1
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Liu S, Yan Y. Animal models of pulmonary hypertension due to left heart disease. Animal Model Exp Med 2022; 5:197-206. [PMID: 35234367 PMCID: PMC9240728 DOI: 10.1002/ame2.12214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 01/02/2023] Open
Abstract
Pulmonary hypertension due to left heart disease (PH‐LHD) is regarded as the most prevalent form of pulmonary hypertension (PH). Indeed, PH is an independent risk factor and predicts adverse prognosis for patients with left heart disease (LHD). Clinically, there are no drugs or treatments that directly address PH‐LHD, and treatment of LHD alone will not also ameliorate PH. To target the underlying physiopathological alterations of PH‐LHD and to develop novel therapeutic approaches for this population, animal models that simulate the pathophysiology of PH‐LHD are required. There are several available models for PH‐LHD that have been successfully employed in rodents or large animals by artificially provoking an elevated pressure load on the left heart, which by transduction elicits an escalated pressure in pulmonary artery. In addition, metabolic derangement combined with aortic banding or vascular endothelial growth factor receptor antagonist is also currently applied to reproduce the phenotype of PH‐LHD. As of today, none of the animal models exactly recapitulates the condition of patients with PH‐LHD. Nevertheless, the selection of an appropriate animal model is essential in basic and translational studies of PH‐LHD. Therefore, this review will summarize the characteristics of each PH‐LHD animal model and discuss the advantages and limitations of the different models.
Collapse
Affiliation(s)
- Shao‐Fei Liu
- Charité—Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin Berlin Germany
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK) Ludwig‐Maximilians‐University Munich Munich Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Munich Heart Alliance Munich Germany
| |
Collapse
|
3
|
Genova T, Gaglioti D, Munaron L. Regulation of Vessel Permeability by TRP Channels. Front Physiol 2020; 11:421. [PMID: 32431625 PMCID: PMC7214926 DOI: 10.3389/fphys.2020.00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelium constitutes a semi-permeable barrier between blood and interstitial fluids. Since an augmented endothelial permeability is often associated to pathological states, understanding the molecular basis for its regulation is a crucial biomedical and clinical challenge. This review focuses on the processes controlling paracellular permeability that is the permeation of fluids between adjacent endothelial cells (ECs). Cytosolic calcium changes are often detected as early events preceding the alteration of the endothelial barrier (EB) function. For this reason, great interest has been devoted in the last decades to unveil the molecular mechanisms underlying calcium fluxes and their functional relationship with vessel permeability. Beyond the dicotomic classification between store-dependent and independent calcium entry at the plasma membrane level, the search for the molecular components of the related calcium-permeable channels revealed a difficult task for intrinsic and technical limitations. The contribution of redundant channel-forming proteins including members of TRP superfamily and Orai1, together with the very complex intracellular modulatory pathways, displays a huge variability among tissues and along the vascular tree. Moreover, calcium-independent events could significantly concur to the regulation of vascular permeability in an intricate and fascinating multifactorial framework.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Deborah Gaglioti
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Zhou C, Francis CM, Xu N, Stevens T. The role of endothelial leak in pulmonary hypertension (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018798569. [PMID: 30124139 PMCID: PMC6134503 DOI: 10.1177/2045894018798569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The canonical transient receptor potential 4 (TRPC4) protein contributes to the molecular make-up of endothelial store-operated calcium entry channels. Store-operated calcium entry is a prominent mode of calcium influx in endothelium. Store-operated calcium entry channels are activated by inflammatory mediators and growth factors, and in endothelium, this process induces inter-endothelial cell gaps that increase permeability. Pulmonary endothelium within extra-alveolar segments, including pulmonary arteries, is especially sensitive to the activation of store-operated calcium entry. Pulmonary arterial hypertension (PAH) is characterized by endothelial cell dysfunction in arteries. As one of the topics for the 2017 Grover Conference Series, we examined whether an endothelial cell permeability defect accompanies PAH and, if so, whether TRPC4 contributes to this defect. Through a series of studies conducted over the past five years, we find endothelial cell barrier dysfunction occurs early in the progression of experimental PAH. Endothelium within the arterial segment, and perhaps in other vascular segments, is highly susceptible to disruption secondary to both activation of store-operated calcium entry channels and high flow. This phenomenon partly depends upon TRPC4 channels. We discuss whether endothelial cell hyperpermeability is relevant to human disease, and more specifically, whether it is relevant to all groups of pulmonary hypertension.
Collapse
Affiliation(s)
- Chun Zhou
- 1 Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - C Michael Francis
- 1 Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Ningyong Xu
- 1 Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Troy Stevens
- 1 Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,3 Department of Internal Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
5
|
Simmons S, Erfinanda L, Bartz C, Kuebler WM. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. J Physiol 2018; 597:997-1021. [PMID: 30015354 DOI: 10.1113/jp276245] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary epithelial and vascular endothelial cell layers provide two sequential physical and immunological barriers that together form a semi-permeable interface and prevent alveolar and interstitial oedema formation. In this review, we focus specifically on the continuous endothelium of the pulmonary microvascular bed that warrants strict control of the exchange of gases, fluid, solutes and circulating cells between the plasma and the interstitial space. The present review provides an overview of emerging molecular mechanisms that permit constant transcellular exchange between the vascular and interstitial compartment, and cause, prevent or reverse lung endothelial barrier failure under experimental conditions, yet with a clinical perspective. Based on recent findings and at times seemingly conflicting results we discuss emerging paradigms of permeability regulation by altered ion transport as well as shifts in the homeostasis of sphingolipids, angiopoietins and prostaglandins.
