1
|
Chen M, Li H, Li Y, Luo Y, He Y, Shui X, Lei W. Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). Int J Mol Med 2024; 54:115. [PMID: 39422043 PMCID: PMC11518579 DOI: 10.3892/ijmm.2024.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive life‑threatening cardiopulmonary vascular disease involving various pathological mechanisms, including hypoxia, cellular metabolism, inflammation, abnormal proliferation and apoptosis. Specifically, metabolism has attracted the most attention. Glucose metabolism is essential to maintain the cardiopulmonary vascular function. However, once exposed to a noxious stimulus, intracellular glucose metabolism changes or switches to an alternative pathway more suitable for adaptation, which is known as metabolic reprogramming. By promoting the switch from oxidative phosphorylation to glycolysis, cellular metabolic reprogramming plays an important role in PH development. Suppression of glucose oxidation and secondary upregulation of glycolysis are responsible for various features of PH, including the proliferation and apoptosis resistance of pulmonary artery endothelial and smooth muscle cells. In the present review, the roles and importance of the glucose metabolism shift were discussed to aid in the development of new treatment approaches for PH.
Collapse
Affiliation(s)
- Meihong Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hui Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yun Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yangui Luo
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaorong Shui
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
2
|
Lyu Y, Wang F, Cheng H, Han J, Dang R, Xia X, Wang H, Zhong J, Lenstra JA, Zhang H, Han J, MacHugh DE, Medugorac I, Upadhyay M, Leonard AS, Ding H, Yang X, Wang MS, Quji S, Zhuzha B, Quzhen P, Wangmu S, Cangjue N, Wa D, Ma W, Liu J, Zhang J, Huang B, Qi X, Li F, Huang Y, Ma Y, Wang Y, Gao Y, Lu W, Lei C, Chen N. Recent selection and introgression facilitated high-altitude adaptation in cattle. Sci Bull (Beijing) 2024:S2095-9273(24)00380-3. [PMID: 38945748 DOI: 10.1016/j.scib.2024.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024]
Abstract
During the past 3000 years, cattle on the Qinghai-Xizang Plateau have developed adaptive phenotypes under the selective pressure of hypoxia, ultraviolet (UV) radiation, and extreme cold. The genetic mechanism underlying this rapid adaptation is not yet well understood. Here, we present whole-genome resequencing data for 258 cattle from 32 cattle breeds/populations, including 89 Tibetan cattle representing eight populations distributed at altitudes ranging from 3400 m to 4300 m. Our genomic analysis revealed that Tibetan cattle exhibited a continuous phylogeographic cline from the East Asian taurine to the South Asian indicine ancestries. We found that recently selected genes in Tibetan cattle were related to body size (HMGA2 and NCAPG) and energy expenditure (DUOXA2). We identified signals of sympatric introgression from yak into Tibetan cattle at different altitudes, covering 0.64%-3.26% of their genomes, which included introgressed genes responsible for hypoxia response (EGLN1), cold adaptation (LRP11), DNA damage repair (LATS1), and UV radiation resistance (GNPAT). We observed that introgressed yak alleles were associated with noncoding variants, including those in present EGLN1. In Tibetan cattle, three yak introgressed SNPs in the EGLN1 promoter region reduced the expression of EGLN1, suggesting that these genomic variants enhance hypoxia tolerance. Taken together, our results indicated complex adaptation processes in Tibetan cattle, where recently selected genes and introgressed yak alleles jointly facilitated rapid adaptation to high-altitude environments.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan 250000, China
| | - Jing Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610000, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610000, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya 572024, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100000, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| | - Alexander S Leonard
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, Zurich 8006, Switzerland
| | - He Ding
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Suolang Quji
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Basang Zhuzha
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Pubu Quzhen
- Shigatse City Kangma County Shaogang Township Agriculture and Animal Husbandry Comprehensive Service Center, Shigatse 857000, China
| | - Silang Wangmu
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Nima Cangjue
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Da Wa
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Weidong Ma
- Shaanxi Province Agriculture & Husbandry Breeding Farm, Fufeng 722203, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Xingshan Qi
- Animal Husbandry Bureau in Biyang County, Biyang 463700, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan 417126, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan 750000, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Wenfa Lu
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Yazhouwan National Laboratory, Sanya 572024, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Yu W, Zhang Q, Qiu Y, Chen H, Huang X, Xiao L, Xu G, Li S, Hu P, Tong X. CDN1163 alleviates SERCA2 dysfunction-induced pulmonary vascular remodeling by inhibiting the phenotypic transition of pulmonary artery smooth muscle cells. Clin Exp Hypertens 2023; 45:2272062. [PMID: 37899350 DOI: 10.1080/10641963.2023.2272062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND AND PURPOSE Substitution of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis. RESULTS SERCA2 dysfunction increased intracellular Ca2+ levels, which activated Ca2+-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca2+ by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice. CONCLUSIONS AND IMPLICATIONS SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.
Collapse
Affiliation(s)
- Weimin Yu
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yixiang Qiu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyang Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Central Clinical School, Monash University, Melbourne, Australia
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
4
|
Nowak PJ, Sokołowski Ł, Meissner P, Pawłowicz-Szlarska E, Sarniak A, Włodarczyk A, Wlazeł RN, Prymont-Przymińska A, Nowak D, Nowicki M. Kidney Transplant Recipients Show Limited Lung Diffusion Capacity but Similar Hydrogen Peroxide Exhalation as Healthy Matched Volunteers: A Pilot Study. J Clin Med 2023; 12:6964. [PMID: 38002579 PMCID: PMC10672367 DOI: 10.3390/jcm12226964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Patients with end-stage chronic kidney disease show higher systemic oxidative stress and exhale more hydrogen peroxide (H2O2) than healthy controls. Kidney transplantation reduces oxidative stress and H2O2 production by blood polymorphonuclear leukocytes (PMNs). Kidney transplant recipients (KTRs) may be predisposed to an impairment of lung diffusing capacity due to chronic inflammation. Lung function and H2O2 concentration in the exhaled breath condensate (EBC) were compared in 20 KTRs with stable allograft function to 20 healthy matched controls. Serum interleukin eight (IL-8) and C-reactive protein (CRP), blood cell counts, and spirometry parameters did not differ between groups. However, KTRs showed lower total lung diffusing capacity for carbon monoxide, corrected for hemoglobin concentration (TLCOc), in comparison to healthy controls (92.1 ± 11.5% vs. 102.3 ± 11.9% of predicted, p = 0.009), but similar EBC H2O2 concentration (1.63 ± 0.52 vs. 1.77 ± 0.50 µmol/L, p = 0.30). The modality of pre-transplant renal replacement therapy had no effect on TLCOc and EBC H2O2. TLCOc did not correlate with time after transplantation. In this study, TLCOc was less reduced in KTRs in comparison to previous reports. We suggest this fact and the non-elevated H2O2 exhalation exhibited by KTRs, may result perhaps from the evolution of the immunosuppressive therapy.
Collapse
Affiliation(s)
- Piotr Jan Nowak
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.P.-S.); (M.N.)
| | - Łukasz Sokołowski
- Department of Obstetrics and Gynecology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland;
| | - Paweł Meissner
- University Laboratory of Blood Pressure Regulation and Function of the Autonomic Nervous System, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Ewa Pawłowicz-Szlarska
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.P.-S.); (M.N.)
| | - Agata Sarniak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.S.); (A.P.-P.); (D.N.)
| | - Anna Włodarczyk
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Rafał Nikodem Wlazeł
- Department of Laboratory Diagnostics and Clinical Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Anna Prymont-Przymińska
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.S.); (A.P.-P.); (D.N.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.S.); (A.P.-P.); (D.N.)
| | - Michał Nowicki
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.P.-S.); (M.N.)
