1
|
Luce L, Mazzanti C, Carcione M, Massini CL, Buonfiglio PI, Dalamón V, Díaz CB, Mesa L, Dubrovsky A, Cotignola J, Giliberto F. Prognostic significance of ACTN3 genotype in Duchenne muscular dystrophy: Findings from an Argentine patient cohort. Eur J Paediatr Neurol 2024; 54:32-41. [PMID: 39674052 DOI: 10.1016/j.ejpn.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/18/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
A wide phenotypic spectrum exists among DMD patients, with genetic modifiers seen as a putative cause of this variability. The main aim was to evaluate the effect of 4 genetic modifiers and the location of DMD variants on disease severity in a DMD Argentine cohort. A secondary objective was to provide a summary of the current state of knowledge and association of the tested loci with DMD's phenotype. Two groups of patients with extreme phenotypes (Severe/Mild) were defined based on the age at loss of ambulation. SNVs in SPP1, LTBP4, CD40, and ACTN3 were genotyped, and their distribution was compared between groups using Chi-square or Fisher exact tests. Concurrent effects with glucocorticoids treatment, DMD mutation location (proximal/distal) and the other loci were evaluated by multivariate logistic regression. Additionally, we performed a systematic literature review to summarize and interpret the impact of modifiers on various DMD traits. ACTN3-rs1815739 was the only modifier loci of DMD progression in our cohort. A concurrent damaging effect between DMD mutation and ACTN3 was detected, identifying a possible interaction between distal variants and ACTN3 TT-genotype that need to be validated in a larger cohort. The systematic review showed agreement in the results when significant differences were reported. The employment of extreme DMD phenotypic groups was an innovative approach for identifying risk loci for disease severity. The interaction between DMD mutation location and ACTN3, if confirmed, could help to avoid confounding elements in assembling study cohorts for clinical trials. Finally, this report's major highlight is being the first study conducted on an Argentine and Latin-American population.
Collapse
Affiliation(s)
- Leonela Luce
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina; John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chiara Mazzanti
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carcione
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carmen Llames Massini
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Inés Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", CONICET, Buenos Aires, Argentina
| | - Viviana Dalamón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", CONICET, Buenos Aires, Argentina
| | - Carla Bolaño Díaz
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - Lilia Mesa
- Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - Alberto Dubrovsky
- Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - Javier Cotignola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET - Universidad de Buenos Aires, Argentina
| | - Florencia Giliberto
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ishii M, Yamaguchi Y, Takada K, Hamaya H, Ogawa S, Akishita M. Effect of decreased expression of latent TGF-β binding proteins 4 on the pathogenesis of emphysema as an age-related disease. Arch Gerontol Geriatr 2024; 127:105597. [PMID: 39121531 DOI: 10.1016/j.archger.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE Latent TGF-β binding protein 4 (LTBP4) is involved in the production of elastin fibers and has been implicated in LTBP4-related cutis laxa and its complication, emphysema-like changes. Various factors have been implicated in the pathogenesis of emphysema, including elastic degeneration, inflammation, cellular senescence, mitochondrial dysfunction, and decreased angiogenesis in the lungs. We investigated the association between LTBP4 and emphysema using human lung fibroblasts with silenced LTBP4 genes. METHODS Cell contraction, elastin expression, cellular senescence, inflammation, anti-inflammatory factors, and mitochondrial function were compared between the LTBP4 small interfering RNA (siRNA) and control siRNA. RESULTS Under the suppression of LTBP4, significant changes were observed in the following: decreased cell contractility, decreased elastin expression, increased expression of the p16 gene involved in cellular senescence, increased TNFα, decreased GSTM3 and SOD, decreased mitochondrial membrane potential, and decreased VEGF expression. Furthermore, the decreased cell contractility and increased GSTM3 expression observed under LTBP4 suppression were restored by the addition of N-acetyl-L-cysteine or recombinant LTBP4. CONCLUSION The decreased elastin expression, cellular senescence, inflammation, decreased antioxidant activity, mitochondrial dysfunction, and decreased VEGF expression under reduced LTBP4 expression may all be involved in the destruction of the alveolar wall in emphysema. Smoking is the most common cause of emphysema; however, genetic factors related to LTBP4 expression and other factors may also contribute to its pathogenesis.
Collapse
Affiliation(s)
- Masaki Ishii
- The Department of Geriatric Medicine, The University of Tokyo, Japan.
| | - Yasuhiro Yamaguchi
- Division of Department of Respiratory Medicine, Jichi Medical University Saitama Medical Center, Japan
| | - Kazufumi Takada
- The Department of Geriatric Medicine, The University of Tokyo, Japan
| | - Hironobu Hamaya
- The Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Japan
| | - Sumito Ogawa
- The Department of Geriatric Medicine, The University of Tokyo, Japan
| | - Masahiro Akishita
- The Department of Geriatric Medicine, The University of Tokyo, Japan; The Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Japan
| |
Collapse
|
3
|
Yang Q, Huang W, Yin D, Zhang L, Gao Y, Tong J, Li Z. EPHX1 and GSTP1 polymorphisms are associated with COPD risk: a systematic review and meta-analysis. Front Genet 2023; 14:1128985. [PMID: 37284064 PMCID: PMC10239837 DOI: 10.3389/fgene.2023.1128985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) affects approximately 400 million people worldwide and is associated with high mortality and morbidity. The effect of EPHX1 and GSTP1 gene polymorphisms on COPD risk has not been fully characterized. Objective: To investigate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. Methods: A systematic search was conducted on 9 databases to identify studies published in English and Chinese. The analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines (PRISMA). The pooled OR and 95% CI were calculated to evaluate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. The I2 test, Q test, Egger's test, and Begg's test were conducted to determine the level of heterogeneity and publication bias of the included studies. Results: In total, 857 articles were retrieved, among which 59 met the inclusion criteria. The EPHX1 rs1051740 polymorphism (homozygote, heterozygote, dominant, recessives, and allele model) was significantly associated with high risk of COPD risk. Subgroup analysis revealed that the EPHX1 rs1051740 polymorphism was significantly associated with COPD risk among Asians (homozygote, heterozygote, dominant, and allele model) and Caucasians (homozygote, dominant, recessives, and allele model). The EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with a low risk of COPD. Subgroup analysis showed that the EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Asians. The GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk. Subgroup analysis showed that the GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk among Caucasians. The GSTP1 rs1138272 polymorphism (heterozygote and dominant model) was significantly associated with COPD risk. Subgroup analysis suggested that the GSTP1 rs1138272 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Caucasians. Conclusion: The C allele in EPHX1 rs1051740 among Asians and the CC genotype among Caucasians may be risk factors for COPD. However, the GA genotype in EPHX1 rs2234922 may be a protective factor against COPD in Asians. The GG genotype in GSTP1 rs1695 and the TC genotype in GSTP1 rs1138272 may be risk factors for COPD, especially among Caucasians.
Collapse
Affiliation(s)
- Qinjun Yang
- Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wanqiu Huang
- Anhui University of Chinese Medicine, Hefei, China
| | - Dandan Yin
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Yating Gao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiabing Tong
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| |
Collapse
|
4
|
Ibarra-Tapia IY, Juárez-Sandoval A, Pérez IT, Cano-Martínez LJ, Sánchez-García S, Ruiz-Batalla JM, Aroche-Reyes IA, García S, Canto P, Mejía DR, Coral-Vázquez RM. Association of polymorphisms rs2303729, rs10880, and rs1131620 of LTBP4 with sarcopenia in elderly patients with type 2 diabetes mellitus. Ann Hum Biol 2022; 49:311-316. [PMID: 36524797 DOI: 10.1080/03014460.2022.2152489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Latent TGFβ binding protein 4 (LTBP4) modifies skeletal muscle function, and polymorphisms in this gene have been associated with a longer ambulation time in patients with Duchenne muscular dystrophy. However, no studies associate these polymorphisms with an acquired muscle condition. AIM The study aims to determine whether three functional variants within the LTBP4 were associated with sarcopenia in patients with type 2 diabetes mellitus (T2DM). SUBJECTS AND METHODS We performed an analysis with 144 elderly individuals with T2DM, including 101 without sarcopenia and 43 with sarcopenia. Polymorphism frequency was determined by real-time PCR allelic discrimination TaqMan assay. RESULTS Under different genetic models, the univariant analysis did not show a significant association of any polymorphism with sarcopenia. But the multivariate model analysis showed that variant rs1131620 (OR 7.852, 95% CI 1.854-33.257, p = 0.005) was significantly associated with sarcopenia under a dominant model. Under the same analysis, the variants rs2303729 and rs10880 had a more discrete association (OR 3.537 95% CI 1.078-11.607, p = 0.037; OR 5.008, 95% CI 1.120-22.399, p = 0.035, respectively). CONCLUSIONS Our study highlights the importance of studying LTBP4 polymorphisms associated with sarcopenia. These findings suggest that the rs1131620 polymorphism of the LTBP4 may be part of the observed sarcopenia process in patients with T2DM.
