1
|
Anesthetic management in lung transplantation: Our single-center experience. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 29:191-200. [PMID: 34104513 PMCID: PMC8167475 DOI: 10.5606/tgkdc.dergisi.2021.9490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Background
In this study, we aimed to discuss our anesthesia management strategies, experiences, and outcomes in patients undergoing lung transplantation.
Methods
Between December 2016 and December 2018, a total of 53 patients (43 males, 10 females; mean age: 46.1±13 years; range, 14 to 64 years) undergoing lung transplantation in our center were included. The anesthesia technique, patients" characteristics, and perioperative clinical and follow-up data were recorded. The stage of lung disease was assessed using the New York Heart Association functional classification.
Results
Two patients underwent single lung transplantation, while 51 patients underwent double lung transplantation. Idiopathic pulmonary fibrosis was the most common indication in 41.5% of the patients. All patients had end-stage lung disease (Class IV) and 79% were oxygen-dependent. The extracorporeal membrane oxygenation support was given to 32 patients.
Conclusion
The anesthetic management of lung transplantation is challenging, either due to the deterioration of the recipient"s physical performance and the complexity of the surgical techniques used. In general, a kind of mechanical support may be needed and extracorporeal membrane oxygenation is the first choice in the majority of patients. A close communication should be maintained between the surgeons, perfusion technicians, and anesthesiologists to ensure an optimal multidisciplinary approach and to achieve successful outcomes.
Collapse
|
2
|
Affiliation(s)
- Young Chul Yoo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Khedr S, Palygin O, Pavlov TS, Blass G, Levchenko V, Alsheikh A, Brands MW, El-Meanawy A, Staruschenko A. Increased ENaC activity during kidney preservation in Wisconsin solution. BMC Nephrol 2019; 20:145. [PMID: 31035971 PMCID: PMC6489205 DOI: 10.1186/s12882-019-1329-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Background The invention of an effective kidney preservation solution capable of prolonging harvested kidney viability is the core of kidney transplantation procedure. Researchers have been working on upgrading the preservation solution quality aiming at prolonging storage time while maintaining utmost organ viability and functionality. For many years, the University of Wisconsin (UW) solution has been considered the gold standard solution for kidney preservation. However, the lifespan of kidney preservation in the UW solution is still limited. Its impact on the epithelial Na+ channel (ENaC) activity and its mediated processes is unknown and the primary goal of this study. Methods Kidneys harvested from 8 weeks old Sprague Dawley rats were divided into 4 groups depending upon the period of preservation in UW solution. Additional analysis was performed using dogs’ kidneys. ENaC activity was measured using patch clamp technique; protein expression and mRNA transcription were tested through Western blot and RT-qPCR, respectively. A colorimetric LDH level estimation was performed at different time points during UW solution preservation. Results Kidney preservation in Wisconsin solution caused reduction of the kidney size and weight and elevation of LDH level. ENaC activity increased in both rat and dog kidneys preserved in the UW solution as assessed by patch clamp analysis. On the contrary, ENaC channel mRNA levels remained unchanged. Conclusions ENaC activity is significantly elevated in the kidneys during preservation in UW solution, which might affect the immediate post-implantation allograft function and trajectory post-transplant.
Collapse
Affiliation(s)
- Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Present address: Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Present address: Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ammar Alsheikh
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30901, USA
| | - Ashraf El-Meanawy
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Geube M, Anandamurthy B, Yared JP. Perioperative Management of the Lung Graft Following Lung Transplantation. Crit Care Clin 2018; 35:27-43. [PMID: 30447779 DOI: 10.1016/j.ccc.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Perioperative management of patients undergoing lung transplantation is one of the most complex in cardiothoracic surgery. Certain perioperative interventions, such as mechanical ventilation, fluid management and blood transfusions, use of extracorporeal mechanical support, and pain management, may have significant impact on the lung graft function and clinical outcome. This article provides a review of perioperative interventions that have been shown to impact the perioperative course after lung transplantation.
Collapse
Affiliation(s)
- Mariya Geube
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, J4-331, Cleveland, OH 44195, USA.
| | - Balaram Anandamurthy
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, J4-331, Cleveland, OH 44195, USA
| | - Jean-Pierre Yared
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic, 9500 Euclid Avenue, J4-331, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Richard C, Shabbir W, Ferraro P, Massé C, Berthiaume Y. Alveolar liquid clearance in lung injury: Evaluation of the impairment of the β 2-adrenergic agonist response in an ischemia-reperfusion lung injury model. Respir Physiol Neurobiol 2018; 259:104-110. [PMID: 30171906 DOI: 10.1016/j.resp.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023]
Abstract
While alveolar liquid clearance (ALC) mediated by the β2-adrenergic receptor (β2-AR) plays an important role in lung edema resolution in certain models of lung injury, in more severe lung injury models, this response might disappear. Indeed, we have shown that in an ischemia-reperfusion-induced lung injury model, β2-agonists do not enhance ALC. The objective of this study was to determine if downregulation of the β2-AR could explain the lack of response to β2-agonists in this lung injury model. In an in vivo canine model of lung transplantation, we observed no change in β2-AR concentration or affinity in the injured transplanted lungs compared to the native lungs. Furthermore, we could not enhance ALC in transplanted lungs with dcAMP + aminophylline, a treatment that bypasses the β2-adrenergic receptor and is known to stimulate ALC in normal lungs. However, transplantation decreased αENaC expression in the lungs by 50%. We conclude that the lack of response to β2-agonists in ischemia-reperfusion-induced lung injury is not associated with significant downregulation of the β2-adrenergic receptors but is attributable to decreased expression of the ENaC channel, which is essential for sodium transport and alveolar liquid clearance in the lung.
