(s)
- Jason J. Gokey
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John Snowball
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Anusha Sridharan
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Parvathi Sudha
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph A. Kitzmiller
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jeffrey A. Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
32
|
Hu Y, Cheng X, Qiu Z, Chen X. Identification of Mucus-Associated Molecular Subtypes of Chronic Obstructive Pulmonary Disease: A Latent Profile Analysis Based on MUC5B-Associated Genes. Med Sci Monit 2021; 27:e931222. [PMID: 34389698 PMCID: PMC8372096 DOI: 10.12659/msm.931222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a disease with high heterogeneity, which is a major challenge in clinical individualized treatment. A mucus phenotype is one of the main characteristics of COPD. MATERIAL AND METHODS Gene expression profiles of lung tissue samples were from the Lung Genomics Research Consortium. MUC5B-associated gene signatures were obtained based on a nonlinear feature screening algorithm. These signatures were used to fit a latent profile analysis (LPA) model to identify COPD molecular subtypes and build a subtype classifier to verify the subtypes. Then, we explored the characteristics of cilium assembly and beating signatures, transcriptome features, immune infiltration among the 3 subtypes by xCell, single-sample gene set enrichment analysis, network perturbation amplitude, and weighted gene co-expression network analysis algorithms. An external dataset was used to verify the above COPD subtypes. RESULTS Three subtypes associated with mucus were identified by LPA and verified in an external dataset. Subtype 1 displayed higher T helper type 1 (Th1) and basophil infiltration, higher Th17/regulatory T cells (Tregs) ratio, a higher level of cilium assembly and beating, and lower mast cell and Treg infiltration. The subtypes 2 and 3 demonstrated higher macrophage M2 infiltration in lung tissue, while subtype 3 had higher neutrophil and eosinophil infiltration than subtype 2. CONCLUSIONS Overall, this work identified 3 mucus-associated molecular subtypes related to MUC5B expression, which deepens the understanding of airway mucus secretion in COPD and potentially provides valuable information for precision therapy.
Collapse
Affiliation(s)
- Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Xiaomeng Cheng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Zhanjun Qiu
- Department of Pulmonary Disease, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Xianhai Chen
- Department of Pulmonary Disease, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| |
Collapse
|
33
|
Cigarette Smoke Specifically Affects Small Airway Epithelial Cell Populations and Triggers the Expansion of Inflammatory and Squamous Differentiation Associated Basal Cells. Int J Mol Sci 2021; 22:ijms22147646. [PMID: 34299265 PMCID: PMC8305830 DOI: 10.3390/ijms22147646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air–liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.
Collapse
|
34
|
Melocchi V, Dama E, Mazzarelli F, Cuttano R, Colangelo T, Di Candia L, Lugli E, Veronesi G, Pelosi G, Ferretti GM, Taurchini M, Graziano P, Bianchi F. Aggressive early-stage lung adenocarcinoma is characterized by epithelial cell plasticity with acquirement of stem-like traits and immune evasion phenotype. Oncogene 2021; 40:4980-4991. [PMID: 34172935 DOI: 10.1038/s41388-021-01909-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Lung adenocarcinoma (LUAD) is the main non-small-cell lung cancer diagnosed in ~40-50% of all lung cancer cases. Despite the improvements in early detection and personalized medicine, even a sizable fraction of patients with early-stage LUAD would experience disease relapses and adverse prognosis. Previous reports indicated the existence of LUAD molecular subtypes characterized by specific gene expression and mutational profiles, and correlating with prognosis. However, the biological and molecular features of such subtypes have not been further explored. Consequently, the mechanisms driving the emergence of aggressive LUAD remained unclear. Here, we adopted a multi-tiered approach ranging from molecular to functional characterization of LUAD and used it on multiple cohorts of patients (for a total of 1227 patients) and LUAD cell lines. We investigated the tumor transcriptome and the mutational and immune gene expression profiles, and we used LUAD cell lines for cancer cell phenotypic screening. We found that loss of lung cell lineage and gain of stem cell-like characteristics, along with mutator and immune evasion phenotypes, explain the aggressive behavior of a specific subset of lung adenocarcinoma that we called C1-LUAD, including early-stage disease. This subset can be identified using a 10-gene prognostic signature. Poor prognosis patients appear to have this specific molecular lung adenocarcinoma subtype which is characterized by peculiar molecular and biological features. Our data support the hypothesis that transformed lung stem/progenitor cells and/or reprogrammed epithelial cells with CSC characteristics are hallmarks of this aggressive disease. Such discoveries suggest alternative, more aggressive, therapeutic strategies for early-stage C1-LUAD.
