1
|
Gao Y, Liu R, Shi J, Shan W, Zhou H, Chen Z, Yue X, Zhang J, Luo Y, Pan W, Zhao X, Zeng X, Yin W, Xiao H. Clonal GZMK +CD8 + T cells are identified as a hallmark of the pathogenesis of cGVHD-induced bronchiolitis obliterans syndrome after allogeneic hematopoietic stem cell transplantation. EBioMedicine 2024; 112:105535. [PMID: 39740295 PMCID: PMC11750515 DOI: 10.1016/j.ebiom.2024.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) is one of the most devastating outcomes of chronic graft-versus-host disease (cGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). This remains an area of unmet clinical need for optimal therapy for BOS patients partly due to the limited understanding of pathogenic mechanisms. METHODS We collected blood samples from 22 patients with cGVHD and 11 patients without cGVHD following allo-HSCT. By applying a combination of mass cytometry (CyTOF), RNA-sequencing and the quantitative cytokine array, we discovered a new cellular hallmarker of patients with cGVHD-BOS. This finding was further validated in cGVHD-BOS murine models by using single-cell RNA sequencing (scRNA-seq) and paired single-cell V(D)J sequencing analyses. FINDINGS We revealed that circulating Granzyme K (GZMK)-expressing CD8+ T cells with increased expression of CCR5 were accumulated in cGVHD-BOS patients, and GZMK can induce the expression of fibrosis-essential proteins, collagen type I alpha 1 chain (COL1A1) and fibronectin (FN1), in human fibroblasts. As compared to those of control mice, GZMK+CD8+ T cells in the lungs of cGVHD-BOS mice were undergoing significant infiltration and clonal hyperexpansion, with more cytotoxic, pro-inflammatory, migratory and exhausted phenotypes. Moreover, we screened small-molecule drugs and revealed that Bosutinib, the second-generation BCR-ABL1-targeting tyrosine kinase inhibitor (TKI), could inhibit GZMK expression in CD8+ T cells and reduce lung stiffness and pulmonary fibrosis in cGVHD-BOS mice. INTERPRETATION This study provides proof-of-principle evidence for clonal GZMK+CD8+ T cells as an unexplored contributor to the pathogenesis of cGVHD-BOS, which can be an underlying biomarker for treatment. FUNDING This work was supported by the National Natural Science Foundation of China (No. 82170141, 82100123, 81870136), and "Pioneer" and "Leading Goose" R&D Program of Zhejiang (grant No. 2022C03012).
Collapse
Affiliation(s)
- Yang Gao
- Department of Hematology and Cell Therapy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Ruixiang Liu
- Zhejiang Puluoting Health Technology Co., Ltd, Hangzhou, Zhejiang province, PR China
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang province, PR China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Hongyu Zhou
- Department of Hematology and Cell Therapy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Zhi Chen
- Department of Hematology and Cell Therapy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Xiaoyan Yue
- Department of Hematology and Cell Therapy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Jie Zhang
- Department of Hematology and Cell Therapy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Wenjue Pan
- Department of Hematology and Cell Therapy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Xiujie Zhao
- Department of Hematology and Cell Therapy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China.
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang province, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering and Instrument of Science, Zhejiang University, Hangzhou, Zhejiang province, PR China.
| | - Haowen Xiao
- Department of Hematology and Cell Therapy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, PR China.
| |
Collapse
|
2
|
Dou Y, Nian Z, Wang D, Sun G, Zhou L, Hu Z, Ke J, Zhu X, Sun R, Tian Z, Fu B, Zhou Y, Wei H. Reconstituted CD74 + NK cells trigger chronic graft versus host disease after allogeneic bone marrow transplantation. J Autoimmun 2024; 147:103274. [PMID: 38936148 DOI: 10.1016/j.jaut.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Chronic graft-versus-host disease (cGVHD) is the most common long-term complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The patients with pulmonary cGVHD in particular have a very poor prognosis. NK cells are the first reconstituted lymphocyte subset after allo-HSCT; however, the impact of reconstituted NK cells on cGVHD is unclear. Here, we found allogeneic recipients showed obvious pulmonary cGVHD. Surprisingly, deletion of reconstituted NK cells resulted in maximal relief of pulmonary cGVHD. Mechanistically, reconstituted NK cells with donor profiles modulated the pulmonary inflammatory microenvironment to trigger cGVHD. Reconstituted NK cells secreted IFN-γ and TNF-α to induce CXCL10 production by epithelial cells, which recruited macrophages and CD4+ T cells to the lungs. Then macrophages and CD4+ T cells were activated by the inflammatory microenvironment, thereby mediating lung injury. Through assessment of differences in cellular energy, we found that CD74+ NK cells with high mitochondrial potential and pro-inflammatory activity triggered pulmonary cGVHD. Furthermore, targeted elimination of CD74+ NK cells using the anti-CD74 antibody significantly alleviated pulmonary cGVHD but preserved the CD74- NK cells to exert graft-versus-leukemia (GVL) effects. Data from human samples corroborated our findings in mouse models. Collectively, our results reveal that reconstituted CD74+ NK cells trigger pulmonary cGVHD and suggest that administration of CD74 antibody was a potential therapeutic for patients with cGVHD.
