1
|
Bock-Pereda A, Cruz-Soca M, Gallardo FS, Córdova-Casanova A, Gutierréz-Rojas C, Faundez-Contreras J, Chun J, Casar JC, Brandan E. Involvement of lysophosphatidic acid-LPA 1-YAP signaling in healthy and pathological FAPs migration. Matrix Biol 2024; 133:103-115. [PMID: 39153517 DOI: 10.1016/j.matbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Skeletal muscle fibrosis is defined as the excessive accumulation of extracellular matrix (ECM) components and is a hallmark of muscular dystrophies. Fibro-adipogenic progenitors (FAPs) are the main source of ECM, and thus have been strongly implicated in fibrogenesis. In skeletal muscle fibrotic models, including muscular dystrophies, FAPs undergo dysregulations in terms of proliferation, differentiation, and apoptosis, however few studies have explored the impact of FAPs migration. Here, we studied fibroblast and FAPs migration and identified lysophosphatidic acid (LPA), a signaling lipid central to skeletal muscle fibrogenesis, as a significant migration inductor. We identified LPA receptor 1 (LPA1) mediated signaling as crucial for this effect through a mechanism dependent on the Hippo pathway, another pathway implicated in fibrosis across diverse tissues. This cross-talk favors the activation of the Yes-associated protein 1 (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ), leading to increased expression of fibrosis-associated genes. This study reveals the role of YAP in LPA-mediated fibrotic responses as inhibition of YAP transcriptional coactivator activity hinders LPA-induced migration in fibroblasts and FAPs. Moreover, we found that FAPs derived from the mdx4cv mice, a murine model of Duchenne muscular dystrophy, display a heightened migratory phenotype due to enhanced LPA signaling compared to wild-type FAPs. Remarkably, we found that the inhibition of LPA1 or YAP transcriptional coactivator activity in mdx4cv FAPs reverts this phenotype. In summary, the identified LPA-LPA1-YAP pathway emerges as a critical driver of skeletal muscle FAPs migration and provides insights into potential novel targets to mitigate fibrosis in muscular dystrophies.
Collapse
Affiliation(s)
- Alexia Bock-Pereda
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Felipe S Gallardo
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | | | - Cristian Gutierréz-Rojas
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile; Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Jennifer Faundez-Contreras
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile; Facultad de Medicina y Ciencia, Fundación Ciencia y Vida, Universidad San Sebastián, Avenida del Valle Norte 725 Huechuraba, Santiago 7510602, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan Carlos Casar
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile; Facultad de Medicina y Ciencia, Fundación Ciencia y Vida, Universidad San Sebastián, Avenida del Valle Norte 725 Huechuraba, Santiago 7510602, Chile.
| |
Collapse
|
2
|
Miller LG, Chiok K, Mariasoosai C, Mohanty I, Pandit S, Deol P, Mehari L, Teng MN, Haas AL, Natesan S, Miura TA, Bose S. Extracellular ISG15 triggers ISGylation via a type-I interferon independent non-canonical mechanism to regulate host response during virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602290. [PMID: 39026703 PMCID: PMC11257485 DOI: 10.1101/2024.07.05.602290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Type-I interferons (IFN) induce cellular proteins with antiviral activity. One such protein is Interferon Stimulated Gene 15 (ISG15). ISG15 is conjugated to proteins during ISGylation to confer antiviral activity and regulate cellular activities associated with inflammatory and neurodegenerative diseases and cancer. Apart from ISGylation, unconjugated free ISG15 is also released from cells during various conditions, including virus infection. The role of extracellular ISG15 during virus infection was unknown. We show that extracellular ISG15 triggers ISGylation and acts as a soluble antiviral factor to restrict virus infection via an IFN-independent mechanism. Specifically, extracellular ISG15 acts post-translationally to markedly enhance the stability of basal intracellular ISG15 protein levels to support ISGylation. Furthermore, extracellular ISG15 interacts with cell surface integrin (α5β1 integrins) molecules via its RGD-like motif to activate the integrin-FAK (Focal Adhesion Kinase) pathway resulting in IFN-independent ISGylation. Thus, our studies have identified extracellular ISG15 protein as a new soluble antiviral factor that confers IFN-independent non-canonical ISGylation via the integrin-FAK pathway by post-translational stabilization of intracellular ISG15 protein.
Collapse
|
3
|
Assayag M, Obedeyah T, Abutbul A, Berkman N. The integrin receptor beta 7 subunit mediates airway remodeling and hyperresponsiveness in allergen exposed mice. Respir Res 2024; 25:273. [PMID: 38997751 PMCID: PMC11241790 DOI: 10.1186/s12931-024-02899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Fibroblast differentiation to a myofibroblast phenotype is a feature of airway remodeling in asthma. Lung fibroblasts express the integrin receptor α4β7 and fibronectin induces myofibroblast differentiation via this receptor. OBJECTIVES To investigate the role of the β7 integrin receptor subunit and α4β7 integrin complex in airway remodeling and airway hyperresponsiveness (AHR) in a murine model of chronic allergen exposure. METHODS C57BL/6 wild type (WT) and β7 integrin null mice (β7 -/-) were sensitized (days 1,10) and challenged with ovalbumin (OVA) three times a week for one or 4 weeks. Similar experiments were performed with WT mice in the presence or absence of α4β7 blocking antibodies. Bronchoalveolar (BAL) cell counts, AHR, histological evaluation, soluble collagen content, Transforming growth factor-β (TGFβ) and Interleukin-13 (IL13) were measured. Phenotype of fibroblasts cultured from WT and β7 -/- saline (SAL) and OVA treated mice was evaluated. RESULTS Eosinophil numbers were similar in WT vs β7-/- mice. Prolonged OVA exposure in β7-/- mice was associated with reduced AHR, lung collagen content, peribronchial smooth muscle, lung tissue TGFβ and IL13 expression as compared to WT. Similar findings were observed in WT mice treated with α4β7 blocking antibodies. Fibroblast migration was enhanced in response to OVA in WT but not β7 -/- fibroblasts. α-SMA and fibronectin expression were reduced in β7-/- fibroblasts relative to WT. CONCLUSIONS The β7 integrin subunit and the α4β7 integrin complex modulate AHR and airway remodeling in a murine model of allergen exposure. This effect is, at least in part, explained by inhibition of fibroblast activation and is independent of eosinophilic inflammation.
Collapse
Affiliation(s)
- Miri Assayag
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Tahrir Obedeyah
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Avraham Abutbul
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Neville Berkman
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel.
| |
Collapse
|
4
|
Pellowe AS, Wu MJ, Kang TY, Chung TD, Ledesma-Mendoza A, Herzog E, Levchenko A, Odell I, Varga J, Gonzalez AL. TGF-β1 Drives Integrin-Dependent Pericyte Migration and Microvascular Destabilization in Fibrotic Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1171-1184. [PMID: 38548268 PMCID: PMC11220919 DOI: 10.1016/j.ajpath.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored. We hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Herein, pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor β1 (TGF-β1)] were used to evaluate human PC inflammatory and fibrotic phenotypes by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-β1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-β1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-β1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Tae-Yun Kang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Tracy D Chung
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Erica Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Ian Odell
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
5
|
Xu D, Yuan X, Li Z, Mu R. Integrin activating molecule-talin1 promotes skin fibrosis in systemic sclerosis. Front Immunol 2024; 15:1400819. [PMID: 38863696 PMCID: PMC11165211 DOI: 10.3389/fimmu.2024.1400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Background Integrin-dependent cell adhesion and migration play important roles in systemic sclerosis (SSc). The roles of integrin activating molecules including talins and kindlins, however, are unclear in SSc. Objectives We aimed to explore the function of integrin activating molecules in SSc. Methods Transcriptome analysis of skin datasets of SSc patients was performed to explore the function of integrin-activating molecules including talin1, talin2, kindlin1, kindlin2 and kindlin3 in SSc. Expression of talin1 in skin tissue was assessed by multiplex immunohistochemistry staining. Levels of talin1 in serum were determined by ELISA. The effects of talin1 inhibition were analyzed in human dermal fibroblasts by real-time PCR, western blot and flow cytometry. Results We identified that talin1 appeared to be the primary integrin activating molecule involved in skin fibrosis of SSc. Talin1 was significantly upregulated and positively correlates with the modified Rodnan skin thickness score (mRSS) and the expression of pro-fibrotic biomarkers in the skin lesions of SSc patients. Further analyses revealed that talin1 is predominantly expressed in the dermal fibroblasts of SSc skin and promotes fibroblast activation and collagen production. Additionally, talin1 primarily exerts its effects through integrin β1 and β5 in SSc. Conclusions Overexpressed talin1 is participated in skin fibrosis of SSc, and talin1 appears to be a potential new therapeutic target for SSc.
Collapse
Affiliation(s)
| | | | | | - Rong Mu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Basalova N, Alexandrushkina N, Grigorieva O, Kulebyakina M, Efimenko A. Fibroblast Activation Protein Alpha (FAPα) in Fibrosis: Beyond a Perspective Marker for Activated Stromal Cells? Biomolecules 2023; 13:1718. [PMID: 38136590 PMCID: PMC10742035 DOI: 10.3390/biom13121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of tissue fibrosis is a complex process involving the interaction of multiple cell types, which makes the search for antifibrotic agents rather challenging. So far, myofibroblasts have been considered the key cell type that mediated the development of fibrosis and thus was the main target for therapy. However, current strategies aimed at inhibiting myofibroblast function or eliminating them fail to demonstrate sufficient effectiveness in clinical practice. Therefore, today, there is an unmet need to search for more reliable cellular targets to contribute to fibrosis resolution or the inhibition of its progression. Activated stromal cells, capable of active proliferation and invasive growth into healthy tissue, appear to be such a target population due to their more accessible localization in the tissue and their high susceptibility to various regulatory signals. This subpopulation is marked by fibroblast activation protein alpha (FAPα). For a long time, FAPα was considered exclusively a marker of cancer-associated fibroblasts. However, accumulating data are emerging on the diverse functions of FAPα, which suggests that this protein is not only a marker but also plays an important role in fibrosis development and progression. This review aims to summarize the current data on the expression, regulation, and function of FAPα regarding fibrosis development and identify promising advances in the area.