Collapse
Affiliation(s)
- Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bartz
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Abstract
This brief review assesses the role of Ca2+ signaling in lung endothelium in regulation of endothelial permeability. The disconnect between experimental and clinical outcomes to date may be due, in part, to the use of tools which yield information about aggregate permeability or Ca2+ responses in lung or in endothelial monolayers. The teaching point of this review is to “unpack the box,” i.e. consider the many potential issues which could impact interpretation of outcomes. These include phenotypic heterogeneity and resultant segment-specific permeability responses, methodologic issues related to permeability measures, contributions from Ca2+ channels in cells other than endothelium—such as alveolar macrophages or blood leukocytes), Ca2+ dynamic patterns, rather than averaged Ca2+ responses to channel activation, and the background context, such as changes in endothelial bioenergetics with sepsis. Any or all of these issues might color interpretation of permeability and Ca2+ signaling in lung.
Collapse
Affiliation(s)
- Mary I Townsley
- 12214 Department of Physiology & Cell Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
7
|
Zhou C, Townsley MI, Alexeyev M, Voelkel NF, Stevens T. Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry. Am J Physiol Lung Cell Mol Physiol 2016; 311:L560-9. [PMID: 27422996 DOI: 10.1152/ajplung.00057.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/07/2016] [Indexed: 11/22/2022] Open
Abstract
Here, we tested the hypothesis that animals with severe pulmonary arterial hypertension (PAH) display increased sensitivity to vascular permeability induced by activation of store-operated calcium entry. To test this hypothesis, wild-type and transient receptor potential channel 4 (TRPC4) knockout Fischer 344 rats were given a single injection of Semaxanib (SU5416; 20 mg/kg) followed by 3 wk of exposure to hypoxia (10% oxygen) and a return to normoxia (21% oxygen) for an additional 2-3 wk. This Semaxanib/hypoxia/normoxia (i.e., SU5416/hypoxia/normoxia) treatment caused PAH, as evidenced by development of right ventricular hypertrophy, pulmonary artery medial hypertrophy, and occlusive lesions within precapillary arterioles. Pulmonary artery pressure was increased fivefold in Semaxanib/hypoxia/normoxia-treated animals compared with untreated, Semaxanib-treated, and hypoxia-treated controls, determined by isolated perfused lung studies. Thapsigargin induced a dose-dependent increase in permeability that was dependent on TRPC4 in the normotensive perfused lung. This increase in permeability was accentuated in PAH lungs but not in Semaxanib- or hypoxia-treated lungs. Fluid accumulated in large perivascular cuffs, and although alveolar fluid accumulation was not seen in histological sections, Evans blue dye conjugated to albumin was present in bronchoalveolar lavage fluid of hypertensive but not normotensive lungs. Thus PAH is accompanied by a TRPC4-dependent increase in the sensitivity to edemagenic agents that activate store-operated calcium entry.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| | - Mary I Townsley
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Department of Internal Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| | - Norbert F Voelkel
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Department of Internal Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| |
Collapse
|
8
|
Breitling S, Ravindran K, Goldenberg NM, Kuebler WM. The pathophysiology of pulmonary hypertension in left heart disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L924-41. [DOI: 10.1152/ajplung.00146.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics.
Collapse
Affiliation(s)
- Siegfried Breitling
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Neil M. Goldenberg
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and
- German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
9
|
Lu S, Xiang L, Clemmer JS, Mittwede PN, Hester RL. Oxidative stress increases pulmonary vascular permeability in diabetic rats through activation of transient receptor potential melastatin 2 channels. Microcirculation 2015; 21:754-60. [PMID: 25059284 DOI: 10.1111/micc.12158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE In vitro superoxide activates pulmonary endothelial TRPM2 channels and increases Kf . We hypothesized that pulmonary capillary Kf is increased in a model of type I diabetes due to elevated vascular superoxide and resultant TRPM2 channel activation. METHODS Type I diabetes was induced in Zucker rats using STZ. Half of the STZ animals were treated with apocynin, a NOX inhibitor. After four weeks, lung Kf was measured in the isolated lung in the presence or absence of TRPM2 inhibitors (2-APB and FA). In an additional set of experiments, Kf was measured in nondiabetic Zucker rats after applying the superoxide donor (PMS). RESULTS As compared to control rats, hyperglycemic rats exhibited increased vascular superoxide and Kf , along with decreased lung vascular TRPM2-L expression. Apocynin treatment reduced superoxide and Kf in hyperglycemic rats with no effect in control rats. TRPM2 channel inhibition decreased Kf in hyperglycemic rats with no effect in control rats. PMS increased the lung Kf in control rats, with TRPM2 inhibition attenuating this response. CONCLUSION Diabetic rats exhibit a TRPM2-mediated increase in lung Kf , which is associated with increased TRPM2 activation and increased vascular superoxide levels.
Collapse
Affiliation(s)
- Silu Lu
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | | | |
Collapse
|
10
|
Villalta PC, Townsley MI. Transient receptor potential channels and regulation of lung endothelial permeability. Pulm Circ 2014; 3:802-15. [PMID: 25006396 DOI: 10.1086/674765] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
This review highlights our current knowledge regarding expression of transient receptor potential (TRP) cation channels in lung endothelium and evidence for their involvement in regulation of lung endothelial permeability. Six mammalian TRP families have been identified and organized on the basis of sequence homology: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin). To date, only TRPC1/4, TRPC6, TRPV4, and TRPM2 have been extensively studied in lung endothelium. Calcium influx through each of these channels has been documented to increase lung endothelial permeability, although their channel-gating mechanisms, downstream signaling mechanisms, and impact on endothelial structure and barrier integrity differ. While other members of the TRPC, TRPV, and TRPM families may be expressed in lung endothelium, we have little or no evidence linking these to regulation of lung endothelial permeability. Further, neither the expression nor functional role(s) of any TRPML, TRPP, and TRPA family members has been studied in lung endothelium. In addition to this assessment organized by TRP channel family, we also discuss TRP channels and lung endothelial permeability from the perspective of lung endothelial heterogeneity, using outcomes of studies focused on TRPC1/4 and TRPV4 channels. The diversity within the TRP channel family and the relative paucity of information regarding roles of a number of these channels in lung endothelium make this field ripe for continued investigation.