Collapse
Affiliation(s)
- Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Nian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Dongyao Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guangyu Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Li Zhou
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziming Hu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Logan BR, Fu D, Howard A, Fei M, Kou J, Little MR, Adom D, Mohamed FA, Blazar BR, Gafken PR, Paczesny S. Validated graft-specific biomarkers identify patients at risk for chronic graft-versus-host disease and death. J Clin Invest 2023; 133:e168575. [PMID: 37526081 PMCID: PMC10378149 DOI: 10.1172/jci168575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUNDChronic graft-versus-host disease (cGVHD) is a serious complication of allogeneic hematopoietic cell transplantation (HCT). More accurate information regarding the risk of developing cGVHD is required. Bone marrow (BM) grafts contribute to lower cGVHD, which creates a dispute over whether risk biomarker scores should be used for peripheral blood (PB) and BM.METHODSDay 90 plasma proteomics from PB and BM recipients developing cGVHD revealed 5 risk markers that were added to 8 previous cGVHD markers to screen 982 HCT samples of 2 multicenter Blood and Marrow Transplant Clinical Trials Network (BMTCTN) cohorts. Each marker was tested for its association with cause-specific hazard ratios (HRs) of cGVHD using Cox-proportional-hazards models. We paired these clinical studies with biomarker measurements in a mouse model of cGVHD.RESULTSSpearman correlations between DKK3 and MMP3 were significant in both cohorts. In BMTCTN 0201 multivariate analyses, PB recipients with 1-log increase in CXCL9 and DKK3 were 1.3 times (95% CI: 1.1-1.4, P = 0.001) and 1.9 times (95%CI: 1.1-3.2, P = 0.019) and BM recipients with 1-log increase in CXCL10 and MMP3 were 1.3 times (95%CI: 1.0-1.6, P = 0.018 and P = 0.023) more likely to develop cGVHD. In BMTCTN 1202, PB patients with high CXCL9 and MMP3 were 1.1 times (95%CI: 1.0-1.2, P = 0.037) and 1.2 times (95%CI: 1.0-1.3, P = 0.009) more likely to develop cGVHD. PB patients with high biomarkers had increased likelihood to develop cGVHD in both cohorts (22%-32% versus 8%-12%, P = 0.002 and P < 0.001, respectively). Mice showed elevated circulating biomarkers before the signs of cGVHD.CONCLUSIONBiomarker levels at 3 months after HCT identify patients at risk for cGVHD occurrence.FUNDINGNIH grants R01CA168814, R21HL139934, P01CA158505, T32AI007313, and R01CA264921.
Collapse
Affiliation(s)
- Brent R. Logan
- Division of Biostatistics and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Denggang Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Howard
- Be The Match and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Mingwei Fei
- Be The Match and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Jianqun Kou
- Division of Biostatistics and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Morgan R. Little
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Djamilatou Adom
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Philip R. Gafken
- Proteomics & Metabolomics shared resource, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Handelsman S, Overbey J, Chen K, Lee J, Haj D, Li Y. PD-L1's Role in Preventing Alloreactive T Cell Responses Following Hematopoietic and Organ Transplant. Cells 2023; 12:1609. [PMID: 37371079 DOI: 10.3390/cells12121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past decade, Programmed Death-Ligand 1 (PD-L1) has emerged as a prominent target for cancer immunotherapies. However, its potential as an immunosuppressive therapy has been limited. In this review, we present the immunological basis of graft rejection and graft-versus-host disease (GVHD), followed by a summary of biologically relevant molecular interactions of both PD-L1 and Programmed Cell Death Protein 1 (PD-1). Finally, we present a translational perspective on how PD-L1 can interrupt alloreactive-driven processes to increase immune tolerance. Unlike most current therapies that block PD-L1 and/or its interaction with PD-1, this review focuses on how upregulation or reversed sequestration of this ligand may reduce autoimmunity, ameliorate GVHD, and enhance graft survival following organ transplant.
Collapse
Affiliation(s)
- Shane Handelsman
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Juliana Overbey
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Kevin Chen
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Justin Lee
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Delour Haj
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Yong Li
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| |
Collapse
|
5
|
Yin G, Guo Y, Ding Q, Ma S, Chen F, Wang Q, Chen H, Wang H. Klebsiella quasipneumoniae in intestine damages bile acid metabolism in hematopoietic stem cell transplantation patients with bloodstream infection. J Transl Med 2023; 21:230. [PMID: 36991414 PMCID: PMC10061697 DOI: 10.1186/s12967-023-04068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Bloodstream infection (BSI) is a serious hematopoietic stem cell transplantation (HSCT) complication. The intestinal microbiome regulates host metabolism and maintains intestinal homeostasis. Thus, the impact of microbiome on HSCT patients with BSI is essential. METHODS Stool and serum specimens of HSCT patients were prospectively collected from the pretransplant conditioning period till 4 months after transplantation. Specimens of 16 patients without BSI and 21 patients before BSI onset were screened for omics study using 16S rRNA gene sequencing and untargeted metabolomics. The predictive infection model was constructed using LASSO and the logistic regression algorithm. The correlation and influence of microbiome and metabolism were examined in mouse and Caco-2 cell monolayer models. RESULTS The microbial diversity and abundance of Lactobacillaceae were remarkably reduced, but the abundance of Enterobacteriaceae (especially Klebsiella quasipneumoniae) was significantly increased in the BSI group before onset, compared with the non-BSI group. The family score of microbiome features (Enterobacteriaceae and Butyricicoccaceae) could highly predict BSI (AUC = 0.879). The serum metabolomic analysis showed that 16 differential metabolites were mainly enriched in the primary bile acid biosynthesis pathway, and the level of chenodeoxycholic acid (CDCA) was positively correlated with the abundance of K. quasipneumoniae (R = 0.406, P = 0.006). The results of mouse experiments confirmed that three serum primary bile acids levels (cholic acid, isoCDCA and ursocholic acid), the mRNA expression levels of bile acid farnesol X receptor gene and apical sodium-dependent bile acid transporter gene in K. quasipneumoniae colonized mice were significantly higher than those in non-colonized mice. The intestinal villus height, crypt depth, and the mRNA expression level of tight junction protein claudin-1 gene in K. quasipneumoniae intestinal colonized mice were significantly lower than those in non-colonized mice. In vitro, K. quasipneumoniae increased the clearance of FITC-dextran by Caco-2 cell monolayer. CONCLUSIONS This study demonstrated that the intestinal opportunistic pathogen, K. quasipneumoniae, was increased in HSCT patients before BSI onset, causing increased serum primary bile acids. The colonization of K. quasipneumoniae in mice intestines could lead to mucosal integrity damage. The intestinal microbiome features of HSCT patients were highly predictive of BSI and could be further used as potential biomarkers.