Collapse
Affiliation(s)
- Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Natalya Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| |
Collapse
|
7
|
Chang J, Zou S, Xiao Y, Zhu D. Identification and validation of targets of swertiamarin on idiopathic pulmonary fibrosis through bioinformatics and molecular docking-based approach. BMC Complement Med Ther 2023; 23:352. [PMID: 37798725 PMCID: PMC10557187 DOI: 10.1186/s12906-023-04171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Swertiamarin is the main hepatoprotective component of Swertiapatens and has anti-inflammatory and antioxidation effects. Our previous study showed that it was a potent inhibitor of idiopathic pulmonary fibrosis (IPF) and can regulate the expressions of α-smooth muscle actin (α-SMA) and epithelial cadherin (E-cadherin), two markers of the TGF-β/Smad (transforming growth factor beta/suppressor of mothers against decapentaplegic family) signaling pathway. But its targets still need to be investigated. The main purpose of this study is to identify the targets of swertiamarin. METHODS GEO2R was used to analyze the differentially expressed genes (DEGs) of GSE10667, GSE110147, and GSE71351 datasets from the Gene Expression Omnibus (GEO) database. The DEGs were then enriched with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for their biological functions and annotated terms. The protein-protein interaction (PPI) network was constructed to identify hub genes. The identified hub genes were predicted for their bindings to swertiamarin by molecular docking (MD) and validated by experiments. RESULTS 76 upregulated and 27 downregulated DEGs were screened out. The DEGs were enriched in the biological function of cellular component (CC) and 7 cancer-related signaling pathways. Three hub genes, i.e., LOX (lysyl oxidase), COL5A2 (collagen type V alpha 2 chain), and CTGF (connective tissue growth factor) were selected, virtually tested for the interactions with swertiamarin by MD, and validated by in vitro experiments. CONCLUSION LOX, COL5A2, and CTGF were identified as the targets of swertiamarin on IPF.
Collapse
Affiliation(s)
- Jun Chang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China.
| | - Shaoqing Zou
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Yiwen Xiao
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Du Zhu
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Barbayianni I, Kanellopoulou P, Fanidis D, Nastos D, Ntouskou ED, Galaris A, Harokopos V, Hatzis P, Tsitoura E, Homer R, Kaminski N, Antoniou KM, Crestani B, Tzouvelekis A, Aidinis V. SRC and TKS5 mediated podosome formation in fibroblasts promotes extracellular matrix invasion and pulmonary fibrosis. Nat Commun 2023; 14:5882. [PMID: 37735172 PMCID: PMC10514346 DOI: 10.1038/s41467-023-41614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The activation and accumulation of lung fibroblasts resulting in aberrant deposition of extracellular matrix components, is a pathogenic hallmark of Idiopathic Pulmonary Fibrosis, a lethal and incurable disease. In this report, increased expression of TKS5, a scaffold protein essential for the formation of podosomes, was detected in the lung tissue of Idiopathic Pulmonary Fibrosis patients and bleomycin-treated mice. Τhe profibrotic milieu is found to induce TKS5 expression and the formation of prominent podosome rosettes in lung fibroblasts, that are retained ex vivo, culminating in increased extracellular matrix invasion. Tks5+/- mice are found resistant to bleomycin-induced pulmonary fibrosis, largely attributed to diminished podosome formation in fibroblasts and decreased extracellular matrix invasion. As computationally predicted, inhibition of src kinase is shown to potently attenuate podosome formation in lung fibroblasts and extracellular matrix invasion, and bleomycin-induced pulmonary fibrosis, suggesting pharmacological targeting of podosomes as a very promising therapeutic option in pulmonary fibrosis.
Collapse
Affiliation(s)
- Ilianna Barbayianni
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dimitris Nastos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eleftheria-Dimitra Ntouskou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Apostolos Galaris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eliza Tsitoura
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Katerina M Antoniou
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Bruno Crestani
- Department of Pulmonology, Bichat-Claude Bernard Hospital, Paris, France
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece.
| |
Collapse
|
9
|
Baudo G, Wu S, Massaro M, Liu H, Lee H, Zhang A, Hamilton DJ, Blanco E. Polymer-Functionalized Mitochondrial Transplantation to Fibroblasts Counteracts a Pro-Fibrotic Phenotype. Int J Mol Sci 2023; 24:10913. [PMID: 37446100 PMCID: PMC10342003 DOI: 10.3390/ijms241310913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Fibroblast-to-myofibroblast transition (FMT) leads to excessive extracellular matrix (ECM) deposition-a well-known hallmark of fibrotic disease. Transforming growth factor-β (TGF-β) is the primary cytokine driving FMT, and this phenotypic conversion is associated with mitochondrial dysfunction, notably a metabolic reprogramming towards enhanced glycolysis. The objective of this study was to examine whether the establishment of favorable metabolic phenotypes in TGF-β-stimulated fibroblasts could attenuate FMT. The hypothesis was that mitochondrial replenishment of TGF-β-stimulated fibroblasts would counteract a shift towards glycolytic metabolism, consequently offsetting pro-fibrotic processes. Isolated mitochondria, functionalized with a dextran and triphenylphosphonium (TPP) (Dex-TPP) polymer conjugate, were administered to fibroblasts (MRC-5 cells) stimulated with TGF-β, and effects on bioenergetics and fibrotic programming were subsequently examined. Results demonstrate that TGF-β stimulation of fibroblasts led to FMT, which was associated with enhanced glycolysis. Dex-TPP-coated mitochondria (Dex-TPP/Mt) delivery to TGF-β-stimulated fibroblasts abrogated a metabolic shift towards glycolysis and led to a reduction in reactive oxygen species (ROS) generation. Importantly, TGF-β-stimulated fibroblasts treated with Dex-TPP/Mt had lessened expression of FMT markers and ECM proteins, as well as reduced migration and proliferation. Findings highlight the potential of mitochondrial transfer, as well as other strategies involving functional reinforcement of mitochondria, as viable therapeutic modalities in fibrosis.
Collapse
Affiliation(s)
- Gherardo Baudo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Matteo Massaro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hyunho Lee
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
10
|
The IL-4/IL-13 signaling axis promotes prostatic fibrosis. PLoS One 2022; 17:e0275064. [PMID: 36201508 PMCID: PMC9536598 DOI: 10.1371/journal.pone.0275064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
Background Lower urinary tract symptoms (LUTS) are a costly and pervasive medical problem for millions of aging men. Recent studies have showed that peri-urethral tissue fibrosis is an untreated pathobiology contributing to LUTS. Fibrosis results from excessive extracellular matrix deposition which increases transition zone and peri-urethral tissue stiffness and compromises prostatic urethral flexibility and compliance, producing urinary obstructive symptoms. Inflammatory cells, including neutrophils, macrophages, and T-lymphocytes, secrete a medley of pro-fibrotic proteins into the prostatic microenvironment, including IFNγ, TNFα, CXC-type chemokines, and interleukins, all of which have been implicated in inflammation-mediated fibrosis. Among these, IL-4 and IL-13 are of particular interest because they share a common signaling axis that, as shown here for the first time, promotes the expression and maintenance of IL-4, IL-13, their cognate receptors, and ECM components by prostate fibroblasts, even in the absence of immune cells. Based on studies presented here, we hypothesize that the IL-4/IL-13 axis promotes prostate fibroblast activation to ECM-secreting cells. Methods N1 or SFT1 immortalized prostate stromal fibroblasts were cultured and treated, short- or long-term, with pro-fibrotic proteins including IL-4, IL-13, TGF-β, TNF-α, IFNγ, with or without prior pre-treatment with antagonists or inhibitors. Protein expression was assessed by immunohistochemistry, immunofluorescence, ELISA, immunoblot, or Sircoll assays. Transcript expression levels were determined by qRT-PCR. Intact cells were counted using WST assays. Results IL-4Rα, IL-13Rα1, and collagen are concurrently up-regulated in human peri-urethral prostate tissues from men with LUTS. IL-4 and IL-13 induce their own expression as well as that of their cognate receptors, IL-4Rα and IL-13Rα1. Low concentrations of IL-4 or IL-13 act as cytokines to promote prostate fibroblast proliferation, but higher (>40ng/ml) concentrations repress cellular proliferation. Both IL-4 and IL-13 robustly and specifically promote collagen transcript and protein expression by prostate stromal fibroblasts in a JAK/STAT-dependent manner. Moreover, IL-4 and IL-13-mediated JAK/STAT signaling is coupled to activation of the IL-4Rα receptor. Conclusions Taken together, these studies show that IL-4 and IL-13 signal through the IL-4Rα receptor to activate JAK/STAT signaling, thereby promoting their own expression, that of their cognate receptors, and collagens. These finding suggest that the IL-4/IL-13 signaling axis is a powerful, but therapeutically targetable, pro-fibrotic mechanism in the lower urinary tract.
Collapse
|
11
|
PTEN: An Emerging Potential Target for Therapeutic Intervention in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4512503. [PMID: 35814272 PMCID: PMC9262564 DOI: 10.1155/2022/4512503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a potent tumor suppressor that regulates several key cellular processes, including proliferation, survival, genomic integrity, migration, and invasion, via PI3K-dependent and independent mechanisms. A subtle decrease in PTEN levels or catalytic activity is implicated not only in cancer but also in a wide spectrum of other diseases, including various respiratory diseases. A systemic overview of the advances in the molecular and cellular mechanisms of PTEN involved in the initiation and progression of respiratory diseases may offer novel targets for the development of effective therapeutics for the treatment of respiratory diseases. In the present review, we highlight the novel findings emerging from current research on the role of PTEN expression and regulation in airway pathological conditions such as asthma/allergic airway inflammation, pulmonary hypertension (PAH), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and other acute lung injuries (ALI). Moreover, we discuss the clinical implications of PTEN alteration and recently suggested therapeutic possibilities for restoration of PTEN expression and function in respiratory diseases.