| |
Collapse
|
5
|
Belhaj A, Dewachter L, Monier A, Vegh G, Rorive S, Remmelink M, Closset M, Melot C, Creteur J, Salmon I, Rondelet B. Beneficial Effects of Tacrolimus on Brain-Death-Associated Right Ventricular Dysfunction in Pigs. Int J Mol Sci 2023; 24:10439. [PMID: 37445625 PMCID: PMC10341891 DOI: 10.3390/ijms241310439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Right ventricular (RV) dysfunction remains a major problem after heart transplantation and may be associated with brain death (BD) in a donor. A calcineurin inhibitor tacrolimus was recently found to have beneficial effects on heart function. Here, we examined whether tacrolimus might prevent BD-induced RV dysfunction and the associated pathobiological changes. METHODS After randomized tacrolimus (n = 8; 0.05 mg·kg-1·day-1) or placebo (n = 9) pretreatment, pigs were assigned to a BD procedure and hemodynamically investigated 1, 3, 5, and 7 h after the Cushing reflex. After euthanasia, myocardial tissue was sampled for pathobiological evaluation. Seven pigs were used as controls. RESULTS Calcineurin inhibition prevented increases in pulmonary vascular resistance and RV-arterial decoupling induced by BD. BD was associated with an increased RV pro-apoptotic Bax-to-Bcl2 ratio and RV and LV apoptotic rates, which were prevented by tacrolimus. BD induced increased expression of the pro-inflammatory IL-6-to-IL-10 ratio, their related receptors, and vascular cell adhesion molecule-1 in both the RV and LV. These changes were prevented by tacrolimus. RV and LV neutrophil infiltration induced by BD was partly prevented by tacrolimus. BD was associated with decreased RV expression of the β-1 adrenergic receptor and sarcomere (myosin heavy chain [MYH]7-to-MYH6 ratio) components, while β-3 adrenergic receptor, nitric oxide-synthase 3, and glucose transporter 1 expression increased. These changes were prevented by tacrolimus. CONCLUSIONS Brain death was associated with isolated RV dysfunction. Tacrolimus prevented RV dysfunction induced by BD through the inhibition of apoptosis and inflammation activation.
Collapse
Affiliation(s)
- Asmae Belhaj
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, 5530 Yvoir, Belgium;
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Astrid Monier
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Gregory Vegh
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Sandrine Rorive
- Department of Anatomopathology, Erasmus Academic Hospital, 1070 Brussels, Belgium; (S.R.); (M.R.); (I.S.)
| | - Myriam Remmelink
- Department of Anatomopathology, Erasmus Academic Hospital, 1070 Brussels, Belgium; (S.R.); (M.R.); (I.S.)
| | - Mélanie Closset
- Department of Laboratory Medicine, CHU UCL Namur, UCLouvain, 5530 Yvoir, Belgium;
| | - Christian Melot
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Jacques Creteur
- Department of Critical Care, Erasmus Academic Hospital, 1070 Brussels, Belgium;
| | - Isabelle Salmon
- Department of Anatomopathology, Erasmus Academic Hospital, 1070 Brussels, Belgium; (S.R.); (M.R.); (I.S.)
| | - Benoît Rondelet
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, 5530 Yvoir, Belgium;
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| |
Collapse
|
6
|
Riou M, Enache I, Sauer F, Charles AL, Geny B. Targeting Mitochondrial Metabolic Dysfunction in Pulmonary Hypertension: Toward New Therapeutic Approaches? Int J Mol Sci 2023; 24:ijms24119572. [PMID: 37298522 DOI: 10.3390/ijms24119572] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary vascular remodeling leading to right heart failure and death. To date, despite the three therapeutic approaches targeting the three major endothelial dysfunction pathways based on the prostacyclin, nitric oxide/cyclic guanosine monophosphate, and endothelin pathways, PAH remains a serious disease. As such, new targets and therapeutic agents are needed. Mitochondrial metabolic dysfunction is one of the mechanisms involved in PAH pathogenesis in part through the induction of a Warburg metabolic state of enhanced glycolysis but also through the upregulation of glutaminolysis, tricarboxylic cycle and electron transport chain dysfunction, dysregulation of fatty acid oxidation or mitochondrial dynamics alterations. The aim of this review is to shed light on the main mitochondrial metabolic pathways involved in PAH and to provide an update on the resulting interesting potential therapeutic perspectives.
Collapse
Affiliation(s)
- Marianne Riou
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - Irina Enache
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - François Sauer
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Cardiology Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - Anne-Laure Charles
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| |
Collapse
|
7
|
Ryanto GRT, Suraya R, Nagano T. Mitochondrial Dysfunction in Pulmonary Hypertension. Antioxidants (Basel) 2023; 12:372. [PMID: 36829931 PMCID: PMC9952650 DOI: 10.3390/antiox12020372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a multi-etiological condition with a similar hemodynamic clinical sign and end result of right heart failure. Although its causes vary, a similar link across all the classifications is the presence of mitochondrial dysfunction. Mitochondria, as the powerhouse of the cells, hold a number of vital roles in maintaining normal cellular homeostasis, including the pulmonary vascular cells. As such, any disturbance in the normal functions of mitochondria could lead to major pathological consequences. The Warburg effect has been established as a major finding in PH conditions, but other mitochondria-related metabolic and oxidative stress factors have also been reported, making important contributions to the progression of pulmonary vascular remodeling that is commonly found in PH pathophysiology. In this review, we will discuss the role of the mitochondria in maintaining a normal vasculature, how it could be altered during pulmonary vascular remodeling, and the therapeutic options available that can treat its dysfunction.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
8
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
9
|
Malgoyre A, Prola A, Meunier A, Chapot R, Serrurier B, Koulmann N, Bigard X, Sanchez H. Endurance Is Improved in Female Rats After Living High-Training High Despite Alterations in Skeletal Muscle. Front Sports Act Living 2021; 3:663857. [PMID: 34124658 PMCID: PMC8193088 DOI: 10.3389/fspor.2021.663857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Altitude camps are used during the preparation of endurance athletes to improve performance based on the stimulation of erythropoiesis by living at high altitude. In addition to such whole-body adaptations, studies have suggested that high-altitude training increases mitochondrial mass, but this has been challenged by later studies. Here, we hypothesized that living and training at high altitude (LHTH) improves mitochondrial efficiency and/or substrate utilization. Female rats were exposed and trained in hypoxia (simulated 3,200 m) for 5 weeks (LHTH) and compared to sedentary rats living in hypoxia (LH) or normoxia (LL) or those that trained in normoxia (LLTL). Maximal aerobic velocity (MAV) improved with training, independently of hypoxia, whereas the time to exhaustion, performed at 65% of MAV, increased both with training (P = 0.009) and hypoxia (P = 0.015), with an additive effect of the two conditions. The distance run was 7.98 ± 0.57 km in LHTH vs. 6.94 ± 0.51 in LLTL (+15%, ns). The hematocrit increased >20% with hypoxia (P < 0.001). The increases in mitochondrial mass and maximal oxidative capacity with endurance training were blunted by combination with hypoxia (−30% for citrate synthase, P < 0.01, and −23% for Vmax glut−succ, P < 0.001 between LHTH and LLTL). A similar reduction between the LHTH and LLTL groups was found for maximal respiration with pyruvate (−29%, P < 0.001), for acceptor-control ratio (−36%, hypoxia effect, P < 0.001), and for creatine kinase efficiency (−48%, P < 0.01). 3-hydroxyl acyl coenzyme A dehydrogenase was not altered by hypoxia, whereas maximal respiration with Palmitoyl-CoA specifically decreased. Overall, our results show that mitochondrial adaptations are not involved in the improvement of submaximal aerobic performance after LHTH, suggesting that the benefits of altitude camps in females relies essentially on other factors, such as the transitory elevation of hematocrit, and should be planned a few weeks before competition and not several months.
Collapse
Affiliation(s)
- Alexandra Malgoyre
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adelie Meunier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Rachel Chapot
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Bernard Serrurier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Nathalie Koulmann
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France.,Ecole du Val de Grâce, Paris, France
| | - Xavier Bigard
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Ecole du Val de Grâce, Paris, France
| | - Hervé Sanchez
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
10
|
Mincewicz G, Siergiejko G, Piepiorka M, Świdnicka-Siergiejko A, Siergiejko Z, Krzykowski G. Functional assessment of the right ventricle in patients with bronchial asthma of various severity. Postepy Dermatol Alergol 2021; 38:52-56. [PMID: 34408566 PMCID: PMC8362787 DOI: 10.5114/ada.2021.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/07/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Pulmonary artery hypertension and its consequences still constitutes an underestimated clinical problem in asthma patients and its non-invasive early detection may influence proper treatment. AIM To non-invasively examine the pulmonary artery flow parameters and right ventricular function in patients with asthma of various severity. MATERIAL AND METHODS The analysis of parameters of echocardiography and first-pass and gated radionuclide angiography, and baseline examination in 31 patients with bronchial asthma and 16 healthy controls. RESULTS Patients with severe asthma had higher mean pulmonary artery pressure (MPAP) compared to the healthy controls. The subgroup analysis of patients who suffered from asthma in their childhood showed that individuals with severe asthma were characterized by significantly higher MPAP than those with the mild/moderate condition (19.16 ±7.51 mm Hg vs. 5.0 ±1.15 mm Hg, p = 0.025). Gated, but not first-pass, radionuclide angiography revealed that individuals with severe asthma were characterized by a lower right ventricular ejection fraction (RVEF). Further analysis of the subgroup of patients in whom the initial manifestation of dyspnoea occurred no earlier than 6 years prior to the study showed that the RVEF of individuals with severe asthma was significantly lower compared to those with mild/moderate asthma (39.8 ±4.79% vs. 51.4 ±8.65%, p = 0.019). CONCLUSIONS The pulmonary artery pressure in patients with severe asthma is significantly higher than in healthy individuals; in contrast, these two groups did not differ significantly in terms of the right ventricular echocardiographic characteristics. Gated radionuclide angiography, but not the first-pass technique, allowed for the detection of subtle right ventricular ejection fraction changes in asthma patients.