Collapse
Affiliation(s)
- Ingrid Yali Ibarra-Tapia
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Ariadna Juárez-Sandoval
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Itzel Torres Pérez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Luis Javier Cano-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento. Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | | | - Silvia García
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David-Rojano Mejía
- Unidad Médica de Alta Especialidad de Traumatología, Instituto Mexicano del Seguro Social, Ortopedia y Rehabilitación "Dr. Victorio de la Fuente Narváez", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
5
|
Li MH, Marty-Santos LM, van Ginkel PR, McDermott AE, Rasky AJ, Lukacs NW, Wellik DM. The Lung Elastin Matrix Undergoes Rapid Degradation Upon Adult Loss of Hox5 Function. Front Cell Dev Biol 2021; 9:767454. [PMID: 34901011 PMCID: PMC8662386 DOI: 10.3389/fcell.2021.767454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode transcription factors that are critical for embryonic skeletal patterning and organogenesis. The Hoxa5, Hoxb5, and Hoxc5 paralogs are expressed in the lung mesenchyme and function redundantly during embryonic lung development. Conditional loss-of-function of these genes during postnatal stages leads to severe defects in alveologenesis, specifically in the generation of the elastin network, and animals display bronchopulmonary dysplasia (BPD) or BPD-like phenotype. Here we show the surprising results that mesenchyme-specific loss of Hox5 function at adult stages leads to rapid disruption of the mature elastin matrix, alveolar enlargement, and an emphysema-like phenotype. As the elastin matrix of the lung is considered highly stable, adult disruption of the matrix was not predicted. Just 2 weeks after deletion, adult Hox5 mutant animals show significant increases in alveolar space and changes in pulmonary function, including reduced elastance and increased compliance. Examination of the extracellular matrix (ECM) of adult Tbx4rtTA; TetOCre; Hox5a f a f bbcc lungs demonstrates a disruption of the elastin network although the underlying fibronectin, interstitial collagen and basement membrane appear unaffected. An influx of macrophages and increased matrix metalloproteinase 12 (MMP12) are observed in the distal lung 3 days after Hox5 deletion. In culture, fibroblasts from Hox5 mutant lungs exhibit reduced adhesion. These findings establish a novel role for Hox5 transcription factors as critical regulators of lung fibroblasts at adult homeostasis.
Collapse
Affiliation(s)
- Mu-Hang Li
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Leilani M. Marty-Santos
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Paul R. van Ginkel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Aubrey E. McDermott
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Andrew J. Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
6
|
Ekström M, Johannessen A, Abramson MJ, Benediktsdottir B, Franklin K, Gislason T, Gómez Real F, Holm M, Janson C, Jogi R, Lowe A, Malinovschi A, Martínez-Moratalla J, Oudin A, Sánchez-Ramos JL, Schlünssen V, Svanes C. Breathlessness across generations: results from the RHINESSA generation study. Thorax 2021; 77:172-177. [PMID: 34127557 PMCID: PMC8762033 DOI: 10.1136/thoraxjnl-2021-217271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/15/2021] [Indexed: 11/04/2022]
Abstract
Background Breathlessness is a major cause of suffering and disability globally. The symptom relates to multiple factors including asthma and lung function, which are influenced by hereditary factors. No study has evaluated potential inheritance of breathlessness itself across generations. Methods We analysed the association between breathlessness in parents and their offspring in the Respiratory Health in Northern Europe, Spain and Australia generation study. Data on parents and offspring aged ≥18 years across 10 study centres in seven countries included demographics, self-reported breathlessness, asthma, depression, smoking, physical activity level, measured Body Mass Index and spirometry. Data were analysed using multivariable logistic regression accounting for clustering within centres and between siblings. Results A total of 1720 parents (mean age at assessment 36 years, 55% mothers) and 2476 offspring (mean 30 years, 55% daughters) were included. Breathlessness was reported by 809 (32.7%) parents and 363 (14.7%) offspring. Factors independently associated with breathlessness in parents and offspring included obesity, current smoking, asthma, depression, lower lung function and female sex. After adjusting for potential confounders, parents with breathlessness were more likely to have offspring with breathlessness, adjusted OR 1.8 (95% CI 1.1 to 2.9). The association was not modified by sex of the parent or offspring. Conclusion Parents with breathlessness were more likely to have children who developed breathlessness, after adjusting for asthma, lung function, obesity, smoking, depression and female sex in both generations. The hereditary components of breathlessness need to be further explored.
Collapse
Affiliation(s)
- Magnus Ekström
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bryndis Benediktsdottir
- Department of Sleep, Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Karl Franklin
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Thorarinn Gislason
- Department of Sleep, Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Francisco Gómez Real
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Mathias Holm
- Occupational and Environmental Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Rain Jogi
- The Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Adrian Lowe
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Jesús Martínez-Moratalla
- Servicio de Pneumologıa del Complejo Hospitalario Universitario de Albacete (CHUA), Servicio de Salud de Castilla-La Mancha (SESCAM), Albacete, Spain
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | | | - Vivi Schlünssen
- Department of Public Health, Environment, Work and Health, Danish Ramazzini Center, Aarhus University, Aarhus, Denmark.,Department of Public Health, Department of Public Health, Environment, Work and Health, Danish Ramazzini Center, Copenhagen, Denmark
| | - Cecilie Svanes
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Su CT, Urban Z. LTBP4 in Health and Disease. Genes (Basel) 2021; 12:genes12060795. [PMID: 34071145 PMCID: PMC8224675 DOI: 10.3390/genes12060795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding protein (LTBP) 4, a member of the LTBP family, shows structural homology with fibrillins. Both these protein types are characterized by calcium-binding epidermal growth factor-like repeats interspersed with 8-cysteine domains. Based on its domain composition and distribution, LTBP4 is thought to adopt an extended structure, facilitating the linear deposition of tropoelastin onto microfibrils. In humans, mutations in LTBP4 result in autosomal recessive cutis laxa type 1C, characterized by redundant skin, pulmonary emphysema, and valvular heart disease. LTBP4 is an essential regulator of TGFβ signaling and is related to development, immunity, injury repair, and diseases, playing a central role in regulating inflammation, fibrosis, and cancer progression. In this review, we focus on medical disorders or diseases that may be manipulated by LTBP4 in order to enhance the understanding of this protein.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Internal Medicine, Renal Division, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan;
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei 106, Taiwan
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: ; Tel.: +1-412-648-8269
| |
Collapse
|
8
|
Mecham RP. Elastin in lung development and disease pathogenesis. Matrix Biol 2018; 73:6-20. [PMID: 29331337 DOI: 10.1016/j.matbio.2018.01.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/07/2018] [Indexed: 12/24/2022]
Abstract
Elastin is expressed in most tissues that require elastic recoil. The protein first appeared coincident with the closed circulatory system, and was critical for the evolutionary success of the vertebrate lineage. Elastin is expressed by multiple cell types in the lung, including mesothelial cells in the pleura, smooth muscle cells in airways and blood vessels, endothelial cells, and interstitial fibroblasts. This highly crosslinked protein associates with fibrillin-containing microfibrils to form the elastic fiber, which is the physiological structure that functions in the extracellular matrix. Elastic fibers can be woven into many different shapes depending on the mechanical needs of the tissue. In large pulmonary vessels, for example, elastin forms continuous sheets, or lamellae, that separate smooth muscle layers. Outside of the vasculature, elastic fibers form an extensive fiber network that originates in the central bronchi and inserts into the distal airspaces and visceral pleura. The fibrous cables form a looping system that encircle the alveolar ducts and terminal air spaces and ensures that applied force is transmitted equally to all parts of the lung. Normal lung function depends on proper secretion and assembly of elastin, and either inhibition of elastin fiber assembly or degradation of existing elastin results in lung dysfunction and disease.
Collapse
Affiliation(s)
- Robert P Mecham
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Tomasovic A, Kurrle N, Wempe F, De-Zolt S, Scheibe S, Koli K, Serchinger M, Schnütgen F, Sürün D, Sterner-Kock A, Weissmann N, von Melchner H. Ltbp4 regulates Pdgfrβ expression via TGFβ-dependent modulation of Nrf2 transcription factor function. Matrix Biol 2016; 59:109-120. [PMID: 27645114 DOI: 10.1016/j.matbio.2016.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 10/21/2022]
Abstract
Latent transforming growth factor beta binding protein 4 (LTBP4) belongs to the fibrillin/LTBP family of proteins and plays an important role as a structural component of extracellular matrix (ECM) and local regulator of TGFβ signaling. We have previously reported that Ltbp4S knock out mice (Ltbp4S-/-) develop centrilobular emphysema reminiscent of late stage COPD, which could be partially rescued by inactivating the antioxidant protein Sestrin 2 (Sesn2). More recent studies showed that Sesn2 knock out mice upregulate Pdgfrβ-controlled alveolar maintenance programs that protect against cigarette smoke induced pulmonary emphysema. Based on this, we hypothesized that the emphysema of Ltbp4S-/- mice is primarily caused by defective Pdgfrβ signaling. Here we show that LTBP4 induces Pdgfrβ signaling by inhibiting the antioxidant Nrf2/Keap1 pathway in a TGFβ-dependent manner. Overall, our data identified Ltbp4 as a major player in lung remodeling and injury repair.