Collapse
Affiliation(s)
- Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shuai Ma
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Fengning Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
6
|
Le Floc'h A, Nagashima K, Birchard D, Scott G, Ben LH, Ajithdoss D, Gayvert K, Romero Hernandez A, Herbin O, Tay A, Farrales P, Korgaonkar CK, Pan H, Shah S, Kamat V, Chatterjee I, Popke J, Oyejide A, Lim WK, Kim JH, Huang T, Franklin M, Olson W, Norton T, Perlee L, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. Blocking common γ chain cytokine signaling ameliorates T cell-mediated pathogenesis in disease models. Sci Transl Med 2023; 15:eabo0205. [PMID: 36630481 DOI: 10.1126/scitranslmed.abo0205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The common γ chain (γc; IL-2RG) is a subunit of the interleukin (IL) receptors for the γc cytokines IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The lack of appropriate neutralizing antibodies recognizing IL-2RG has made it difficult to thoroughly interrogate the role of γc cytokines in inflammatory and autoimmune disease settings. Here, we generated a γc cytokine receptor antibody, REGN7257, to determine whether γc cytokines might be targeted for T cell-mediated disease prevention and treatment. Biochemical, structural, and in vitro analysis showed that REGN7257 binds with high affinity to IL-2RG and potently blocks signaling of all γc cytokines. In nonhuman primates, REGN7257 efficiently suppressed T cells without affecting granulocytes, platelets, or red blood cells. Using REGN7257, we showed that γc cytokines drive T cell-mediated disease in mouse models of graft-versus-host disease (GVHD) and multiple sclerosis by affecting multiple aspects of the pathogenic response. We found that our xenogeneic GVHD mouse model recapitulates hallmarks of acute and chronic GVHD, with T cell expansion/infiltration into tissues and liver fibrosis, as well as hallmarks of immune aplastic anemia, with bone marrow aplasia and peripheral cytopenia. Our findings indicate that γc cytokines contribute to GVHD and aplastic anemia pathology by promoting these characteristic features. By demonstrating that broad inhibition of γc cytokine signaling with REGN7257 protects from immune-mediated disorders, our data provide evidence of γc cytokines as key drivers of pathogenic T cell responses, offering a potential strategy for the management of T cell-mediated diseases.
Collapse
Affiliation(s)
- Audrey Le Floc'h
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kirsten Nagashima
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dylan Birchard
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George Scott
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Li-Hong Ben
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dharani Ajithdoss
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kaitlyn Gayvert
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Olivier Herbin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Amanda Tay
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Pamela Farrales
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Hao Pan
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Sweta Shah
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Vishal Kamat
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ishita Chatterjee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jon Popke
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Adelekan Oyejide
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jee H Kim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Thomas Norton
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lorah Perlee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
7
|
Interstitial lung diseases after hematopoietic stem cell transplantation: New pattern of lung chronic graft-versus-host disease? Bone Marrow Transplant 2023; 58:87-93. [PMID: 36309588 PMCID: PMC9812763 DOI: 10.1038/s41409-022-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS) after allogeneic HSCT is the only formally recognized manifestation of lung chronic graft-versus-host disease (GVHD). Other lung complications were reported, including interstitial lung diseases (ILDs). Whether ILDs belong to the spectrum of lung cGVHD remains unknown. We compared characteristics and specific risk factors for both ILD and BOS. Data collected from consecutive patients diagnosed with ILD or BOS from 1981-2019 were analyzed. The strength of the association between patient characteristics and ILD occurrence was measured via odds ratios estimated from univariable logistic models. Multivariable models allowed us to handle potential confounding variables. Overall survival (OS) was estimated using the Kaplan-Meier method. 238 patients were included: 79 with ILD and 159 with BOS. At diagnosis, FEV1 was lower in patients with BOS compared to patients with ILD, while DLCO was lower in ILD. 84% of ILD patients received systemic corticosteroids, leading to improved CT scans and pulmonary function, whereas most BOS patients were treated by inhaled corticosteroids, with lung-function stabilization. In the multivariable analysis, prior thoracic irradiation and absence of prior treatment with prednisone were associated with ILD. OS was similar, even if hematological relapse was more frequent in the ILD group. Both complications occurred mainly in patients with GVHD history.
Collapse
|
8
|
Yamasuji-Maeda Y, Nishimori H, Seike K, Yamamoto A, Fujiwara H, Kuroi T, Saeki K, Fujinaga H, Okamoto S, Matsuoka KI, Fujii N, Tanaka T, Fujii M, Mominoki K, Kanekura T, Maeda Y. Prevention of non-infectious pulmonary complications after intra-bone marrow stem cell transplantation in mice. PLoS One 2022; 17:e0273749. [PMID: 36084023 PMCID: PMC9462704 DOI: 10.1371/journal.pone.0273749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Non-infectious pulmonary complications including idiopathic pneumonia syndrome (IPS) and bronchiolitis obliterans syndrome (BOS), which are clinical and diagnostic manifestations of lung chronic graft-versus-host disease (GVHD), cause significant mortality after allogeneic stem cell transplantation (SCT). Increasing evidence suggests that alloantigen reactions in lung tissue play a central role in the pathogenesis of IPS and BOS; however, the mechanism is not fully understood. Several clinical and experimental studies have reported that intra-bone marrow (IBM)-SCT provides high rates of engraftment and is associated with a low incidence of acute GVHD. In the present study, allogeneic SCT was conducted in mouse models of IPS and BOS, to compare intravenous (IV)-SCT with IBM-SCT. Allogeneic IBM-SCT improved the clinical and pathological outcomes of pulmonary complications compared to those of IV-SCT. The mechanisms underlying the reductions in pulmonary complications in IBM-SCT mice were explored. The infiltrating lung cells were mainly CD11b+ myeloid and CD3+ T cells, in the same proportions as in transplanted donor cells. In an in vivo bioluminescence imaging, a higher proportion of injected donor cells was detected in the lung during the early phase (1 h after IV-SCT) than after IBM-SCT (16.7 ± 1.1 vs. 3.1 ± 0.7 × 105 photons/s/animal, IV-SCT vs. IBM-SCT, P = 1.90 × 10−10). In the late phase (5 days) after SCT, there were also significantly more donor cells in the lung after IV-SCT than after IBM-SCT or allogeneic-SCT (508.5 ± 66.1 vs. 160.1 ± 61.9 × 106 photons/s/animal, IV-SCT vs. IBM-SCT, P = 0.001), suggesting that the allogeneic reaction induces sustained donor cell infiltration in the lung during the late phase. These results demonstrated that IBM-SCT is capable of reducing injected donor cells in the lung; IBM-SCT decreases donor cell infiltration. IBM-SCT therefore represents a promising transplantation strategy for reducing pulmonary complications, by suppressing the first step in the pathophysiology of chronic GVHD.