Collapse
Affiliation(s)
| | - Grzegorz Siergiejko
- Department of Paediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Marek Piepiorka
- Department of Cardiology, Specialist Hospital, Wejherowo, Poland
| | | | - Zenon Siergiejko
- Respiratory System Diagnostic and Bronchoscopy Department, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
11
|
Cyclosporin A Administration During Ex Vivo Lung Perfusion Preserves Lung Grafts in Rat Transplant Model. Transplantation 2020; 104:e252-e259. [PMID: 32217944 DOI: 10.1097/tp.0000000000003237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Despite the benefits of ex vivo lung perfusion (EVLP) such as lung reconditioning, preservation, and evaluation before transplantation, deleterious effects, including activation of proinflammatory cascades and alteration of metabolic profiles have been reported. Although patient outcomes have been favorable, further studies addressing optimal conditions are warranted. In this study, we investigated the role of the immunosuppressant drug cyclosporine A (CyA) in preserving mitochondrial function and subsequently preventing proinflammatory changes in lung grafts during EVLP. METHODS Using rat heart-lung blocks after 1-hour cold preservation, an acellular normothermic EVLP system was established for 4 hours. CyA was added into perfusate at a final concentration of 1 μM. The evaluation included lung graft function, lung compliance, and pulmonary vascular resistance as well as biochemical marker measurement in the perfusate at multiple time points. After EVLP, single orthotopic lung transplantation was performed, and the grafts were assessed 2 hours after reperfusion. RESULTS Lung grafts on EVLP with CyA exhibited significantly better functional and physiological parameters as compared with those without CyA treatment. CyA administration attenuated proinflammatory changes and prohibited glucose consumption during EVLP through mitigating mitochondrial dysfunction in lung grafts. CyA-preconditioned lungs showed better posttransplant lung early graft function and less inflammatory events compared with control. CONCLUSIONS During EVLP, CyA administration can have a preconditioning effect through both its anti-inflammatory and mitochondrial protective properties, leading to improved lung graft preservation, which may result in enhanced graft quality after transplantation.
Collapse
|
12
|
Khatri R, Gupta RK, Vats P, Bansal V, Yadav AK, Reddy PK, Bharadwaj A, Chaudhary P, Sharma S, Bajaj AC, Deskit P, Dass D, Baburaj TP, Singh SB, Kumar B. Subclinical elevated B-type Natriuretic Peptide (BNP) indicates endothelial dysfunction contributing to hypoxia susceptibility in healthy individuals. Life Sci 2020; 260:118408. [PMID: 32926931 PMCID: PMC7486215 DOI: 10.1016/j.lfs.2020.118408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Aims Baseline elevated B-type Natriuretic Peptide (BNP) has been found in high altitude pulmonary edema susceptible population. Exaggerated pulmonary vascular response to hypoxia may be related to endothelial dysfunction in hypoxia susceptible. We hypothesize that baseline BNP levels can predict hypoxia susceptibility in healthy individuals. Main methods The pulmonary vascular response to hypoxia was compared in 35 male healthy individuals divided into two groups based on BNP levels (Group 1 ≤ 15 and Group 2 > 15 pg/ml). Acute normobaric hypoxia was administered to both the groups, to confirm hypoxia susceptibility in Group 2. Key findings Unlike Group 1, Group 2 had elevated post hypoxia BNP levels (26 vs 33.5 pg/ml, p = 0.002) while pulmonary artery pressure was comparable. A negative correlation with tissue oxygen consumption (delta pO2) and compartmental fluid shift was seen in Group 1 only. Endothelial dysfunction in Group 2 resulted in reduced vascular compliance leading to elevation of mean blood pressure on acute hypoxia exposure. BNP showed a positive correlation with endothelial dysfunction in Group 2 and has been linked to pre-diabetic disorder (HbA1c 6 ± 0.44%) and may additionally represent a lower cross-sectional area of vascular bed related to vascular remodeling mediated by chronic hypoxia. Significance Hypoxia susceptibility in healthy individuals may be related to endothelial dysfunction that limits vascular compliance during hypoxic stress. BNP level showed positive correlation with HbA1c (r = 0.49, p = 0.04) and negative correlation with delta pO2 (r = −0.52, p = 0.04) can predict reduced microvascular compliance due to endothelial dysfunction contributing to hypoxia susceptibility in healthy individuals. BNP levels≤15 pg/ml at sea level is indicative of hypoxia resistance.
Collapse
Affiliation(s)
- Rahul Khatri
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Rajinder K Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India.
| | - Praveen Vats
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Vishal Bansal
- Vallabhbhai Patel Chest Institute (VPCI), Delhi University, New Delhi, Delhi 110007, India
| | - Anand Kumar Yadav
- Vallabhbhai Patel Chest Institute (VPCI), Delhi University, New Delhi, Delhi 110007, India
| | - Prasanna K Reddy
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Abhishek Bharadwaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Pooja Chaudhary
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Shivani Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Amir Chand Bajaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Padma Deskit
- Sonam Norboo Memorial (S.N.M.) Hospital, Leh-Ladakh, Jammu and Kashmir 194101, India
| | - Deepak Dass
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Thiruthara P Baburaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| |
Collapse
|
13
|
Hołda MK, Stachowicz A, Suski M, Wojtysiak D, Sowińska N, Arent Z, Palka N, Podolec P, Kopeć G. Myocardial proteomic profile in pulmonary arterial hypertension. Sci Rep 2020; 10:14351. [PMID: 32873862 PMCID: PMC7462861 DOI: 10.1038/s41598-020-71264-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, fatal, and incurable disorder. Although advances in the understanding of the PAH pathobiology have been seen in recent years, molecular processes underlying heart remodelling over the course of PAH are still insufficiently understood. Therefore, the aim of this study was to investigate myocardial proteomic profile of rats at different stages of monocrotaline-induced PAH. Samples of left and right ventricle (LV and RV) free wall collected from 32 Wistar rats were subjected to proteomic analysis using an isobaric tag for relative quantitation method. Hemodynamic parameters indicated development of mild elevation of pulmonary artery pressure in the early PAH group (27.00 ± 4.93 mmHg) and severe elevation in the end-stage PAH group (50.50 ± 11.56 mmHg). In early PAH LV myocardium proteins that may be linked to an increase in inflammatory response, apoptosis, glycolytic process and decrease in myocardial structural proteins were differentially expressed compared to controls. During end-stage PAH an increase in proteins associated with apoptosis, fibrosis and cardiomyocyte Ca2+ currents as well as decrease in myocardial structural proteins were observed in LV. In RV during early PAH, especially proteins associated with myocardial structural components and fatty acid beta-oxidation pathway were upregulated. During end-stage PAH significant changes in RV proteins abundance related to the increased myocardial structural components, intensified fibrosis and glycolytic processes as well as decreased proteins related to cardiomyocyte Ca2+ currents were observed. At both PAH stages changes in RV proteins linked to apoptosis inhibition were observed. In conclusion, we identified changes of the levels of several proteins and thus of the metabolic pathways linked to the early and late remodelling of the left and right ventricle over the course of monocrotaline-induced PAH to delineate potential therapeutic targets for the treatment of this severe disease.
Collapse
Affiliation(s)
- Mateusz K Hołda
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, Kopernika 12, 31-034, Kraków, Poland.
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Kraków, Poland.