Collapse
Affiliation(s)
- Chloé Richard
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada
| | - Waheed Shabbir
- Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Pasquale Ferraro
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Département de chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Chantal Massé
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Yves Berthiaume
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada.
| |
Collapse
|
6
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
7
|
Abstract
Perioperative management of patients undergoing lung transplantation is challenging and requires constant communication among the surgical, anesthesia, perfusion, and nursing teams. Although all aspects of anesthetic management are important, certain intraoperative strategies (mechanical ventilation, fluid management, extracorporeal mechanical support deployment) have tremendous impact on the subsequent evolution of the lung transplant recipient, especially with respect to allograft function, and should be carefully considered. This review highlights some of the intraoperative anesthetic challenges and opportunities during lung transplantation.
Collapse
Affiliation(s)
- Alina Nicoara
- Division of Cardiothoracic Anesthesia, Department of Anesthesiology, Duke University Medical Center, 2301 Erwin Road, HAFS Building, Box 3094, Durham, NC 27710, USA.
| | - John Anderson-Dam
- Department of Anesthesiology and Perioperative Medicine, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, University of California, 757 Westwood Boulevard, Suite 3325, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Geube MA, Perez-Protto SE, McGrath TL, Yang D, Sessler DI, Budev MM, Kurz A, McCurry KR, Duncan AE. Increased Intraoperative Fluid Administration Is Associated with Severe Primary Graft Dysfunction After Lung Transplantation. Anesth Analg 2016; 122:1081-8. [PMID: 26991618 DOI: 10.1213/ane.0000000000001163] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Severe primary graft dysfunction (PGD) is a major cause of early morbidity and mortality in patients after lung transplantation. The etiology and pathophysiology of PGD is not fully characterized and whether intraoperative fluid administration increases the risk for PGD remains unclear from previous studies. Therefore, we tested the hypothesis that increased total intraoperative fluid volume during lung transplantation is associated with the development of grade-3 PGD. METHODS This retrospective cohort analysis included patients who had lung transplantation at the Cleveland Clinic between January 2009 and June 2013. We used multivariable logistic regression with adjustment for donor, recipient, and perioperative confounding factors to examine the association between total intraoperative fluid administration and development of grade-3 PGD in the initial 72 postoperative hours. Secondary outcomes included time to initial extubation and intensive care unit length of stay. RESULTS Grade-3 PGD occurred in 123 of 494 patients (25%) who had lung transplantation. Patients with grade-3 PGD received a larger volume of intraoperative fluid (median 5.0 [3.8, 7.5] L) than those without grade-3 PGD (3.9 [2.8, 5.2] L). Each intraoperative liter of fluid increased the odds of grade-3 PGD by approximately 22% (adjusted odds ratio, 1.22; 95% confidence interval [CI], 1.12-1.34; P <0.001). The volume of transfused red blood cell concentrate was associated with grade-3 PGD (1.1 [0.0, 1.8] L for PGD-3 vs 0.4 [0.0, 1.1 for nongrade-3 PGD] L; adjusted odds ratio, 1.7; 95% CI, 1.08-2.7; P = 0.002). Increased fluid administration was associated with longer intensive care unit stay (adjusted hazard ratio, 0.92; 97.5% CI, 0.88-0.97; P < 0.001) but not with time to initial tracheal extubation (hazard ratio, 0.97; 97.5% CI, 0.93-1.02; P = 0.17). CONCLUSIONS Increased intraoperative fluid volume is associated with the most severe form of PGD after lung transplant surgery. Limiting fluid administration may reduce the risk for development of grade-3 PGD and thus improve early postoperative morbidity and mortality after lung transplantation.