Collapse
|
12
|
Zhang Y, Li T, Pan M, Wang W, Huang W, Yuan Y, Xie Z, Chen Y, Peng J, Li X, Meng Y. SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism. J Transl Med 2022; 20:222. [PMID: 35568871 PMCID: PMC9107262 DOI: 10.1186/s12967-022-03408-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) is a strong risk factor for idiopathic pulmonary fibrosis (IPF). It can activate lung fibroblasts (LF) by inducing redox imbalance. We previously showed that clearing mitochondrial reactive oxygen species (mtROS) protects against CS-induced pulmonary fibrosis. However, the precise mechanisms of mtROS in LF need further investigation. Here we focused on mtROS to elucidate how it was regulated by CS in LF and how it contributed to LF activation. METHODS We treated cells with 1% cigarette smoking extract (CSE) and examined mtROS level by MitoSOX™ indicator. And the effect of CSE on expression of SIRT1, SOD2, mitochondrial NOX4 (mtNOX4), fatty acid oxidation (FAO)-related protein PPARα and CPT1a and LF activation marker Collagen I and α-SMA were detected. Nile Red staining was performed to show cellular lipid content. Then, lipid droplets, autophagosome and lysosome were marked by Bodipy 493/503, LC3 and LAMP1, respectively. And lipophagy was evaluated by the colocalization of lipid droplets with LC3 and LAMP1. The role of autophagy on lipid metabolism and LF activation were explored. Additionally, the effect of mitochondria-targeted ROS scavenger mitoquinone and SIRT1 activator SRT1720 on mitochondrial oxidative stress, autophagy flux, lipid metabolism and LF activation were investigated in vitro and in vivo. RESULTS We found that CS promoted mtROS production by increasing mtNOX4 and decreasing SOD2. Next, we proved mtROS inhibited the expression of PPARα and CPT1a. It also reduced lipophagy and upregulated cellular lipid content, suggesting lipid metabolism was disturbed by CS. In addition, we showed both insufficient FAO and lipophagy resulted from blocked autophagy flux caused by mtROS. Moreover, we uncovered decreased SIRT1 was responsible for mitochondrial redox imbalance. Furthermore, we proved that both SRT1720 and mitoquinone counteracted the effect of CS on NOX4, SOD2, PPARα and CPT1a in vivo. CONCLUSIONS We demonstrated that CS decreased SIRT1 to activate LF through dysregulating lipid metabolism, which was due to increased mtROS and impaired autophagy flux. These events may serve as therapeutic targets for IPF patients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Miaoxia Pan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenhui Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yafei Yuan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanzhan Xie
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixin Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Peng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou, China.
| | - Ying Meng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells 2022; 11:1626. [PMID: 35626663 PMCID: PMC9139813 DOI: 10.3390/cells11101626] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.
Collapse
Affiliation(s)
- Martina Korfei
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Poornima Mahavadi
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Andreas Guenther
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, D-35398 Giessen, Germany
- European IPF Registry and Biobank, D-35392 Giessen, Germany
| |
Collapse
|
14
|
Rackow AR, Judge JL, Woeller CF, Sime PJ, Kottmann RM. miR-338-3p blocks TGFβ-induced myofibroblast differentiation through the induction of PTEN. Am J Physiol Lung Cell Mol Physiol 2022; 322:L385-L400. [PMID: 34986654 PMCID: PMC8884407 DOI: 10.1152/ajplung.00251.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease. The pathogenesis of IPF is not completely understood. However, numerous genes are associated with the development and progression of pulmonary fibrosis, indicating there is a significant genetic component to the pathogenesis of IPF. Epigenetic influences on the development of human disease, including pulmonary fibrosis, remain to be fully elucidated. In this paper, we identify miR-338-3p as a microRNA severely downregulated in the lungs of patients with pulmonary fibrosis and in experimental models of pulmonary fibrosis. Treatment of primary human lung fibroblasts with miR-338-3p inhibits myofibroblast differentiation and matrix protein production. Published and proposed targets of miR-338-3p such as TGFβ receptor 1, MEK/ERK 1/2, Cdk4, and Cyclin D are also not responsible for the regulation of pulmonary fibroblast behavior by miR-338-3p. miR-338-3p inhibits myofibroblast differentiation by preventing TGFβ-mediated downregulation of phosphatase and tensin homolog (PTEN), a known antifibrotic mediator.
Collapse
Affiliation(s)
- Ashley R. Rackow
- 1Lung Biology and Disease Program, University of Rochester Medical Center Rochester, Rochester, New York,2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | | | - Collynn F. Woeller
- 2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York,4Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York
| | - Patricia J. Sime
- 5Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Robert M. Kottmann
- 1Lung Biology and Disease Program, University of Rochester Medical Center Rochester, Rochester, New York,2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York,6Division of Pulmonary Disease and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
15
|
Tsoyi K, Liang X, De Rossi G, Ryter SW, Xiong K, Chu SG, Liu X, Ith B, Celada LJ, Romero F, Robertson MJ, Esposito AJ, Poli S, El-Chemaly S, Perrella MA, Shi Y, Whiteford J, Rosas IO. CD148 Deficiency in Fibroblasts Promotes the Development of Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 204:312-325. [PMID: 33784491 DOI: 10.1164/rccm.202008-3100oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: CD148/PTRJ (receptor-like protein tyrosine phosphatase η) exerts antifibrotic effects in experimental pulmonary fibrosis via interactions with its ligand syndecan-2; however, the role of CD148 in human pulmonary fibrosis remains incompletely characterized.Objectives: We investigated the role of CD148 in the profibrotic phenotype of fibroblasts in idiopathic pulmonary fibrosis (IPF).Methods: Conditional CD148 fibroblast-specific knockout mice were generated and exposed to bleomycin and then assessed for pulmonary fibrosis. Lung fibroblasts (mouse lung and human IPF lung), and precision-cut lung slices from human patients with IPF were isolated and subjected to experimental treatments. A CD148-activating 18-aa mimetic peptide (SDC2-pep) derived from syndecan-2 was evaluated for its therapeutic potential.Measurements and Main Results: CD148 expression was downregulated in IPF lungs and fibroblasts. In human IPF lung fibroblasts, silencing of CD148 increased extracellular matrix production and resistance to apoptosis, whereas overexpression of CD148 reversed the profibrotic phenotype. CD148 fibroblast-specific knockout mice displayed increased pulmonary fibrosis after bleomycin challenge compared with control mice. CD148-deficient fibroblasts exhibited hyperactivated PI3K/Akt/mTOR signaling, reduced autophagy, and increased p62 accumulation, which induced NF-κB activation and profibrotic gene expression. SDC2-pep reduced pulmonary fibrosis in vivo and inhibited IPF-derived fibroblast activation. In precision-cut lung slices from patients with IPF and control patients, SDC2-pep attenuated profibrotic gene expression in IPF and normal lungs stimulated with profibrotic stimuli.Conclusions: Lung fibroblast CD148 activation reduces p62 accumulation, which exerts antifibrotic effects by inhibiting NF-κB-mediated profibrotic gene expression. Targeting the CD148 phosphatase with activating ligands such as SDC2-pep may represent a potential therapeutic strategy in IPF.