Collapse
Affiliation(s)
- Patricia C Villalta
- Departments of Physiology and Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mary I Townsley
- Departments of Physiology and Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
11
|
Yang B, Li J, Liu X, Ma L, Deng L, Liu J, Liu Z, Ji Q. Herbal Formula-3 inhibits food allergy in rats by stabilizing mast cells through modulating calcium mobilization. Int Immunopharmacol 2013; 17:576-84. [DOI: 10.1016/j.intimp.2013.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/13/2013] [Accepted: 06/09/2013] [Indexed: 01/27/2023]
|
12
|
Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, Costell M, Maniscalco-Hauk K, Krawiec JA, Olzinski A, Gordon E, Lozinskaya I, Elefante L, Qin P, Matasic DS, James C, Tunstead J, Donovan B, Kallal L, Waszkiewicz A, Vaidya K, Davenport EA, Larkin J, Burgert M, Casillas LN, Marquis RW, Ye G, Eidam HS, Goodman KB, Toomey JR, Roethke TJ, Jucker BM, Schnackenberg CG, Townsley MI, Lepore JJ, Willette RN. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 2013; 4:159ra148. [PMID: 23136043 DOI: 10.1126/scitranslmed.3004276] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca(2+) influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.
Collapse
Affiliation(s)
- Kevin S Thorneloe
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang B, Li JJ, Cao JJ, Yang CB, Liu J, Ji QM, Liu ZG. Polydatin attenuated food allergy via store-operated calcium channels in mast cell. World J Gastroenterol 2013; 19:3980-3989. [PMID: 23840142 PMCID: PMC3703184 DOI: 10.3748/wjg.v19.i25.3980] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/10/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of polydatin (PD), a resveratrol glucoside, on mast cell degranulation and anti-allergic activity.
METHODS: After the rats were orally sensitized with ovalbumin (OVA) for 48 d and underwent PD treatment for 4 d, all the rats were stimulated by 100 mg/mL OVA for 24 h and then sacrificed for the following experiments. The small intestines from all the groups were prepared for morphology examination by hematoxylin and eosin staining. We also used a smooth muscle organ bath to evaluate the motility of the small intestines. The OVA-specific immunoglobulin E (IgE) production and interleukin-4 (IL-4) levels in serum or supernatant of intestinal mucosa homogenates were analyzed by enzyme-linked immunosorbent assay (ELISA). Using toluidine blue stain, the activation and degranulation of isolated rat peritoneal mast cells (RPMCs) were analyzed. Release of histamine from RPMCs was measured by ELISA, and regulation of PD on intracellular Ca2+ mobilization was investigated by probing intracellular Ca2+ with fluo-4 fluorescent dye, with the signal recorded and analyzed.
RESULTS: We found that intragastric treatment with PD significantly reduced loss of mucosal barrier integrity in the small intestine. However, OVA-sensitization caused significant hyperactivity in the small intestine of allergic rats, which was attenuated by PD administration by 42% (1.26 ± 0.13 g vs OVA 2.18 ± 0.21 g, P < 0.01). PD therapy also inhibited IgE production (3.95 ± 0.53 ng/mL vs OVA 4.53 ± 0.52 ng/mL, P < 0.05) by suppressing the secretion of Th2-type cytokine, IL-4, by 34% (38.58 ± 4.41 pg/mL vs OVA 58.15 ± 6.24 pg/mL, P < 0.01). The ratio of degranulated mast cells, as indicated by vehicles (at least five) around the cells, dramatically increased in the OVA group by 5.5 fold (63.50% ± 15.51% vs phosphate-buffered saline 11.15% ± 8.26%, P < 0.001) and fell by 65% after PD treatment (21.95% ± 4.37% vs OVA 63.50% ± 15.51%, P < 0.001). PD mediated attenuation of mast cell degranulation was further confirmed by decreased histamine levels in both serum (5.98 ± 0.17 vs OVA 6.67 ± 0.12, P < 0.05) and intestinal mucosa homogenates (5.83 ± 0.91 vs OVA 7.35 ± 0.97, P < 0.05). Furthermore, we demonstrated that administration with PD significantly decreased mast cell degranulation due to reduced Ca2+ influx through store-operated calcium channels (SOCs) (2.35 ± 0.39 vs OVA 3.51 ± 0.38, P < 0.01).
CONCLUSION: Taken together, our data indicate that PD stabilizes mast cells by suppressing intracellular Ca2+ mobilization, mainly through inhibiting Ca2+ entry via SOCs, thus exerting a protective role against OVA-sensitized food allergy.