Collapse
Affiliation(s)
- Mariya A Geube
- From the *Department of Cardiothoracic Anesthesia, Cleveland Clinic, Cleveland, Ohio; †Department of Anesthesiology and Critical Care, Cleveland Clinic, Cleveland, Ohio; ‡Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio; §Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio; ‖Transplantation Center, Department of Pulmonology, Allergy and Critical Care, Cleveland Clinic, Cleveland, Ohio; ¶Departments of Outcomes Research and General Anesthesiology, Cleveland Clinic, Cleveland, Ohio; #Transplantation Center, Department of Thoracic and Cardiovascular Surgery and Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio; and **Departments of Cardiothoracic Anesthesia and Outcomes Research, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Toyama H, Saito K, Takei Y, Saito K, Fujimine T, Ejima Y, Kamei T, Watanabe T, Okada Y, Yamauchi M. Perioperative management of esophagectomy in a patient who previously underwent bilateral lung transplantation. JA Clin Rep 2016; 2:15. [PMID: 29497670 PMCID: PMC5818771 DOI: 10.1186/s40981-016-0041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/06/2016] [Indexed: 01/19/2023] Open
Abstract
Background General theory of anesthetic managements for nontransplant procedures in lung transplant patients was proposed. However, there are few literatures reporting the perioperative management of thoracoabdominal major surgery following lung transplantation in detail. Herein, we scrupulously report a perioperative management of esophagectomy in a patient who previously underwent bilateral lung transplantation (BLTx), focusing on protection of the transplanted lungs and the respiratory function of the patient. Case presentation A 50-year-old woman was listed for cadaveric BLTx for severe respiratory failure due to end-stage diffuse panbronchiolitis. She underwent BLTx under veno-arterial extracorporeal membranous oxygenation support. Blood loss during the BLTx was 13,675 mL, and mild lung edema developed. She was weaned from the ventilator on the sixth postoperative day (POD) and discharged on the 65th POD. Two years after the BLTx, respiratory function improved markedly, but she was diagnosed with esophageal cancer and was scheduled for thoracoscopic esophagectomy with radical lymph node dissection, hand-assisted laparoscopic gastric mobilization, and anastomosis of the gastric conduit to the cervical esophagus via posterior mediastinum. We were concerned that impaired lymphatic drainage could cause pulmonary edema or lymphangiogenesis could cause a severe immunologic response against the lung grafts. To avoid graft injury and rejection, we addressed lung protective ventilation, reduced transfusion volume, continued immunosuppressive agents, administered volatile anesthetics, and prevented dynamic pain by epidural analgesia. These factors and the improved respiratory function may have contributed to successful management of esophagectomy. During the perioperative period, the major respiratory problems were a slight right lung edema and a persistent pulmonary air leak due to the division of thoracic adhesions, which resolved on 13th POD. Conclusions Cancer surgeries in lung transplant recipients become more common. When such patients undergo thoracoabdominal major surgery, we should pay special attention to respiratory function, operative stress, immunosuppressive therapy, transfusion volume for the prevention of lung edema, and thoracic adhesions.
Collapse
Affiliation(s)
- Hiroaki Toyama
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Kazutomo Saito
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Yusuke Takei
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Kana Saito
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Takuya Fujimine
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Yutaka Ejima
- Division of Surgical Center and Supply, Sterilization, Tohoku University Hospital, Sendai, Japan
| | - Takashi Kamei
- Department of Advanced Surgical Science and Technology, Tohoku University School of Medicine, Sendai, Japan
| | - Tatsuaki Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University School of Medicine, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University School of Medicine, Sendai, Japan
| | - Masanori Yamauchi
- Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Azizi F, Arredouani A, Mohammad RM. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema. Physiol Rep 2015; 3:3/9/e12453. [PMID: 26333829 PMCID: PMC4600371 DOI: 10.14814/phy2.12453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema.
Collapse
Affiliation(s)
- Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Ramzi M Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
11
|
Gennai S, Monsel A, Hao Q, Park J, Matthay MA, Lee JW. Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation. Am J Transplant 2015; 15:2404-12. [PMID: 25847030 PMCID: PMC4792255 DOI: 10.1111/ajt.13271] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 01/25/2023]
Abstract
The need to increase the donor pool for lung transplantation is a major public health issue. We previously found that administration of mesenchymal stem cells "rehabilitated" marginal donor lungs rejected for transplantation using ex vivo lung perfusion. However, the use of stem cells has some inherent limitation such as the potential for tumor formation. In the current study, we hypothesized that microvesicles, small anuclear membrane fragments constitutively released from mesenchymal stem cells, may be a good alternative to using stem cells. Using our well established ex vivo lung perfusion model, microvesicles derived from human mesenchymal stem cells increased alveolar fluid clearance (i.e. ability to absorb pulmonary edema fluid) in a dose-dependent manner, decreased lung weight gain following perfusion and ventilation, and improved airway and hemodynamic parameters compared to perfusion alone. Microvesicles derived from normal human lung fibroblasts as a control had no effect. Co-administration of microvesicles with anti-CD44 antibody attenuated these effects, suggesting a key role of the CD44 receptor in the internalization of the microvesicles into the injured host cell and its effect. In summary, microvesicles derived from human mesenchymal stem cells were as effective as the parent mesenchymal stem cells in rehabilitating marginal donor human lungs.
Collapse
Affiliation(s)
- S. Gennai
- Department of Emergency Medicine, Grenoble University Hospital, La Tronche, France
| | - A. Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Q. Hao
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
| | - J. Park
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
| | - M. A. Matthay
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
,Departments of Medicine, Anesthesiology and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - J. W. Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
,Corresponding author: Jae-Woo Lee,
| |
Collapse
|
12
|
Seo M, Kim WJ, Choi IC. Anesthesia for non-pulmonary surgical intervention following lung transplantation: two cases report. Korean J Anesthesiol 2014; 66:322-6. [PMID: 24851171 PMCID: PMC4028563 DOI: 10.4097/kjae.2014.66.4.322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 11/16/2022] Open
Abstract
The survival rate after lung transplantation has increased in recent years, leading to an increase in non-pulmonary conditions that require surgical intervention. These post-transplant surgical procedures, however, are associated with high mortality and morbidity rates. Intra-abdominal conditions are the most common reasons for surgical intervention. We describe here two patients who underwent abdominal surgery under general anesthesia following lung transplantation. One patient underwent cholecystectomy due to cholecystitis after heart-lung transplantation, and the other patient had an exploratory laparotomy for duodenal ulcer perforation after double lung transplantation. Depending on the type of transplant intervention, the physiology of the transplanted lung must be considered for general anesthesia. Knowledge of underlying conditions and immunosuppressive therapy following transplantation are important for safe and effective general anesthesia.