Collapse
Affiliation(s)
- Konstantin Tsoyi
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaoliang Liang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Giulia De Rossi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Bonna Ith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Lindsay J Celada
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Freddy Romero
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Matthew J Robertson
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anthony J Esposito
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sergio Poli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - YuanYuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - James Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
16
|
Pastwińska J, Walczak-Drzewiecka A, Łukasiak M, Ratajewski M, Dastych J. Hypoxia regulates human mast cell adhesion to fibronectin via the PI3K/AKT signaling pathway. Cell Adh Migr 2021; 14:106-117. [PMID: 32427041 PMCID: PMC7250187 DOI: 10.1080/19336918.2020.1764690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A decrease in oxygen concentration is a hallmark of inflammatory reactions resulting from infection or homeostasis disorders. Mast cells interact with extracellular matrix and other cells by adhesion receptors. We investigated the effect of hypoxia on integrin-mediated mast cell adhesion to fibronectin. We found that it was mediated by the α5/β1 receptor and that hypoxia significantly upregulated this process. Hypoxia-mediated increases in mast cell adhesion occurred without increased surface expression of integrins, suggesting regulation by inside-out integrin signaling. Hypoxia also mediated an increase in phosphorylation of Akt, and PI3’kinase inhibitors abolished hypoxia-mediated mast cell adhesion. Hypoxia upregulates the function of integrin receptors by PI3’ kinase-dependent signaling. This process might be important for the location of mast cells at inflammatory sites
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.,Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Łukasiak
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
17
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Katoh K. Regulation of Fibroblast Cell Polarity by Src Tyrosine Kinase. Biomedicines 2021; 9:biomedicines9020135. [PMID: 33535441 PMCID: PMC7912711 DOI: 10.3390/biomedicines9020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/20/2022] Open
Abstract
Src protein tyrosine kinases (SFKs) are a family of nonreceptor tyrosine kinases that are localized beneath the plasma membrane and are activated during cell adhesion, migration, and elongation. Due to their involvement in the activation of signal transduction cascades, SFKs have been suggested to play important roles in the determination of cell polarity during cell extension and elongation. However, the mechanism underlying Src-mediated polarity formation remains unclear. The present study was performed to investigate the mechanisms underlying Src-induced cell polarity formation and cell elongation using Src knockout fibroblasts (SYFs) together with an inhibitor of Src. Normal and Src knockout fibroblasts were also transfected with a wild-type c-Src, dominant negative c-Src, or constitutively active c-Src gene to analyze the changes in cell morphology. SYF cells cultured on a glass substrate elongated symmetrically into spindle-shaped cells, with the formation of focal adhesions at both ends of the cells. When normal fibroblasts were treated with Src Inhibitor No. 5, a selective inhibitor of Src tyrosine kinases, they elongated into symmetrical spindle-shaped cells, similar to SYF cells. These results suggest that cell polarity during extension and elongation may be regulated by SFKs and that the expression and regulation of Src are important for the formation of polarity during cell elongation.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba-city, Ibaraki 305-8521, Japan
| |
Collapse
|
19
|
Rackow AR, Nagel DJ, McCarthy C, Judge J, Lacy S, Freeberg MAT, Thatcher TH, Kottmann RM, Sime PJ. The self-fulfilling prophecy of pulmonary fibrosis: a selective inspection of pathological signalling loops. Eur Respir J 2020; 56:13993003.00075-2020. [PMID: 32943406 PMCID: PMC7931159 DOI: 10.1183/13993003.00075-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022]
Abstract
Pulmonary fibrosis is a devastating, progressive disease and carries a prognosis worse than most cancers. Despite ongoing research, the mechanisms that underlie disease pathogenesis remain only partially understood. However, the self-perpetuating nature of pulmonary fibrosis has led several researchers to propose the existence of pathological signalling loops. According to this hypothesis, the normal wound-healing process becomes corrupted and results in the progressive accumulation of scar tissue in the lung. In addition, several negative regulators of pulmonary fibrosis are downregulated and, therefore, are no longer capable of inhibiting these feed-forward loops. The combination of pathological signalling loops and loss of a checks and balances system ultimately culminates in a process of unregulated scar formation. This review details specific signalling pathways demonstrated to play a role in the pathogenesis of pulmonary fibrosis. The evidence of detrimental signalling loops is elucidated with regard to epithelial cell injury, cellular senescence and the activation of developmental and ageing pathways. We demonstrate where these loops intersect each other, as well as common mediators that may drive these responses and how the loss of pro-resolving mediators may contribute to the propagation of disease. By focusing on the overlapping signalling mediators among the many pro-fibrotic pathways, it is our hope that the pulmonary fibrosis community will be better equipped to design future trials that incorporate the redundant nature of these pathways as we move towards finding a cure for this unrelenting disease.
Collapse
Affiliation(s)
- Ashley R Rackow
- Dept of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Authors contributed equally to this work
| | - David J Nagel
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.,Authors contributed equally to this work
| | | | | | - Shannon Lacy
- US Army of Veterinary Corps, Fort Campbell, KY, USA
| | | | - Thomas H Thatcher
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - R Matthew Kottmann
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Yanay N, Elbaz M, Konikov-Rozenman J, Elgavish S, Nevo Y, Fellig Y, Rabie M, Mitrani-Rosenbaum S, Nevo Y. Pax7, Pax3 and Mamstr genes are involved in skeletal muscle impaired regeneration of dy2J/dy2J mouse model of Lama2-CMD. Hum Mol Genet 2020; 28:3369-3390. [PMID: 31348492 DOI: 10.1093/hmg/ddz180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10-9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin-angiotensin, epithelial-mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Moran Elbaz
- Pediatric Neuromuscular Laboratory, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jenya Konikov-Rozenman
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, I-CORE Bioinformatics Unit, The Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, I-CORE Bioinformatics Unit, The Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
21
|
Jee AS, Sahhar J, Youssef P, Bleasel J, Adelstein S, Nguyen M, Corte TJ. Review: Serum biomarkers in idiopathic pulmonary fibrosis and systemic sclerosis associated interstitial lung disease – frontiers and horizons. Pharmacol Ther 2019; 202:40-52. [DOI: 10.1016/j.pharmthera.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/24/2019] [Indexed: 02/02/2023]
|
22
|
S100A12 inhibits fibroblast migration via the receptor for advanced glycation end products and p38 MAPK signaling. In Vitro Cell Dev Biol Anim 2019; 55:656-664. [PMID: 31297698 DOI: 10.1007/s11626-019-00384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/01/2019] [Indexed: 01/11/2023]
Abstract
The migration of lung fibroblasts plays a pivotal role in wound repair and fibrotic processes in the lung. Although the receptor for advanced glycation end products (RAGE) has been implicated in the pathogenesis of lung diseases, its role in lung fibroblast migration is unclear. The current study examined the effect of three different RAGE ligands, namely, high mobility group box 1 (HMGB1), S100A12, and N-epsilon-(carboxymethyl) lysine (CML), on human fibronectin-directed human fetal lung fibroblast (HFL-1) migration. HMGB1 augmented, whereas S100A12 inhibited, HFL-1 migration in a concentration-dependent manner. CML did not affect HFL-1 migration. The effect of HMGB1 was not through RAGE. However, the effect of S100A12 was mediated by RAGE, but not Toll-like receptor 4. S100A12 did not exert a chemoattractant effect, but inhibited HFL-1 chemotaxis and/or chemokinesis. Moreover, S100A12 mediated HFL-1 migration through p38 mitogen-activated protein kinase (MAPK) but not through nuclear factor-kappa B, protein kinase A, phosphatase and tensin homolog deleted on chromosome 10, or cyclooxygenase. In addition, western blot analysis showed that S100A12 augmented p38 MAPK activity in the presence of human fibronectin. In conclusion, S100A12 inhibits lung fibroblast migration via RAGE-p38 MAPK signaling. This pathway could represent a therapeutic target for pulmonary conditions characterized by abnormal tissue repair and remodeling.
Collapse
|
23
|
Botulinum toxin type A prevents the phenotypic transformation of fibroblasts induced by TGF‑β1 via the PTEN/PI3K/Akt signaling pathway. Int J Mol Med 2019; 44:661-671. [PMID: 31173164 PMCID: PMC6605626 DOI: 10.3892/ijmm.2019.4226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Hypertrophic scar (HS) is a common type of dermatosis. Botulinum toxin type A (BTXA) can exert an anti-HS effect; however, the regulatory mechanisms underlying this effect remain unclear. Thus, the aim of this study was to examine the effects of BTXA on phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression and the fibroblast phenotypic transformation induced by transforming growth factor (TGF)-β1, which is an important regulatory factor involved in the process of HS. For this purpose, fibroblasts were treated with various concentrations of BTXA and then treated with 10 ng/ml of TGF-β1 with gradient concentrations of BTXA. The proliferation and apoptosis of fibroblasts were measured by cell counting kit-8 assay (CCK-8) and flow cytometry, respectively. PTEN methylation was analyzed by methylation-specific PCR (MSP) and DNA methyltransferase (DNMT) activity was determined using a corresponding kit. RT-qPCR and western blot analysis were performed to detect the transcription and translation levels. The results revealed that BTXA suppressed the proliferation and increased the apoptosis of fibroblasts treated with TGF-β1 in a dose-dependent manner. BTXA in combination with TGF-β1 suppressed the expression of molecules related to the extracellular matrix (ECM), epithelial-mesenchymal transition (EMT) and apoptosis. BTXA reduced the PTEN methylation level and downregulated the expression levels of methylation-associated genes. BTXA also inhibited the phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt. On the whole, the findings of this study indicate that BTXA may inhibit fibroblast phenotypic transformation by regulating PTEN methylation and the phosphorylation of related pathways. The findings of this study can provide a theoretical basis for HS treatment.
Collapse
|
24
|
Surolia R, Li FJ, Wang Z, Li H, Dsouza K, Thomas V, Mirov S, Pérez-Sala D, Athar M, Thannickal VJ, Antony VB. Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury. JCI Insight 2019; 4:123253. [PMID: 30944258 DOI: 10.1172/jci.insight.123253] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease, with a median survival of 3-5 years following diagnosis. Lung remodeling by invasive fibroblasts is a hallmark of IPF. In this study, we demonstrate that inhibition of vimentin intermediate filaments (VimIFs) decreases the invasiveness of IPF fibroblasts and confers protection against fibrosis in a murine model of experimental lung injury. Increased expression and organization of VimIFs contribute to the invasive property of IPF fibroblasts in connection with deficient cellular autophagy. Blocking VimIF assembly by pharmacologic and genetic means also increases autophagic clearance of collagen type I. Furthermore, inhibition of expression of collagen type I by siRNA decreased invasiveness of fibroblasts. In a bleomycin injury model, enhancing autophagy in fibroblasts by an inhibitor of VimIF assembly, withaferin A (WFA), protected from fibrotic lung injury. Additionally, in 3D lung organoids, or pulmospheres, from patients with IPF, WFA reduced the invasiveness of lung fibroblasts in the majority of subjects tested. These studies provide insights into the functional role of vimentin, which regulates autophagy and restricts the invasiveness of lung fibroblasts.
Collapse
Affiliation(s)
- Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Huashi Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Kevin Dsouza
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Vinoy Thomas
- Department of Materials Science and Engineering, and
| | - Sergey Mirov
- Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Dolores Pérez-Sala
- Department of Structural and Chemical and Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mohammad Athar
- Department of Dermatology, UAB, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| |
Collapse
|
25
|
Li L, Ma L, Wang D, Jia H, Yu M, Gu Y, Shang H, Zou Z. Design and Synthesis of Matrine Derivatives as Novel Anti-Pulmonary Fibrotic Agents via Repression of the TGFβ/Smad Pathway. Molecules 2019; 24:molecules24061108. [PMID: 30897818 PMCID: PMC6470603 DOI: 10.3390/molecules24061108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
A total of 18 matrine derivatives were designed, synthesized, and evaluated for their inhibitory effect against TGF-β1-induced total collagen accumulation in human fetal lung fibroblast MRC-5 cell lines. Among them, compound 3f displayed the most potent anti-fibrotic activity (IC50 = 3.3 ± 0.3 μM) which was 266-fold more potent than matrine. 3f significantly inhibited the fibroblast-to-myofibroblast transition and extracellular matrix production of MRC-5 cells. The TGF-β/small mothers against decapentaplegic homologs (Smad) signaling was also inhibited by 3f, as evidenced by inhibition of cytoplasm-to-nuclear translocation of Smad2/3 and suppression of TGF-β1-induced upregulation of TGF-β receptor type I (TGFβRI). Additionally, 3f exhibited potent inhibitory effects against TGF-β1-induced fibroblasts migration. These data suggested that 3f might be a potential agent for the treatment of idiopathic pulmonary fibrosis via repression of the TGFβ/Smad signaling pathway.