Collapse
Affiliation(s)
- Ana Tomasovic
- Department of Molecular Hematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Molecular Hematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Frank Wempe
- Department of Molecular Hematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Silke De-Zolt
- Department of Molecular Hematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Susan Scheibe
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-University Giessen, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), D-35392 Giessen, Germany
| | - Katri Koli
- Research Programs Unit and Transplantation Laboratory, Haartman Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Martin Serchinger
- Department of Molecular Hematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Molecular Hematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Duran Sürün
- Department of Molecular Hematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Anja Sterner-Kock
- Center for Experimental Medicine, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-University Giessen, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), D-35392 Giessen, Germany
| | - Harald von Melchner
- Department of Molecular Hematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
11
|
Hua L, An L, Li L, Zhang Y, Wang C. A bioinformatics strategy for detecting the complexity of Chronic Obstructive Pulmonary Disease in Northern Chinese Han Population. Genes Genet Syst 2016; 87:197-209. [PMID: 22976395 DOI: 10.1266/ggs.87.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a complex human disease which is driven not only by genetic factors, but also by various environmental variables, such as gender, age and smoking. Therefore, there is a demand for investigating the complexity among various risk factors involved in COPD. In this study, 44 tagging SNPs from EPHX1, GSTP1, SERPINE2 and TGFB1 were selected and genotyped in 310 COPD cases and 203 controls, all of which belong to the Han from North China. We integrated functional prediction algorithms of nonsynonymous SNPs (nsSNPs) into Bayesian network to explore the complex regulatory relationships among disease traits and various risk factors. The results showed that three basic variables (age, sex and smoking) were risk factors of COPD-related trait and phenotype. Besides these environmental risk factors, deleterious nsSNPs were found to perform better than those of significant synonymous SNPs when used as variables to make risk prediction of disease outcome. This study provides further evidences for detecting the complexity of COPD in Northern Chinese Han Population.
Collapse
Affiliation(s)
- Lin Hua
- Biomedical Engineering Institute of Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
12
|
Lamar KM, Miller T, Dellefave-Castillo L, McNally EM. Genotype-Specific Interaction of Latent TGFβ Binding Protein 4 with TGFβ. PLoS One 2016; 11:e0150358. [PMID: 26918958 PMCID: PMC4769137 DOI: 10.1371/journal.pone.0150358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/12/2016] [Indexed: 01/06/2023] Open
Abstract
Latent TGFβ binding proteins are extracellular matrix proteins that bind latent TGFβ to form the large latent complex. Nonsynonymous polymorphisms in LTBP4, a member of the latent TGFβ binding protein gene family, have been linked to several human diseases, underscoring the importance of TGFβ regulation for a range of phenotypes. Because of strong linkage disequilibrium across the LTBP4 gene, humans have two main LTBP4 alleles that differ at four amino acid positions, referred to as IAAM and VTTT for the encoded residues. VTTT is considered the “risk” allele and associates with increased intracellular TGFβ signaling and more deleterious phenotypes in muscular dystrophy and other diseases. We now evaluated LTBP4 nsSNPs in dilated cardiomyopathy, a distinct disorder associated with TGFβ signaling. We stratified based on self-identified ethnicity and found that the LTBP4 VTTT allele is associated with increased risk of dilated cardiomyopathy in European Americans extending the diseases that associate with LTBP4 genotype. However, the association of LTBP4 SNPs with dilated cardiomyopathy was not observed in African Americans. To elucidate the mechanism by which LTBP4 genotype exerts this differential effect, TGFβ’s association with LTBP4 protein was examined. LTBP4 protein with the IAAM residues bound more latent TGFβ compared to the LTBP4 VTTT protein. Together these data provide support that LTBP4 genotype exerts its effect through differential avidity for TGFβ accounting for the differences in TGFβ signaling attributed to these two alleles.
Collapse
Affiliation(s)
- Kay-Marie Lamar
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Tamari Miller
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Elizabeth M. McNally
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Dubé BP, Guerder A, Morelot-Panzini C, Laveneziana P. The clinical relevance of the emphysema-hyperinflated phenotype in COPD. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40749-015-0017-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Liu F, Tang W, Chen D, Li M, Gao Y, Zheng H, Chen S. Expression of TGF- β1 and CTGF Is Associated with Fibrosis of Denervated Sternocleidomastoid Muscles in Mice. TOHOKU J EXP MED 2016; 238:49-56. [DOI: 10.1620/tjem.238.49] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Fei Liu
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, The Second Military Medical University
| | - Weifang Tang
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, The Second Military Medical University
| | - Donghui Chen
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, The Second Military Medical University
| | - Meng Li
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, The Second Military Medical University
| | - Yinna Gao
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, The Second Military Medical University
| | - Hongliang Zheng
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, The Second Military Medical University
| | - Shicai Chen
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, The Second Military Medical University
- Otolaryngology-Head and Neck Surgery Center of Chinese PLA
| |
Collapse
|
15
|
Vanakker O, Callewaert B, Malfait F, Coucke P. The Genetics of Soft Connective Tissue Disorders. Annu Rev Genomics Hum Genet 2015; 16:229-55. [DOI: 10.1146/annurev-genom-090314-050039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| |
Collapse
|
16
|
Abstract
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans-golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.
Collapse
|
17
|
Goldstein JA, Bogdanovich S, Beiriger A, Wren LM, Rossi AE, Gao QQ, Gardner BB, Earley JU, Molkentin JD, McNally EM. Excess SMAD signaling contributes to heart and muscle dysfunction in muscular dystrophy. Hum Mol Genet 2014; 23:6722-31. [PMID: 25070948 DOI: 10.1093/hmg/ddu390] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Disruption of the dystrophin complex causes muscle injury, dysfunction, cell death and fibrosis. Excess transforming growth factor (TGF) β signaling has been described in human muscular dystrophy and animal models, where it is thought to relate to the progressive fibrosis that characterizes dystrophic muscle. We now found that canonical TGFβ signaling acutely increases when dystrophic muscle is stimulated to contract. Muscle lacking the dystrophin-associated protein γ-sarcoglycan (Sgcg null) was subjected to a lengthening protocol to produce maximal muscle injury, which produced rapid accumulation of nuclear phosphorylated SMAD2/3. To test whether reducing SMAD signaling improves muscular dystrophy in mice, we introduced a heterozygous mutation of SMAD4 (S4) into Sgcg mice to reduce but not ablate SMAD4. Sgcg/S4 mice had improved body mass compared with Sgcg mice, which normally show a wasting phenotype similar to human muscular dystrophy patients. Sgcg/S4 mice had improved cardiac function as well as improved twitch and tetanic force in skeletal muscle. Functional enhancement in Sgcg/S4 muscle occurred without a reduction in fibrosis, suggesting that intracellular SMAD4 targets may be important. An assessment of genes differentially expressed in Sgcg muscle focused on those encoding calcium-handling proteins and responsive to TGFβ since this pathway is a target for mediating improvement in muscular dystrophy. These data demonstrate that excessive TGFβ signaling alters cardiac and muscle performance through the intracellular SMAD pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Quan Q Gao
- Committee on Development, Regeneration, and Stem Cell Biology
| | | | | | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, and Howard Hughes Medical Institutes, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Elizabeth M McNally
- Department of Medicine Department of Human Genetics, The University of Chicago, Chicago, IL, USA and
| |
Collapse
|
18
|
Cho MH, McDonald MLN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, Demeo DL, Sylvia JS, Ziniti J, Laird NM, Lange C, Litonjua AA, Sparrow D, Casaburi R, Barr RG, Regan EA, Make BJ, Hokanson JE, Lutz S, Dudenkov TM, Farzadegan H, Hetmanski JB, Tal-Singer R, Lomas DA, Bakke P, Gulsvik A, Crapo JD, Silverman EK, Beaty TH. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2014; 2:214-25. [PMID: 24621683 PMCID: PMC4176924 DOI: 10.1016/s2213-2600(14)70002-5] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups. We sought to identify risk loci for moderate to severe and severe COPD with data from several cohort studies. METHODS We combined genome-wide association analysis data from participants in the COPDGene study (non-Hispanic white and African-American ethnic origin) and the ECLIPSE, NETT/NAS, and Norway GenKOLS studies (self-described white ethnic origin). We did analyses comparing control individuals with individuals with moderate to severe COPD and with a subset of individuals with severe COPD. Single nucleotide polymorphisms yielding a p value of less than 5 × 10(-7) in the meta-analysis at loci not previously described were genotyped in individuals from the family-based ICGN study. We combined results in a joint meta-analysis (threshold for significance p<5 × 10(-8)). FINDINGS Analysis of 6633 individuals with moderate to severe COPD and 5704 control individuals confirmed association at three known loci: CHRNA3 (p=6·38 × 10(-14)), FAM13A (p=1·12 × 10(-14)), and HHIP (p=1·57 × 10(-12)). We also showed significant evidence of association at a novel locus near RIN3 (p=5·25 × 10(-9)). In the overall meta-analysis (ie, including data from 2859 ICGN participants), the association with RIN3 remained significant (p=5·4 × 10(-9)). 3497 individuals were included in our analysis of severe COPD. The effect estimates for the loci near HHIP and CHRNA3 were significantly stronger in severe disease than in moderate to severe disease (p<0·01). We also identified associations at two additional loci: MMP12 (overall joint meta-analysis p=2·6 × 10(-9)) and TGFB2 (overall joint meta-analysis p=8·3 × 10(-9)). INTERPRETATION We have confirmed associations with COPD at three known loci and identified three new genome-wide significant associations. Genetic variants other than in α-1 antitrypsin increase the risk of COPD. FUNDING US National Heart, Lung, and Blood Institute; the Alpha-1 Foundation; the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor; GlaxoSmithKline; Centers for Medicare and Medicaid Services; Agency for Healthcare Research and Quality; and US Department of Veterans Affairs.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Merry-Lynn N McDonald
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Manuel Mattheisen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard School of Public Health, Boston, MA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L Demeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jody S Sylvia
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John Ziniti
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nan M Laird
- Harvard School of Public Health, Boston, MA, USA
| | | | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David Sparrow
- School of Public Health and School of Medicine, Boston University, Boston, MA, USA; Veterans Administration Boston Healthcare System, Boston, MA, USA
| | - Richard Casaburi
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth A Regan
- National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | | | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Sharon Lutz
- Department of Bioinformatics and Statistics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Tanda Murray Dudenkov
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Homayoon Farzadegan
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jacqueline B Hetmanski
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ruth Tal-Singer
- GlaxoSmithKline Research and Development, King Of Prussia, PA, USA
| | | | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Terri H Beaty
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Abstract
Neuromuscular diseases, which encompass disorders that affect muscle and its innervation, are highly heritable. Genetic diagnosis now frequently pinpoints the primary mutation responsible for a given neuromuscular disease. However, the results from genetic testing indicate that neuromuscular disease phenotypes may vary widely, even in individuals with the same primary disease-causing mutation. Clinical variability arises from both genetic and environmental factors. Genetic modifiers can now be identified using candidate gene as well as genomic approaches. The presence of genetic modifiers for neuromuscular disease helps define the clinical outcome and also highlights pathways of potential therapeutic utility. Herein, we will focus on single gene neuromuscular disorders, including muscular dystrophy, spinal muscular atrophy, and amyotrophic lateral sclerosis, and the methods that have been used to identify modifier genes. Animal models have been an invaluable resource for modifier gene discovery and subsequent mechanistic studies. Some modifiers, identified using animal models, have successfully translated to the human counterpart. Furthermore, in a few instances, modifier gene discovery has repetitively uncovered the same pathway, such as TGFβ signaling in muscular dystrophy, further emphasizing the relevance of that pathway. Knowledge of genetic factors that influence disease can have direct clinical applications for prognosis and predicted outcome.