Collapse
Affiliation(s)
- Misook Seo
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wook Jong Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Cheol Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
McAuley DF, Curley GF, Hamid UI, Laffey JG, Abbott J, McKenna DH, Fang X, Matthay MA, Lee JW. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol 2014; 306:L809-15. [PMID: 24532289 DOI: 10.1152/ajplung.00358.2013] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lack of suitable donors for all solid-organ transplant programs is exacerbated in lung transplantation by the low utilization of potential donor lungs, due primarily to donor lung injury and dysfunction, including pulmonary edema. The current studies were designed to determine if intravenous clinical-grade human mesenchymal stem (stromal) cells (hMSCs) would be effective in restoring alveolar fluid clearance (AFC) in the human ex vivo lung perfusion model, using lungs that had been deemed unsuitable for transplantation and had been subjected to prolonged ischemic time. The human lungs were perfused with 5% albumin in a balanced electrolyte solution and oxygenated with continuous positive airway pressure. Baseline AFC was measured in the control lobe and if AFC was impaired (defined as <10%/h), the lungs received either hMSC (5 × 10(6) cells) added to the perfusate or perfusion only as a control. AFC was measured in a different lung lobe at 4 h. Intravenous hMSC restored AFC in the injured lungs to a normal level. In contrast, perfusion only did not increase AFC. This positive effect on AFC was reduced by intrabronchial administration of a neutralizing antibody to keratinocyte growth factor (KGF). Thus, intravenous allogeneic hMSCs are effective in restoring the capacity of the alveolar epithelium to remove alveolar fluid at a normal rate, suggesting that this therapy may be effective in enhancing the resolution of pulmonary edema in human lungs deemed clinically unsuitable for transplantation.
Collapse
Affiliation(s)
- D F McAuley
- Health Sciences Bldg., 97, Lisburn Rd., Belfast, Northern Ireland, BT9 7BL.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Banack T, Ziganshin BA, Barash P, Elefteriades JA. Aortic valve replacement for critical aortic stenosis after bilateral lung transplantation. Ann Thorac Surg 2013; 96:1475-1478. [PMID: 24088467 DOI: 10.1016/j.athoracsur.2013.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 10/26/2022]
Abstract
Four years after bilateral lung transplantation, a 62-year-old man with critical aortic stenosis required aortic valve replacement. This is the first report of aortic valve replacement after bilateral lung transplantation. Anesthetic and surgical management are described.
Collapse
Affiliation(s)
- Trevor Banack
- Department of Anesthesia, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A Ziganshin
- Section of Cardiac Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Paul Barash
- Department of Anesthesia, Yale University School of Medicine, New Haven, Connecticut
| | - John A Elefteriades
- Section of Cardiac Surgery, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
15
|
Migneault F, Boncoeur E, Morneau F, Pascariu M, Dagenais A, Berthiaume Y. Cycloheximide and lipopolysaccharide downregulate αENaC mRNA via different mechanisms in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L747-55. [PMID: 24039256 DOI: 10.1152/ajplung.00023.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Active Na(+) transport mediated by epithelial Na(+) channel (ENaC) is vital for fetal lung fluid reabsorption at birth and pulmonary edema resolution. Previously, we demonstrated that αENaC expression and activity are downregulated in alveolar epithelial cells by cycloheximide (Chx) and Pseudomonas aeruginosa. The regulatory mechanisms of αENaC mRNA expression by Chx and lipopolysaccharide (LPS) from P. aeruginosa were further studied in the present work. Both agents decreased αENaC mRNA expression to 50% of control values after 4 h. Chx repressed αENaC expression in a dose-dependent manner independently of protein synthesis. Although extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways were activated by the two treatments, their mechanisms of ENaC mRNA modulation were different. First, activation of the signaling pathways was sustained by Chx but only transiently by LPS. Second, ERK1/2 or p38 MAPK inhibition attenuated the effects of Chx on αENaC mRNA, whereas suppression of both signaling pathways was necessary to alleviate the outcome of LPS on αENaC mRNA. The molecular mechanisms involved in the decrease of αENaC expression were investigated in both conditions. LPS, but not Chx, significantly reduced αENaC promoter activity via the ERK1/2 and p38 MAPK pathways. These results suggest that LPS attenuates αENaC mRNA expression via diminution of transcription, whereas Chx could trigger some posttranscriptional mechanisms. Although LPS and Chx downregulate αENaC mRNA expression similarly and with similar signaling pathways, the mechanisms modulating ENaC expression are different depending on the nature of the cellular stress.