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK.
| | - Aneta Stachowicz
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Cracow, Kraków, Poland
| | - Natalia Sowińska
- Center of Experimental and Innovative Medicine, University Center of Veterinary Medicine JU-AU, University of Agriculture in Cracow, Kraków, Poland
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University Center of Veterinary Medicine JU-AU, University of Agriculture in Cracow, Kraków, Poland
| | - Natalia Palka
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kopeć
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
14
|
Makker K, Afolayan AJ, Teng R, Konduri GG. Altered hypoxia-inducible factor-1α (HIF-1α) signaling contributes to impaired angiogenesis in fetal lambs with persistent pulmonary hypertension of the newborn (PPHN). Physiol Rep 2019; 7:e13986. [PMID: 30706701 PMCID: PMC6355993 DOI: 10.14814/phy2.13986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 01/08/2023] Open
Abstract
Previous studies in adult pulmonary hypertension reported that increased hypoxia-inducible factor-1α (HIF-1α) signaling contributes to pulmonary vascular remodeling. However, alterations in endothelial HIF-1α signaling and its contribution to impaired angiogenesis in persistent pulmonary hypertension of the newborn (PPHN) remain unclear. We investigated the hypothesis that HIF-1α levels are increased in lung endothelial cells in PPHN and contribute to impaired angiogenesis function. We examined HIF-1α expression and promoter activity in the isolated pulmonary artery endothelial cells (PAEC) from fetal lambs with or without PPHN induced by prenatal ductus arteriosus constriction. We measured the levels of HIF-1α downstream targets, vascular endothelial growth factor (VEGF) and glycolytic protein, hexokinase 2 (Hek-2) in PAEC from PPHN, and control lambs. We examined the effect of small interfering-RNA (siRNA) mediated knockdown of native HIF-1α on VEGF expression and in vitro angiogenesis function of PPHN-PAEC. HIF-1α protein levels were higher in the isolated PAEC from PPHN-lambs compared to controls. HIF-1α promoter activity and Hek-2 protein levels were higher in PPHN. VEGF protein levels and in vitro angiogenesis function were decreased in PAEC from PPHN lambs. HIF-1α silencing significantly increased the expression of VEGF and improved the angiogenesis function of PPHN PAEC. Aberrant HIF-1α signaling contributes to endothelial dysfunction and decreased angiogenesis in PPHN.
Collapse
Affiliation(s)
- Kartikeya Makker
- Department of PediatricsUniversity of Florida College of MedicineJacksonvilleFlorida
| | - Adeleye J. Afolayan
- Department of PediatricsCardiovascular Research Center and Children's Research InstituteMedical College of WisconsinMilwaukeeWisconsin
| | - Ru‐Jeng Teng
- Department of PediatricsCardiovascular Research Center and Children's Research InstituteMedical College of WisconsinMilwaukeeWisconsin
| | - Girija G. Konduri
- Department of PediatricsCardiovascular Research Center and Children's Research InstituteMedical College of WisconsinMilwaukeeWisconsin
| |
Collapse
|
15
|
Chabert C, Khochbin S, Rousseaux S, Veyrenc S, Furze R, Smithers N, Prinjha RK, Schlattner U, Pison C, Dubouchaud H. Inhibition of BET Proteins Reduces Right Ventricle Hypertrophy and Pulmonary Hypertension Resulting from Combined Hypoxia and Pulmonary Inflammation. Int J Mol Sci 2018; 19:ijms19082224. [PMID: 30061518 PMCID: PMC6121304 DOI: 10.3390/ijms19082224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/22/2018] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension is a co-morbidity, which strongly participates in morbi-mortality in patients with chronic obstructive pulmonary disease (COPD). Recent findings showed that bromodomain-containing proteins, in charge of reading histone acetylation, could be involved in pulmonary arterial hypertension. Our aim was to study the effect of I-BET151, an inhibitor of bromodomain and extra-terminal domain (BET), on the right ventricle hypertrophy and pulmonary hypertension, induced by a combination of chronic hypoxia and pulmonary inflammation, as the two main stimuli encountered in COPD. Adult Wistar male rats, exposed to chronic hypoxia plus pulmonary inflammation (CHPI), showed a significant right ventricle hypertrophy (+57%, p < 0.001), an increase in systolic pressure (+46%, p < 0.001) and in contraction speed (+36%, p < 0.001), when compared to control animals. I-BET151 treated animals (CHPI-iB) showed restored hemodynamic parameters to levels similar to control animals, despite chronic hypoxia plus exposure to pulmonary inflammation. They displayed lower right ventricle hypertrophy and hematocrit compared to the CHPI group (respectively -16%, p < 0.001; and -9%, p < 0.05). Our descriptive study shows a valuable effect of the inhibition of bromodomain and extra-terminal domain proteins on hemodynamic parameters, despite the presence of chronic hypoxia and pulmonary inflammation. This suggests that such inhibition could be of potential interest for COPD patients with pulmonary hypertension. Further studies are needed to unravel the underlying mechanisms involved and the net benefits of inhibiting adaptations to chronic hypoxia.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Heterocyclic Compounds, 4 or More Rings/therapeutic use
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia/complications
- Hypoxia/pathology
- Hypoxia/physiopathology
- Male
- Pneumonia/complications
- Pneumonia/pathology
- Pneumonia/physiopathology
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Rats, Wistar
- Transcription Factors/antagonists & inhibitors
Collapse
Affiliation(s)
- Clovis Chabert
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, 38058 Grenoble, France.
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38700 Grenoble, France.
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38700 Grenoble, France.
| | - Sylvie Veyrenc
- Université Grenoble Alpes, CNRS UMR 5553, Laboratoire d'Ecologie Alpine, 38058 Grenoble, France.
| | - Rebecca Furze
- Epigenetics DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Stevenage SG1 2NY, UK.
| | - Nicholas Smithers
- Epigenetics DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Stevenage SG1 2NY, UK.
| | - Rab K Prinjha
- Epigenetics DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Stevenage SG1 2NY, UK.
| | - Uwe Schlattner
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, 38058 Grenoble, France.
| | - Christophe Pison
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, 38058 Grenoble, France.
- Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, 38700 Grenoble, France.
| | - Hervé Dubouchaud
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, 38058 Grenoble, France.
| |
Collapse
|
16
|
Liu J, Han Z, Han Z, He Z. Mesenchymal stem cell-conditioned media suppresses inflammation-associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension. Exp Ther Med 2015; 11:467-475. [PMID: 26893632 PMCID: PMC4734026 DOI: 10.3892/etm.2015.2953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammation-associated overproliferation of pulmonary artery smooth muscle cells (PASMCs) is considered to be involved in the pathogenesis of pulmonary hypertension (PH). The administration of mesenchymal stem cell-conditioned media (MSC-CM) has displayed benefits in the treatment of PH, however, the exact mechanism has yet to be elucidated. The present study aimed to determine whether MSC-CM is able to suppress overproliferation of PASMCs in PH via immunoregulation. By the administration of MSC-CM to monocrotaline (MCT)-induced PH rats, and the development of an in vitro co-culture system comprised of PASMCs and activated T cells, the therapeutic effects of MSC-CM on PH, and the changes in the expression of correlated factors, including TNF-α, calcineurin (CaN) and nuclear factor of activated T cells (NFAT), were assessed. Immunohistochemical staining results indicated that MSC-CM was able to significantly suppress the production of TNF-α in MCT-induced PH and co-culture systems; and reverse transcription-quantitative polymerase chain reaction results showed significant downregulation of the expression of CaN and NFATc2 in PASMCs (P<0.01). Furthermore, MSC-CM was able to significantly suppress CaN activity and NFATc2 activation (P<0.01), thus inhibiting the overproliferation of PASMCs. Finally, MSC-CM improved abnormalities in hemodynamics and pulmonary histology in MCT-induced PH. In conclusion, the findings of the current study suggest that administration of MSC-CM has the potential to suppress inflammation-associated overproliferation of PASMCs due to its immunosuppressive effects in PH and, thus, may serve as a beneficial therapeutic strategy.