Collapse
Affiliation(s)
- Yoshiko Yamasuji-Maeda
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keisuke Seike
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Yamamoto
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Taiga Kuroi
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kyosuke Saeki
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruko Fujinaga
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sachiyo Okamoto
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuharu Fujii
- Department of Transfusion Medicine, Okayama University Hospital, Okayama, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Fujii
- Department of Animal Resources, Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Katsumi Mominoki
- Department of Animal Resources, Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
9
|
Wu Y, Mealer C, Schutt S, Wilson CL, Bastian D, Sofi MH, Zhang M, Luo Z, Choi HJ, Yang K, Tian L, Nguyen H, Helke K, Schnapp LM, Wang H, Yu XZ. MicroRNA-31 regulates T-cell metabolism via HIF1α and promotes chronic GVHD pathogenesis in mice. Blood Adv 2022; 6:3036-3052. [PMID: 35073581 PMCID: PMC9131913 DOI: 10.1182/bloodadvances.2021005103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) remains a major obstacle impeding successful allogeneic hematopoietic cell transplantation (HCT). MicroRNAs (miRs) play key roles in immune regulation during acute GVHD development. Preclinical studies to identify miRs that affect cGVHD pathogenesis are required to develop these as potential lifesaving interventions. Using oligonucleotide array, we identified miR-31, which was significantly elevated in allogeneic T cells after HCT in mice. Using genetic and pharmacologic approaches, we demonstrated a key role for miR-31 in mediating donor T-cell pathogenicity in cGVHD. Recipients of miR-31-deficient T cells displayed improved cutaneous and pulmonary cGVHD. Deficiency of miR-31 reduced T-cell expansion and T helper 17 (Th17) cell differentiation but increased generation and function of regulatory T cells (Tregs). MiR-31 facilitated neuropilin-1 downregulation, Foxp3 loss, and interferon-γ production in alloantigen-induced Tregs. Mechanistically, miR-31 was required for hypoxia-inducible factor 1α (HIF1α) upregulation in allogeneic T cells. Therefore, miR-31-deficient CD4 T cells displayed impaired activation, survival, Th17 cell differentiation, and glycolytic metabolism under hypoxia. Upregulation of factor-inhibiting HIF1, a direct target of miR-31, in miR-31-deficient T cells was essential for attenuating T-cell pathogenicity. However, miR-31-deficient CD8 T cells maintained intact glucose metabolism, cytolytic activity, and graft-versus-leukemia response. Importantly, systemic administration of a specific inhibitor of miR-31 effectively reduced donor T-cell expansion, improved Treg generation, and attenuated cGVHD. Taken together, miR-31 is a key driver for T-cell pathogenicity in cGVHD but not for antileukemia activity. MiR-31 is essential in driving cGVHD pathogenesis and represents a novel potential therapeutic target for controlling cGVHD.
Collapse
Affiliation(s)
- Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Corey Mealer
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Steven Schutt
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | | | - David Bastian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - M. Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Mengmeng Zhang
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Zhenwu Luo
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Kaipo Yang
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Hung Nguyen
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Kris Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC
| | | | - Honglin Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC; and
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
10
|
Zaiken MC, Flynn R, Paz KG, Rhee SY, Jin S, Mohamed FA, Saha A, Thangavelu G, Park PMC, Hemming ML, Sage PT, Sharpe AH, DuPage M, Bluestone JA, Panoskaltsis-Mortari A, Cutler CS, Koreth J, Antin JH, Soiffer RJ, Ritz J, Luznik L, Maillard I, Hill GR, MacDonald KPA, Munn DH, Serody JS, Murphy WJ, Kean LS, Zhang Y, Bradner JE, Qi J, Blazar BR. BET-bromodomain and EZH2 inhibitor-treated chronic GVHD mice have blunted germinal centers with distinct transcriptomes. Blood 2022; 139:2983-2997. [PMID: 35226736 PMCID: PMC9101246 DOI: 10.1182/blood.2021014557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 01/26/2023] Open
Abstract
Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.
Collapse
Affiliation(s)
- Michael C Zaiken
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Ryan Flynn
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Katelyn G Paz
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Stephanie Y Rhee
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Sujeong Jin
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Fathima A Mohamed
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Asim Saha
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Govindarajan Thangavelu
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Paul M C Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew L Hemming
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Peter T Sage
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Evergrande Center for Immunologic Diseases, Harvard Medical School-Brigham and Women's Hospital, Boston, MA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Evergrande Center for Immunologic Diseases, Harvard Medical School-Brigham and Women's Hospital, Boston, MA
| | - Michel DuPage
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | | | - Angela Panoskaltsis-Mortari
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | | | | | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Leo Luznik
- Department of Oncology, Sidney Kimmel Cancer Center, Baltimore, MD
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, University of Washington, Seattle, WA
| | - Kelli P A MacDonald
- Department of Immunology, Queensland Institute of Medical Research (QIMR), University of Queensland, Brisbane, QLD, Australia
| | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, GA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA
| | - Leslie S Kean
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Department of Microbiology and Immunology, Temple University, Philadelphia, PA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
11
|
Thangavelu G, Zaiken MC, Mohamed FA, Flynn R, Du J, Rhee SY, Riddle MJ, Aguilar EG, Panoskaltsis-Mortari A, Sanders ME, Blazar BR. Targeting the Retinoid X Receptor Pathway Prevents and Ameliorates Murine Chronic Graft-Versus-Host Disease. Front Immunol 2022; 13:765319. [PMID: 35359939 PMCID: PMC8963714 DOI: 10.3389/fimmu.2022.765319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/26/2022] [Indexed: 02/03/2023] Open
Abstract
Most allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients receive peripheral blood stem cell grafts resulting in a 30%-70% incidence of chronic graft-versus-host disease (cGVHD), a major cause of mortality and morbidity in long-term survivors. While systemic steroids remain the standard of care for first-line therapy, patients may require long-term administration, and those with steroid-resistant or refractory cGVHD have a worse prognosis. Although durable and deep responses with second-line therapies can be achieved in some patients, there remains an urgent need for new therapies. In this study, we evaluated the efficacy of IRX4204, a novel agonist that activates RXRs and is in clinical trials for cancer treatment to prevent and treat cGVHD in two complementary murine models. In a major histocompatibility complex mismatched, non-sclerodermatous multiorgan system model with bronchiolitis obliterans, IRX4204 prevented and reversed cGVHD including associated pulmonary dysfunction with restoration of germinal center T-follicular helper: T-follicular regulatory cell balance. In a minor histocompatibility antigen disparate sclerodermatous model, IRX4204 treatment significantly prevented and ameliorated skin cGVHD by reducing Th1 and Th17 differentiation due to anti-inflammatory properties. Together, these results indicate that IRX4204 is a promising therapeutic option to treat cGVHD with bronchiolitis obliterans or sclerodermatous manifestations.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Michael C. Zaiken
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ryan Flynn
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Jing Du
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Megan J. Riddle
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ethan G. Aguilar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Patel DA, Schroeder MA, Choi J, DiPersio JF. Mouse models of graft-versus-host disease. Methods Cell Biol 2022; 168:41-66. [DOI: 10.1016/bs.mcb.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Song Q, Kong X, Martin PJ, Zeng D. Murine Models Provide New Insights Into Pathogenesis of Chronic Graft- Versus-Host Disease in Humans. Front Immunol 2021; 12:700857. [PMID: 34539630 PMCID: PMC8446193 DOI: 10.3389/fimmu.2021.700857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for hematologic malignancies, but its success is complicated by graft-versus-host disease (GVHD). GVHD can be divided into acute and chronic types. Acute GVHD represents an acute alloimmune inflammatory response initiated by donor T cells that recognize recipient alloantigens. Chronic GVHD has a more complex pathophysiology involving donor-derived T cells that recognize recipient-specific antigens, donor-specific antigens, and antigens shared by the recipient and donor. Antibodies produced by donor B cells contribute to the pathogenesis of chronic GVHD but not acute GVHD. Acute GVHD can often be effectively controlled by treatment with corticosteroids or other immunosuppressant for a period of weeks, but successful control of chronic GVHD requires much longer treatment. Therefore, chronic GVHD remains the major cause of long-term morbidity and mortality after allo-HCT. Murine models of allo-HCT have made great contributions to our understanding pathogenesis of acute and chronic GVHD. In this review, we summarize new mechanistic findings from murine models of chronic GVHD, and we discuss the relevance of these insights to chronic GVHD pathogenesis in humans and their potential impact on clinical prevention and treatment.