Collapse
|
16
|
Feltracco P, Falasco G, Barbieri S, Milevoj M, Serra E, Ori C. Anesthetic considerations for nontransplant procedures in lung transplant patients. J Clin Anesth 2012; 23:508-16. [PMID: 21911200 DOI: 10.1016/j.jclinane.2011.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/03/2011] [Accepted: 05/08/2011] [Indexed: 12/26/2022]
Abstract
Lung transplantation has become an accepted option for many patients with end-stage pulmonary diseases. Anesthesia and surgery following lung transplantation may be required for various diseases that may affect both systemic organs and the transplanted graft. When a patient with a lung transplant undergoes surgery, there is the potential for interference with lung function, depending on the type of intervention and its anatomical site. Accurate preoperative evaluation, an understanding of the physiology of the transplanted lung, proper airway instrumentation, individualized management of intraoperative ventilation, and fluid balance are essential for a positive perioperative outcome.
Collapse
Affiliation(s)
- Paolo Feltracco
- Department of Pharmacology and Anesthesiology, University Hospital of Padova, 2-35121 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Mac Sweeney R, Fischer H, McAuley DF. Nasal potential difference to detect Na+ channel dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 300:L305-18. [PMID: 21112943 DOI: 10.1152/ajplung.00223.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary fluid clearance is regulated by the active transport of Na(+) and Cl(-) through respiratory epithelial ion channels. Ion channel dysfunction contributes to the pathogenesis of various pulmonary fluid disorders including high-altitude pulmonary edema (HAPE) and neonatal respiratory distress syndrome (RDS). Nasal potential difference (NPD) measurement allows an in vivo investigation of the functionality of these channels. This technique has been used for the diagnosis of cystic fibrosis, the archetypal respiratory ion channel disorder, for over a quarter of a century. NPD measurements in HAPE and RDS suggest constitutive and acquired dysfunction of respiratory epithelial Na(+) channels. Acute lung injury (ALI) is characterized by pulmonary edema due to alveolar epithelial-interstitial-endothelial injury. NPD measurement may enable identification of critically ill ALI patients with a susceptible phenotype of dysfunctional respiratory Na(+) channels and allow targeted therapy toward Na(+) channel function.
Collapse
Affiliation(s)
- R Mac Sweeney
- Respiratory Medicine Research Programme, Centre for Infection and Immunity, Queen’s University, Belfast, Northern Ireland
| | | | | |
Collapse
|
18
|
|
19
|
The lectin-like domain of tumor necrosis factor improves lung function after rat lung transplantation--potential role for a reduction in reactive oxygen species generation. Crit Care Med 2010; 38:871-8. [PMID: 20081530 DOI: 10.1097/ccm.0b013e3181cdf725] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required. DESIGN Prospective, randomized laboratory investigation. SETTING University-affiliated laboratory. SUBJECTS Adult female rats. INTERVENTIONS Tuberoinfundibular peptide, mimicking the lectin-like domain of tumor necrosis factor, mutant TIP peptide, N,N'-diacetylchitobiose/TIP peptide, and amiloride/TIP peptide were instilled intratracheally in the left lung immediately before the isotransplantation was performed. An additional group received an intravenous TIP peptide treatment, 1.5 mins before transplantation. Studies using isolated rat type II alveolar epithelial cell monolayers and ovine pulmonary endothelial cells were also performed. MEASUREMENTS AND MAIN RESULTS Intratracheal pretreatment of the transplantable left lung with the TIP peptide, but not with an inactive mutant TIP peptide, resulted in significantly improved oxygenation 24 hrs after transplantation. This treatment led to a significantly reduced neutrophil content in the lavage fluid. Both the effects on oxygenation and neutrophil infiltration were inhibited by the epithelial sodium channel blocker amiloride. The TIP peptide blunted reactive oxygen species production in pulmonary artery endothelial cells under hypoxia and reoxygenation and reduced reactive oxygen species content in the transplanted rat lungs in vivo. Ussing chamber experiments using monolayers of primary type II rat pneumocytes indicated that the primary site of action of the peptide was on the apical side of these cells. CONCLUSIONS These data demonstrate that the TIP peptide significantly improves lung function after lung transplantation in the rat, in part, by reducing neutrophil content and reactive oxygen species generation. These studies suggest that the TIP peptide is a potential therapeutic agent against the ischemia reperfusion injury associated with lung transplantation.
Collapse
|
20
|
Boncoeur E, Tardif V, Tessier MC, Morneau F, Lavoie J, Gendreau-Berthiaume E, Grygorczyk R, Dagenais A, Berthiaume Y. Modulation of epithelial sodium channel activity by lipopolysaccharide in alveolar type II cells: involvement of purinergic signaling. Am J Physiol Lung Cell Mol Physiol 2009; 298:L417-26. [PMID: 20008115 DOI: 10.1152/ajplung.00170.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium that causes chronic infection in cystic fibrosis patients. We reported recently that P. aeruginosa modulates epithelial Na(+) channel (ENaC) expression in experimental chronic pneumonia models. For this reason, we tested whether LPS from P. aeruginosa alters ENaC expression and activity in alveolar epithelial cells. We found that LPS induces a approximately 60% decrease of ENaC apical current without significant changes in intracellular ENaC or surface protein expression. Because a growing body of evidence reports a key role for extracellular nucleotides in regulation of ion channels, we evaluated the possibility that modulation of ENaC activity by LPS involves extracellular ATP signaling. We found that alveolar epithelial cells release ATP upon LPS stimulation and that pretreatment with suramin, a P2Y(2) purinergic receptor antagonist, inhibited the effect of LPS on ENaC. Furthermore, ET-18-OCH3, a PLC inhibitor, and Go-6976, a PKC inhibitor, were able to partially prevent ENaC inhibition by LPS, suggesting that the actions of LPS on ENaC current were mediated, in part, by the PKC and PLC pathways. Together, these findings demonstrate an important role of extracellular ATP signaling in the response of epithelial cells to LPS.