Collapse
Affiliation(s)
- Junfeng Liu
- Laboratory of Tissue Engineering and Stem Cells, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China; Department of Pediatrics, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China; Department of Pediatrics, The General Hospital of Huabei Oil Field Company, Renqiu, Hebei 062552, P.R. China
| | - Zhibo Han
- National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin 300457, P.R. China
| | - Zhongchao Han
- National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin 300457, P.R. China
| | - Zhixu He
- Laboratory of Tissue Engineering and Stem Cells, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China; Department of Pediatrics, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
17
|
Gennai S, Souilamas R, Maignan M, Brouta A, Pison C, Fontaine E, Briot R. Effects of cyclosporine a in ex vivo reperfused pig lungs. Microcirculation 2014; 21:84-92. [PMID: 23952930 DOI: 10.1111/micc.12082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/10/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Several works highlight the role of CsA in the prevention of IRI, but none focus on isolated lungs. Our objective was to evaluate the effects of CsA on IRI on ex vivo reperfused pig lungs. METHODS Thirty-two pairs of pig lungs were collected and stored for 30 minutes at 4 °C. The study was performed in four groups. First, a control group and then three groups receiving different concentrations of CsA (1, 10, and 30 μM) at two different times: once at the moment of lung procurement and another during the reperfusion procedure. The ex vivo lung preparation was set up using an extracorporeal perfusion circuit. Gas exchange parameters, pulmonary hemodynamics, and biological markers of lung injury were collected for the evaluation. RESULTS CsA improved the PaO2 /FiO2 ratio, but it also increased PAP, Pcap, and pulmonary vascular resistances with dose-dependent effects. Lungs treated with high doses of CsA displayed higher capillary-alveolar permeability to proteins, lower AFC capacities, and elevated concentrations of pro-inflammatory cytokines. CONCLUSIONS These data suggest a possible deleterious imbalance between the beneficial cell properties of CsA in IRI and its hemodynamic effects on microvascularization.
Collapse
Affiliation(s)
- Stéphane Gennai
- Emergency Department, Grenoble University Hospital, Grenoble Cedex, France; TIMC IMAG Laboratory, UMR 5525, La Tronche Cedex, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014; 115:165-75. [PMID: 24951765 DOI: 10.1161/circresaha.113.301141] [Citation(s) in RCA: 696] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes an expanding body of knowledge indicating that failure to resolve inflammation and altered immune processes underlie the development of pulmonary arterial hypertension. The chemokines and cytokines implicated in pulmonary arterial hypertension that could form a biomarker platform are discussed. Pre-clinical studies that provide the basis for dysregulated immunity in animal models of the disease are reviewed. In addition, we present therapies that target inflammatory/immune mechanisms that are currently enrolling patients, and discuss others in development. We show how genetic and metabolic abnormalities are inextricably linked to dysregulated immunity and adverse remodeling in the pulmonary arteries.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- From the Cardiovascular Institute and Department of Pediatrics (M.R.) and Department of Medicine (M.R.N.), Stanford University School of Medicine, CA; INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson and Université Paris-Sud, School of Medicine, Le Kremlin-Bicêtre (C.G., M.H.); and AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France (M.H.).
| | - Christophe Guignabert
- From the Cardiovascular Institute and Department of Pediatrics (M.R.) and Department of Medicine (M.R.N.), Stanford University School of Medicine, CA; INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson and Université Paris-Sud, School of Medicine, Le Kremlin-Bicêtre (C.G., M.H.); and AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France (M.H.)
| | - Marc Humbert
- From the Cardiovascular Institute and Department of Pediatrics (M.R.) and Department of Medicine (M.R.N.), Stanford University School of Medicine, CA; INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson and Université Paris-Sud, School of Medicine, Le Kremlin-Bicêtre (C.G., M.H.); and AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France (M.H.)
| | - Mark R Nicolls
- From the Cardiovascular Institute and Department of Pediatrics (M.R.) and Department of Medicine (M.R.N.), Stanford University School of Medicine, CA; INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson and Université Paris-Sud, School of Medicine, Le Kremlin-Bicêtre (C.G., M.H.); and AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France (M.H.)
| |
Collapse
|
19
|
Iannitti RG, Casagrande A, De Luca A, Cunha C, Sorci G, Riuzzi F, Borghi M, Galosi C, Massi-Benedetti C, Oury TD, Cariani L, Russo M, Porcaro L, Colombo C, Majo F, Lucidi V, Fiscarelli E, Ricciotti G, Lass-Flörl C, Ratclif L, Esposito A, De Benedictis FM, Donato R, Carvalho A, Romani L. Hypoxia promotes danger-mediated inflammation via receptor for advanced glycation end products in cystic fibrosis. Am J Respir Crit Care Med 2014; 188:1338-50. [PMID: 24127697 DOI: 10.1164/rccm.201305-0986oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Hypoxia regulates the inflammatory-antiinflammatory balance by the receptor for advanced glycation end products (RAGE), a versatile sensor of damage-associated molecular patterns. The multiligand nature of RAGE places this receptor in the midst of chronic inflammatory diseases. OBJECTIVES To characterize the impact of the hypoxia-RAGE pathway on pathogenic airway inflammation preventing effective pathogen clearance in cystic fibrosis (CF) and elucidate the potential role of this danger signal in pathogenesis and therapy of lung inflammation. METHODS We used in vivo and in vitro models to study the impact of hypoxia on RAGE expression and activity in human and murine CF, the nature of the RAGE ligand, and the impact of RAGE on lung inflammation and antimicrobial resistance in fungal and bacterial pneumonia. MEASUREMENTS AND MAIN RESULTS Sustained expression of RAGE and its ligand S100B was observed in murine lung and human epithelial cells and exerted a proximal role in promoting inflammation in murine and human CF, as revealed by functional studies and analysis of the genetic variability of AGER in patients with CF. Both hypoxia and infections contributed to the sustained activation of the S100B-RAGE pathway, being RAGE up-regulated by hypoxia and S100B by infection by Toll-like receptors. Inhibiting the RAGE pathway in vivo with soluble (s) RAGE reduced pathogen load and inflammation in experimental CF, whereas sRAGE production was defective in patients with CF. CONCLUSIONS A causal link between hyperactivation of RAGE and inflammation in CF has been observed, such that targeting pathogenic inflammation alleviated inflammation in CF and measurement of sRAGE levels could be a useful biomarker for RAGE-dependent inflammation in patients with CF.
Collapse
Affiliation(s)
- Rossana G Iannitti
- 1 Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chaillou T, Koulmann N, Meunier A, Malgoyre A, Serrurier B, Beaudry M, Bigard X. Effect of hypoxia exposure on the phenotypic adaptation in remodelling skeletal muscle submitted to functional overload. Acta Physiol (Oxf) 2013; 209:272-82. [PMID: 23621297 DOI: 10.1111/apha.12110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/18/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
Abstract
AIM To determine whether hypoxia influences the phenotypic adaptation of skeletal muscle induced by mechanical overload. METHODS Plantaris muscles of female rats were submitted to mechanical overload following synergist ablation. After 3 days of overload, rats were exposed to either hypobaric hypoxia (equivalent to 5500 m) or normoxia. Muscles were collected after 5, 12 and 56 days of overload (i.e. after 3, 9 and 53 days of hypoxia). We determined the myosin heavy chain (MHC) distribution, mRNA levels of myocyte-enriched calcineurin-integrating protein 1 (MCIP1) to indirectly assess calcineurin activity, the changes in oxidative capacity from the activities of citrate synthase (CS) and cytochrome c oxidase (COX), and the expression of regulators involved in mitochondrial biogenesis (Pgc-1α, NRF1 and Tfam) and degradation (BNIP-3). RESULTS Hypoxia did not alter the fast-to-slow MHC shift and the increase in calcineurin activity induced by overload; it only transiently slowed down the overload-induced transition in MHC isoforms. Hypoxia similarly decreased CS and COX activities in overloaded and control muscles. Nuclear respiratory factor 1 (NRF1) and transcription factor A (Tfam) mRNA and BNIP-3 protein were not influenced by hypoxia in overloaded muscles, whereas Pgc-1α mRNA and protein contents did not correlate with changes in oxidative capacity. CONCLUSION Hypoxia is not a critical stimulus to modulate the fast-to-slow MHC transition associated with overload. Thus, the impairment of the fast-to-slow fibre shift often observed during post-natal development in hypoxia could be explained by the lower voluntary locomotor activity associated with hypoxia. Hypoxia alters mitochondrial oxidative capacity, but this adaptive response is similar in overloaded and control muscles.