Collapse
|
14
|
Yuan M, Li J, Lv J, Mo X, Yang C, Chen X, Liu Z, Liu J. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca2+ mobilization. Toxicol Appl Pharmacol 2012. [DOI: 10.10.1016/j.taap.2012.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Yuan M, Li J, Lv J, Mo X, Yang C, Chen X, Liu Z, Liu J. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca²⁺ mobilization. Toxicol Appl Pharmacol 2012; 264:462-9. [PMID: 22959927 DOI: 10.1016/j.taap.2012.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/11/2022]
Abstract
Mast cells play a key role in the pathogenesis of asthma and are a promising target for therapeutic intervention in asthma. This study investigated the effects of polydatin (PD), a resveratrol glucoside, on mast cell degranulation upon cross-linking of the high-affinity IgE receptors (FcεRI), as well as the anti-allergic activity of PD in vivo. Herein, we demonstrated that PD treatment for 30 min suppressed FcεRI-mediated mast cell degranulation in a dose-dependent manner. Concomitantly, PD significantly decreased FcεRI-mediated Ca²⁺ increase in mast cells. The suppressive effects of PD on FcεRI-mediated Ca²⁺ increase were largely inhibited by using LaCl₃ to block the Ca²⁺ release-activated Ca²⁺ channels (CRACs). Furthermore, PD significantly inhibited Ca²⁺ entry through CRACs evoked by thapsigargin (TG). Knocking down protein expression of Orai1, the pore-forming subunit of CRACs, significantly decreased PD suppression of FcεRI-induced intracellular Ca²⁺ influx and mast cell degranulation. In a mouse model of mast cell-dependent passive cutaneous anaphylaxis (PCA), in vivo PD administration suppressed mast cell degranulation and inhibited anaphylaxis. Taken together, our data indicate that PD stabilizes mast cells by suppressing FcεRI-induced Ca²⁺ mobilization mainly through inhibiting Ca²⁺ entry via CRACs, thus exerting a protective effect against PCA.
Collapse
Affiliation(s)
- Meichun Yuan
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cioffi DL, Wu S, Chen H, Alexeyev M, St Croix CM, Pitt BR, Uhlig S, Stevens T. Orai1 determines calcium selectivity of an endogenous TRPC heterotetramer channel. Circ Res 2012; 110:1435-44. [PMID: 22534489 DOI: 10.1161/circresaha.112.269506] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Canonical transient receptor potential 4 (TRPC4) contributes to the molecular composition of a channel encoding for a calcium selective store-operated current, I(SOC), whereas Orai1 critically comprises a channel encoding for the highly selective calcium release activated calcium current, I(CRAC). However, Orai1 may interact with TRPC proteins and influence their activation and permeation characteristics. Endothelium expresses both TRPC4 and Orai1, and it remains unclear as to whether Orai1 interacts with TRPC4 and contributes to calcium permeation through the TPRC4 channel. OBJECTIVE We tested the hypothesis that Orai1 interacts with TRPC4 and contributes to the channel's selective calcium permeation important for endothelial barrier function. METHODS AND RESULTS A novel method to purify the endogenous TRPC4 channel and probe for functional interactions was developed, using TRPC4 binding to protein 4.1 as bait. Isolated channel complexes were conjugated to anti-TRPC protein antibodies labeled with cy3-cy5 pairs. Förster Resonance Energy Transfer among labeled subunits revealed the endogenous protein alignment. One TRPC1 and at least 2 TRPC4 subunits constituted the endogenous channel (TRPC1/4). Orai1 interacted with TRPC4. Conditional Orai1 knockdown reduced the probability for TRPC1/4 channel activation and converted it from a calcium-selective to a nonselective channel, an effect that was rescued on Orai1 reexpression. Loss of Orai1 improved endothelial cell barrier function. CONCLUSION Orai1 interacts with TRPC4 in the endogenous channel complex, where it controls TRPC1/4 activation and channel permeation characteristics, including calcium selectivity, important for control of endothelial cell barrier function.
Collapse
Affiliation(s)
- Donna L Cioffi
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA. dlcioffi@ usouthal.edu
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Berrout J, Jin M, O'Neil RG. Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood-brain barrier endothelial cells. Brain Res 2011; 1436:1-12. [PMID: 22192412 DOI: 10.1016/j.brainres.2011.11.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/14/2011] [Accepted: 11/19/2011] [Indexed: 12/23/2022]
Abstract
The microvessels of the brain are very sensitive to mechanical stresses such as observed in traumatic brain injury (TBI). Such stresses can quickly lead to dysfunction of the microvessel endothelial cells, including disruption of blood-brain barrier (BBB). It is now evident that elevation of cytosolic calcium levels ([Ca2+]i) can compromise the BBB integrity, however the mechanism by which mechanical injury can produce a [Ca2+]i increase in brain endothelial cells is unclear. To assess the effects of mechanical/stretch injury on [Ca2+]i signaling, mouse brain microvessel endothelial cells (bEnd3) were grown to confluency on elasticized membranes and [Ca2+]i monitored using fura 2 fluorescence imaging. Application of an injury, using a pressure/stretch pulse of 50 ms, induced a rapid transient increase in [Ca2+]i. In the absence of extracellular Ca2+, the injury-induced [Ca2+]i transient was greatly reduced, but not fully eliminated, while unloading of Ca2+ stores by thapsigargin treatment in the absence of extracellular Ca2+ abolished the injury transient. Application of LOE-908 and amiloride, TRPC and TRPP2 channel blockers, respectively, both reduced the transient [Ca2+]i increase. Further, siRNA knockdown assays directed at TRPC1 and TRPP2 expression also resulted in a reduction of the injury-induced [Ca2+]i response. In addition, stretch injury induced increases of NO production and actin stress fiber formation, both of which were markedly reduced upon treatment with LOE908 and/or amiloride. We conclude that mechanical injury of brain endothelial cells induces a rapid influx of calcium, mediated by TRPC1 and TRPP2 channels, which leads to NO synthesis and actin cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Jonathan Berrout
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
18
|
Townsley MI, Morisseau C, Hammock B, King JA. Impact of epoxyeicosatrienoic acids in lung ischemia-reperfusion injury. Microcirculation 2010; 17:137-46. [PMID: 20163540 DOI: 10.1111/j.1549-8719.2009.00013.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Epoxyeicosatrienoic acids (EETs) are protective in both myocardial and brain ischemia, variously attributed to activation of K(ATP) channels or blockade of adhesion molecule upregulation. In this study, we tested whether EETs would be protective in lung ischemia-reperfusion injury. METHODS The filtration coefficient (K(f)), a measure of endothelial permeability, and expression of the adhesion molecules vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) were measured after 45 minutes ischemia and 30 minutes reperfusion in isolated rat lungs. RESULTS K(f) increased significantly after ischemia-reperfusion alone vs time controls, an effect dependent upon extracellular Ca(2+) although not on the EET-regulated channel TRPV4. Inhibition of endogenous EET degradation or administration of exogenous 11,12- or 14,-15-EET at reperfusion significantly limited the permeability response to ischemia-reperfusion. The beneficial effect of 11,12-EET was not prevented by blockade of K(ATP) channels nor by blockade of TRPV4. Finally, 11,12-EET-dependent alteration in adhesion molecules expression is unlikely to explain its beneficial effect, since the expression of the adhesion molecules VCAM and ICAM in lung after ischemia-reperfusion was similar to that in controls. CONCLUSION EETs are beneficial in the setting of lung ischemia-reperfusion, when administered at reperfusion. However, further study will be needed to elucidate the mechanism of action.