Collapse
Affiliation(s)
- Valentina Melocchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisa Dama
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Mazzarelli
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Roberto Cuttano
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Colangelo
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Leonarda Di Candia
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Giulia Veronesi
- Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Inter-Hospital Pathology Division, IRCCS MultiMedica, Milan, Italy
| | - Gian Maria Ferretti
- Thoracic Surgical Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Taurchini
- Thoracic Surgical Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
35
|
Wang A, Zhang Q, Wang Y, Li X, Li K, Li Y, Wang J, Li L, Chen H. Inhibition of Gabrp reduces the differentiation of airway epithelial progenitor cells into goblet cells. Exp Ther Med 2021; 22:720. [PMID: 34007329 PMCID: PMC8120639 DOI: 10.3892/etm.2021.10152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/12/2021] [Indexed: 12/05/2022] Open
Abstract
Bronchial asthma is an intractable pulmonary disease that affects millions of individuals worldwide, with the overproduction of mucus contributing to high morbidity and mortality. Gamma-aminobutyric acid (GABA) is associated with goblet cell hyperplasia in the lungs of primate models and Club cells serve as airway epithelial progenitor cells that may differentiate into goblet and ciliated cells. In the present study, it was investigated whether the GABAA receptor pi (Gabrp) is essential for Club cell proliferation and differentiation in mice. Validation of microarray analysis results by reverse transcription-quantitative PCR (RT-qPCR) demonstrated that Gabrp is highly expressed in mouse Club cells. Predominant expression of Gabrp in mouse Club cells was further confirmed based on naphthalene-induced Club cell injury in mice, with organoid cultures indicating significant reductions in the organoid-forming ability of mouse Club cells in the presence of Gabrp antagonist bicuculline methiodide (BMI). Furthermore, the RT-qPCR results indicated that the mRNA levels of chloride channel accessory 3, pseudogene (Clca3p), mucin (Muc)5Ac and Muc5B were significantly decreased in BMI organoid cultures. These results suggested that blocking GABA signaling through Gabrp inhibits mouse Club cell proliferation, as well as differentiation into goblet cells. Therefore, targeting GABA/Gabrp signaling may represent a promising strategy for treating goblet cell hyperplasia in bronchial asthma.
Collapse
Affiliation(s)
- An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, P.R. China
| | - Qiuyang Zhang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Yongmei Wang
- Department of Pathology, Tianjin University Haihe Hospital, Tianjin 300350, P.R. China
| | - Xue Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Kuan Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Yu Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Jianhai Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Li Li
- Department of Respiratory Medicine, Tianjin University Haihe Hospital, Tianjin 300350, P.R. China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, P.R. China.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China.,Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin 300350, P.R. China
| |
Collapse
|
36
|
Abstract
The mammalian lung epithelium is composed of a wide array of specialized cells that have adapted to survive environmental exposure and perform the tasks necessary for respiration. Although the majority of these cells are remarkably quiescent during adult lung homeostasis, a growing body of literature has demonstrated the capacity of these epithelial lineages to proliferate in response to injury and regenerate lost or damaged cells. In this review, we focus on the regionally distinct lung epithelial cell types that contribute to repair after injury, and we address current controversies regarding whether elite stem cells or frequent facultative progenitors are the predominant participants. We also shed light on the newly emerging approaches for exogenously generating similar lung epithelial lineages from pluripotent stem cells.
Collapse
Affiliation(s)
- Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts 02118, USA;
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts 02118, USA;
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts 02118, USA;
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
37
|
Abstract
The lungs are constantly exposed to the external environment and are therefore vulnerable to insults that can cause infection and injury. Maintaining the integrity and barrier function of the lung epithelium requires complex interactions of multiple cell lineages. Elucidating the cellular players and their regulation mechanisms provides fundamental information to deepen understanding about the responses and contributions of lung stem cells. This Review focuses on advances in our understanding of mammalian alveolar epithelial stem cell subpopulations and discusses insights about the regeneration-specific cell status of alveolar epithelial stem cells. We also consider how these advances can inform our understanding of post-injury lung repair processes and lung diseases.