Collapse
Affiliation(s)
- Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Liyan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Dongchun Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Hongmei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, Bracknell RG42 6EY, UK.
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
26
|
Chanda D, Otoupalova E, Hough KP, Locy ML, Bernard K, Deshane JS, Sanderson RD, Mobley JA, Thannickal VJ. Fibronectin on the Surface of Extracellular Vesicles Mediates Fibroblast Invasion. Am J Respir Cell Mol Biol 2019; 60:279-288. [PMID: 30321056 PMCID: PMC6397976 DOI: 10.1165/rcmb.2018-0062oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are endosome and plasma membrane-derived nano-sized vesicles that participate in intercellular signaling. Although EV cargo may signal via multiple mechanisms, how signaling components on the surface of EVs mediate cellular signaling is less well understood. In this study, we show that fibroblast-derived EVs carry fibronectin on the vesicular surface, as evidenced by mass spectrometry-based proteomics (Sequential Window Acquisition of all Theoretical Mass Spectra) and flow-cytometric analyses. Fibroblasts undergoing replicative senescence or transforming growth factor β1-induced senescence and fibroblasts isolated from human subjects with an age-related lung disorder, idiopathic pulmonary fibrosis, secreted higher numbers of EVs than their respective controls. Fibroblast-derived EVs induced an invasive phenotype in recipient fibroblasts. This invasive fibroblast phenotype was dependent on EV surface localization of fibronectin, interaction with the fibronectin receptor α5β1 integrin, and activation of invasion-associated signaling pathways involving focal adhesion kinase and Src family kinases. EVs in the cellular supernatant, unbound to the extracellular matrix, were capable of mediating invasion signaling on recipient fibroblasts, supporting a direct interaction of EV surface fibronectin with the plasma membrane of recipient cells. Together, these studies uncover a novel mechanism of EV signaling of fibroblast invasion that may be relevant in the pathogenesis of fibrotic diseases and cancer.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Kenneth P. Hough
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Morgan L. Locy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Jessy S. Deshane
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - James A. Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor J. Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| |
Collapse
|
27
|
Ballester B, Milara J, Cortijo J. Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. Int J Mol Sci 2019; 20:ijms20030593. [PMID: 30704051 PMCID: PMC6387034 DOI: 10.3390/ijms20030593] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 2–4 years after diagnosis. A significant number of IPF patients have risk factors, such as a history of smoking or concomitant emphysema, both of which can predispose the patient to lung cancer (LC) (mostly non-small cell lung cancer (NSCLC)). In fact, IPF itself increases the risk of LC development by 7% to 20%. In this regard, there are multiple common genetic, molecular, and cellular processes that connect lung fibrosis with LC, such as myofibroblast/mesenchymal transition, myofibroblast activation and uncontrolled proliferation, endoplasmic reticulum stress, alterations of growth factors expression, oxidative stress, and large genetic and epigenetic variations that can predispose the patient to develop IPF and LC. The current approved IPF therapies, pirfenidone and nintedanib, are also active in LC. In fact, nintedanib is approved as a second line treatment in NSCLC, and pirfenidone has shown anti-neoplastic effects in preclinical studies. In this review, we focus on the current knowledge on the mechanisms implicated in the development of LC in patients with IPF as well as in current IPF and LC-IPF candidate therapies based on novel molecular advances.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Pharmacy Unit, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Research and teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain.
| |
Collapse
|
28
|
Hox5 genes direct elastin network formation during alveologenesis by regulating myofibroblast adhesion. Proc Natl Acad Sci U S A 2018; 115:E10605-E10614. [PMID: 30348760 DOI: 10.1073/pnas.1807067115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hox5 genes (Hoxa5, Hoxb5, Hoxc5) are exclusively expressed in the lung mesenchyme during embryogenesis, and the most severe phenotypes result from constitutive loss of function of all three genes. Because Hox5 triple null mutants exhibit perinatal lethality, the contribution of this paralogous group to postembryonic lung development is unknown. Intriguingly, expression of all three Hox5 genes peaks during the first 2 weeks after birth, reaching levels far exceeding those measured at embryonic stages, and surviving Hoxa5 single and Hox5 AabbCc compound mutants exhibit defects in the localization of alveolar myofibroblasts. To define the contribution of the entire Hox5 paralogous group to this process, we generated an Hoxa5 conditional allele to use with our existing null alleles for Hoxb5 and Hoxc5 Postnatally, mesenchymal deletion of Hoxa5 in an Hoxb5/Hoxc5 double-mutant background results in severe alveolar simplification. The elastin network required for alveolar formation is dramatically disrupted in Hox5 triple mutants, while the basal lamina, interstitial matrix, and fibronectin are normal. Alveolar myofibroblasts remain Pdgfrα+/SMA+ double positive and present in normal numbers, indicating that the irregular elastin network is not due to fibroblast differentiation defects. Rather, we observe that SMA+ myofibroblasts of Hox5 triple mutants are morphologically abnormal both in vivo and in vitro with highly reduced adherence to fibronectin. This loss of adhesion is a result of loss of the integrin heterodimer Itga5b1 in mutant fibroblasts. Collectively, these data show an important role for Hox5 genes in lung fibroblast adhesion necessary for proper elastin network formation during alveologenesis.
Collapse
|
29
|
Fiore VF, Wong SS, Tran C, Tan C, Xu W, Sulchek T, White ES, Hagood JS, Barker TH. αvβ3 Integrin drives fibroblast contraction and strain stiffening of soft provisional matrix during progressive fibrosis. JCI Insight 2018; 3:97597. [PMID: 30333317 DOI: 10.1172/jci.insight.97597] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is characterized by persistent deposition of extracellular matrix (ECM) by fibroblasts. Fibroblast mechanosensing of a stiffened ECM is hypothesized to drive the fibrotic program; however, the spatial distribution of ECM mechanics and their derangements in progressive fibrosis are poorly characterized. Importantly, fibrosis presents with significant histopathological heterogeneity at the microscale. Here, we report that fibroblastic foci (FF), the regions of active fibrogenesis in idiopathic pulmonary fibrosis (IPF), are surprisingly of similar modulus as normal lung parenchyma and are nonlinearly elastic. In vitro, provisional ECMs with mechanical properties similar to those of FF activate both normal and IPF patient-derived fibroblasts, whereas type I collagen ECMs with similar mechanical properties do not. This is mediated, in part, by αvβ3 integrin engagement and is augmented by loss of expression of Thy-1, which regulates αvβ3 integrin avidity for ECM. Thy-1 loss potentiates cell contractility-driven strain stiffening of provisional ECM in vitro and causes elevated αvβ3 integrin activation, increased fibrosis, and greater mortality following fibrotic lung injury in vivo. These data suggest a central role for αvβ3 integrin and provisional ECM in overriding mechanical cues that normally impose quiescent phenotypes, driving progressive fibrosis through physical stiffening of the fibrotic niche.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Simon S Wong
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, University of California, San Diego, La Jolla, California, USA
| | - Coleen Tran
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chunting Tan
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, University of California, San Diego, La Jolla, California, USA
| | - Wenwei Xu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Todd Sulchek
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Eric S White
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - James S Hagood
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, University of California, San Diego, La Jolla, California, USA.,Rady Children's Hospital of San Diego, San Diego, California, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
30
|
Zent J, Guo LW. Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem 2018; 49:848-868. [PMID: 30184544 DOI: 10.1159/000493217] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts are central mediators of fibrosis. Typically derived from resident fibroblasts, myofibroblasts represent a heterogeneous population of cells that are principally defined by acquired contractile function and high synthetic ability to produce extracellular matrix (ECM). Current literature sheds new light on the critical role of ECM signaling coupled with mechanotransduction in driving myofibroblastic activation. In particular, transforming growth factor β1 (TGF-β1) and extra domain A containing fibronectin (EDA-FN) are thought to be the primary ECM signaling mediators that form and also induce positive feedback loops. The outside-in and inside-out signaling circuits are transmitted and integrated by TGF-β receptors and integrins at the cell membrane, ultimately perpetuating the abundance and activities of TGF-β1 and EDA-FN in the ECM. In this review, we highlight these conceptual advances in understanding myofibroblastic activation, in hope of revealing its therapeutic anti-fibrotic implications.