Collapse
Affiliation(s)
- Kay-Marie Lamar
- Department of Human Genetics, Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL, USA
| | - Elizabeth M McNally
- Department of Human Genetics, Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Abstract
Why only 20% of smokers develop clinically relevant chronic obstructive pulmonary disease (COPD) was a puzzle for many years. Now, epidemiologic studies point clearly toward a large heritable component. The combination of genome-wide association studies and candidate gene analysis is helping to identify those genetic variants responsible for an individual's susceptibility to developing COPD. In this review, the current data implicating specific loci and genes in the pathogenesis of COPD are examined.
Collapse
Affiliation(s)
- Stefan J Marciniak
- Division of Respiratory Medicine, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | - David A Lomas
- University College London, 1st Floor, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| |
Collapse
|
21
|
Ceco E, McNally EM. Modifying muscular dystrophy through transforming growth factor-β. FEBS J 2013; 280:4198-209. [PMID: 23551962 PMCID: PMC3731412 DOI: 10.1111/febs.12266] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022]
Abstract
Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle, with replacement by scar or fibrotic tissue, resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing effort to define the genetic and molecular bases that influence muscular dystrophy onset and progression. Modifier genes for muscle disease have been identified through both candidate gene approaches and genome-wide surveys. Multiple lines of experimental evidence have now converged on the transforming growth factor-β (TGF-β) pathway as a modifier for muscular dystrophy. TGF-β signaling is upregulated in dystrophic muscle as a result of a destabilized plasma membrane and/or an altered extracellular matrix. Given the important biological role of the TGF-β pathway, and its role beyond muscle homeostasis, we review modifier genes that alter the TGF-β pathway and approaches to modulate TGF-β activity to ameliorate muscle disease.
Collapse
Affiliation(s)
- Ermelinda Ceco
- Committee on Cell Physiology, University of Chicago, IL 60637, USA
| | | |
Collapse
|
22
|
Heidler J, Fysikopoulos A, Wempe F, Seimetz M, Bangsow T, Tomasovic A, Veit F, Scheibe S, Pichl A, Weisel F, Lloyd KCK, Jaksch P, Klepetko W, Weissmann N, von Melchner H. Sestrin-2, a repressor of PDGFRβ signalling, promotes cigarette-smoke-induced pulmonary emphysema in mice and is upregulated in individuals with COPD. Dis Model Mech 2013; 6:1378-87. [PMID: 24046361 PMCID: PMC3820261 DOI: 10.1242/dmm.013482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. COPD is caused by chronic exposure to cigarette smoke and/or other environmental pollutants that are believed to induce reactive oxygen species (ROS) that gradually disrupt signalling pathways responsible for maintaining lung integrity. Here we identify the antioxidant protein sestrin-2 (SESN2) as a repressor of PDGFRβ signalling, and PDGFRβ signalling as an upstream regulator of alveolar maintenance programmes. In mice, the mutational inactivation of Sesn2 prevents the development of cigarette-smoke-induced pulmonary emphysema by upregulating PDGFRβ expression via a selective accumulation of intracellular superoxide anions (O2−). We also show that SESN2 is overexpressed and PDGFRβ downregulated in the emphysematous lungs of individuals with COPD and to a lesser extent in human lungs of habitual smokers without COPD, implicating a negative SESN2-PDGFRβ interrelationship in the pathogenesis of COPD. Taken together, our results imply that SESN2 could serve as both a biomarker and as a drug target in the clinical management of COPD.
Collapse
Affiliation(s)
- Juliana Heidler
- Department of Molecular Haematology, Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Flanigan KM, Ceco E, Lamar KM, Kaminoh Y, Dunn DM, Mendell JR, King WM, Pestronk A, Florence JM, Mathews KD, Finkel RS, Swoboda KJ, Gappmaier E, Howard MT, Day JW, McDonald C, McNally EM, Weiss RB. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann Neurol 2013; 73:481-8. [PMID: 23440719 PMCID: PMC4106425 DOI: 10.1002/ana.23819] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/02/2012] [Accepted: 11/17/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) displays a clinical range that is not fully explained by the primary DMD mutations. Ltbp4, encoding latent transforming growth factor-β binding protein 4, was previously discovered in a genome-wide scan as a modifier of murine muscular dystrophy. We sought to determine whether LTBP4 genotype influenced DMD severity in a large patient cohort. METHODS We analyzed nonsynonymous single nucleotide polymorphisms (SNPs) from human LTBP4 in 254 nonambulatory subjects with known DMD mutations. These SNPs, V194I, T787A, T820A, and T1140M, form the VTTT and IAAM LTBP4 haplotypes. RESULTS Individuals homozygous for the IAAM LTBP4 haplotype remained ambulatory significantly longer than those heterozygous or homozygous for the VTTT haplotype. Glucocorticoid-treated patients who were IAAM homozygotes lost ambulation at 12.5 ± 3.3 years compared to 10.7 ± 2.1 years for treated VTTT heterozygotes or homozygotes. IAAM fibroblasts exposed to transforming growth factor (TGF) β displayed reduced phospho-SMAD signaling compared to VTTT fibroblasts, consistent with LTBP4' role as a regulator of TGFβ. INTERPRETATION LTBP4 haplotype influences age at loss of ambulation, and should be considered in the management of DMD patients.
Collapse
Affiliation(s)
- Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
- Department of Neurology, The Ohio State University, Columbus, Ohio
| | - Ermelinda Ceco
- Department of Medicine, Department of Human Genetics, Committee on Cell Physiology, The University of Chicago
| | - Kay-Marie Lamar
- Department of Medicine, Department of Human Genetics, Committee on Cell Physiology, The University of Chicago
| | - Yuuki Kaminoh
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Diane M. Dunn
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah
| | - Jerry R. Mendell
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
- Department of Neurology, The Ohio State University, Columbus, Ohio
| | - Wendy M. King
- Department of Neurology, The Ohio State University, Columbus, Ohio
| | - Alan Pestronk
- Department of Neurology, Washington University at St. Louis, St. Louis, Missouri
| | - Julaine M. Florence
- Department of Neurology, Washington University at St. Louis, St. Louis, Missouri
| | - Katherine D. Mathews
- Department of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Richard S. Finkel
- Division of Neurology, The Children's Hospital of Philadelphia, and the Departments of Neurology and Pediatrics, Pearlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn J. Swoboda
- Department of Neurology, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah
| | - Eduard Gappmaier
- Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Michael T. Howard
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah
| | - John W. Day
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | - Craig McDonald
- Department of Physical Medicine and Rehabilitation, University of California Davis, Sacramento, California
| | - Elizabeth M. McNally
- Department of Medicine, Department of Human Genetics, Committee on Cell Physiology, The University of Chicago
| | - Robert B. Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
24
|
Yang YC, Zhang N, Van Crombruggen K, Hu GH, Hong SL, Bachert C. Transforming growth factor-beta1 in inflammatory airway disease: a key for understanding inflammation and remodeling. Allergy 2012; 67:1193-202. [PMID: 22913656 DOI: 10.1111/j.1398-9995.2012.02880.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2012] [Indexed: 01/07/2023]
Abstract
Airway diseases such as chronic rhinosinusitis, asthma, and chronic obstructive pulmonary disorder are characterized by inflammation and remodeling. Among inflammatory and extracellular matrix regulatory cytokines, transforming growth factor-beta (TGF-β) stands central, as it possesses both important immunomodulatory and fibrogenic activities, and should be considered a key for understanding inflammation and remodeling processes. This review will briefly summarize the recent findings on the role of TGF-β1, from the view points of inflammation and remodeling, and discuss the role of TGF-β in the upper and lower airway diseases. This may reveal new perspectives in the understanding of airway inflammation and remodeling processes and may open innovative treatment strategies for the regulation of TGF-β1.