Collapse
Affiliation(s)
- T. Chaillou
- Département Environnements opérationnels; Institut de Recherche Biomédicale des Armées, antenne de La Tronche; La Tronche France
| | - N. Koulmann
- Département Environnements opérationnels; Institut de Recherche Biomédicale des Armées, antenne de La Tronche; La Tronche France
- Ecole du Val-de-Grâce; Paris France
| | - A. Meunier
- Département Environnements opérationnels; Institut de Recherche Biomédicale des Armées, antenne de La Tronche; La Tronche France
| | - A. Malgoyre
- Département Environnements opérationnels; Institut de Recherche Biomédicale des Armées, antenne de La Tronche; La Tronche France
| | - B. Serrurier
- Département Environnements opérationnels; Institut de Recherche Biomédicale des Armées, antenne de La Tronche; La Tronche France
| | - M. Beaudry
- Laboratoire « Réponses cellulaires et fonctionnelles à l'hypoxie »; Université Paris13, Sorbonne-Paris-Cité; Bobigny Cedex France
| | - X. Bigard
- Département Environnements opérationnels; Institut de Recherche Biomédicale des Armées, antenne de La Tronche; La Tronche France
- Ecole du Val-de-Grâce; Paris France
| |
Collapse
|
21
|
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 2012; 92:967-1003. [PMID: 22811423 DOI: 10.1152/physrev.00030.2011] [Citation(s) in RCA: 448] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a fundamental stimulus that impacts cells, tissues, organs, and physiological systems. The discovery of hypoxia-inducible factor-1 (HIF-1) and subsequent identification of other members of the HIF family of transcriptional activators has provided insight into the molecular underpinnings of oxygen homeostasis. This review focuses on the mechanisms of HIF activation and their roles in physiological and pathophysiological responses to hypoxia, with an emphasis on the cardiorespiratory systems. HIFs are heterodimers comprised of an O(2)-regulated HIF-1α or HIF-2α subunit and a constitutively expressed HIF-1β subunit. Induction of HIF activity under conditions of reduced O(2) availability requires stabilization of HIF-1α and HIF-2α due to reduced prolyl hydroxylation, dimerization with HIF-1β, and interaction with coactivators due to decreased asparaginyl hydroxylation. Stimuli other than hypoxia, such as nitric oxide and reactive oxygen species, can also activate HIFs. HIF-1 and HIF-2 are essential for acute O(2) sensing by the carotid body, and their coordinated transcriptional activation is critical for physiological adaptations to chronic hypoxia including erythropoiesis, vascularization, metabolic reprogramming, and ventilatory acclimatization. In contrast, intermittent hypoxia, which occurs in association with sleep-disordered breathing, results in an imbalance between HIF-1α and HIF-2α that causes oxidative stress, leading to cardiorespiratory pathology.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
22
|
Jimenez SK, Jassal DS, Kardami E, Cattini PA. Protection by endogenous FGF-2 against isoproterenol-induced cardiac dysfunction is attenuated by cyclosporine A. Mol Cell Biochem 2011; 357:1-8. [PMID: 21556823 DOI: 10.1007/s11010-011-0868-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is implicated in cardioprotection. However, previously we found that chronic elevation in cardiac FGF-2 levels in transgenic mice was associated with exaggerated, cyclosporine A-preventable, cellular infiltration after isoproterenol-induced injury, suggestive of an adverse outcome, although this was not examined with functional studies. We have now used highly sensitive tissue Doppler imaging (TDI) to evaluate cardiac functional parameters after isoproterenol administration in transgenic mice overexpressing the 18 kDa FGF-2 in the heart in vivo. Cardiac function was assessed in conscious FGF-2 transgenic and non-transgenic mice at 24 h as well as 2 and 4 weeks after isoproterenol administration, and in the absence or presence of either cyclosporine A or anti-CD3ε treatments. Isoproterenol decreased left ventricular endocardial velocity and strain rate by 47-51% at 24 h in non-transgenic mice, but to a significantly lesser extent (by 24%) in transgenic mice. While additional decreases were seen in non-transgenic mice at 2 weeks, there was no further reduction in ventricular endocardial velocity or strain rate up to 4 weeks post-treatment in FGF-2 transgenic mice. Functional improvement at 2 and 4 weeks post-isoproterenol was reduced significantly by treatment with cyclosporine A but not anti-CD3ε; the latter targets T lymphocyte activation more specifically. TDI values in the presence of chronic FGF-2 overexpression are prognostic of an improved cardiac outcome and protection from isoproterenol induced cardiac dysfunction in vivo. Our data also suggest that cyclosporine A-sensitive infiltrating cell population(s) may contribute to the sustained beneficial effect of FGF-2 in vivo.
Collapse
Affiliation(s)
- Sarah K Jimenez
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 3J7, Canada
| | | | | | | |
Collapse
|
23
|
The amiloride derivative phenamil attenuates pulmonary vascular remodeling by activating NFAT and the bone morphogenetic protein signaling pathway. Mol Cell Biol 2010; 31:517-30. [PMID: 21135135 DOI: 10.1128/mcb.00884-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary artery hypertension (PAH) is characterized by elevated pulmonary artery resistance and increased medial thickness due to deregulation of vascular remodeling. Inactivating mutations of the BMPRII gene, which encodes a receptor for bone morphogenetic proteins (BMPs), are identified in ∼60% of familial PAH (FPAH) and ∼30% of idiopathic PAH (IPAH) patients. It has been hypothesized that constitutive reduction in BMP signal by BMPRII mutations may cause abnormal vascular remodeling by promoting dedifferentiation of vascular smooth muscle cells (vSMCs). Here, we demonstrate that infusion of the amiloride analog phenamil during chronic-hypoxia treatment in rat attenuates development of PAH and vascular remodeling. Phenamil induces Tribbles homolog 3 (Trb3), a positive modulator of the BMP pathway that acts by stabilizing the Smad family signal transducers. Through induction of Trb3, phenamil promotes the differentiated, contractile vSMC phenotype characterized by elevated expression of contractile genes and reduced cell growth and migration. Phenamil activates the Trb3 gene transcription via activation of the calcium-calcineurin-nuclear factor of activated T cell (NFAT) pathway. These results indicate that constitutive elevation of Trb3 by phenamil is a potential therapy for IPAH and FPAH.
Collapse
|
24
|
Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 2010; 121:2045-66. [PMID: 20458021 DOI: 10.1161/circulationaha.108.847707] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Nagel S, Talbot NP, Mecinović J, Smith TG, Buchan AM, Schofield CJ. Therapeutic manipulation of the HIF hydroxylases. Antioxid Redox Signal 2010; 12:481-501. [PMID: 19754349 DOI: 10.1089/ars.2009.2711] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypoxia-inducible factor (HIF) family of transcription factors is responsible for coordinating the cellular response to low oxygen levels in animals. By regulating the expression of a large array of target genes during hypoxia, these proteins also direct adaptive changes in the hematopoietic, cardiovascular, and respiratory systems. They also play roles in pathological processes, including tumorogenesis. In recent years, several oxygenases have been identified as key molecular oxygen sensors within the HIF system. The HIF hydroxylases regulate the stability and transcriptional activity of the HIF-alpha subunit by catalyzing hydroxylation of specific proline and asparaginyl residues, respectively. They require oxygen and 2-oxoglutarate (2OG) as co-substrates, and depend upon non-heme ferrous iron (Fe(II)) as a cofactor. This article summarizes current understanding of the biochemistry of the HIF hydroxylases, identifies targets for their pharmacological manipulation, and discusses their potential in the therapeutic manipulation of the HIF system.
Collapse
Affiliation(s)
- Simon Nagel
- Acute Stroke Programme, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Said SI, Hamidi SA, Gonzalez Bosc L. Asthma and pulmonary arterial hypertension: do they share a key mechanism of pathogenesis? Eur Respir J 2010; 35:730-4. [PMID: 20356986 PMCID: PMC2963099 DOI: 10.1183/09031936.00097109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although largely distinct and seemingly unrelated, asthma and pulmonary arterial hypertension (PAH) have important pathological features in common, including inflammation, smooth muscle contraction and remodelling. We hypothesised that these common features could be explained by one shared mechanism of pathogenesis: activation of the transcription factor NFAT (nuclear factor of activated T-cells). If this concept is validated, it could lead to the introduction of novel therapeutic strategies against both lung disorders. In several experimental models, airway remodelling is accompanied by remodelling of smaller pulmonary arteries, validating the hypothesis of their similar pathogenesis. In addition, lungs of vasoactive intestinal peptide (VIP) knockout mice express airway hyperresponsiveness with airway inflammation and PAH with vascular remodelling, with both sets of pathological findings being reversible with VIP treatment. Preliminary data suggest that absence of the VIP gene leads to activation of the calcineurin-NFAT pathway, and that VIP is probably a physiological inhibitor of this pathway. Enough evidence exists to support the views that asthma and PAH share important pathological features, probably related to NFAT activation, and that VIP may be a physiological modulator of this mechanism.