Collapse
Affiliation(s)
- Huijuan Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Hawkins FJ, Suzuki S, Beermann ML, Barillà C, Wang R, Villacorta-Martin C, Berical A, Jean JC, Le Suer J, Matte T, Simone-Roach C, Tang Y, Schlaeger TM, Crane AM, Matthias N, Huang SXL, Randell SH, Wu J, Spence JR, Carraro G, Stripp BR, Rab A, Sorsher EJ, Horani A, Brody SL, Davis BR, Kotton DN. Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells. Cell Stem Cell 2021; 28:79-95.e8. [PMID: 33098807 PMCID: PMC7796997 DOI: 10.1016/j.stem.2020.09.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/03/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1GFP;TP63tdTomato), we track and purify these cells as they first emerge as developmentally immature NKX2-1GFP+ lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning. In response to primary basal cell medium, NKX2-1GFP+/TP63tdTomato+ cells display the molecular and functional phenotype of airway basal cells, including the capacity to self-renew or undergo multi-lineage differentiation in vitro and in tracheal xenografts in vivo. iBCs and their differentiated progeny model perturbations that characterize acquired and genetic airway diseases, including the mucus metaplasia of asthma, chloride channel dysfunction of cystic fibrosis, and ciliary defects of primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ruobing Wang
- Pulmonary and Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jake Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Taylor Matte
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | - Yang Tang
- Boston Children's Hospital Stem Cell Program, Boston, MA 02115, USA
| | - Thorsten M Schlaeger
- Boston Children's Hospital Stem Cell Program, Boston, MA 02115, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ana M Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nadine Matthias
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Gianni Carraro
- Department of Medicine, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Department of Medicine, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andras Rab
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J Sorsher
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
39
|
He D, Wang D, Lu P, Yang N, Xue Z, Zhu X, Zhang P, Fan G. Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations. Oncogene 2021; 40:355-368. [PMID: 33144684 PMCID: PMC7808940 DOI: 10.1038/s41388-020-01528-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/03/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Lung adenocarcinoma (LUAD) harboring EGFR mutations prevails in Asian population. However, the inter-patient and intra-tumor heterogeneity has not been addressed at single-cell resolution. Here we performed single-cell RNA sequencing (scRNA-seq) of total 125,674 cells from seven stage-I/II LUAD samples harboring EGFR mutations and five tumor-adjacent lung tissues. We identified diverse cell types within the tumor microenvironment (TME) in which myeloid cells and T cells were the most abundant stromal cell types in tumors and adjacent lung tissues. Within tumors, accompanied by an increase in CD1C+ dendritic cells, the tumor-associated macrophages (TAMs) showed pro-tumoral functions without signature gene expression of defined M1 or M2 polarization. Tumor-infiltrating T cells mainly displayed exhausted and regulatory T-cell features. The adenocarcinoma cells can be categorized into different subtypes based on their gene expression signatures in distinct pathways such as hypoxia, glycolysis, cell metabolism, translation initiation, cell cycle, and antigen presentation. By performing pseudotime trajectory, we found that ELF3 was among the most upregulated genes in more advanced tumor cells. In response to secretion of inflammatory cytokines (e.g., IL1B) from immune infiltrates, ELF3 in tumor cells was upregulated to trigger the activation of PI3K/Akt/NF-κB pathway and elevated expression of proliferation and anti-apoptosis genes such as BCL2L1 and CCND1. Taken together, our study revealed substantial heterogeneity within early-stage LUAD harboring EGFR mutations, implicating complex interactions among tumor cells, stromal cells and immune infiltrates in the TME.
Collapse
Affiliation(s)
- Di He
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Pulmonary Hospital, Department of Thoracic Surgery, School of Life Sciences and Technology, Tongji University, Shanghai, 200433, China
| | - Di Wang
- Shanghai Pulmonary Hospital, Department of Thoracic Surgery, School of Life Sciences and Technology, Tongji University, Shanghai, 200433, China
| | - Ping Lu
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China
| | - Nan Yang
- PharmaLegacy Laboratories (Shanghai) Co, Zhangjiang High-Tech Park Ltd, Building 7, 388 Jialilue Road, Shanghai, 201203, China
| | - Zhigang Xue
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Pulmonary Hospital, Department of Thoracic Surgery, School of Life Sciences and Technology, Tongji University, Shanghai, 200433, China.
| | - Peng Zhang
- Shanghai Pulmonary Hospital, Department of Thoracic Surgery, School of Life Sciences and Technology, Tongji University, Shanghai, 200433, China.