Collapse
Affiliation(s)
| | - N. Zhang
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent; Belgium
| | - K. Van Crombruggen
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent; Belgium
| | - G. H. Hu
- Department of Oto-Rhino-Laryngology; the First affiliated Hospital; Chongqing Medical University; Chongqing; China
| | - S. L. Hong
- Department of Oto-Rhino-Laryngology; the First affiliated Hospital; Chongqing Medical University; Chongqing; China
| | - C. Bachert
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent; Belgium
| |
Collapse
|
25
|
Abstract
A genetic contribution to develop chronic obstructive pulmonary disease (COPD) is well established. However, the specific genes responsible for enhanced risk or host differences in susceptibility to smoke exposure remain poorly understood. The goal of this review is to provide a comprehensive literature overview on the genetics of COPD, highlight the most promising findings during the last few years, and ultimately provide an updated COPD gene list. Candidate gene studies on COPD and related phenotypes indexed in PubMed before January 5, 2012 are tabulated. An exhaustive list of publications for any given gene was looked for. This well-documented COPD candidate-gene list is expected to serve many purposes for future replication studies and meta-analyses as well as for reanalyzing collected genomic data in the field. In addition, this review summarizes recent genetic loci identified by genome-wide association studies on COPD, lung function, and related complications. Assembling resources, integrative genomic approaches, and large sample sizes of well-phenotyped subjects is part of the path forward to elucidate the genetic basis of this debilitating disease.
Collapse
Affiliation(s)
- Yohan Bossé
- Centre de recherche Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.
| |
Collapse
|
26
|
Budd DC, Holmes AM. Targeting TGFβ superfamily ligand accessory proteins as novel therapeutics for chronic lung disorders. Pharmacol Ther 2012; 135:279-91. [PMID: 22722064 DOI: 10.1016/j.pharmthera.2012.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dysregulation of the transforming growth factor β (TGFβ) pathway has been implicated to underlie a number of disease indications including chronic lung disorders such as asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonias, and pulmonary arterial hypertension (PAH). Consequently, the pharmaceutical industry has devoted significant resources in the pursuit of TGFβ pathway inhibitors that target the cognate type I and II receptors and respective ligands. The progress of these approaches has been painfully slow, due in part to dose-limiting safety issues that result from the antagonism of a pathway that is responsible for regulating many fundamental biological processes including immune surveillance and cardiovascular responses. These disappointments have led many in the field to conclude that modulating the TGFβ pathway for chronic indications with a sufficient safety window using conventional approaches may be extremely difficult to achieve. Here we review the rationale and limitations of the use of TGFβ pathway inhibitors in chronic lung disorders and the possibility of targeting TGFβ superfamily ligand accessory proteins to allow rheostatic regulation of signaling to achieve efficacy while maintaining a sufficient therapeutic index.
Collapse
Affiliation(s)
- David C Budd
- Respiratory Drug Discovery, Inflammation, Hoffmann-La Roche Inc., Nutley, NJ, USA.
| | | |
Collapse
|
27
|
Sandford AJ, Malhotra D, Boezen HM, Siedlinski M, Postma DS, Wong V, Akhabir L, He JQ, Connett JE, Anthonisen NR, Paré PD, Biswal S. NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease. Physiol Genomics 2012; 44:754-63. [PMID: 22693272 DOI: 10.1152/physiolgenomics.00027.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function.
Collapse
Affiliation(s)
- Andrew J Sandford
- UBC James Hogg Research Centre, Providence Heart + Lung Institute, St. Paul's Hospital, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
O’Neill MS, Breton CV, Devlin RB, Utell MJ. Air pollution and health: emerging information on susceptible populations. AIR QUALITY, ATMOSPHERE, & HEALTH 2012; 5:189-201. [PMID: 25741389 PMCID: PMC4345419 DOI: 10.1007/s11869-011-0150-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Outdoor air pollution poses risks to human health in communities around the world, and research on populations who are most susceptible continues to reveal new insights. Human susceptibility to adverse health effects from exposure to air pollution can be related to underlying disease; demographic or anthropometric characteristics; genetic profile; race and ethnicity; lifestyle, behaviors, and socioeconomic position; and location of residence or daily activities. In health research, an individual or group may have an enhanced responsiveness to a given, identical level of pollution exposure compared to those who are less susceptible. Or, people in these different groups may experience varying levels of exposure (for example, a theoretically homogeneous population whose members differ only by proximity to a road). Often the information available for health research may relate to both exposure and enhanced response to a given dose of pollution. This paper discusses the general direction of research on susceptibility to air pollution, with a general though not an exclusive focus on particulate matter, with specific examples of research on susceptibility related to cardiovascular disease, diabetes, asthma, and genetic and epigenetic features. We conclude by commenting how emerging knowledge of susceptibility can inform policy for controlling pollution sources and exposures to yield maximal health benefit and discuss two areas of emerging interest: studying air pollution and its connection to perinatal health, as well as land use and urban infrastructure design.
Collapse
Affiliation(s)
- Marie S. O’Neill
- School of Public Health, University of Michigan, 6631 SPH Tower, 109 South Observatory, Ann Arbor, MI 48109-2029, USA
| | - Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1540 Alcazar St. CHP 236, Los Angeles, CA 90033, USA
| | - Robert B. Devlin
- Clinical Research Branch, Environmental Public Health Division, U.S. Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC 27599-7315, USA
| | - Mark J. Utell
- Department of Medicine, University of Rochester Medical Center, Box EHSC, 575 Elmwood Avenue, Rochester, NY 14642, USA. Department of Environmental Medicine, University of Rochester Medical Center, Box EHSC, 575 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
29
|
Bentley AR, Kritchevsky SB, Harris TB, Newman AB, Bauer DC, Meibohm B, Clark AG, Cassano PA. Genetic variation in antioxidant enzymes and lung function. Free Radic Biol Med 2012; 52:1577-83. [PMID: 22387199 PMCID: PMC3390784 DOI: 10.1016/j.freeradbiomed.2012.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Not all cigarette smokers develop chronic obstructive pulmonary disease, and discovering susceptibility factors is an important research priority. The oxidative burden of smoking may overwhelm antioxidant defenses, and vulnerabilities may exist as a result of sequence variants in genes encoding antioxidant enzymes. This study explored the association between genetic variation in a network of antioxidant enzymes and lung phenotypes. Linear models evaluated single-locus marker associations in 2387 European American and African American participants in the Health, Aging, and Body Composition Study. After corrections were made for multiple comparisons, 15 statistically significant associations were identified, all of which were for SNP by smoking interactions. The most statistically significant findings were for genes encoding members of the isocitrate dehydrogenase gene family (IDH3A, IDH3B, IDH2). For rs6107100 (IDH3B) the variant genotype was associated with a difference of 6% in the FEV(1)/FVC ratio in African American current smokers, but the SNP had little or no association with FEV(1)/FVC in former and never smokers (nominal p(interaction)=5×10(-6)). A variant of the peroxiredoxin gene (rs9787810, PRDX5) was associated with lower percentage predicted FEV(1) and a lower ratio in European American current smokers, with little or no association in other smoking groups (nominal p(interaction)=0.0001 and 0.0003, respectively). The studied genes have not been reported in previous candidate gene association studies, and thus the findings suggest novel mechanisms and targets for future research and provide evidence for a contribution of sequence variation in genes encoding antioxidant enzymes to susceptibility in smokers.
Collapse
Affiliation(s)
- Amy R. Bentley
- Center for Research in Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | | | - Tamara B. Harris
- Intramural Research Program, National Institute on Aging, Bethesda, MD
| | - Anne B. Newman
- Center for Aging and Population Health, University of Pittsburgh, PA
| | - Douglas C. Bauer
- Departments of Medicine and Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
| | | | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY
| | | |
Collapse
|
30
|
Genetic polymorphisms of xenobiotic-metabolizing enzymes influence the risk of pulmonary emphysema. Pharmacogenet Genomics 2011; 21:876-83. [DOI: 10.1097/fpc.0b013e32834d597f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Criner GJ, Cordova F, Sternberg AL, Martinez FJ. The National Emphysema Treatment Trial (NETT): Part I: Lessons learned about emphysema. Am J Respir Crit Care Med 2011; 184:763-70. [PMID: 21757623 DOI: 10.1164/rccm.201103-0454ci] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The National Emphysema Treatment Trial (NETT) was a multicenter prospective randomized controlled trial that compared optimal medical treatment, including pulmonary rehabilitation, with optimal medical treatment plus lung volume reduction surgery (LVRS). It was the largest and most complete collection of patient demographic, clinical, physiological, and radiographic data ever compiled in severe emphysema. NETT investigated the effects of optimal medical management and LVRS on short- and long-term survival, as well as lung function, exercise performance, and quality of life. NETT also provided much information regarding the evaluation and prognosis of severe emphysema; specifically the important negative influences that hyperinflation and small airway disease have on survival. NETT emphasized the importance of addressing nonpulmonary issues such as nutrition, cardiac disease, anxiety, and depression in emphysema. NETT demonstrated that physiological, genomic, and radiographic phenotype can predict patient survival as well as response to treatment. Because the major purpose of NETT was to compare bilateral LVRS with optimal medical treatment in emphysema, patients enrolled into NETT were comprehensively characterized and selected to have a specific window of airflow obstruction and hyperinflation and to lack significant comorbidities. The NETT patient population’s restrictive features offer distinct advantages (well-characterized predominant emphysematous phenotype) and disadvantages (lack of comorbidities and significant chronic bronchitis) that must be considered when interpreting the implications of these results. Herein, we provide a summary of the major NETT findings that provide insight into the evaluation and medical treatment of emphysema.