Collapse
Affiliation(s)
- S I Said
- Pulmonary and Critical Care Medicine, Stony Brook University, Stony Brook, NY 11794 , USA.
| | | | | |
Collapse
|
27
|
Fijalkowska I, Xu W, Comhair SAA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM. Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1130-8. [PMID: 20110409 DOI: 10.2353/ajpath.2010.090832] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Severe pulmonary hypertension is irreversible and often fatal. Abnormal proliferation and resistance to apoptosis of endothelial cells (ECs) and hypertrophy of smooth muscle cells in this disease are linked to decreased mitochondria and preferential energy generation by glycolysis. We hypothesized this metabolic shift of pulmonary hypertensive ECs is due to greater hypoxia inducible-factor1alpha (HIF-1alpha) expression caused by low levels of nitric oxide combined with low superoxide dismutase activity. We show that cultured ECs from patients with idiopathic pulmonary arterial hypertension (IPAH-ECs) have greater HIF-1alpha expression and transcriptional activity than controls under normoxia or hypoxia, and pulmonary arteries from affected patients have increased expression of HIF-1alpha and its target carbonic anhydrase IX. Decreased expression of manganese superoxide dismutase (MnSOD) in IPAH-ECs paralleled increased HIF-1alpha levels and small interfering (SI) RNA knockdown of MnSOD, but not of the copper-zinc SOD, increased HIF-1 protein expression and hypoxia response element (HRE)-driven luciferase activity in normoxic ECs. MnSOD siRNA also reduced nitric oxide production in supernatants of IPAH-ECs. Conversely, low levels of a nitric oxide donor reduced HIF-1alpha expression in normoxic IPAH-ECs. Finally, mitochondria numbers increased in IPAH-ECs with knockdown of HIF-1alpha. These findings indicate that alterations of nitric oxide and MnSOD contribute to pathological HIF-1alpha expression and account for lower numbers of mitochondria in IPAH-ECs.
Collapse
Affiliation(s)
- Iwona Fijalkowska
- Department of Pathology, Johns Hopkins Univesity School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pandorf CE, Jiang WH, Qin AX, Bodell PW, Baldwin KM, Haddad F. Calcineurin plays a modulatory role in loading-induced regulation of type I myosin heavy chain gene expression in slow skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1037-48. [PMID: 19657098 DOI: 10.1152/ajpregu.00349.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of calcineurin (Cn) in skeletal muscle fiber-type expression has been a subject of great interest because of reports indicating that it controls the slow muscle phenotype. To delineate the role of Cn in phenotype remodeling, particularly its role in driving expression of the type I myosin heavy chain (MHC) gene, we used a novel strategy whereby a profound transition from fast to slow fiber type is induced and examined in the absence and presence of cyclosporin A (CsA), a Cn inhibitor. To induce the fast-to-slow transition, we first subjected rats to 7 days of hindlimb suspension (HS) + thyroid hormone [triiodothyronine (T(3))] to suppress nearly all expression of type I MHC mRNA in the soleus muscle. HS + T(3) was then withdrawn, and rats resumed normal ambulation and thyroid state, during which vehicle or CsA (30 mg x kg(-1) x day(-1)) was administered for 7 or 14 days. The findings demonstrate that, despite significant inhibition of Cn, pre-mRNA, mRNA, and protein abundance of type I MHC increased markedly during reloading relative to HS + T(3) (P < 0.05). Type I MHC expression was, however, attenuated by CsA compared with vehicle treatment. In addition, type IIa and IIx MHC pre-mRNA, mRNA, and relative protein levels were increased in Cn-treated compared with vehicle-treated rats. These findings indicate that Cn has a modulatory role in MHC transcription, rather than a role as a primary regulator of slow MHC gene expression.
Collapse
Affiliation(s)
- Clay E Pandorf
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
29
|
Singh S, Manda SM, Sikder D, Birrer MJ, Rothermel BA, Garry DJ, Mammen PPA. Calcineurin activates cytoglobin transcription in hypoxic myocytes. J Biol Chem 2009; 284:10409-21. [PMID: 19203999 PMCID: PMC2667728 DOI: 10.1074/jbc.m809572200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/30/2009] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy develops in response to a variety of cardiovascular stresses and results in activation of numerous signaling cascades and proteins. In the present study, we demonstrate that cytoglobin is a stress-responsive hemoprotein in the hypoxia-induced hypertrophic myocardium and it is transcriptionally regulated by calcineurin-dependent transcription factors. The cytoglobin transcript level is abundantly expressed in the adult heart and in response to hypoxia cytoglobin expression is markedly up-regulated within the hypoxia-induced hypertrophic heart. To define the molecular mechanism resulting in the induction of cytoglobin, we undertook a transcriptional analysis of the 5' upstream regulatory region of the cytoglobin gene. Evolutionarily conserved binding elements for transcription factors HIF-1, AP-1, and NFAT are located within the upstream region of the cytoglobin gene. Transcriptional assays demonstrated that calcineurin activity modulates cytoglobin transcription. Increased calcineurin activity enhances the ability of NFAT and AP-1 to bind to the putative cytoglobin promoter, especially under hypoxic conditions. In addition, inhibition of calcineurin, NFAT, and/or AP-1 activities decreases endogenous cytoglobin transcript and protein levels. Thus, the regulation of cytoglobin transcription by calcineurin-dependent transcription factors suggests that cytoglobin may have a functional role in calcium-dependent events accompanying cardiac remodeling.
Collapse
Affiliation(s)
- Sarvjeet Singh
- Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Hongzhuan Sheng, Jianhua Zhu, Xiaohui Wu, Jinan Zhang. Blockade of calcineurin reverses cardiac hypertrophy and induces the down-regulation of JNK mRNA expression in renovascular hypertensive rats. J Renin Angiotensin Aldosterone Syst 2008; 9:139-45. [PMID: 18957384 DOI: 10.1177/1470320308096048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Recently, calcineurin has been shown to induce cardiac hypertrophy. Mitogen-activated protein kinases (MAPK), including the extracellular-signal regulated kinases (ERK), the c-Jun NH2-terminal kinases (JNK) and the p38 MAPK (p38), have also been shown to be important in the transduction of trophic signals. The objective of this study was to investigate possible cross-talk between calcineurin and MAPK pathways in controlling renovascular hypertension-induced cardiac hypertrophy. METHODS Renovascular hypertension was induced by the two kidney-one clip method. The left ventricular weight (LVW) and the ratio of LVW to tibial length were measured to assay the degree of cardiac hypertrophy. Calcineurin activity and MAPK mRNA expression were measured. RESULTS In the left ventricle of rats with renovascular hypertension, calcineurin activity and JNK mRNA expression were increased while cardiac hypertrophy developed. Treatment with the calcineurin blocker ciclosporin A induced calcineurin inhibition and regression of cardiac hypertrophy with an improvement of cardiac diastolic function. The treatment also resulted in down-regulation of JNK mRNA expression, but the mRNA expressions of ERK and p38 were unchanged. CONCLUSIONS There is cross-talk between the calcineurin and JNK pathway in controlling renovascular hypertension-induced cardiac hypertrophy. Inhibition of the calcineurin and JNK pathways may be the basis of reversal of cardiac hypertrophy by calcineurin blockers.
Collapse
Affiliation(s)
- Hongzhuan Sheng
- Institute of Cardiovascular Disease Research, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|
31
|
Walczak-Drzewiecka A, Ratajewski M, Wagner W, Dastych J. HIF-1alpha is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. THE JOURNAL OF IMMUNOLOGY 2008; 181:1665-72. [PMID: 18641302 DOI: 10.4049/jimmunol.181.3.1665] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells play important roles in many pathological conditions where local hypoxia is observed, including asthma, rheumatic diseases, and certain types of cancer. Here, we investigated how expression of the hypoxia-inducible factor 1, alpha subunit gene (HIF1A), is regulated in mast cells. The product of HIF1A is hypoxia-inducible factor 1alpha (HIF-1alpha), is a major nuclear transcription factor modulating gene expression in response to hypoxic conditions. We observed that under hypoxic conditions, exposure of mast cells to ionomycin and substance P resulted in significant up-regulation of HIF1A expression as compared with resting mast cells incubated under identical conditions. The ionomycin-mediated increase in HIF-1alpha protein levels was sensitive to the transcription inhibitor actinomycin D and to inhibitors of calcineurin, cyclosporin A (CsA), and FK506. The increased HIF-1alpha protein level was paralleled by a severalfold increase in HIF-1alpha mRNA that could be also inhibited with actinomycin D and CsA. The HIF1A promoter activity was significantly increased in ionomycin-activated mast cells, and the promoter activity could be inhibited by CsA and FK506. Furthermore, in situ mutagenesis experiments showed that the ionomycin-mediated HIF1A promoter activity depends on a conservative NFAT-binding site. Thus, accumulation of HIF-1alpha in activated mast cells requires up-regulation of HIF1A gene transcription and depends on the calcineurin-NFAT signaling pathway.