Collapse
Affiliation(s)
- Joshua Zent
- Medical Scientist Training Program, the Ohio State University, Columbus, Columbus, Ohio, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
31
|
Tjin G, White ES, Faiz A, Sicard D, Tschumperlin DJ, Mahar A, Kable EPW, Burgess JK. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. Dis Model Mech 2018; 10:1301-1312. [PMID: 29125826 PMCID: PMC5719253 DOI: 10.1242/dmm.030114] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with few effective therapeutic options. Structural remodelling of the extracellular matrix [i.e. collagen cross-linking mediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4)] might contribute to disease pathogenesis and represent a therapeutic target. This study aimed to further our understanding of the mechanisms by which LO inhibitors might improve lung fibrosis. Lung tissues from IPF and non-IPF subjects were examined for collagen structure (second harmonic generation imaging) and LO gene (microarray analysis) and protein (immunohistochemistry and western blotting) levels. Functional effects (collagen structure and tissue stiffness using atomic force microscopy) of LO inhibitors on collagen remodelling were examined in two models, collagen hydrogels and decellularized human lung matrices. LOXL1/LOXL2 gene expression and protein levels were increased in IPF versus non-IPF. Increased collagen fibril thickness in IPF versus non-IPF lung tissues correlated with increased LOXL1/LOXL2, and decreased LOX, protein expression. β-Aminoproprionitrile (β-APN; pan-LO inhibitor) but not Compound A (LOXL2-specific inhibitor) interfered with transforming growth factor-β-induced collagen remodelling in both models. The β-APN treatment group was tested further, and β-APN was found to interfere with stiffening in the decellularized matrix model. LOXL1 activity might drive collagen remodelling in IPF lungs. The interrelationship between collagen structural remodelling and LOs is disrupted in IPF lungs. Inhibition of LO activity alleviates fibrosis by limiting fibrillar collagen cross-linking, thereby potentially impeding the formation of a pathological microenvironment in IPF. Summary: Transforming growth factor-β-induced collagen remodelling is driven by enhanced lysyl oxidase expression in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Gavin Tjin
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, New South Wales 2037, Australia .,Central Clinical School, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia.,Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia.,Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Victoria 3065, Australia
| | - Eric S White
- Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, 9713 GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, 9713 GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, 9713 GZ, The Netherlands
| | - Delphine Sicard
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Annabelle Mahar
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Eleanor P W Kable
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Janette K Burgess
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, New South Wales 2037, Australia .,Central Clinical School, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, 9713 GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, 9713 GZ, The Netherlands.,Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
32
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
33
|
Ahluwalia N, Grasberger PE, Mugo BM, Feghali-Bostwick C, Pardo A, Selman M, Lagares D, Tager AM. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion. Am J Respir Cell Mol Biol 2017; 54:831-42. [PMID: 26600305 DOI: 10.1165/rcmb.2015-0040oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.
Collapse
Affiliation(s)
- Neil Ahluwalia
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paula E Grasberger
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian M Mugo
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carol Feghali-Bostwick
- 2 Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Annie Pardo
- 3 Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Moisés Selman
- 4 Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - David Lagares
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew M Tager
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Asano S, Ito S, Takahashi K, Furuya K, Kondo M, Sokabe M, Hasegawa Y. Matrix stiffness regulates migration of human lung fibroblasts. Physiol Rep 2017; 5:5/9/e13281. [PMID: 28507166 PMCID: PMC5430127 DOI: 10.14814/phy2.13281] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
In patients with pulmonary diseases such as idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome, progressive pulmonary fibrosis is caused by dysregulated wound healing via activation of fibroblasts after lung inflammation or severe damage. Migration of fibroblasts toward the fibrotic lesions plays an important role in pulmonary fibrosis. Fibrotic tissue in the lung is much stiffer than normal lung tissue. Emerging evidence supports the hypothesis that the stiffness of the matrix is not only a consequence of fibrosis, but also can induce fibroblast activation. Nevertheless, the effects of substrate rigidity on migration of lung fibroblasts have not been fully elucidated. We evaluated the effects of substrate stiffness on the morphology, α-smooth muscle actin (α-SMA) expression, and cell migration of primary human lung fibroblasts by using polyacrylamide hydrogels with stiffnesses ranging from 1 to 50 kPa. Cell motility was assessed by platelet-derived growth factor (PDGF)-induced chemotaxis and random walk migration assays. As the stiffness of substrates increased, fibroblasts became spindle-shaped and spread. Expression of α-SMA proteins was higher on the stiffer substrates (25 kPa gel and plastic dishes) than on the soft 2 kPa gel. Both PDGF-induced chemotaxis and random walk migration of fibroblasts precultured on stiff substrates (25 kPa gel and plastic dishes) were significantly higher than those of cells precultured on 2 kPa gel. Transfection of the fibroblasts with short interfering RNA for α-SMA inhibited cell migration. These findings suggest that fibroblast activation induced by a stiff matrix is involved in mechanisms of the pathophysiology of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shuichi Asano
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan .,Department of Respiratory Medicine and Allergology, Aichi Medical University, Nagakute, Japan
| | - Kota Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Interaction of Src and Alpha-V Integrin Regulates Fibroblast Migration and Modulates Lung Fibrosis in A Preclinical Model of Lung Fibrosis. Sci Rep 2017; 7:46357. [PMID: 28397850 PMCID: PMC5387740 DOI: 10.1038/srep46357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Src kinase is known to regulate fibroblast migration. However, the contribution of integrin and Src kinase interaction to lung fibrosis has not been mechanistically investigated. Our data demonstrate that integrin alpha v (αV) recruited Src kinase and that leads to subsequent Src activation in fibroblasts plated on fibrotic matrix, osteopontin. Src interaction with integrin αV is required for integrin αV-mediated Src activation, and the subsequent fibroblast migration. The study identified that β5 and β3 are the major integrins for this effect on osteopontin. In contrast, integrins β1, β6, and β8 did not have a critical role in this phenomenon. Importantly, Src inhibitor significantly reduces fibroblast migration stimulated by PDGF-BB and reduced in vivo lung fibrosis in mice. Src inhibitor reduced Src activation and blocked the signaling transduction by integrin αV, inhibited migration signaling pathways and reduced extracellular matrix protein production, and blocked myofibroblast differentiation in vivo in mouse lung tissues. The present study supports that the interaction of Src Kinase and integrins plays a critical role in the development of lung fibrosis and the signaling involved may present a novel opportunity to target deadly fibrotic diseases.
Collapse
|
36
|
TGF-β induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci Rep 2017; 7:812. [PMID: 28400560 PMCID: PMC5429747 DOI: 10.1038/s41598-017-00845-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
Fundamental cell signaling mechanisms that regulate dynamic remodeling of the extracellular matrix (ECM) in mechanically loaded tissues are not yet clearly understood. Trabecular meshwork (TM) tissue in the eye is under constant mechanical stress and continuous remodeling of ECM is crucial to maintain normal aqueous humor drainage and intraocular pressure (IOP). However, excessive ECM remodeling can cause fibrosis of the TM as in primary open-angle glaucoma (POAG) patients, and is characterized by increased resistance to aqueous humor drainage, elevated IOP, optic nerve degeneration and blindness. Increased levels of active transforming growth factor-β2 (TGF-β2) in the aqueous humor is the main cause of fibrosis of TM in POAG patients. Herein, we report a novel finding that, in TM cells, TGF-β-induced increase in collagen expression is associated with phosphorylation of phosphatase and tensin homolog (PTEN) at residues Ser380/Thr382/383. Exogenous overexpression of a mutated form of PTEN with enhanced phosphatase activity prevented the TGF-β-induced collagen expression by TM cells. We propose that rapid alteration of PTEN activity through changes in its phosphorylation status could uniquely regulate the continuous remodeling of ECM in the normal TM. Modulating PTEN activity may have high therapeutic potential to alleviating the fibrosis of TM in POAG patients.
Collapse
|
37
|
Surolia R, Li FJ, Wang Z, Li H, Liu G, Zhou Y, Luckhardt T, Bae S, Liu RM, Rangarajan S, de Andrade J, Thannickal VJ, Antony VB. 3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs. JCI Insight 2017; 2:e91377. [PMID: 28138565 DOI: 10.1172/jci.insight.91377] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal progressive fibrotic lung disease characterized by the presence of invasive myofibroblasts in the lung. Currently, there are only two FDA-approved drugs (pirfenidone and nintedanib) for the treatment of IPF. There are no defined criteria to guide specific drug therapy. New methodologies are needed not only to predict personalized drug therapy, but also to screen novel molecules that are on the horizon for treatment of IPF. We have developed a model system that exploits the invasive phenotype of IPF lung tissue. This ex vivo 3D model uses lung tissue from patients to develop pulmospheres. Pulmospheres are 3D spheroids composed of cells derived exclusively from primary lung biopsies and inclusive of lung cell types reflective of those in situ, in the patient. We tested the pulmospheres of 20 subjects with IPF and 9 control subjects to evaluate the responsiveness of individual patients to antifibrotic drugs. Clinical parameters and outcomes were also followed in the same patients. Our results suggest that pulmospheres simulate the microenvironment in the lung and serve as a personalized and predictive model for assessing responsiveness to antifibrotic drugs in patients with IPF.
Collapse
Affiliation(s)
- Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Huashi Li
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Tracy Luckhardt
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Sejong Bae
- Division of Preventative Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | | | - Joao de Andrade
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| |
Collapse
|
38
|
Chen H, Qu J, Huang X, Kurundkar A, Zhu L, Yang N, Venado A, Ding Q, Liu G, Antony VB, Thannickal VJ, Zhou Y. Mechanosensing by the α6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis. Nat Commun 2016; 7:12564. [PMID: 27535718 PMCID: PMC4992155 DOI: 10.1038/ncomms12564] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022] Open
Abstract
Matrix stiffening is a prominent feature of pulmonary fibrosis. In this study, we demonstrate that matrix stiffness regulates the ability of fibrotic lung myofibroblasts to invade the basement membrane (BM). We identify α6-integrin as a mechanosensing integrin subunit that mediates matrix stiffness-regulated myofibroblast invasion. Increasing α6-expression, specifically the B isoform (α6B), couples β1-integrin to mediate MMP-2-dependent pericellular proteolysis of BM collagen IV, leading to myofibroblast invasion. Human idiopathic pulmonary fibrosis lung myofibroblasts express high levels of α6-integrin in vitro and in vivo. Genetic ablation of α6 in collagen-expressing mesenchymal cells or pharmacological blockade of matrix stiffness-regulated α6-expression protects mice against bleomycin injury-induced experimental lung fibrosis. These findings suggest that α6-integrin is a matrix stiffness-regulated mechanosensitive molecule which confers an invasive fibroblast phenotype and mediates experimental lung fibrosis. Targeting this mechanosensing α6(β1)-integrin offers a novel anti-fibrotic strategy against lung fibrosis. Matrix stiffening is a feature of pulmonary fibrosis, and is amplified by lung myofibroblasts. Here the authors find that a6 integrin expression is upregulated on lung myofibroblasts in response to matrix stiffness, and this integrin is required for myofibroblast invasion, and fibrosis in an experimental disease model.