Collapse
Affiliation(s)
- Gerard J Criner
- Division of Pulmonary and Critical Care Medicine, Temple University, School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
32
|
Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, Himes BE, Sylvia JS, Klanderman BJ, Ziniti JP, Lange C, Litonjua AA, Sparrow D, Regan EA, Make BJ, Hokanson JE, Murray T, Hetmanski JB, Pillai SG, Kong X, Anderson WH, Tal-Singer R, Lomas DA, Coxson HO, Edwards LD, MacNee W, Vestbo J, Yates JC, Agusti A, Calverley PMA, Celli B, Crim C, Rennard S, Wouters E, Bakke P, Gulsvik A, Crapo JD, Beaty TH, Silverman EK. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet 2011; 21:947-57. [PMID: 22080838 DOI: 10.1093/hmg/ddr524] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10(-9)). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV(1) (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Laboratory, Brigham & Women’s Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen CZ, Wang RH, Lee CH, Lin CC, Chang HY, Hsiue TR. Polymorphism of microsomal epoxide hydrolase is associated with chronic obstructive pulmonary disease and bronchodilator response. J Formos Med Assoc 2011; 110:685-9. [DOI: 10.1016/j.jfma.2011.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/14/2010] [Accepted: 08/03/2010] [Indexed: 10/16/2022] Open
|
34
|
Tanaka G, Aminuddin F, Akhabir L, He JQ, Shumansky K, Connett JE, Anthonisen NR, Abboud RT, Paré PD, Sandford AJ. Effect of heme oxygenase-1 polymorphisms on lung function and gene expression. BMC MEDICAL GENETICS 2011; 12:117. [PMID: 21902835 PMCID: PMC3180266 DOI: 10.1186/1471-2350-12-117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 09/08/2011] [Indexed: 11/23/2022]
Abstract
Background Oxidative stress induced by smoking is considered to be important in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Heme oxygenase-1 (HMOX1) is an essential enzyme in heme catabolism that is induced by oxidative stress and may play a protective role as an antioxidant in the lung. We determined whether HMOX1 polymorphisms were associated with lung function in COPD patients and whether the variants had functional effects. Methods We genotyped five single nucleotide polymorphisms (SNPs) in the HMOX1 gene in Caucasians who had the fastest (n = 278) and the slowest (n = 304) decline of FEV1 % predicted, selected from smokers in the NHLBI Lung Health Study. These SNPs were also studied in Caucasians with the lowest (n = 535) or the highest (n = 533) baseline lung function. Reporter genes were constructed containing three HMOX1 promoter polymorphisms and the effect of these polymorphisms on H2O2 and hemin-stimulated gene expression was determined. The effect of the HMOX1 rs2071749 SNP on gene expression in alveolar macrophages was investigated. Results We found a nominal association (p = 0.015) between one intronic HMOX1 SNP (rs2071749) and lung function decline but this did not survive correction for multiple comparisons. This SNP was in perfect linkage disequilibrium with rs3761439, located in the promoter of HMOX1. We tested rs3761439 and two other putatively functional polymorphisms (rs2071746 and the (GT)n polymorphism) in reporter gene assays but no significant effects on gene expression were found. There was also no effect of rs2071749 on HMOX1 gene expression in alveolar macrophages. Conclusions We found no association of the five HMOX1 tag SNPs with lung function decline and no evidence that the three promoter polymorphisms affected the regulation of the HMOX1 gene.
Collapse
Affiliation(s)
- Goh Tanaka
- UBC James Hogg Research Center, Providence Heart + Lung Institute, St, Paul's Hospital, Vancouver, B.C., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lack of Association Between the TGF-β1 Gene and Development of COPD in Asians: A Case–Control Study and Meta-analysis. Lung 2011; 189:213-23. [DOI: 10.1007/s00408-011-9294-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/03/2011] [Indexed: 10/18/2022]
|
36
|
Hersh CP, Silverman EK, Gascon J, Bhattacharya S, Klanderman BJ, Litonjua AA, Lefebvre V, Sparrow D, Reilly JJ, Anderson WH, Lomas DA, Mariani TJ. SOX5 is a candidate gene for chronic obstructive pulmonary disease susceptibility and is necessary for lung development. Am J Respir Crit Care Med 2011; 183:1482-9. [PMID: 21330457 DOI: 10.1164/rccm.201010-1751oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Chromosome 12p has been linked to chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD), but a susceptibility gene in that region has not been identified. OBJECTIVES We used high-density single-nucleotide polymorphism (SNP) mapping to implicate a COPD susceptibility gene and an animal model to determine the potential role of SOX5 in lung development and COPD. METHODS On chromosome 12p, we genotyped 1,387 SNPs in 386 COPD cases from the National Emphysema Treatment Trial and 424 control smokers from the Normative Aging Study. SNPs with significant associations were then tested in the BEOCOPD study and the International COPD Genetics Network. Based on the human results, we assessed histology and gene expression in the lungs of Sox5(-/-) mice. MEASUREMENTS AND MAIN RESULTS In the case-control analysis, 27 SNPs were significant at P ≤ 0.01. The most significant SNP in the BEOCOPD replication was rs11046966 (National Emphysema Treatment Trial-Normative Aging Study P = 6.0 × 10(-4), BEOCOPD P = 1.5 × 10(-5), combined P = 1.7 × 10(-7)), located 3' to the gene SOX5. Association with rs11046966 was not replicated in the International COPD Genetics Network. Sox5(-/-) mice showed abnormal lung development, with a delay in maturation before the saccular stage, as early as E16.5. Lung pathology in Sox5(-/-) lungs was associated with a decrease in fibronectin expression, an extracellular matrix component critical for branching morphogenesis. CONCLUSIONS Genetic variation in the transcription factor SOX5 is associated with COPD susceptibility. A mouse model suggests that the effect may be due, in part, to its effects on lung development and/or repair processes.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hersh CP, Hokanson JE, Lynch DA, Washko GR, Make BJ, Crapo JD, Silverman EK. Family history is a risk factor for COPD. Chest 2011; 140:343-350. [PMID: 21310839 DOI: 10.1378/chest.10-2761] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Studies have shown that family history is a risk factor for COPD, but have not accounted for family history of smoking. Therefore, we sought to identify the effects of family history of smoking and family history of COPD on COPD susceptibility. METHODS We compared 821 patients with COPD to 776 control smokers from the Genetic Epidemiology of COPD (COPDGene) Study. Questionnaires captured parental histories of smoking and COPD, as well as childhood environmental tobacco smoke (ETS) exposure. Socioeconomic status was defined by educational achievement. RESULTS Parental history of smoking (85.5% case patients, 82.9% control subjects) was more common than parental history of COPD (43.0% case patients, 30.8% control subjects). In a logistic regression model, parental history of COPD (OR, 1.73; P < .0001) and educational level (OR, 0.48 for some college vs no college; P < .0001) were significant predictors of COPD, but parental history of smoking and childhood ETS exposure were not significant. The population-attributable risk from COPD family history was 18.6%. Patients with COPD with a parental history had more severe disease, with lower lung function, worse quality of life, and more frequent exacerbations. There were nonsignificant trends for more severe emphysema and airway disease on quantitative chest CT scans. CONCLUSIONS Family history of COPD is a strong risk factor for COPD, independent of family history of smoking, personal lifetime smoking, or childhood ETS exposure. Although further studies are required to identify genetic variants that influence COPD susceptibility, clinicians should question all smokers, especially those with known or suspected COPD, regarding COPD family history.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - John E Hokanson
- Colorado School of Public Health, University of Colorado, Aurora
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Barry J Make
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO
| | - James D Crapo
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO
| | - Edwin K Silverman
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
38
|
Penyige A, Poliska S, Csanky E, Scholtz B, Dezso B, Schmelczer I, Kilty I, Takacs L, Nagy L. Analyses of association between PPAR gamma and EPHX1 polymorphisms and susceptibility to COPD in a Hungarian cohort, a case-control study. BMC MEDICAL GENETICS 2010; 11:152. [PMID: 21044285 PMCID: PMC2988760 DOI: 10.1186/1471-2350-11-152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 11/02/2010] [Indexed: 01/26/2023]
Abstract
Background In addition to smoking, genetic predisposition is believed to play a major role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Genetic association studies of new candidate genes in COPD may lead to improved understanding of the pathogenesis of the disease. Methods Two proposed casual single nucleotide polymorphisms (SNP) (rs1051740, rs2234922) in microsomal epoxide hydrolase (EPHX1) and three SNPs (rs1801282, rs1800571, rs3856806) in peroxisome proliferator-activated receptor gamma (PPARG), a new candidate gene, were genotyped in a case-control study (272 COPD patients and 301 controls subjects) in Hungary. Allele frequencies and genotype distributions were compared between the two cohorts and trend test was also used to evaluate association between SNPs and COPD. To estimate the strength of association, odds ratios (OR) (with 95% CI) were calculated and potential confounding variables were tested in logistic regression analysis. Association between haplotypes and COPD outcome was also assessed. Results The distribution of imputed EPHX1 phenotypes was significantly different between the COPD and the control group (P = 0.041), OR for the slow activity phenotype was 1.639 (95% CI = 1.08- 2.49; P = 0.021) in our study. In logistic regression analysis adjusted for both variants, also age and pack-year, the rare allele of His447His of PPARG showed significant association with COPD outcome (OR = 1.853, 95% CI = 1.09-3.14, P = 0.0218). In haplotype analysis the GC haplotype of PPARG (OR = 0.512, 95% CI = 0.27-0.96, P = 0.035) conferred reduced risk for COPD. Conclusions The "slow" activity-associated genotypes of EPHX1 were associated with increased risk of COPD. The minor His447His allele of PPARG significantly increased; and the haplotype containing the minor Pro12Ala and the major His447His polymorphisms of PPARG decreased the risk of COPD.