Collapse
Affiliation(s)
- Qingxiao Song
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States.,Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohui Kong
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Defu Zeng
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
14
|
Zhou X, Moore BB. Experimental Models of Infectious Pulmonary Complications Following Hematopoietic Cell Transplantation. Front Immunol 2021; 12:718603. [PMID: 34484223 PMCID: PMC8415416 DOI: 10.3389/fimmu.2021.718603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary infections remain a major cause of morbidity and mortality in hematopoietic cell transplantation (HCT) recipients. The prevalence and type of infection changes over time and is influenced by the course of immune reconstitution post-transplant. The interaction between pathogens and host immune responses is complex in HCT settings, since the conditioning regimens create periods of neutropenia and immunosuppressive drugs are often needed to prevent graft rejection and limit graft-versus-host disease (GVHD). Experimental murine models of transplantation are valuable tools for dissecting the procedure-related alterations to innate and adaptive immunity. Here we review mouse models of post-HCT infectious pulmonary complications, primarily focused on three groups of pathogens that frequently infect HCT recipients: bacteria (often P. aeruginosa), fungus (primarily Aspergillus fumigatus), and viruses (primarily herpesviruses). These mouse models have advanced our knowledge regarding how the conditioning and HCT process negatively impacts innate immunity and have provided new potential strategies of managing the infections. Studies using mouse models have also validated clinical observations suggesting that prior or occult infections are a potential etiology of noninfectious pulmonary complications post-HCT as well.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Bethany B Moore
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Teshima T, Hill GR. The Pathophysiology and Treatment of Graft- Versus-Host Disease: Lessons Learnt From Animal Models. Front Immunol 2021; 12:715424. [PMID: 34489966 PMCID: PMC8417310 DOI: 10.3389/fimmu.2021.715424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for hematologic malignancies, bone marrow failure syndromes, and inherited immunodeficiencies and metabolic diseases. Graft-versus-host disease (GVHD) is the major life-threatening complication after allogeneic HCT. New insights into the pathophysiology of GVHD garnered from our understanding of the immunological pathways within animal models have been pivotal in driving new therapeutic paradigms in the clinic. Successful clinical translations include histocompatibility matching, GVHD prophylaxis using cyclosporine and methotrexate, posttransplant cyclophosphamide, and the use of broad kinase inhibitors that inhibit cytokine signaling (e.g. ruxolitinib). New approaches focus on naïve T cell depletion, targeted cytokine modulation and the inhibition of co-stimulation. This review highlights the use of animal transplantation models to guide new therapeutic principles.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, The University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Pulmonary Complications of Pediatric Hematopoietic Cell Transplantation. A National Institutes of Health Workshop Summary. Ann Am Thorac Soc 2021; 18:381-394. [PMID: 33058742 DOI: 10.1513/annalsats.202001-006ot] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Approximately 2,500 pediatric hematopoietic cell transplants (HCTs), most of which are allogeneic, are performed annually in the United States for life-threatening malignant and nonmalignant conditions. Although HCT is undertaken with curative intent, post-HCT complications limit successful outcomes, with pulmonary dysfunction representing the leading cause of nonrelapse mortality. To better understand, predict, prevent, and/or treat pulmonary complications after HCT, a multidisciplinary group of 33 experts met in a 2-day National Institutes of Health Workshop to identify knowledge gaps and research strategies most likely to improve outcomes. This summary of Workshop deliberations outlines the consensus focus areas for future research.
Collapse
|
17
|
Hao B, Gao S, Sang YW, Wang L, Meng XQ, You JY. Potential value of autoantibodies as biomarkers of chronic graft-versus-host disease after allogeneic stem cell transplantation. J Zhejiang Univ Sci B 2020; 20:849-860. [PMID: 31489804 DOI: 10.1631/jzus.b1900205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigated the value of autoantibodies as biomarkers of chronic graft-versus-host disease (cGVHD) by analyzing the autoantibody profiles of 65 patients (34 cGVHD and 31 non-cGVHD) surviving longer than three months after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Autoantibodies to at least one antigen were detected in 45 patients (70.8%), with multiple autoantibodies detected in 30 patients (46.2%). Antinuclear antibodies (ANAs) were the most frequently detected autoantibodies, with a significantly higher prevalence in non-cGVHD patients and cGVHD patients than that in healthy controls (HCs). ANA-nucleolar (ANA-N) was the main immunofluorescence pattern of ANA-positivity in both the non-cGVHD and cGVHD groups. There was a higher prevalence of anti-Ro52-positivity in non-cGVHD and cGVHD patients than in HC. Liver cGVHD was significantly associated with anti-Ro52-positivity. However, cGVHD activity and severity were not associated with the presence of autoantibodies. Similarly, there were no significant differences in overall survival or relapse among the four groups of patients expressing autoantibodies. Our results suggest that autoantibodies have limited value in predicting cGVHD.