| | - Guoping Fan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Ye CJ, Zhan Y, Yang R, Li Y, Dong R. Single-cell transcriptional profiling identifies a cluster of potential metastasis-associated UBE2C+ cells in immature ovarian teratoma. Biochem Biophys Res Commun 2020; 528:567-573. [PMID: 32505346 DOI: 10.1016/j.bbrc.2020.05.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
To dissect the disease heterogeneity and identify the underlying cellular and molecular events related to metastasis of immature ovarian teratoma in children, single-cell RNA sequencing was performed for a 2-year-old patient with liver metastases from immature ovarian teratoma. A total of 5976 cells were obtained for further analysis, with a median unique molecular identifier count of 6011 per cell and a median number of 1741 genes detected per cell. Fourteen clusters were recognized, with the main lineages comprising epithelial cells, macrophages, fibroblasts, glial cells, and dendritic cells. Ten subclusters of epithelial cells were further defined, originating from the urinary tract, esophagus, bronchus, lung, skin, and gastrointestinal tract. An undefined UBE2C + population in an active state of proliferation was also identified and its biological processes were related to meiosis and maturation of oocytes. Pseudotime analysis revealed different distributions of epithelial cells in the development trajectory. In conclusion, a cluster of UBE2C + epithelial cells in an active state of proliferation was identified in an immature ovarian teratoma in a child, and may contribute to metastasis by regulating epithelial-mesenchymal transition. These findings help toward understanding the origin of the malignant behaviors, offer a potential biomarker for early determination of the tumor nature, and provide new ideas for the therapy of immature ovarian teratoma in children.
Collapse
Affiliation(s)
- Chun-Jing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China.
| |
Collapse
|
41
|
Sivakumar A, Frank DB. Paradigms that define lung epithelial progenitor cell fate in development and regeneration. CURRENT STEM CELL REPORTS 2019; 5:133-144. [PMID: 32587809 DOI: 10.1007/s40778-019-00166-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Throughout the lifespan, lung injury impedes the primary critical function essential for life-respiration. To repair quickly and efficiently is critical and is orchestrated by a diverse repertoire of progenitor cells and their niche. This review incorporates knowledge gained from early studies in lung epithelial morphogenesis and cell fate and explores its relevance to more recent findings of lung progenitor and stem cells in development and regeneration. Recent Findings Cell fate in the lung is organized into an early specification phase and progressive differentiation phase in lung development. The advent of single cell analysis combined with lineage analysis and projections is uncovering new functional cell types in the lung providing a topographical atlas for progenitor cell lineage commitment during development, homeostasis, and regeneration. Summary Lineage commitment of lung progenitor cells is spatiotemporally regulated during development. Single cell sequencing technologies have significantly advanced our understanding of the similarities and differences between developmental and regenerative cell fate trajectories. Subsequent unraveling of the molecular mechanisms underlying these cell fate decisions will be essential to manipulating progenitor cells for regeneration.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
42
|
Valque H, Gouyer V, Duez C, Leboeuf C, Marquillies P, Le Bert M, Plet S, Ryffel B, Janin A, Gottrand F, Desseyn JL. Muc5b-deficient mice develop early histological lung abnormalities. Biol Open 2019; 8:8/11/bio046359. [PMID: 31699684 PMCID: PMC6899002 DOI: 10.1242/bio.046359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gel-forming mucins are the main organic component responsible for physical properties of the mucus hydrogels. While numerous biological functions of these mucins are well documented, specific physiological functions of each mucin are largely unknown. To investigate in vivo functions of the gel-forming mucin Muc5b, which is one of the major secreted airway mucins, along with Muc5ac, we generated mice in which Muc5b was disrupted and maintained in the absence of environmental stress. Adult Muc5b-deficient mice displayed bronchial hyperplasia and metaplasia, interstitial thickening, alveolar collapse, immune cell infiltrates, fragmented and disorganized elastin fibers and collagen deposits that were, for approximately one-fifth of the mice, associated with altered pulmonary function leading to respiratory failure. These lung abnormalities start early in life, as demonstrated in one-quarter of 2-day-old Muc5b-deficient pups. Thus, the mouse mucin Muc5b is essential for maintaining normal lung function.