Collapse
Affiliation(s)
- Andras Penyige
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-Everett D, Silverman EK, Crapo JD. Genetic epidemiology of COPD (COPDGene) study design. COPD 2010; 7:32-43. [PMID: 20214461 DOI: 10.3109/15412550903499522] [Citation(s) in RCA: 943] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND COPDGene is a multicenter observational study designed to identify genetic factors associated with COPD. It will also characterize chest CT phenotypes in COPD subjects, including assessment of emphysema, gas trapping, and airway wall thickening. Finally, subtypes of COPD based on these phenotypes will be used in a comprehensive genome-wide study to identify COPD susceptibility genes. METHODS/RESULTS COPDGene will enroll 10,000 smokers with and without COPD across the GOLD stages. Both Non-Hispanic white and African-American subjects are included in the cohort. Inspiratory and expiratory chest CT scans will be obtained on all participants. In addition to the cross-sectional enrollment process, these subjects will be followed regularly for longitudinal studies. A genome-wide association study (GWAS) will be done on an initial group of 4000 subjects to identify genetic variants associated with case-control status and several quantitative phenotypes related to COPD. The initial findings will be verified in an additional 2000 COPD cases and 2000 smoking control subjects, and further validation association studies will be carried out. CONCLUSIONS COPDGene will provide important new information about genetic factors in COPD, and will characterize the disease process using high resolution CT scans. Understanding genetic factors and CT phenotypes that define COPD will potentially permit earlier diagnosis of this disease and may lead to the development of treatments to modify progression.
Collapse
|
40
|
Kim WJ, Hoffman E, Reilly J, Hersh C, Demeo D, Washko G, Silverman EK. Association of COPD candidate genes with computed tomography emphysema and airway phenotypes in severe COPD. Eur Respir J 2010; 37:39-43. [PMID: 20525719 DOI: 10.1183/09031936.00173009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The principal determining factors influencing the development of the airway disease and emphysema components of chronic obstructive pulmonary disease (COPD) have not been clearly defined. Genetic variability in COPD patients might influence the varying degrees of involvement of airway disease and emphysema. Therefore, we investigated the genetic association of single nucleotide polymorphisms (SNPs) in COPD candidate genes for association with emphysema severity and airway wall thickness phenotypes. Polymorphisms in six candidate genes were analysed in 379 subjects of the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study with quantitative chest computed tomography (CT) data. Genetic association with per cent of lung area below -950 HU (LAA950), airway wall thickness, and derived square root wall area (SRWA) of 10-mm internal perimeter airways were investigated. Three SNPs in EPHX1, five SNPs in SERPINE2 and one SNP in GSTP1 were significantly associated with LAA950. Five SNPs in TGFB1, two SNPs in EPHX1, one SNP in SERPINE2 and two SNPs in ADRB2 were associated with airway wall phenotypes in NETT. In conclusion, several COPD candidate genes showed evidence for association with airway wall thickness and emphysema severity using CT in a severe COPD population. Further investigation will be required to replicate these genetic associations for emphysema and airway wall phenotypes.
Collapse
Affiliation(s)
- W J Kim
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA, 02115 USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, Macnee W, Make BJ, Rabe KF, Rennard SI, Sciurba FC, Silverman EK, Vestbo J, Washko GR, Wouters EFM, Martinez FJ. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 2010; 182:598-604. [PMID: 20522794 DOI: 10.1164/rccm.200912-1843cc] [Citation(s) in RCA: 703] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Significant heterogeneity of clinical presentation and disease progression exists within chronic obstructive pulmonary disease (COPD). Although FEV(1) inadequately describes this heterogeneity, a clear alternative has not emerged. The goal of phenotyping is to identify patient groups with unique prognostic or therapeutic characteristics, but significant variation and confusion surrounds use of the term "phenotype" in COPD. Phenotype classically refers to any observable characteristic of an organism, and up until now, multiple disease characteristics have been termed COPD phenotypes. We, however, propose the following variation on this definition: "a single or combination of disease attributes that describe differences between individuals with COPD as they relate to clinically meaningful outcomes (symptoms, exacerbations, response to therapy, rate of disease progression, or death)." This more focused definition allows for classification of patients into distinct prognostic and therapeutic subgroups for both clinical and research purposes. Ideally, individuals sharing a unique phenotype would also ultimately be determined to have a similar underlying biologic or physiologic mechanism(s) to guide the development of therapy where possible. It follows that any proposed phenotype, whether defined by symptoms, radiography, physiology, or cellular or molecular fingerprint will require an iterative validation process in which "candidate" phenotypes are identified before their relevance to clinical outcome is determined. Although this schema represents an ideal construct, we acknowledge any phenotype may be etiologically heterogeneous and that any one individual may manifest multiple phenotypes. We have much yet to learn, but establishing a common language for future research will facilitate our understanding and management of the complexity implicit to this disease.
Collapse
Affiliation(s)
- MeiLan K Han
- University of Michigan-Pulmonary and Critical Care, 1500 E. Medical Center Drive, 3916 Taubman, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hersh CP. Pharmacogenetics of chronic obstructive pulmonary disease: challenges and opportunities. Pharmacogenomics 2010; 11:237-47. [PMID: 20136362 DOI: 10.2217/pgs.09.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Similar to other common chronic diseases, chronic obstructive pulmonary disease (COPD) is a heterogeneous disorder with multiple disease subtypes. Candidate gene studies have found genetic associations for COPD-related phenotypes that may be relevant for pharmacogenetics studies, including lung function decline and COPD exacerbations. However, few COPD pharmacogenetics studies have been completed. Most studies have focused on the role of variants in the beta(2)-adrenergic receptor gene on bronchodilator response, but the findings have been inconclusive. Candidate gene studies highlight the concept that genes for COPD susceptibility may also be relevant in COPD pharmacogenetics. Currently, there are no clinical applications of pharmacogenetics to COPD therapy, but the use of pharmacogenetics to determine initial smoking cessation therapy may be closer to clinical application.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Laboratory & Division of Pulmonary & Critical Care Medicine, Brigham & Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Cho MH, Washko GR, Hoffmann TJ, Criner GJ, Hoffman EA, Martinez FJ, Laird N, Reilly JJ, Silverman EK. Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation. Respir Res 2010; 11:30. [PMID: 20233420 PMCID: PMC2850331 DOI: 10.1186/1465-9921-11-30] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 03/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background Numerous studies have demonstrated associations between genetic markers and COPD, but results have been inconsistent. One reason may be heterogeneity in disease definition. Unsupervised learning approaches may assist in understanding disease heterogeneity. Methods We selected 31 phenotypic variables and 12 SNPs from five candidate genes in 308 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study cohort. We used factor analysis to select a subset of phenotypic variables, and then used cluster analysis to identify subtypes of severe emphysema. We examined the phenotypic and genotypic characteristics of each cluster. Results We identified six factors accounting for 75% of the shared variability among our initial phenotypic variables. We selected four phenotypic variables from these factors for cluster analysis: 1) post-bronchodilator FEV1 percent predicted, 2) percent bronchodilator responsiveness, and quantitative CT measurements of 3) apical emphysema and 4) airway wall thickness. K-means cluster analysis revealed four clusters, though separation between clusters was modest: 1) emphysema predominant, 2) bronchodilator responsive, with higher FEV1; 3) discordant, with a lower FEV1 despite less severe emphysema and lower airway wall thickness, and 4) airway predominant. Of the genotypes examined, membership in cluster 1 (emphysema-predominant) was associated with TGFB1 SNP rs1800470. Conclusions Cluster analysis may identify meaningful disease subtypes and/or groups of related phenotypic variables even in a highly selected group of severe emphysema subjects, and may be useful for genetic association studies.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wempe F, De-Zolt S, Koli K, Bangsow T, Parajuli N, Dumitrascu R, Sterner-Kock A, Weissmann N, Keski-Oja J, von Melchner H. Inactivation of sestrin 2 induces TGF-beta signaling and partially rescues pulmonary emphysema in a mouse model of COPD. Dis Model Mech 2010; 3:246-53. [PMID: 20106877 DOI: 10.1242/dmm.004234] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Cigarette smoking has been identified as one of the major risk factors and several predisposing genetic factors have been implicated in the pathogenesis of COPD, including a single nucleotide polymorphism (SNP) in the latent transforming growth factor (TGF)-beta binding protein 4 (Ltbp4)-encoding gene. Consistent with this finding, mice with a null mutation of the short splice variant of Ltbp4 (Ltbp4S) develop pulmonary emphysema that is reminiscent of COPD. Here, we report that the mutational inactivation of the antioxidant protein sestrin 2 (sesn2) partially rescues the emphysema phenotype of Ltbp4S mice and is associated with activation of the TGF-beta and mammalian target of rapamycin (mTOR) signal transduction pathways. The results suggest that sesn2 could be clinically relevant to patients with COPD who might benefit from antagonists of sestrin function.