Collapse
Affiliation(s)
- Mary I Townsley
- Department of Physiology, Center for Lung Biology, University of South Alabama, Mobile, AL 36688, USA.
| | | | | | | |
Collapse
|
19
|
Kerem A, Yin J, Kaestle SM, Hoffmann J, Schoene AM, Singh B, Kuppe H, Borst MM, Kuebler WM. Lung Endothelial Dysfunction in Congestive Heart Failure. Circ Res 2010; 106:1103-16. [DOI: 10.1161/circresaha.109.210542] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rationale
:
Congestive heart failure (CHF) frequently results in remodeling and increased tone of pulmonary resistance vessels. This adaptive response, which aggravates pulmonary hypertension and thus, promotes right ventricular failure, has been attributed to lung endothelial dysfunction.
Objective
:
We applied real-time fluorescence imaging to identify endothelial dysfunction and underlying molecular mechanisms in an experimental model of CHF induced by supracoronary aortic banding in rats.
Methods and Results
:
Endothelial dysfunction was evident in lungs of CHF rats as impaired endothelium-dependent vasodilation and lack of endothelial NO synthesis in response to mechanical stress, acetylcholine, or histamine. This effect was not attributable to downregulation of endothelial NO synthase. Imaging of the cytosolic Ca
2+
concentration ([Ca
2+
]
i
) revealed a singular impairment of endothelial [Ca
2+
]
i
homeostasis and signaling characterized by a lack of [Ca
2+
]
i
oscillations and deficient or attenuated [Ca
2+
]
i
responses to mechanical stress, histamine, acetylcholine, or thapsigargin. Reconstitution of a [Ca
2+
]
i
signal by ionophore treatment restored endothelial NO production, but lack of endothelial responsiveness was not primarily attributable to downregulation of Ca
2+
influx channels in CHF. Rather, we identified a massive remodeling of the endothelial cytoskeleton in the form of an increased expression of β-actin and F-actin formation which contributed critically to endothelial dysfunction in CHF because cytoskeletal disruption by cytochalasin D largely reconstituted endothelial [Ca
2+
]
i
signaling and NO production.
Conclusions
:
Our findings characterize a unique scenario of endothelial dysfunction in CHF that is caused by a singular impairment of [Ca
2+
]
i
signaling, and identify cytoskeletal reorganization as a major regulator of endothelial signaling and function.
Collapse
Affiliation(s)
- Alexander Kerem
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Jun Yin
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Stephanie M. Kaestle
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Julia Hoffmann
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Axel M. Schoene
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Baljit Singh
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Hermann Kuppe
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Mathias M. Borst
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| | - Wolfgang M. Kuebler
- From the Institute of Physiology (A.K., J.Y., S.M.K., J.H., W.M.K.), Charité–Universitätsmedizin Berlin, Germany; German Heart Institute Berlin (J.Y., W.M.K., H.K.), Germany; Keenan Research Centre (J.Y., W.M.K.), Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada; Department of Cardiology, Angiology and Pneumology (A.M.S., M.M.B.), University of Heidelberg, Germany; Department of Veterinary Biomedical Sciences (B.S.), Western College of Veterinary Medicine,
| |
Collapse
|
20
|
Store-operated calcium entry channels in pulmonary endothelium: the emerging story of TRPCS and Orai1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:137-54. [PMID: 20204728 DOI: 10.1007/978-1-60761-500-2_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of diverse origin utilize shifts in cytosolic calcium concentrations as intracellular signals to elicit physiological responses. In endothelium, inflammatory first messengers increase cytosolic calcium as a signal to disrupt cell-cell borders and produce inter-cellular gaps. Calcium influx across the plasma membrane is required to initiate barrier disruption, although the calcium entry mechanism responsible for this effect remains poorly understood. This chapter highlights recent efforts to define the molecular anatomy of the ion channel responsible for triggering endothelial cell gap formation. Resolving the identity and function of this calcium channel will pave the way for new anti-inflammatory therapeutic targets.