Collapse
Affiliation(s)
- Hélène Valque
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Valérie Gouyer
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Catherine Duez
- CIIL Inserm U1019; CNRS UMR 8204; Institut Pasteur de Lille; Univ. Lille, F-59019 Lille, France
| | - Christophe Leboeuf
- Inserm UMR_S 1165; Université Paris- Diderot, Institut Universitaire d'Hématologie, AP-HP-Hôpital Saint Louis, F-75010 Paris, France
| | - Philippe Marquillies
- CIIL Inserm U1019; CNRS UMR 8204; Institut Pasteur de Lille; Univ. Lille, F-59019 Lille, France
| | - Marc Le Bert
- CNRS UMR 7355, University of Orleans, Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), F-45071 Orleans, France
| | - Ségolène Plet
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Bernhard Ryffel
- CNRS UMR 7355, University of Orleans, Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), F-45071 Orleans, France.,IDM, University of Cape Town, South Africa
| | - Anne Janin
- Inserm UMR_S 1165; Université Paris- Diderot, Institut Universitaire d'Hématologie, AP-HP-Hôpital Saint Louis, F-75010 Paris, France
| | - Frédéric Gottrand
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Jean-Luc Desseyn
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| |
Collapse
|
43
|
Ruiz García S, Deprez M, Lebrigand K, Cavard A, Paquet A, Arguel MJ, Magnone V, Truchi M, Caballero I, Leroy S, Marquette CH, Marcet B, Barbry P, Zaragosi LE. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 2019; 146:dev.177428. [PMID: 31558434 PMCID: PMC6826037 DOI: 10.1242/dev.177428] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFβ pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.
Collapse
Affiliation(s)
| | - Marie Deprez
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Amélie Cavard
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Agnès Paquet
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | | - Virginie Magnone
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Marin Truchi
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | | - Sylvie Leroy
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France.,Université Côte d'Azur, CHU de Nice, Pulmonology Department, Nice 06000, France
| | | | - Brice Marcet
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | |
Collapse
|
44
|
Abstract
Asthma is a genetically and phenotypically complex disease that has a major impact on global health. Signs and symptoms of asthma are caused by the obstruction of airflow through the airways. The epithelium that lines the airways plays a major role in maintaining airway patency and in host defense. The epithelium initiates responses to inhaled or aspirated substances, including allergens, viruses, and bacteria, and epithelial-derived cytokines are important in the recruitment and activation of immune cells in the airway. Changes in the structure and function of the airway epithelium are a prominent feature of asthma. Approximately half of individuals with asthma have evidence of active type 2 immune responses in the airway. In these individuals, epithelial cytokines promote type 2 responses, and responses to type 2 cytokines result in increased epithelial mucus production and other effects that cause airway obstruction. Recent work also implicates other epithelial responses, including interleukin-17, interferon and ER stress responses, that may contribute to asthma pathogenesis and provide new targets for therapy.
Collapse
Affiliation(s)
- Luke R Bonser
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States
| | - David J Erle
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
45
|
Abstract
INTRODUCTION Lifelong maintenance of a healthy lung requires resident stem cells to proliferate according to tissue requirements. Once thought to be a quiescent tissue, evolving views of the complex differentiation landscape of lung stem and progenitor cells have broad implications for our understanding of how the lung is maintained, as well as the development of new therapies for promoting endogenous regeneration in lung disease. AREAS COVERED This review collates a large body of research relating to the hierarchical organization of epithelial stem cells in the adult lung and their role in tissue homeostasis and regeneration after injury. To identify relevant studies, PubMed was queried using one or a combination of the terms 'lung', 'airway', 'alveoli', 'stem cells', 'progenitor', 'repair' and 'regeneration'. EXPERT OPINION This review discusses how new technologies and injury models have challenged the demarcations between stem and progenitor cell populations.