Collapse
Affiliation(s)
- Frank Wempe
- Department of Molecular Hematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Haq I, Chappell S, Johnson SR, Lotya J, Daly L, Morgan K, Guetta-Baranes T, Roca J, Rabinovich R, Millar AB, Donnelly SC, Keatings V, MacNee W, Stolk J, Hiemstra PS, Miniati M, Monti S, O'Connor CM, Kalsheker N. Association of MMP-2 polymorphisms with severe and very severe COPD: a case control study of MMPs-1, 9 and 12 in a European population. BMC MEDICAL GENETICS 2010; 11:7. [PMID: 20078883 PMCID: PMC2820470 DOI: 10.1186/1471-2350-11-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/15/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genetic factors play a role in chronic obstructive pulmonary disease (COPD) but are poorly understood. A number of candidate genes have been proposed on the basis of the pathogenesis of COPD. These include the matrix metalloproteinase (MMP) genes which play a role in tissue remodelling and fit in with the protease--antiprotease imbalance theory for the cause of COPD. Previous genetic studies of MMPs in COPD have had inadequate coverage of the genes, and have reported conflicting associations of both single nucleotide polymorphisms (SNPs) and SNP haplotypes, plausibly due to under-powered studies. METHODS To address these issues we genotyped 26 SNPs, providing comprehensive coverage of reported SNP variation, in MMPs- 1, 9 and 12 from 977 COPD patients and 876 non-diseased smokers of European descent and evaluated their association with disease singly and in haplotype combinations. We used logistic regression to adjust for age, gender, centre and smoking history. RESULTS Haplotypes of two SNPs in MMP-12 (rs652438 and rs2276109), showed an association with severe/very severe disease, corresponding to GOLD Stages III and IV. CONCLUSIONS Those with the common A-A haplotype for these two SNPs were at greater risk of developing severe/very severe disease (p = 0.0039) while possession of the minor G variants at either SNP locus had a protective effect (adjusted odds ratio of 0.76; 95% CI 0.61 - 0.94). The A-A haplotype was also associated with significantly lower predicted FEV1 (42.62% versus 44.79%; p = 0.0129). This implicates haplotypes of MMP-12 as modifiers of disease severity.
Collapse
Affiliation(s)
- Imran Haq
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, UK
- Therapeutics and Molecular Medicine, Queen's Medical Centre, University of Nottingham, UK
| | - Sally Chappell
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, UK
| | - Simon R Johnson
- Therapeutics and Molecular Medicine, Queen's Medical Centre, University of Nottingham, UK
| | - Juzer Lotya
- UCD School of Public Health and Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Leslie Daly
- UCD School of Public Health and Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Kevin Morgan
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, UK
| | - Tamar Guetta-Baranes
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, UK
| | - Josep Roca
- Pulmonary Dept, CIBERES, Hospital Clinic, Hospital Clínico y Provincial de Barcelona, Villarroel, Barcelona, Spain
| | - Roberto Rabinovich
- Pulmonary Dept, CIBERES, Hospital Clinic, Hospital Clínico y Provincial de Barcelona, Villarroel, Barcelona, Spain
- Respiratory Medicine, ELEGI Colt Laboratories, Wilkie Building, University of Edinburgh, Edinburgh, UK
| | - Ann B Millar
- Lung Research Group, Dept of Clinical Science at North Bristol, Southmead Hospital, University of Bristol, Westbury on Trym, Bristol, UK
| | - Seamas C Donnelly
- UCD School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Ireland
| | - Vera Keatings
- Letterkenny General Hospital, Letterkenny, Donegal, Ireland
| | - William MacNee
- Respiratory Medicine, ELEGI Colt Laboratories, Wilkie Building, University of Edinburgh, Edinburgh, UK
| | - Jan Stolk
- Dept of Pulmonology (C3-P), Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology (C3-P), Leiden University Medical Center, Leiden, The Netherlands
| | - Massimo Miniati
- Department of Medical and Surgical Critical Care, University of Florence, Italy
| | | | - Clare M O'Connor
- UCD School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Ireland
| | - Noor Kalsheker
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, UK
| |
Collapse
|
46
|
Wood AM, Tan SL, Stockley RA. Chronic obstructive pulmonary disease: towards pharmacogenetics. Genome Med 2009; 1:112. [PMID: 19951401 PMCID: PMC2808747 DOI: 10.1186/gm112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common problem worldwide, and it is recognized that the term encompasses overlapping sub-phenotypes of disease. The development of a sub-phenotype may be determined in part by an individual's genetics, which in turn may determine response to treatment. A growing understanding of the genetic factors that predispose to COPD and its sub-phenotypes and the pathophysiology of the condition is now leading to the suggestion of individualized therapy based on the patients' clinical phenotype and genotype. Pharmacogenetics is the study of variations in treatment response according to genotype and is perhaps the next direction for genetic research in COPD. Here, we consider how knowledge of the pathophysiology and genetic risk factors for COPD may inform future management strategies for affected individuals.
Collapse
Affiliation(s)
- Alice M Wood
- University of Birmingham, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
47
|
Heydemann A, Ceco E, Lim JE, Hadhazy M, Ryder P, Moran JL, Beier DR, Palmer AA, McNally EM. Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest 2009; 119:3703-12. [PMID: 19884661 DOI: 10.1172/jci39845] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/09/2009] [Indexed: 11/17/2022] Open
Abstract
Most single-gene diseases, including muscular dystrophy, display a nonuniform phenotype. Phenotypic variability arises, in part, due to the presence of genetic modifiers that enhance or suppress the disease process. We employed an unbiased mapping approach to search for genes that modify muscular dystrophy in mice. In a genome-wide scan, we identified a single strong locus on chromosome 7 that influenced two pathological features of muscular dystrophy, muscle membrane permeability and muscle fibrosis. Within this genomic interval, an insertion/deletion polymorphism of 36 bp in the coding region of the latent TGF-beta-binding protein 4 gene (Ltbp4) was found. Ltbp4 encodes a latent TGF-beta-binding protein that sequesters TGF-beta and regulates its availability for binding to the TGF-beta receptor. Insertion of 12 amino acids into the proline-rich region of LTBP4 reduced proteolytic cleavage and was associated with reduced TGF-beta signaling, decreased fibrosis, and improved muscle pathology in a mouse model of muscular dystrophy. In contrast, a 12-amino-acid deletion in LTBP4 was associated with increased proteolysis, SMAD signaling, and fibrosis. These data identify Ltbp4 as a target gene to regulate TGF-beta signaling and modify outcomes in muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stewart CE, Hall IP, Parker SG, Moffat MF, Wardlaw AJ, Connolly MJ, Ruse C, Sayers I. PLAUR polymorphisms and lung function in UK smokers. BMC MEDICAL GENETICS 2009; 10:112. [PMID: 19878584 PMCID: PMC2784766 DOI: 10.1186/1471-2350-10-112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 10/31/2009] [Indexed: 12/15/2022]
Abstract
Background We have previously identified Urokinase Plasminogen Activator Receptor (PLAUR) as an asthma susceptibility gene. In the current study we tested the hypothesis that PLAUR single nucleotide polymorphisms (SNPs) determine baseline lung function and contribute to the development of Chronic Obstructive Pulmonary Disease (COPD) in smokers. Methods 25 PLAUR SNPs were genotyped in COPD subjects and individuals with smoking history (n = 992). Linear regression was used to determine the effects of polymorphism on baseline lung function (FEV1, FEV1/FVC) in all smokers. Genotype frequencies were compared in spirometry defined smoking controls (n = 176) versus COPD cases (n = 599) and COPD severity (GOLD stratification) using logistic regression. Results Five SNPs showed a significant association (p < 0.01) with baseline lung function; rs2302524(Lys220Arg) and rs2283628(intron 3) were associated with lower and higher FEV1 respectively. rs740587(-22346), rs11668247(-20040) and rs344779(-3666) in the 5'region were associated with increased FEV1/FVC ratio. rs740587 was also protective for COPD susceptibility and rs11668247 was protective for COPD severity although no allele dose relationship was apparent. Interestingly, several of these associations were driven by male smokers not females. Conclusion This study provides tentative evidence that the asthma associated gene PLAUR also influences baseline lung function in smokers. However the case-control analyses do not support the conclusion that PLAUR is a major COPD susceptibility gene in smokers. PLAUR is a key serine protease receptor involved in the generation of plasmin and has been implicated in airway remodelling.
Collapse
Affiliation(s)
- Ceri E Stewart
- Division of Therapeutics & Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, University Hospital of Nottingham, Nottingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kemp SV, Polkey MI, Shah PL. The epidemiology, etiology, clinical features, and natural history of emphysema. Thorac Surg Clin 2009; 19:149-58. [PMID: 19662957 DOI: 10.1016/j.thorsurg.2009.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The burden of disease attributable to emphysema is significant and growing, and is a leading cause of disability in middle and late life. There has traditionally been a rather nihilistic attitude toward emphysema and COPD, but with recent advances in the understanding of aetiological, pathophysiological, and prognostic mechanisms, and the increase in treatment options, this approach is no longer appropriate.
Collapse
Affiliation(s)
- Samuel V Kemp
- Department of Respiratory Medicine, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK.
| | | | | |
Collapse
|
50
|
Leppäranta O, Myllärniemi M, Salmenkivi K, Kinnula VL, Keski-Oja J, Koli K. Reduced Phosphorylation of the TGF-β Signal Transducer Smad2 in Emphysematous Human Lung. COPD 2009; 6:234-41. [DOI: 10.1080/15412550903049173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|