Collapse
Affiliation(s)
- Bing Hao
- National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Song Gao
- Department of Clinical Laboratory, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yi-Wen Sang
- Department of Clinical Laboratory, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Lin Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xue-Qin Meng
- National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jing-Ya You
- National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
18
|
Paz K, Flynn R, Du J, Tannheimer S, Johnson AJ, Dong S, Stark AK, Okkenhaug K, Panoskaltsis-Mortari A, Sage PT, Sharpe AH, Luznik L, Ritz J, Soiffer RJ, Cutler CS, Koreth J, Antin JH, Miklos DB, MacDonald KP, Hill GR, Maillard I, Serody JS, Murphy WJ, Munn DH, Feser C, Zaiken M, Vanhaesebroeck B, Turka LA, Byrd JC, Blazar BR. Targeting PI3Kδ function for amelioration of murine chronic graft-versus-host disease. Am J Transplant 2019; 19:1820-1830. [PMID: 30748099 PMCID: PMC6538456 DOI: 10.1111/ajt.15305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality following allotransplant. Activated donor effector T cells can differentiate into pathogenic T helper (Th)-17 cells and germinal center (GC)-promoting T follicular helper (Tfh) cells, resulting in cGVHD. Phosphoinositide-3-kinase-δ (PI3Kδ), a lipid kinase, is critical for activated T cell survival, proliferation, differentiation, and metabolism. We demonstrate PI3Kδ activity in donor T cells that become Tfh cells is required for cGVHD in a nonsclerodermatous multiorgan system disease model that includes bronchiolitis obliterans (BO), dependent upon GC B cells, Tfhs, and counterbalanced by T follicular regulatory cells, each requiring PI3Kδ signaling for function and survival. Although B cells rely on PI3Kδ pathway signaling and GC formation is disrupted resulting in a substantial decrease in Ig production, PI3Kδ kinase-dead mutant donor bone marrow-derived GC B cells still supported BO cGVHD generation. A PI3Kδ-specific inhibitor, compound GS-649443, that has superior potency to idelalisib while maintaining selectivity, reduced cGVHD in mice with active disease. In a Th1-dependent and Th17-associated scleroderma model, GS-649443 effectively treated mice with active cGVHD. These data provide a foundation for clinical trials of US Food and Drug Administration (FDA)-approved PI3Kδ inhibitors for cGVHD therapy in patients.
Collapse
Affiliation(s)
- Katelyn Paz
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan Flynn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Du
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Amy J. Johnson
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, and Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Shuai Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy. The Ohio State University, Columbus, Ohio, USA
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arlene H. Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jerome Ritz
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J. Soiffer
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Corey S. Cutler
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John Koreth
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H. Antin
- Stem Cell/Bone Marrow Transplantation Program, Division of Hematologic Malignancy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - David B. Miklos
- Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA
| | - Kelli P. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, Australia
| | - Geoffrey R. Hill
- Department of Immunology, QIMR Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, Australia
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - William J. Murphy
- Departments of Dermatology and Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - David H. Munn
- Georgia Cancer Center and Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Colby Feser
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Zaiken
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Laurence A. Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John C. Byrd
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, and Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Diagnosis, Pathophysiology and Experimental Models of Chronic Lung Allograft Rejection. Transplantation 2019; 102:1459-1466. [PMID: 29683998 DOI: 10.1097/tp.0000000000002250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic rejection is the Achilles heel of modern lung transplantation, characterized by a slow, progressive decline in allograft function. Clinically, this manifests as obstructive disease, restrictive disease, or a mixture of the 2 depending on the underlying pathology. The 2 major phenotypes of chronic rejection include bronchiolitis obliterans syndrome and restrictive allograft syndrome. The last decade of research has revealed that each of these phenotypes has a unique underlying pathophysiology which may require a distinct treatment regimen for optimal control. Insights into the intricate alloimmune pathways contributing to chronic rejection have been gained from both large and small animal models, suggesting directions for future research. In this review, we explore the pathological hallmarks of chronic rejection, recent insights gained from both clinical and basic science research, and the current state of animal models of chronic lung rejection.
Collapse
|
20
|
Liu X, Yang L, Kwak D, Hou L, Shang R, Meyer C, Panoskaltsis-Mortari A, Xu X, Weir EK, Chen Y. Profound Increase of Lung Airway Resistance in Heart Failure: a Potential Important Contributor for Dyspnea. J Cardiovasc Transl Res 2019; 12:271-279. [PMID: 30680546 DOI: 10.1007/s12265-019-9864-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
Dyspnea is a major symptom of heart failure (HF). Here, we have studied the lung remodeling and airway resistance in HF mice. We demonstrated that aortic banding-induced HF caused a dramatic decrease of lung compliance and an increase of lung airway resistance. The decrease of lung compliance was correlated with the increased lung weight in a linear fashion (γ2 = 0.824). An HF-induced increase of lung airway resistance and a decrease of lung compliance were almost identical in anesthetized mice and in the isolated lungs from these mice. HF caused profound lung fibrosis in mice with increased lung weight. Moreover, HF patients of NYHA class III-IV showed increased lung density as revealed by high-resolution CT scanning. These data indicate that lung compliance and lung airway resistance may be useful in determining lung remodeling after HF, and lung structure changes may contribute to dyspnea in HF.
Collapse
Affiliation(s)
- Xiaohong Liu
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Liuqing Yang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Dongmin Kwak
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lei Hou
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ruru Shang
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Carolyn Meyer
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Angela Panoskaltsis-Mortari
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | | | - Yingjie Chen
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, 55455, USA. .,Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
21
|
Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton RJ, Johnson ME, de Cubas AA, Wu P, Li G, Zhang Y, Newcomb DC, Wells AD, Restifo NP, Rathmell WK, Locasale JW, Davila ML, Blazar BR, Rathmell JC. Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell 2018; 175:1780-1795.e19. [PMID: 30392958 PMCID: PMC6361668 DOI: 10.1016/j.cell.2018.10.001] [Citation(s) in RCA: 455] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/16/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022]
Abstract
Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.