Collapse
|
21
|
Wu S, Jian MY, Xu YC, Zhou C, Al-Mehdi AB, Liedtke W, Shin HS, Townsley MI. Ca2+ entry via alpha1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol 2009; 297:L650-7. [PMID: 19617313 DOI: 10.1152/ajplung.00015.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pulmonary vascular endothelial cells express a variety of ion channels that mediate Ca(2+) influx in response to diverse environmental stimuli. However, it is not clear whether Ca(2+) influx from discrete ion channels is functionally coupled to specific outcomes. Thus we conducted a systematic study in mouse lung to address whether the alpha(1G) T-type Ca(2+) channel and the transient receptor potential channel TRPV4 have discrete functional roles in pulmonary capillary endothelium. We used real-time fluorescence imaging for endothelial cytosolic Ca(2+), immunohistochemistry to probe for surface expression of P-selectin, and the filtration coefficient to specifically measure lung endothelial permeability. We demonstrate that membrane depolarization via exposure of pulmonary vascular endothelium to a high-K(+) perfusate induces Ca(2+) entry into alveolar septal endothelial cells and exclusively leads to the surface expression of P-selectin. In contrast, Ca(2+) entry in septal endothelium evoked by the selective TRPV4 activator 4alpha-phorbol-12,13-didecanoate (4alpha-PDD) specifically increases lung endothelial permeability without effect on P-selectin expression. Pharmacological blockade or knockout of alpha(1G) abolishes depolarization-induced Ca(2+) entry and surface expression of P-selectin but does not prevent 4alpha-PDD-activated Ca(2+) entry and the resultant increase in permeability. Conversely, blockade or knockout of TRPV4 specifically abolishes 4alpha-PDD-activated Ca(2+) entry and the increase in permeability, while not impacting depolarization-induced Ca(2+) entry and surface expression of P-selectin. We conclude that in alveolar septal capillaries Ca(2+) entry through alpha(1G) and TRPV4 channels differentially and specifically regulates the transition of endothelial procoagulant phenotype and barrier integrity, respectively.
Collapse
Affiliation(s)
- Songwei Wu
- Center for Lung Biology and Dept. of Pharmacology, Univ. of South Alabama College of Medicine, Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cioffi DL, Lowe K, Alvarez DF, Barry C, Stevens T. TRPing on the lung endothelium: calcium channels that regulate barrier function. Antioxid Redox Signal 2009; 11:765-76. [PMID: 18783312 PMCID: PMC2850299 DOI: 10.1089/ars.2008.2221] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rises in cytosolic calcium are sufficient to initiate the retraction of endothelial cell borders and to increase macromolecular permeability. Although endothelial cell biologists have recognized the importance of shifts in cytosolic calcium for several decades, only recently have we gained a rudimentary understanding of the membrane calcium channels that change cell shape. Members of the transient receptor potential family (TRP) are chief among the molecular candidates for permeability-coupled calcium channels. Activation of calcium entry through store-operated calcium entry channels, most notably TRPC1 and TRPC4, increases lung endothelial cell permeability, as does activation of calcium entry through the TRPV4 channel. However, TRPC1 and TRPC4 channels appear to influence the lung extraalveolar endothelial barrier most prominently, whereas TRPV4 channels appear to influence the lung capillary endothelial barrier most prominently. Thus, phenotypic heterogeneity in ion channel expression and function exists within the lung endothelium, along the arterial-capillary-venous axis, and is coupled to discrete control of endothelial barrier function.
Collapse
Affiliation(s)
- Donna L Cioffi
- Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The pulmonary circulation represents a unique vascular bed, receiving 100% of the cardiac output while maintaining low blood pressure. Multiple different cell types, including endothelium, smooth muscle, and fibroblasts, contribute to normal vascular function, and to the vascular response to injury. Our understanding of the basic cell biology of these various cell types, and the roles they play in vascular homeostasis and disease, remains quite limited despite several decades of study. Recent advances in approaches that enable the mapping of cell origin and the study of the molecular basis of structure and function have resulted in a rapid accumulation of new information that is essential to vascular biology. A recent National Institutes of Health workshop was held to discuss emerging concepts in lung vascular biology. The findings of this workshop are summarized in this article.
Collapse
|
24
|
Parker JC, Townsley MI. Physiological determinants of the pulmonary filtration coefficient. Am J Physiol Lung Cell Mol Physiol 2008; 295:L235-7. [PMID: 18502816 DOI: 10.1152/ajplung.00064.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current emphasis on translational application of genetic models of lung disease has renewed interest in the measurement of the gravimetric filtration coefficient (K(f)) as a means to assess vascular permeability changes in isolated perfused lungs. The K(f) is the product of the hydraulic conductivity and the filtration surface area, and is a sensitive measure of vascular fluid permeability when the pulmonary vessels are fully recruited and perfused. We have observed a remarkable consistency of the normalized baseline K(f) values between species with widely varying body weights from mice to sheep. Uniformity of K(f) values can be attributed to the thin alveolar capillary barrier required for gas exchange and the conserved matching of lung vascular surface area to the oxygen requirements of the body mass. An allometric correlation between the total lung filtration coefficient (K(f,t)) and body weight in several species (r(2)=1.00) had a slope that was similar to those reported for alveolar and pulmonary capillary surface areas and pulmonary diffusion coefficients determined by morphometric methods in these species. A consistent K(f) is dependent on accurately separating the filtration and vascular volume components of lung weight gain, then K(f) is a consistent and repeatable index of lung vascular permeability.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA.