Collapse
Affiliation(s)
- Huaping Chen
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Jing Qu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Xiangwei Huang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Ashish Kurundkar
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Lanyan Zhu
- The Second Xiangya Hospital, Central-South University, Changsha 410011, China
| | - Naiheng Yang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Aida Venado
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA.,Department of Medicine, University of California at San Francisco, San Francisco, California 94143 USA
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Gang Liu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| |
Collapse
|
39
|
Teoh CM, Tan SSL, Tran T. Integrins as Therapeutic Targets for Respiratory Diseases. Curr Mol Med 2016; 15:714-34. [PMID: 26391549 PMCID: PMC5427774 DOI: 10.2174/1566524015666150921105339] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 01/14/2023]
Abstract
Integrins are a large family of transmembrane heterodimeric proteins that constitute the main receptors for extracellular matrix components. Integrins were initially thought to be primarily involved in the maintenance of cell adhesion and tissue integrity. However, it is now appreciated that integrins play important roles in many other biological processes such as cell survival, proliferation, differentiation, migration, cell shape and polarity. Lung cells express numerous combinations and permutations of integrin heterodimers. The complexity and diversity of different integrin heterodimers being implicated in different lung diseases present a major challenge for drug development. Here we provide a comprehensive overview of the current knowledge of integrins from studies in cell culture to integrin knockout mouse models and provide an update of results from clinical trials for which integrins are therapeutic targets with a focus on respiratory diseases (asthma, emphysema, pneumonia, lung cancer, pulmonary fibrosis and sarcoidosis).
Collapse
Affiliation(s)
| | | | - T Tran
- Department of Physiology, MD9, 2 Medical Drive, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
40
|
Gharaee-Kermani M, Moore BB, Macoska JA. Resveratrol-Mediated Repression and Reversion of Prostatic Myofibroblast Phenoconversion. PLoS One 2016; 11:e0158357. [PMID: 27367854 PMCID: PMC4930165 DOI: 10.1371/journal.pone.0158357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/14/2016] [Indexed: 02/07/2023] Open
Abstract
Background Resveratrol, a phytoalexin found in berries, peanuts, grapes, and red wine, inhibits oxidation, inflammation, and cell proliferation and collagen synthesis in multiple cell types and or animal models. It represses collagen deposition in the vasculature, heart, lung, kidney, liver, and esophagus in animal models and may have some utility as an anti-fibrotic. Recent studies have shown that increased collagen deposition and tissue stiffness in the peri-urethral area of the prostate are associated with lower urinary tract dysfunction (LUTD) and urinary obstructive symptoms. The aim of this study was to determine whether Resveratrol might be useful to inhibit or revert TGFβ- and/or CXCL12-mediated myofibroblast phenoconversion of prostate fibroblasts in vitro, and therefore whether the use of anti-fibrotic therapeutics might be efficacious for the treatment of LUTD. Methods Primary prostate and lung tissues were explanted and fibroblast monolayers expanded in vitro. Primary and N1 immortalized prostate stromal fibroblasts, as well as primary fibroblasts cultured from a normal lung and one affected by idiopathic pulmonary fibrosis (IPF) for comparison, were grown in serum–free defined media supplemented with vehicle, TGFβ or CXCL12, pre- or post-treatment with Resveratrol, and were evaluated using immunofluorescence for alpha smooth muscle actin (αSMA) and collagen I (COL1) protein expression and assessed for cell proliferation, apoptosis, and COL1 and EGR1 transcript expression. Results This study showed that low concentrations of Resveratrol (≤50 μM) had no effect on N1 or primary prostate fibroblast cell proliferation, apoptosis, or COL1 or EGR1 gene transcription but repressed and reversed myofibroblast phenoconversion. As expected, these same effects were observed for IPF lung fibroblasts though higher levels of Resveratrol (≥100uM) were required. Taken together, these data suggest that, like lung fibroblasts, prostate fibroblast to myofibroblast phenoconversion can be both repressed and reversed by Resveratrol treatment. Thus, anti-fibrotic therapeutics might be efficacious for the treatment of LUTD.
Collapse
Affiliation(s)
- Mehrnaz Gharaee-Kermani
- Department of Biology, Center for Personalized Cancer Therapy, The University of Massachusetts, Boston, 02125, United States of America
| | - Bethany B. Moore
- Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - Jill A. Macoska
- Department of Biology, Center for Personalized Cancer Therapy, The University of Massachusetts, Boston, 02125, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ding L, Liu T, Wu Z, Hu B, Nakashima T, Ullenbruch M, Gonzalez De Los Santos F, Phan SH. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:303-12. [PMID: 27206766 DOI: 10.4049/jimmunol.1502479] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation.
Collapse
Affiliation(s)
- Lin Ding
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Taku Nakashima
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Matthew Ullenbruch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
42
|
An J, Zheng L, Xie S, Yin F, Huo X, Guo J, Zhang X. Regulatory Effects and Mechanism of Adenovirus-Mediated PTEN Gene on Hepatic Stellate Cells. Dig Dis Sci 2016; 61:1107-20. [PMID: 26660904 DOI: 10.1007/s10620-015-3976-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/23/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Tension homology deleted on chromosome ten (PTEN) is important in liver fibrosis. AIMS The purpose of this study was to evaluate the PTEN gene effects and mechanism of action on hepatic stellate cells (HSCs). METHODS The rat primary HSCs and human LX-2 cells were transfected by an adenovirus containing cDNA constructs encoding the wild-type PTEN (Ad-PTEN), the PTEN mutant G129E gene (Ad-G129E) and RNA interference targeting the PTEN sequence PTEN short hairpin RNA (PTEN shRNA), to up-regulate and down-regulate PTEN expression, respectively. The HSCs were assayed with a fluorescent microscope, real time PCR, Western blot, MTT, flow cytometry and Terminal-deoxynucleoitidyl transferase mediated nick end labeling. In addition, the CCl4 induced rat hepatic fibrosis model was also established to check the in vivo effects of the recombinant adenovirus with various levels of PTEN expression. RESULTS The data have shown that the over-expressed PTEN gene led to reduced HSCs activation and viability, caspase-3 activity and cell cycle arrest in the G0/G1 and G2/M phases, as well as negative regulation of the PI3K/Akt and FAK/ERK signaling pathways in vitro. The over-expressed PTEN gene improved liver function, inhibited proliferation and promoted apoptosis of HSCs both in vitro and in vivo. CONCLUSIONS These data have shown that gene therapy using the recombinant adenovirus encoding wild-type PTEN inhibits proliferation and induces apoptosis of HSCs, which is a potential treatment option for hepatic fibrosis.
Collapse
Affiliation(s)
- Junyan An
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Libo Zheng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Shurui Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Fengrong Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaoxia Huo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jian Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
43
|
Horowitz JC, Osterholzer JJ, Marazioti A, Stathopoulos GT. "Scar-cinoma": viewing the fibrotic lung mesenchymal cell in the context of cancer biology. Eur Respir J 2016; 47:1842-54. [PMID: 27030681 DOI: 10.1183/13993003.01201-2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
44
|
Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of Lung Fibrosis Resolution. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1066-77. [PMID: 27021937 DOI: 10.1016/j.ajpath.2016.01.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/09/2023]
Abstract
Fibrogenesis involves a dynamic interplay between factors that promote the biosynthesis and deposition of extracellular matrix along with pathways that degrade the extracellular matrix and eliminate the primary effector cells. Opposing the often held perception that fibrotic tissue is permanent, animal studies and clinical data now demonstrate the highly plastic nature of organ fibrosis that can, under certain circumstances, regress. This review describes the current understanding of the mechanisms whereby the lung is known to resolve fibrosis focusing on degradation of the extracellular matrix, removal of myofibroblasts, and the role of inflammatory cells. Although there are significant gaps in understanding lung fibrosis resolution, accelerated improvements in biotechnology and bioinformatics are expected to improve the understanding of these mechanisms and have high potential to lead to novel and effective restorative therapies in the treatment not only of pulmonary fibrosis, but also of a wide-ranging spectrum of chronic disorders.
Collapse
Affiliation(s)
- Stephan W Glasser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California; Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - Simon Wong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California
| | - Carmen A Taype
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California-San Diego, La Jolla, California
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
45
|
Xie B, Zheng G, Li H, Yao X, Hong R, Li R, Yue W, Chen Y. Effects of the tumor suppressor PTEN on the pathogenesis of idiopathic pulmonary fibrosis in Chinese patients. Mol Med Rep 2016; 13:2715-23. [PMID: 26846484 DOI: 10.3892/mmr.2016.4852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive interstitial fibrosis, and is associated with a fatal outcome. The critical pathological mechanisms underlying IPF are largely unknown; however, accumulating evidence has indicated similarities between IPF and cancer. Therefore, the present study examined the expression levels of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in Chinese patients with IPF, using an enzyme‑linked immunosorbent assay. To determine the effects of PTEN on the development of pulmonary fibrosis, PTEN was overexpressed in transforming growth factor (TGF)‑β1‑treated human embryonic lung fibroblasts (HFL‑I cells). The serum levels of PTEN were significantly lower in 42 patients with IPF, as compared with in the healthy controls. In addition, PTEN overexpression enhanced apoptosis, and suppressed basal levels of proliferation and migration in fibroblasts. Notably, PTEN was able to specifically inhibit TGF‑β1‑induced proliferation and migration of the cells. Overexpression of PTEN also suppressed phosphorylation of Akt and Smad3, and decreased the expression levels of numerous proteins with critical roles in TGF‑β1‑induced fibrosis, including α‑smooth muscle actin, matrix metalloproteinase (MMP)‑2 and MMP‑9. These results indicated that PTEN may inhibit TGF‑β1‑mediated myofibroblast differentiation of fibroblasts by attenuating signaling via the phosphatidylinositol 3‑kinase/Akt and TGF‑β/Smad3 pathways.