Collapse
Affiliation(s)
- Emilie Boncoeur
- Département de Médecine, Centre de Recherche, Centre Hospitalier de l'Université de Montréal-Hôtel-Dieu, 3840 St. Urbain, Montréal, PQ, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Sugita M, Berthiaume Y, VanSpall M, Dagenais A, Ferraro P. Pharmacologic Modulation of Alveolar Liquid Clearance in Transplanted Lungs by Phentolamine and FK506. Ann Thorac Surg 2009; 88:958-64. [DOI: 10.1016/j.athoracsur.2009.05.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/11/2023]
|
23
|
Comellas AP, Briva A. Role of endothelin-1 in acute lung injury. Transl Res 2009; 153:263-71. [PMID: 19446279 PMCID: PMC3046772 DOI: 10.1016/j.trsl.2009.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 01/11/2023]
Abstract
The alveolar-capillary membrane serves as a barrier that prevents the accumulation of fluid in the alveolar space and restricts the diffusion of large solutes while facilitating an efficient gas exchange. When this barrier becomes dysfunctional, patients develop acute lung injury (ALI), which is characterized by pulmonary edema and increased lung inflammation that leads to a life-threatening impairment of gas exchange. In addition to the increase of inflammatory cytokines, plasma levels of endothelin-1 (ET-1), which is a primarily endothelium-derived vasoconstrictor, are increased in patients with ALI. As patients recover, ET-1 levels decrease, which suggests that ET-1 may not only be a marker of endothelial dysfunction but may have a role in the pathogenesis of ALI. While pulmonary edema accumulates, alveolar fluid clearance (AFC) is of critical importance, as failure to return to normal clearance is associated with poor prognosis in patients with pulmonary edema. AFC involves active transport mechanisms where sodium (Na(+)) is actively transported from the alveolar airspaces, across the alveolar epithelium, and into the pulmonary circulation, which creates an osmotic gradient that is responsible for the clearance of lung edema. In this article, we review the relevance of ET-1 in the development of ALI, not only as a vasoconstrictor molecule but also by inhibiting AFC via the activation of endothelial ET-B receptors and generation. Furthermore, this review highlights the therapeutic role of drugs such as beta-adrenergic agonists and, in particular, of endothelin receptor antagonists in patients with ALI.
Collapse
Affiliation(s)
- Alejandro P Comellas
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
24
|
Hamacher J, Lucas R, Stammberger U, Wendel A. Terbutaline improves ischemia-reperfusion injury after left-sided orthotopic rat lung transplantation. Exp Lung Res 2009; 35:175-85. [PMID: 19337901 DOI: 10.1080/01902140802488446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Beta2-agonists have been shown to increase alveolar fluid reabsorption, and at least part of their effect depends on active sodium transport from the alveolus into the epithelial cell by the amiloride-sensitive epithelial sodium channel (ENaC). Few data exist on their effect in the injured lung. The authors therefore investigated the effect of intrabronchially administered terbutaline pretransplantation by measuring outcome 1 day after experimental donor lung transplantation with severe injury due to prolonged ischemia. Orthotopic single left-sided lung allotransplantation was performed in female rats (Wistar to Wistar) after a total ischemic time of 20 hours. Graft PaO2/FiO2 in 6 recipients treated with 10(-4) M terbutaline in 500 microL NaCl 0.9% was superior 24 hours after transplantation, with a PaO2 of 329 (111 [SD]) mm Hg versus 5 vehicle controls with 44 (15) mm Hg (P = .002). The beneficial effect of 10(-4) M terbutaline was abrogated by 10(-4) M of the sodium channel blocker amiloride to 71 (34) mm Hg in 3 recipients (P = .028 versus terbutaline 10(-4) M). Ten recipients receiving 10(-5) M terbutaline in 500 microL NaCl 0.9% showed inconsistent improvements of gas exchange, with a PaO2 of 158 (+/- 153) mm Hg (P = .058). Terbutaline at a high dose significantly improved the transplanted rat lung function at 24 hours after transplantation. Part of it may be via activating epithelial sodium transport, thus suggesting an important role of alveolar fluid transport in such a model of acute lung injury.