| | | |
Collapse
|
25
|
Phenotypic heterogeneity in lung capillary and extra-alveolar endothelial cells. Increased extra-alveolar endothelial permeability is sufficient to decrease compliance. J Surg Res 2007; 143:70-7. [PMID: 17950075 DOI: 10.1016/j.jss.2007.03.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/20/2007] [Accepted: 03/05/2007] [Indexed: 12/21/2022]
Abstract
BACKGROUND In acute respiratory distress syndrome, pulmonary vascular permeability increases, causing intravascular fluid and protein to move into the lung's interstitium. The classic model describing the formation of pulmonary edema suggests that fluid crossing the capillary endothelium is drawn by negative interstitial pressure into the potential space surrounding extra-alveolar vessels and, as interstitial pressure builds, is forced into the alveolar air space. However, the validity of this model is challenged by animal models of acute lung injury in which extra-alveolar vessels are more permeable than capillaries under a variety of conditions. In the current study, we sought to determine whether extravascular fluid accumulation can be produced because of increased permeability of either the capillary or extra-alveolar endothelium, and whether different pathophysiology results from such site-specific increases in permeability. MATERIALS AND METHODS We perfused isolated lungs with either the plant alkaloid thapsigargin, which increases extra-alveolar endothelial permeability, or with 4alpha-phorbol 12, 13-didecanoate, which increases capillary endothelial permeability. RESULTS Both treatments produced equal increases in whole lung vascular permeability, but caused fluid accumulations in separate anatomical compartments. Light microscopy of isolated lungs showed that thapsigargin caused fluid cuffing of large vessels, while 4alpha-phorbol 12, 13-didecanoate caused alveolar flooding. Dynamic compliance was reduced in lungs with cuffing of large vessels, but not in lungs with alveolar flooding. CONCLUSIONS Phenotypic differences between vascular segments resulted in site-specific increases in permeability, which have different pathophysiological outcomes. Our findings suggest that insults leading to acute respiratory distress syndrome may increase permeability in extra-alveolar or capillary vascular segments, resulting in different pathophysiological sequela.
Collapse
|
26
|
Hamanaka K, Jian MY, Weber DS, Alvarez DF, Townsley MI, Al-Mehdi AB, King JA, Liedtke W, Parker JC. TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 2007; 293:L923-32. [PMID: 17660328 DOI: 10.1152/ajplung.00221.2007] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously implicated calcium entry through stretch-activated cation channels in initiating the acute pulmonary vascular permeability increase in response to high peak inflation pressure (PIP) ventilation. However, the molecular identity of the channel is not known. We hypothesized that the transient receptor potential vanilloid-4 (TRPV4) channel may initiate this acute permeability increase because endothelial calcium entry through TRPV4 channels occurs in response to hypotonic mechanical stress, heat, and P-450 epoxygenase metabolites of arachidonic acid. Therefore, permeability was assessed by measuring the filtration coefficient (K(f)) in isolated perfused lungs of C57BL/6 mice after 30-min ventilation periods of 9, 25, and 35 cmH(2)O PIP at both 35 degrees C and 40 degrees C. Ventilation with 35 cmH(2)O PIP increased K(f) by 2.2-fold at 35 degrees C and 3.3-fold at 40 degrees C compared with baseline, but K(f) increased significantly with time at 40 degrees C with 9 cmH(2)O PIP. Pretreatment with inhibitors of TRPV4 (ruthenium red), arachidonic acid production (methanandamide), or P-450 epoxygenases (miconazole) prevented the increases in K(f). In TRPV4(-/-) knockout mice, the high PIP ventilation protocol did not increase K(f) at either temperature. We have also found that lung distention caused Ca(2+) entry in isolated mouse lungs, as measured by ratiometric fluorescence microscopy, which was absent in TRPV4(-/-) and ruthenium red-treated lungs. Alveolar and perivascular edema was significantly reduced in TRPV4(-/-) lungs. We conclude that rapid calcium entry through TRPV4 channels is a major determinant of the acute vascular permeability increase in lungs following high PIP ventilation.
Collapse
Affiliation(s)
- Kazutoshi Hamanaka
- Department of Physiology, College of Medicine, MSB 3074, University of South Alabama, 307 Univ. Blvd., Mobile, AL 36688, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kaestle SM, Reich CA, Yin N, Habazettl H, Weimann J, Kuebler WM. Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema. Am J Physiol Lung Cell Mol Physiol 2007; 293:L859-69. [PMID: 17616651 DOI: 10.1152/ajplung.00008.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formation of cardiogenic pulmonary edema in acute left heart failure is traditionally attributed to increased fluid filtration from pulmonary capillaries and subsequent alveolar flooding. Here, we demonstrate that hydrostatic edema formation at moderately elevated vascular pressures is predominantly caused by an inhibition of alveolar fluid reabsorption, which is mediated by endothelial-derived nitric oxide (NO). In isolated rat lungs, we quantified fluid fluxes into and out of the alveolar space and endothelial NO production by a two-compartmental double-indicator dilution technique and in situ fluorescence imaging, respectively. Elevation of hydrostatic pressure induced Ca(2+)-dependent endothelial NO production and caused a net fluid shift into the alveolar space, which was predominantly attributable to impaired fluid reabsorption. Inhibition of NO production or soluble guanylate cyclase reconstituted alveolar fluid reabsorption, whereas fluid clearance was blocked by exogenous NO donors or cGMP analogs. In isolated mouse lungs, hydrostatic edema formation was attenuated by NO synthase inhibition. Similarly, edema formation was decreased in isolated mouse lungs of endothelial NO synthase-deficient mice. Chronic heart failure results in endothelial dysfunction and preservation of alveolar fluid reabsorption. These findings identify impaired alveolar fluid clearance as an important mechanism in the pathogenesis of hydrostatic lung edema. This effect is mediated by endothelial-derived NO acting as an intercompartmental signaling molecule at the alveolo-capillary barrier.