Collapse
Affiliation(s)
- Baosong Xie
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Guanying Zheng
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Hongru Li
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiujuan Yao
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Rujun Hong
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ruihui Li
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Wenxiang Yue
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yusheng Chen
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
46
|
Fiore VF, Strane PW, Bryksin AV, White ES, Hagood JS, Barker TH. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol 2016; 211:173-90. [PMID: 26459603 PMCID: PMC4602038 DOI: 10.1083/jcb.201505007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lateral associations between inactive αv integrin and Thy-1 glycoprotein control integrin avidity to extracellular matrix ligand, the localization and kinetics of downstream signal activity, and mechanosensitive remodeling of the cytoskeleton. Progressive fibrosis is characterized by excessive deposition of extracellular matrix (ECM), resulting in gross alterations in tissue mechanics. Changes in tissue mechanics can further augment scar deposition through fibroblast mechanotransduction. In idiopathic pulmonary fibrosis, a fatal form of progressive lung fibrosis, previous work has shown that loss of Thy-1 (CD90) expression in fibroblasts correlates with regions of active fibrogenesis, thus representing a pathologically relevant fibroblast subpopulation. We now show that Thy-1 is a regulator of fibroblast rigidity sensing. Thy-1 physically couples to inactive αvβ3 integrins via its RGD-like motif, altering baseline integrin avidity to ECM ligands and also facilitating preadhesion clustering of integrin and membrane rafts via Thy-1’s glycophosphatidylinositol tether. Disruption of Thy-1–αvβ3 coupling altered recruitment of Src family kinases to adhesion complexes and impaired mechanosensitive, force-induced Rho signaling, and rigidity sensing. Loss of Thy-1 was sufficient to induce myofibroblast differentiation in soft ECMs and may represent a physiological mechanism important in wound healing and fibrosis.
Collapse
Affiliation(s)
- Vincent F Fiore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Patrick W Strane
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton V Bryksin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - James S Hagood
- Division of Respiratory Medicine, Department of Pediatrics, University of California, Rady Children's Hospital, San Diego, CA 92105
| | - Thomas H Barker
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
47
|
Zhao XK, Cheng Y, Liang Cheng M, Yu L, Mu M, Li H, Liu Y, Zhang B, Yao Y, Guo H, Wang R, Zhang Q. Focal Adhesion Kinase Regulates Fibroblast Migration via Integrin beta-1 and Plays a Central Role in Fibrosis. Sci Rep 2016; 6:19276. [PMID: 26763945 PMCID: PMC4725867 DOI: 10.1038/srep19276] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022] Open
Abstract
Lung fibrosis is a major medical problem for the aging population worldwide. Fibroblast migration plays an important role in fibrosis. Focal Adhesion Kinase (FAK) senses the extracellular stimuli and initiates signaling cascades that promote cell migration. This study first examined the dose and time responses of FAK activation in human lung fibroblasts treated with platelet derived growth factor BB (PDGF-BB). The data indicate that FAK is directly recruited by integrin β1 and the subsequent FAK activation is required for fibroblast migration on fibronectin. In addition, the study has identified that α5β1 and α4β1 are the major integrins for FAK-mediated fibroblast migration on fibronect. In contrast, integrins αvβ3, αvβ6, and αvβ8 play a minor but distinct role in fibroblast migration on fibronectin. FAK inhibitor significantly reduces PDGF-BB stimulated fibroblast migration. Importantly, FAK inhibitor protects bleomycin-induced lung fibrosis in mice. FAK inhibitor blocks FAK activation and significantly reduces signaling cascade of fibroblast migration in bleomycin-challenged mice. Furthermore, FAK inhibitor decreases lung fibrotic score, collagen accumulation, fibronectin production, and myofibroblast differentiation in in bleomycin-challenged mice. These data demonstrate that FAK mediates fibroblast migration mainly via integrin β1. Furthermore, the findings suggest that targeting FAK signaling is an effective therapeutic strategy against fibrosis.
Collapse
Affiliation(s)
- Xue-Ke Zhao
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yiju Cheng
- Department of Infectious Diseases, the First Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Ming Liang Cheng
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Yu
- Prenatal Diagnostic Center, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Mao Mu
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Hong Li
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Liu
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Baofang Zhang
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yumei Yao
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Hui Guo
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Rong Wang
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Quan Zhang
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
48
|
Madala SK, Thomas G, Edukulla R, Davidson C, Schmidt S, Schehr A, Hardie WD. p70 ribosomal S6 kinase regulates subpleural fibrosis following transforming growth factor-α expression in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 310:L175-86. [PMID: 26566903 DOI: 10.1152/ajplung.00063.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 11/08/2015] [Indexed: 12/28/2022] Open
Abstract
The p70 ribosomal S6 kinase (S6K) is a downstream substrate that is phosphorylated and activated by the mammalian target of rapamycin complex and regulates multiple cellular processes associated with fibrogenesis. Recent studies demonstrate that aberrant mTORC1-S6K signaling contributes to various pathological conditions, but a direct role in pulmonary fibroproliferation has not been established. Increased phosphorylation of the S6K pathway is detected immediately following transforming growth factor-α (TGF-α) expression in a transgenic model of progressive lung fibrosis. To test the hypothesis that the S6K directly regulates pulmonary fibroproliferative disease we determined the cellular sites of S6K phosphorylation during the induction of fibrosis in the TGF-α model and tested the efficacy of specific pharmacological inhibition of the S6K pathway to prevent and reverse fibrotic disease. Following TGF-α expression increased phosphorylation of the S6K was detected in the airway and alveolar epithelium and the mesenchyme of advanced subpleural fibrotic regions. Specific inhibition of the S6K with the small molecule inhibitor LY-2584702 decreased TGF-α and platelet-derived growth factor-β-induced proliferation of lung fibroblasts in vitro. Administration of S6K inhibitors to TGF-α mice prevented the development of extensive subpleural fibrosis and alterations in lung mechanics, and attenuated the increase in total lung hydroxyproline. S6K inhibition after fibrosis was established attenuated the progression of subpleural fibrosis. Together these studies demonstrate targeting the S6K pathway selectively modifies the progression of pulmonary fibrosis in the subpleural compartment of the lung.
Collapse
Affiliation(s)
- Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - George Thomas
- Metabolic Disease Institute, University of Cincinnati School of Medicine, Cincinnati, Ohio; and
| | - Ramakrishna Edukulla
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Cynthia Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephanie Schmidt
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Angelica Schehr
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| |
Collapse
|
49
|
Matthes SA, LaRouere TJ, Horowitz JC, White ES. Plakoglobin expression in fibroblasts and its role in idiopathic pulmonary fibrosis. BMC Pulm Med 2015; 15:140. [PMID: 26545977 PMCID: PMC4636798 DOI: 10.1186/s12890-015-0137-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/30/2015] [Indexed: 01/21/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an interstitial fibrotic lung disease of unknown origin and without effective therapy characterized by deposition of extracellular matrix by activated fibroblasts in the lung. Fibroblast activation in IPF is associated with Wnt/β-catenin signaling, but little is known about the role of the β-catenin-homologous desmosomal protein, plakoglobin (PG), in IPF. The objective of this study was to assess the functional role of PG in human lung fibroblasts in IPF. Methods Human lung fibroblasts from normal or IPF patients were transfected with siRNA targeting PG and used to assess cellular adhesion to a fibronectin substrate, apoptosis and proliferation. Statistical analysis was performed using Student’s t-test with Mann–Whitney post-hoc analyses and results were considered significant when p < 0.05. Results We found that IPF lung fibroblasts expressed less PG protein than control fibroblasts, but that characteristic fibroblast phenotypes (adhesion, proliferation, and apoptosis) were not controlled by PG expression. Consistent with this, normal fibroblasts in which PG was silenced displayed no change in functional phenotype. Conclusions We conclude that diminished PG levels in IPF lung fibroblasts do not directly affect certain phenotypic behaviors. Further study is needed to identify the functional consequences of decreased PG in these cells.
Collapse
Affiliation(s)
- Stephanie A Matthes
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5642, USA.
| | - Thomas J LaRouere
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5642, USA.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5642, USA.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
50
|
Li N, Wang Z, Lin J. Up-regulated expression of PTEN after splenetomy may prevent the progression of liver fibrosis in rats. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 23:50-56. [PMID: 26545563 DOI: 10.1002/jhbp.300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND/PURPOSE To investigate the mechanisms of delaying progression of liver fibrosis by splenectomy. METHODS Liver fibrosis was induced by common bile duct ligation. Rats were divided into 3 groups randomly: group A with common bile duct ligation and splenectomy (n = 45), group B with common bile duct ligation and spleen sham operation (n = 45), group C with sham common bile duct ligation and spleen sham operation (n = 45). Liver samples were collected at the 1st, 3rd and 5th week. H&E staining and Sirius staining were used to evaluate the degree of liver fibrosis, immunohistochemical staining was used to measure the expression of α-SMA and PTEN. PTEN mRNA and protein expression was measured by real-time PCR and Western-blot. RESULTS Over time, liver fibrosis developed gradually in group A and B. The expression of PTEN mRNA and protein in group A was higher than that in group B (P < 0.05), while the expression of α-SMA was higher in group B (P < 0.05). The expression of PTEN was negatively correlated with α-SMA (r = -0.86, P < 0.05). CONCLUSIONS In this study, splenectomy can up-regulate the expression of PTEN and reduce the secretion of α-SMA, thereby deterring the progression of liver fibrosis.
Collapse
Affiliation(s)
- Naishu Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziming Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Lin
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|