Collapse
Affiliation(s)
- Jürg Hamacher
- Biochemical Pharmacology, University of Konstanz, Germany.
| | | | | | | |
Collapse
|
25
|
Abstract
beta(2)-adrenergic receptors are present throughout the lung, including the alveolar airspace, where they play an important role for regulation of the active Na(+) transport needed for clearance of excess fluid out of alveolar airspace. beta(2)-adrenergic receptor signaling is required for up-regulation of alveolar epithelial active ion transport in the setting of excess alveolar edema. The positive, protective effects of beta(2)-adrenergic receptor signaling on alveolar active Na(+) transport in normal and injured lungs provide substantial support for the use of beta-adrenergic agonists to accelerate alveolar fluid clearance in patients with cardiogenic and noncardiogenic pulmonary edema. In this review, we summarize the role of beta(2)-adrenergic receptors in the alveolar epithelium with emphasis on their role in the regulation of alveolar active Na(+) transport in normal and injured lungs.
Collapse
Affiliation(s)
- Gökhan M Mutlu
- Northwestern University Feinberg School of Medicine, Pulmonary and Critical Care Medicine, 240 E. Huron Street, McGaw M-300, Chicago, IL 60611, USA.
| | | |
Collapse
|
26
|
Vadász I, Raviv S, Sznajder JI. Alveolar epithelium and Na,K-ATPase in acute lung injury. Intensive Care Med 2007; 33:1243-1251. [PMID: 17530222 PMCID: PMC7095466 DOI: 10.1007/s00134-007-0661-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 03/05/2007] [Indexed: 01/11/2023]
Abstract
Active transport of sodium across the alveolar epithelium, undertaken in part by the Na,K-adenosine triphosphatase (Na,K-ATPase), is critical for clearance of pulmonary edema fluid and thus the outcome of patients with acute lung injury. Acute lung injury results in disruption of the alveolar epithelial barrier and leads to impaired clearance of edema fluid and altered Na,K-ATPase function. There has been significant progress in the understanding of mechanisms regulating alveolar edema clearance and signaling pathways modulating Na,K-ATPase function during lung injury. The accompanying review by Morty et al. focuses on intact organ and animal models as well as clinical studies assessing alveolar fluid reabsorption in alveolar epithelial injury. Elucidation of the mechanisms underlying regulation of active Na+ transport, as well as the pathways by which the Na,K-ATPase regulates epithelial barrier function and edema clearance, are of significance to identify interventional targets to improve outcomes of patients with acute lung injury.
Collapse
Affiliation(s)
- István Vadász
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA
| | - Stacy Raviv
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA.
| |
Collapse
|
27
|
Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 2007; 159:350-9. [PMID: 17604701 PMCID: PMC2682357 DOI: 10.1016/j.resp.2007.05.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 04/18/2007] [Accepted: 05/11/2007] [Indexed: 01/11/2023]
Abstract
Although lung-protective ventilation strategies have substantially reduced mortality of acute lung injury patients there is still a need for new therapies that can further decrease mortality in patients with acute lung injury. Studies of epithelial ion and fluid transport across the distal pulmonary epithelia have provided important new concepts regarding potential new therapies for acute lung injury. Overall, there is convincing evidence that the alveolar epithelium is not only a tight epithelial barrier that resists the movement of edema fluid into the alveoli, but it is also actively involved in the transport of ions and solutes, a process that is essential for edema fluid clearance and the resolution of acute lung injury. The objective of this article is to consider some areas of recent progress in the field of alveolar fluid transport under normal and pathologic conditions. Vectorial ion transport across the alveolar and distal airway epithelia is the primary determinant of alveolar fluid clearance. The general paradigm is that active Na(+) and Cl(-) transport drives net alveolar fluid clearance, as demonstrated in several different species, including the human lung. Although these transport processes can be impaired in severe lung injury, multiple experimental studies suggest that upregulation of Na(+) and Cl(-) transport might be an effective therapy in acute lung injury. We will review mechanisms involved in pharmacological modulation of ion transport in lung injury with a special focus on the use of beta-adrenergic agonists which has generated considerable interest and is a promising therapy for clinical acute lung injury.
Collapse
Affiliation(s)
- Yves Berthiaume
- Département de médecine et Centre de recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
28
|
Abstract
The mechanisms of pulmonary edema resolution are different from those regulating edema formation. Absorption of excess alveolar fluid is an active process that involves vectorial transport of Na+out of alveolar air spaces with water following the Na+osmotic gradient. Active Na+transport across the alveolar epithelium is regulated via apical Na+and chloride channels and basolateral Na-K-ATPase in normal and injured lungs. During lung injury, mechanisms regulating alveolar fluid reabsorption are inhibited by yet unclear pathways and can be upregulated by pharmacological means. Better understanding of the mechanisms that regulate edema clearance may lead to therapeutic interventions to improve the ability of lungs to clear fluid, which is of clinical significance.
Collapse
Affiliation(s)
- Gökhan M Mutlu
- Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
29
|
Dagenais A, Gosselin D, Guilbault C, Radzioch D, Berthiaume Y. Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa. Respir Res 2005; 6:2. [PMID: 15636635 PMCID: PMC546414 DOI: 10.1186/1465-9921-6-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 01/06/2005] [Indexed: 01/28/2023] Open
Abstract
Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.