Collapse
Affiliation(s)
- Marc O. Johnson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Melissa M. Wolf
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabriela Andrejeva
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Diana C. Contreras
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Damian Maseda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria V. Liberti
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Katelyn Paz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rigel J. Kishton
- Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew E. Johnson
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aguirre A. de Cubas
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pingsheng Wu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gongbo Li
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yongliang Zhang
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA,Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew D. Wells
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas P. Restifo
- Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - W. Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Marco L. Davila
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Bruce R. Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University School of Medicine, Nashville, TN 37232, USA,Lead Contact,Correspondence:
| |
Collapse
|
22
|
Radojcic V, Paz K, Chung J, Du J, Perkey ET, Flynn R, Ivcevic S, Zaiken M, Friedman A, Yan M, Pletneva MA, Sarantopoulos S, Siebel CW, Blazar BR, Maillard I. Notch signaling mediated by Delta-like ligands 1 and 4 controls the pathogenesis of chronic GVHD in mice. Blood 2018; 132:2188-2200. [PMID: 30181175 PMCID: PMC6238189 DOI: 10.1182/blood-2018-03-841155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT) and remains an area of unmet clinical need with few treatment options available. Notch blockade prevents acute GVHD in multiple mouse models, but the impact of Notch signaling on cGVHD remains unknown. Using genetic and antibody-mediated strategies of Notch inhibition, we investigated the role of Notch signaling in complementary mouse cGVHD models that mimic several aspects of human cGVHD in search of candidate therapeutics. In the B10.D2→BALB/c model of sclerodermatous cGVHD, Delta-like ligand 4 (Dll4)-driven Notch signaling was essential for disease development. Antibody-mediated Dll4 inhibition conferred maximum benefits when pursued early in a preventative fashion, with anti-Dll1 enhancing early protection. Notch-deficient alloantigen-specific T cells showed no early defects in proliferation or helper polarization in vivo but subsequently exhibited markedly decreased cytokine secretion and enhanced accumulation of FoxP3+ regulatory T cells. In the B6→B10.BR major histocompatibility complex-mismatched model with multi-organ system cGVHD and prominent bronchiolitis obliterans (BO), but not skin manifestations, absence of Notch signaling in T cells provided long-lasting disease protection that was replicated by systemic targeting of Dll1, Dll4, or both Notch ligands, even during established disease. Notch inhibition decreased target organ damage and germinal center formation. Moreover, decreased BO-cGVHD was observed upon inactivation of Notch1 and/or Notch2 in T cells. Systemic targeting of Notch2 alone was safe and conferred therapeutic benefits. Altogether, Notch ligands and receptors regulate key pathogenic steps in cGVHD and emerge as novel druggable targets to prevent or treat different forms of cGVHD.
Collapse
Affiliation(s)
- Vedran Radojcic
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Katelyn Paz
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Jooho Chung
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jing Du
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Eric T Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Ryan Flynn
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Sanja Ivcevic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Michael Zaiken
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Minhong Yan
- Department of Discovery Oncology, Genentech, South San Francisco, CA
| | | | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC; and
| | | | - Bruce R Blazar
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
23
|
Impaired bone marrow B-cell development in mice with a bronchiolitis obliterans model of cGVHD. Blood Adv 2018; 2:2307-2319. [PMID: 30228128 DOI: 10.1182/bloodadvances.2017014977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/23/2018] [Indexed: 01/24/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) causes significant morbidity and mortality in patients after allogeneic bone marrow (BM) or stem cell transplantation (allo-SCT). Recent work has indicated that both T and B lymphocytes play an important role in the pathophysiology of cGVHD. Previously, our group showed a critical role for the germinal center response in the function of B cells using a bronchiolitis obliterans (BO) model of cGVHD. Here, we demonstrated for the first time that cGVHD is associated with severe defects in the generation of BM B lymphoid and uncommitted common lymphoid progenitor cells. We found an increase in the number of donor CD4+ T cells in the BM of mice with cGVHD that was negatively correlated with B-cell development and the frequency of osteoblasts and Prrx-1-expressing perivascular stromal cells, which are present in the B-cell niche. Use of anti-DR3 monoclonal antibodies to enhance the number of donor regulatory T cells (Tregs) in the donor T-cell inoculum ameliorated the pathology associated with BO in this model. This correlated with an increased number of endosteal osteoblastic cells and significantly improved the generation of B-cell precursors in the BM after allo-SCT. Our work indicates that donor Tregs play a critical role in preserving the generation of B-cell precursors in the BM after allo-SCT. Approaches to enhance the number and/or function of donor Tregs that do not enhance conventional T-cell activity may be important to decrease the incidence and severity of cGVHD in part through normal B-cell lymphopoiesis.
Collapse
|
24
|
Gartlan KH, Bommiasamy H, Paz K, Wilkinson AN, Owen M, Reichenbach DK, Banovic T, Wehner K, Buchanan F, Varelias A, Kuns RD, Chang K, Fedoriw Y, Shea T, Coghill J, Zaiken M, Plank MW, Foster PS, Clouston AD, Blazar BR, Serody JS, Hill GR. A critical role for donor-derived IL-22 in cutaneous chronic GVHD. Am J Transplant 2018; 18:810-820. [PMID: 28941323 PMCID: PMC5866168 DOI: 10.1111/ajt.14513] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/16/2017] [Indexed: 01/25/2023]
Abstract
Graft-versus-host disease (GVHD) is the major cause of nonrelapse morbidity and mortality after allogeneic stem cell transplantation (allo-SCT). Prevention and treatment of GVHD remain inadequate and commonly lead to end-organ dysfunction and opportunistic infection. The role of interleukin (IL)-17 and IL-22 in GVHD remains uncertain, due to an apparent lack of lineage fidelity and variable and contextually determined protective and pathogenic effects. We demonstrate that donor T cell-derived IL-22 significantly exacerbates cutaneous chronic GVHD and that IL-22 is produced by highly inflammatory donor CD4+ T cells posttransplantation. IL-22 and IL-17A derive from both independent and overlapping lineages, defined as T helper (Th)22 and IL-22+ Th17 cells. Donor Th22 and IL-22+ Th17 cells share a similar IL-6-dependent developmental pathway, and while Th22 cells arise independently of the IL-22+ Th17 lineage, IL-17 signaling to donor Th22 directly promotes their development in allo-SCT. Importantly, while both IL-22 and IL-17 mediate skin GVHD, Th17-induced chronic GVHD can be attenuated by IL-22 inhibition in preclinical systems. In the clinic, high levels of both IL-17A and IL-22 expression are present in the skin of patients with GVHD after allo-SCT. Together, these data demonstrate a key role for donor-derived IL-22 in patients with chronic skin GVHD and confirm parallel but symbiotic developmental pathways of Th22 and Th17 differentiation.