Collapse
|
32
|
Larsen KO, Lygren B, Sjaastad I, Krobert KA, Arnkvaern K, Florholmen G, Larsen AKR, Levy FO, Taskén K, Skjønsberg OH, Christensen G. Diastolic dysfunction in alveolar hypoxia: a role for interleukin-18-mediated increase in protein phosphatase 2A. Cardiovasc Res 2008; 80:47-54. [PMID: 18599478 DOI: 10.1093/cvr/cvn180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS Chronic obstructive pulmonary disease with alveolar hypoxia is associated with diastolic dysfunction in the right and left ventricle (LV). LV diastolic dysfunction is not caused by increased afterload, and we recently showed that reduced phosphorylation of phospholamban at serine (Ser) 16 may explain the reduced relaxation of the myocardium. Here, we study the mechanisms leading to the hypoxia-induced reduction in phosphorylation of phospholamban at Ser16. METHODS AND RESULTS In C57Bl/6j mice exposed to 10% oxygen, signalling molecules were measured in cardiac tissue, sarcoplasmic reticulum (SR)-enriched membrane preparations, and serum. Cardiomyocytes isolated from neonatal mice were exposed to interleukin (IL)-18 for 24 h. The beta-adrenergic pathway in the myocardium was not altered by alveolar hypoxia, as assessed by measurements of beta-adrenergic receptor levels, adenylyl cyclase activity, and subunits of cyclic AMP-dependent protein kinase. However, alveolar hypoxia led to a significantly higher amount (124%) and activity (234%) of protein phosphatase (PP) 2A in SR-enriched membrane preparations from LV compared with control. Serum levels of an array of cytokines were assayed, and a pronounced increase in IL-18 was observed. In isolated cardiomyocytes, treatment with IL-18 increased the amount and activity of PP2A, and reduced phosphorylation of phospholamban at Ser16 to 54% of control. CONCLUSION Our results indicate that the diastolic dysfunction observed in alveolar hypoxia might be caused by increased circulating IL-18, thereby inducing an increase in PP2A and a reduction in phosphorylation of phospholamban at Ser16.
Collapse
Affiliation(s)
- Karl-Otto Larsen
- Department of Pulmonary Medicine, Ullevål University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu YV, Hubbi ME, Pan F, McDonald KR, Mansharamani M, Cole RN, Liu JO, Semenza GL. Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J Biol Chem 2007; 282:37064-73. [PMID: 17965024 PMCID: PMC3754800 DOI: 10.1074/jbc.m705015200] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxygen homeostasis represents an essential organizing principle of metazoan evolution and biology. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of transcriptional responses to changes in O2 concentration. HIF-1 is a heterodimer of HIF-1alpha and HIF-1beta subunits. O2-dependent degradation of the HIF-1alpha subunit is mediated by prolyl hydroxylase, von Hippel-Lindau protein (VHL)/Elongin-C E3 ubiquitin ligase, and the proteasome. O2-independent degradation of HIF-1alpha is regulated by the competition of RACK1 and HSP90 for binding to HIF-1alpha. RACK1 binding results in the recruitment of the Elongin-C E3 ubiquitin ligase, leading to VHL-independent ubiquitination and degradation of HIF-1alpha. In this report, we show that calcineurin inhibits the ubiquitination and proteasomal degradation of HIF-1alpha. Calcineurin is a serine/threonine phosphatase that is activated by calcium and calmodulin. The phosphatase activity of calcineurin is required for its regulation of HIF-1alpha. RACK1 binds to the catalytic domain of calcineurin and is required for HIF-1alpha degradation induced by the calcineurin inhibitor cyclosporine A. Elongin-C and HIF-1alpha each bind to RACK1 and dimerization of RACK1 is required to recruit Elongin-C to HIF-1alpha. Phosphorylation of RACK1 promotes its dimerization and dephosphorylation by calcineurin inhibits dimerization. Serine 146 within the dimerization domain is phosphorylated and mutation of serine 146 impairs RACK1 dimerization and HIF-1alpha degradation. These results indicate that intracellular calcium levels can regulate HIF-1alpha expression by modulating calcineurin activity and RACK1 dimerization.
Collapse
Affiliation(s)
- Ye V. Liu
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Maimon E. Hubbi
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Graduate Training Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Fan Pan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Karin R. McDonald
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Malini Mansharamani
- Mass Spectrometry/Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N. Cole
- Mass Spectrometry/Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Departments of Pediatrics, Medicine, Oncology, and Radiation Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
34
|
de Frutos S, Spangler R, Alò D, Bosc LVG. NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with alpha-actin up-regulation. J Biol Chem 2007; 282:15081-9. [PMID: 17403661 PMCID: PMC2754407 DOI: 10.1074/jbc.m702679200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physiological responses to chronic hypoxia include polycythemia, pulmonary arterial remodeling, and vasoconstriction. Chronic hypoxia causes pulmonary arterial hypertension leading to right ventricular hypertrophy and heart failure. During pulmonary hypertension, pulmonary arteries exhibit increased expression of smooth muscle-alpha-actin and -myosin heavy chain. NFATc3 (nuclear factor of activated T cells isoform c3), which is aCa(2+)-dependent transcription factor, has been recently linked to smooth muscle phenotypic maintenance through the regulation of the expression of alpha-actin. The aim of this study was to determine if: (a) NFATc3 is expressed in murine pulmonary arteries, (b) hypoxia induces NFAT activation, (c) NFATc3 mediates the up-regulation of alpha-actin during chronic hypoxia, and (d) NFATc3 is involved in chronic hypoxia-induced pulmonary vascular remodeling. NFATc3 transcript and protein were found in pulmonary arteries. NFAT-luciferase reporter mice were exposed to normoxia (630 torr) or hypoxia (380 torr) for 2, 7, or 21 days. Exposure to hypoxia elicited a significant increase in luciferase activity and pulmonary arterial smooth muscle nuclear NFATc3 localization, demonstrating NFAT activation. Hypoxia induced up-regulation of alpha-actin and was prevented by the calcineurin/NFAT inhibitor, cyclosporin A (25 mg/kg/day s.c.). In addition, NFATc3 knock-out mice did not showed increased alpha-actin levels and arterial wall thickness after hypoxia. These results strongly suggest that NFATc3 plays a role in the chronic hypoxia-induced vascular changes that underlie pulmonary hypertension.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Calcineurin/metabolism
- Calcineurin Inhibitors
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/physiopathology
- Cell Nucleus/metabolism
- Chronic Disease
- Cyclosporine/pharmacology
- Enzyme Inhibitors/pharmacology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NFATC Transcription Factors/antagonists & inhibitors
- NFATC Transcription Factors/deficiency
- NFATC Transcription Factors/metabolism
- Polycythemia/genetics
- Polycythemia/metabolism
- Polycythemia/pathology
- Polycythemia/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Vasoconstriction/drug effects
- Vasoconstriction/genetics
- Ventricular Remodeling/drug effects
- Ventricular Remodeling/genetics
Collapse
Affiliation(s)
- Sergio de Frutos
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
35
|
SHENG H, ZHU J, WU X, YANG D, ZHANG J. Angiotensin-Converting Enzyme Inhibitor Suppresses Activation of Calcineurin in Renovascular Hypertensive Rats. Hypertens Res 2007; 30:1247-54. [DOI: 10.1291/hypres.30.1247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Hulter HN, Krapf R. Interrelationships Among Hypoxia-Inducible Factor Biology and Acid-Base Equilibrium. Semin Nephrol 2006; 26:454-65. [PMID: 17275583 DOI: 10.1016/j.semnephrol.2006.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this article, we try to summarize the most important novel biological information on the complex interrelationships between acid-base alterations and hypoxia-inducible factor (HIF) signaling. Extracellular and intracellular acid-base alterations affect HIF signaling in part independently of hypoxia, and involve, among others, effects on cytoprotection and apoptosis. Conversely, HIF signaling may affect systemic and local acid production rates and has been implicated in the mechanism of the acute hyperventilatory response (ie, respiratory alkalosis) in response to hypoxia as well as for hypoxia-induced pulmonary artery hypertension (PAH), although the latter data are quite preliminary and can be explained by alternative mechanisms. Thus, this review calls attention to these relationships for renal physiologists and nephrologists to stimulate focused clinical observations and specific investigative efforts as proposed in this overview.
Collapse
Affiliation(s)
- Henry N Hulter
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | |
Collapse
|