Collapse
Affiliation(s)
- André Dagenais
- Centre de recherche, Centre hospitalier de l'Université de Montréal/ Hôtel-Dieu, Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Diane Gosselin
- Present address: Fonds de solidarité FTQ, Montreal, Quebec, Canada
| | - Claudine Guilbault
- Departments of Experimental Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Danuta Radzioch
- Departments of Experimental Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Centre de recherche, Centre hospitalier de l'Université de Montréal/ Hôtel-Dieu, Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Affiliation(s)
- Gökhan M Mutlu
- Northwestern University Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
31
|
Miakotina OL, Agassandian M, Shi L, Look DC, Mallampalli RK. Adenovirus stimulates choline efflux by increasing expression of organic cation transporter-2. Am J Physiol Lung Cell Mol Physiol 2004; 288:L93-102. [PMID: 15377492 DOI: 10.1152/ajplung.00184.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effect of wild-type human adenovirus (Ad5) on choline transport in murine lung epithelia (MLE) and in rodent primary alveolar type II cells. Cells were active in pH-sensitive, reversible transport of choline, a process blocked pharmacologically with phenoxybenzamine, an inhibitor of organic cation transporters (OCT). PCR products for the choline transporters, OCT-1 and OCT-2, were detected, but only OCT-2 protein was robustly expressed within MLE and primary alveolar epithelial cells. Ad5 produced a two- to threefold increase in choline efflux from cells, resulting in a significant reduction in intracellular choline content and its major product, phosphatidylcholine. Effects of Ad5 on choline efflux were inhibited with phenoxybenzamine, and choline efflux was attenuated by OCT-2 small interfering RNA. Adenovirus also produced a dose-dependent increase in immunoreactive OCT-2 levels concomitant with increased cellular OCT-2 steady-state mRNA. These results indicate that adenoviruses can significantly disrupt choline trafficking in lung epithelia by upregulating expression of an alveolar protein involved in organic cation transport.
Collapse
Affiliation(s)
- Olga L Miakotina
- Depts. of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
32
|
Groshaus HE, Manocha S, Walley KR, Russell JA. Mechanisms of beta-receptor stimulation-induced improvement of acute lung injury and pulmonary edema. Crit Care 2004; 8:234-42. [PMID: 15312205 PMCID: PMC522843 DOI: 10.1186/cc2875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and the acute respiratory distress syndrome are complex syndromes because both inflammatory and coagulation cascades cause lung injury. Transport of salt and water, repair and remodeling of the lung, apoptosis, and necrosis are additional important mechanisms of injury. Alveolar edema is cleared by active transport of salt and water from the alveoli into the lung interstitium by complex cellular mechanisms. Beta-2 agonists act on the cellular mechanisms of pulmonary edema clearance as well as other pathways relevant to repair in ALI. Numerous studies suggest that the beneficial effects of beta-2 agonists in ALI include at least enhanced fluid clearance from the alveolar space, anti-inflammatory actions, and bronchodilation. The purposes of the present review are to consider the effects of beta agonists on three mechanisms of improvement of lung injury: edema clearance, anti-inflammatory effects, and bronchodilation. This update reviews specifically the evidence on the effects of beta-2 agonists in human ALI and in models of ALI. The available evidence suggests that beta-2 agonists may be efficacious therapy in ALI. Further randomized controlled trials of beta agonists in pulmonary edema and in acute lung injury are necessary.
Collapse
Affiliation(s)
- Horacio E Groshaus
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjay Manocha
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith R Walley
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - James A Russell
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Abstract
Lung transplantation currently is the preferred treatment option for a variety of end-stage pulmonary diseases. Remarkable progress has occurred through refinements in technique and improved understanding of transplant immunology and microbiology. As a result, recipients are surviving longer after their transplant. Despite improvements in short- and intermediate-term survival, long-term success with lung transplantation remains limited by chronic allograft rejection, also known as bronchiolitis obliterans syndrome. Despite its long-term limitations, lung transplantation remains the only hope for many with end-stage pulmonary disease, and during the past 20 years, it has become increasingly accepted and used. As a result, clinicians working in an intensive care unit (ICU) are more likely to be exposed to these patients both in the immediate postoperative period as well as throughout their remaining lives. It is thus important that the ICU team have a working knowledge of the common complications, when these complications are most likely to occur, and how best to treat them when they do arise. The main focus of this review is to address the variety of potential graft and life-threatening problems that may occur in lung transplant recipients. Because the ICU is also the most common setting where a potential donor is identified, donor issues will briefly be addressed.
Collapse
Affiliation(s)
- Christine L Lau
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
34
|
Ware LB. Modulation of alveolar fluid clearance by acute inflammation: the plot thickens. Am J Respir Crit Care Med 2004; 169:332-3. [PMID: 14739132 DOI: 10.1164/rccm.2311006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
35
|
Berthiaume Y. Tumor necrosis factor and lung edema clearance: the tip of the iceberg? Am J Respir Crit Care Med 2004; 168:1022-3. [PMID: 14581284 DOI: 10.1164/rccm.2308003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Tobin MJ. Chronic Obstructive Pulmonary Disease, Pollution, Pulmonary Vascular Disease, Transplantation, Pleural Disease, and Lung Cancer inAJRCCM2003. Am J Respir Crit Care Med 2004; 169:301-13. [PMID: 14718243 DOI: 10.1164/rccm.2312007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Hines Veterans Affairs Hospital, Hines, IL 60141, USA.
| |
Collapse
|