Collapse
Affiliation(s)
- Stephanie M Kaestle
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin Arnimallee 22, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 2006; 99:988-95. [PMID: 17008604 PMCID: PMC2562953 DOI: 10.1161/01.res.0000247065.11756.19] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disruption of the alveolar septal barrier leads to acute lung injury, patchy alveolar flooding, and hypoxemia. Although calcium entry into endothelial cells is critical for loss of barrier integrity, the cation channels involved in this process have not been identified. We hypothesized that activation of the vanilloid transient receptor potential channel TRPV4 disrupts the alveolar septal barrier. Expression of TRPV4 was confirmed via immunohistochemistry in the alveolar septal wall in human, rat, and mouse lung. In isolated rat lung, the TRPV4 activators 4alpha-phorbol-12,13-didecanoate and 5,6- or 14,15-epoxyeicosatrienoic acid, as well as thapsigargin, a known activator of calcium entry via store-operated channels, all increased lung endothelial permeability as assessed by measurement of the filtration coefficient, in a dose- and calcium-entry dependent manner. The TRPV antagonist ruthenium red blocked the permeability response to the TRPV4 agonists, but not to thapsigargin. Light and electron microscopy of rat and mouse lung revealed that TRPV4 agonists preferentially produced blebs or breaks in the endothelial and epithelial layers of the alveolar septal wall, whereas thapsigargin disrupted interendothelial junctions in extraalveolar vessels. The permeability response to 4alpha-phorbol-12,13-didecanoate was absent in TRPV4(-/-) mice, whereas the response to thapsigargin remained unchanged. Collectively, these findings implicate TRPV4 in disruption of the alveolar septal barrier and suggest its participation in the pathogenesis of acute lung injury.
Collapse
Affiliation(s)
- Diego F. Alvarez
- Department of Physiology, University of South Alabama
- Center for Lung Biology, University of South Alabama
| | - Judy A. King
- Department of Pharmacology and Pathology, University of South Alabama
- Center for Lung Biology, University of South Alabama
| | - David Weber
- Department of Physiology, University of South Alabama
| | - Emile Addison
- Department of Physiology, University of South Alabama
| | - Wolfgang Liedtke
- Departments of Medicine/Neurology and Neurobiology, Duke University
| | - Mary I. Townsley
- Department of Physiology, University of South Alabama
- Center for Lung Biology, University of South Alabama
| |
Collapse
|
30
|
Sacks RS, Remillard CV, Agange N, Auger WR, Thistlethwaite PA, Yuan JXJ. Molecular Biology of Chronic Thromboembolic Pulmonary Hypertension. Semin Thorac Cardiovasc Surg 2006; 18:265-76. [PMID: 17185190 DOI: 10.1053/j.semtcvs.2006.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2006] [Indexed: 01/17/2023]
Abstract
Recent efforts have seen major advances in elucidating the mechanisms underlying pulmonary arterial hypertension. However, chronic thromboembolic pulmonary hypertension (CTEPH) often has been excluded from these studies. Consequently, whereas the clinical, radiographic, and hemodynamic characteristics of CTEPH have been well described, there remains a deficit in our understanding of the cellular, molecular, and genetic mechanisms underlying CTEPH. Furthermore, although prior venous thromboembolism may act as the inciting event, it is still unclear what predisposes some patients to develop CTEPH. CTEPH has two major pathogenic components. The first is the primary obstruction of central pulmonary arteries by accumulation of thrombotic material. The second is characterized by severe pulmonary vascular remodeling, similar to that seen in idiopathic pulmonary arterial hypertension. Other articles in this series describe the pathological, surgical, and therapeutic aspects of CTEPH. Here, we review the potential molecular and cellular mechanisms that may contribute to the pathogenesis of CTEPH.
Collapse
Affiliation(s)
- Richard S Sacks
- Department of Medicine, University of California, San Diego, La Jolla 92093-0725, USA
| | | | | | | | | | | |
Collapse
|
31
|
Remillard CV, Yuan JXJ. Transient receptor potential channels and caveolin-1: good friends in tight spaces. Mol Pharmacol 2006; 70:1151-4. [PMID: 16873578 DOI: 10.1124/mol.106.029280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Caveolae formation has raised the concept of energy efficiency to new heights. The ultimate purpose of caveolae formation is to colocalize signaling proteins with membrane microdomains in order to facilitate their interaction and improve signal transduction efficiency. Although we know that the main structural protein of caveolae is caveolin, how caveolin interacts with membrane proteins to facilitate their integration into lipid raft domains is unclear. A caveolin-scaffolding domain (CSD) on caveolin itself can associate with membrane proteins such as G proteins and endothelial nitric oxide synthase. In this issue, Kwiatek et al. (p. 1174) report that the TRPC1 channel protein contains a C-terminal CSD-consensus binding sequence that allows for its physical and functional interaction with caveolin-1 in the caveolae of human pulmonary artery endothelial cells (PAEC). Competitive interaction with a CSD-conjugated peptide attenuates thrombin- and thapsigargin-induced Ca2+ influx via store-operated TRPC1 channels. Their data suggest that caveolin-1 can directly regulate TRPC1 function, extending its already ascribed role as a structural protein.
Collapse
Affiliation(s)
- Carmelle V Remillard
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0725, USA
| | | |
Collapse
|