Collapse
Affiliation(s)
- Jonathan L McQualter
- a School of Health and Biomedical Sciences , RMIT University , Melbourne , Australia
| |
Collapse
|
46
|
Naizhen X, Kido T, Yokoyama S, Linnoila RI, Kimura S. Spatiotemporal Expression of Three Secretoglobin Proteins, SCGB1A1, SCGB3A1, and SCGB3A2, in Mouse Airway Epithelia. J Histochem Cytochem 2019; 67:453-463. [PMID: 30768367 DOI: 10.1369/0022155419829050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretoglobins (SCGBs) are cytokine-like small molecular weight secreted proteins with largely unknown biological functions. Three SCGB proteins, SCGB1A1, SCGB3A1, and SCGB3A2, are predominantly expressed in lung airways. To gain insight into the possible functional relationships among the SCGBs, their protein and mRNA expression patterns were examined in lungs during gestation and in adult mice, using Scgb3a1-null and Scgb3a2-null mice as negative controls, by immunohistochemistry and by qRT-PCR analysis, respectively. The three SCGBs exhibited unique spatiotemporal expression patterns during embryogenesis. The lack of Scgb3a1 or Scgb3a2 did not affect expression of the other Scgb genes as determined by mRNA measurements. Moreover, the lack of Scgb3a1 or Scgb3a2 did not affect development of the pulmonary neuroepithelial bodies during embryogenesis, while the lack of Scgb3a2 may have resulted in slightly fewer ciliated cells than in the wild-type. These results suggest that SCGB1A1, SCGB3A1, and SCGB3A2 each may possess its own unique biological function.
Collapse
Affiliation(s)
- Xu Naizhen
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Taketomo Kido
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - R Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Nikolić MZ, Sun D, Rawlins EL. Human lung development: recent progress and new challenges. Development 2018; 145:145/16/dev163485. [PMID: 30111617 PMCID: PMC6124546 DOI: 10.1242/dev.163485] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed biologically significant differences between human and mouse lung development, and have reported new in vitro systems that allow experimental manipulation of human lung models. At the same time, emerging clinical data suggest that the origins of some adult lung diseases are found in embryonic development and childhood. The convergence of these research themes has fuelled a resurgence of interest in human lung developmental biology. In this Review, we discuss our current understanding of human lung development, which has been profoundly influenced by studies in mice and, more recently, by experiments using in vitro human lung developmental models and RNA sequencing of human foetal lung tissue. Together, these approaches are helping to shed light on the mechanisms underlying human lung development and disease, and may help pave the way for new therapies. Summary: This Review describes how recent technological advances have shed light on the mechanisms underlying human lung development and disease, and outlines the future challenges in this field.
Collapse
Affiliation(s)
- Marko Z Nikolić
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK.,University of Cambridge School of Clinical Medicine, Department of Medicine, Cambridge CB2 0QQ, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
48
|
Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, Klein AM, Jaffe AB. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 2018; 560:377-381. [PMID: 30069046 PMCID: PMC6108322 DOI: 10.1038/s41586-018-0394-6] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lindsey W Plasschaert
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA.,Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rapolas Žilionis
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Rayman Choo-Wing
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA.,Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Virginia Savova
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Precision Immunology, Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Judith Knehr
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Aron B Jaffe
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA. .,Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
49
|
Kawai N, Ouji Y, Sakagami M, Tojo T, Sawabata N, Yoshikawa M, Taniguchi S. Induction of lung-like cells from mouse embryonic stem cells by decellularized lung matrix. Biochem Biophys Rep 2018; 15:33-38. [PMID: 29942870 PMCID: PMC6010970 DOI: 10.1016/j.bbrep.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023] Open
Abstract
Decellularization of tissues is a recently developed technique mostly used to provide a 3-dimensional matrix structure of the original organ, including decellularized lung tissues for lung transplantation. Based on the results of the present study, we propose new utilization of decellularized tissues as inducers of stem cell differentiation. Decellularized lung matrix (L-Mat) samples were prepared from mouse lungs by SDS treatment, then the effects of L-Mat on differentiation of ES cells into lung cells were investigated. ES cell derived-embryoid bodies (EBs) were transplanted into L-Mat samples and cultured for 2 weeks. At the end of the culture, expressions of lung cell-related markers, such as TTF-1 and SP-C (alveolar type II cells), AQP5 (alveolar type I cells), and CC10 (club cells), were detected in EB outgrowths in L-Mat, while those were not found in EB outgrowths attached to the dish. Our results demonstrated that L-Mat has an ability to induce differentiation of ES cells into lung-like cells. Differentiation of ES cells by decellularized lung matrix (L-Mat) was investigated. L-Mat induced differentiation of various lung cell-like cells from ES cells. L-Mat plays an important role for inducing differentiation of lung cells.
Collapse
Affiliation(s)
- Norikazu Kawai
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
- Correspondence to: Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Masaharu Sakagami
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Tojo
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Noriyoshi Sawabata
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Shigeki Taniguchi
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
50
|
Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches. PLoS One 2018. [PMID: 29771985 DOI: 10.1371/journal.pone.0197618.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.
Collapse
|