Collapse
Affiliation(s)
- Kate H Gartlan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Hemamalini Bommiasamy
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Katelyn Paz
- Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Andrew N Wilkinson
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Mary Owen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dawn K Reichenbach
- Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Tatjana Banovic
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The Department of Clinical Immunology and Allergy, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Kimberly Wehner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Faith Buchanan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Antiopi Varelias
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rachel D Kuns
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karshing Chang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yuri Fedoriw
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Shea
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - James Coghill
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Zaiken
- Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Maximilian W Plank
- Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Paul S Foster
- Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Geoffrey R Hill
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
25
|
MicroRNA-17-92 is required for T-cell and B-cell pathogenicity in chronic graft-versus-host disease in mice. Blood 2018. [PMID: 29530952 DOI: 10.1182/blood-2017-06-789321] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is characterized as autoimmune-like fibrosis and antibody production mediated by pathogenic T cells and B cells. MicroRNA-17-92 (miR-17-92) influences the survival, differentiation, and function of lymphocytes in cancer, infections, and autoimmunity. To determine whether miR-17-92 regulates T- and B-cell responses in cGVHD, we generated mice conditionally deficient for miR-17-92 in T cells, B cells, or both. Using murine models of allogeneic bone marrow transplantation, we demonstrate that expression of miR-17-92 in donor T and B cells is essential for the induction of both scleroderma and bronchiolitis obliterans in cGVHD. Mechanistically, miR-17-92 expressed in T cells not only enhances the differentiation of pathogenic T helper 1 (Th1) and Th17 cells, but also promotes the generation of follicular Th cells, germinal center (GC) B cells, and plasma cells. In B cells, miR-17-92 expression is required for autoantibody production and immunoglobulin G deposition in the skin. Furthermore, we evaluated a translational approach using antagomirs specific for either miR-17 or miR-19, key members in miR-17-92 cluster. In a lupus-like cGVHD model, systemic administration of anti-miR-17, but not anti-miR-19, alleviates clinical manifestations and proteinuria incidence in recipients through inhibiting donor lymphocyte expansion, B-cell activation, and GC responses. Blockade of miR-17 also ameliorates skin damage by reducing Th17 differentiation in a scleroderma-cGVHD model. Taken together, our work reveals that miR-17-92 is required for T-cell and B-cell differentiation and function, and thus for the development of cGVHD. Furthermore, pharmacological inhibition of miR-17 represents a potential therapeutic strategy for the prevention of cGVHD.
Collapse
|
26
|
Forcade E, Paz K, Flynn R, Griesenauer B, Amet T, Li W, Liu L, Bakoyannis G, Jiang D, Chu HW, Lobera M, Yang J, Wilkes DS, Du J, Gartlan K, Hill GR, MacDonald KP, Espada EL, Blanco P, Serody JS, Koreth J, Cutler CS, Antin JH, Soiffer RJ, Ritz J, Paczesny S, Blazar BR. An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition. JCI Insight 2017; 2:92111. [PMID: 28614794 DOI: 10.1172/jci.insight.92111] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 01/13/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic stem cell transplantation requiring novel therapies. CD146 and CCR5 are expressed by activated T cells and associated with increased T cell migration capacity and Th17 polarization. We performed a multiparametric flow cytometry analysis in a cohort of 40 HSCT patients together with a cGvHD murine model to understand the role of CD146-expressing subsets. We observed an increased frequency of CD146+ CD4 T cells in the 20 patients with active cGvHD with enhanced RORγt expression. This Th17-prone subset was enriched for cells coexpressing CD146 and CCR5 that harbor mixed Th1/Th17 features and were more frequent in cGvHD patients. Utilizing a murine cGvHD model with bronchiolitis obliterans (BO), we observed that donor T cells from CD146-deficient mice versus those from WT mice caused significantly reduced pulmonary cGvHD. Reduced cGvHD was not the result of failed germinal center B cell or T follicular helper cell generation. Instead, CD146-deficient T cells had significantly lower pulmonary macrophage infiltration and T cell CCR5, IL-17, and IFN-γ coexpression, suggesting defective pulmonary end-organ effector mechanisms. We, thus, evaluated the effect of TMP778, a small-molecule RORγt activity inhibitor. TMP778 markedly alleviated cGvHD in murine models similarly to agents targeting the Th17 pathway, such as STAT3 inhibitor or IL-17-blocking antibody. Our data suggest CD146-expressing T cells as a cGvHD biomarker and suggest that targeting the Th17 pathway may represent a promising therapy for cGvHD.
Collapse
Affiliation(s)
- Edouard Forcade
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France.,Department of Hematology and Cell Therapy, University Hospital, Bordeaux, France
| | - Katelyn Paz
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan Flynn
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brad Griesenauer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tohti Amet
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wei Li
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liangyi Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Giorgos Bakoyannis
- Department of Biostatistics, Indiana University Fairbanks School of Public Health and School of Medicine, Indiana, USA
| | - Di Jiang
- National Jewish Health, Denver, Colorado, USA
| | | | | | | | - David S Wilkes
- Dean, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Jing Du
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kate Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kelli Pa MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eduardo L Espada
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Blanco
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John Koreth
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Corey S Cutler
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H Antin
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J Soiffer
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Ritz
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
Lama VN, Belperio JA, Christie JD, El-Chemaly S, Fishbein MC, Gelman AE, Hancock WW, Keshavjee S, Kreisel D, Laubach VE, Looney MR, McDyer JF, Mohanakumar T, Shilling RA, Panoskaltsis-Mortari A, Wilkes DS, Eu JP, Nicolls MR. Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop. JCI Insight 2017; 2:93121. [PMID: 28469087 DOI: 10.1172/jci.insight.93121] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung transplantation, a cure for a number of end-stage lung diseases, continues to have the worst long-term outcomes when compared with other solid organ transplants. Preclinical modeling of the most common and serious lung transplantation complications are essential to better understand and mitigate the pathophysiological processes that lead to these complications. Various animal and in vitro models of lung transplant complications now exist and each of these models has unique strengths. However, significant issues, such as the required technical expertise as well as the robustness and clinical usefulness of these models, remain to be overcome or clarified. The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop in March 2016 to review the state of preclinical science addressing the three most important complications of lung transplantation: primary graft dysfunction (PGD), acute rejection (AR), and chronic lung allograft dysfunction (CLAD). In addition, the participants of the workshop were tasked to make consensus recommendations on the best use of these complimentary models to close our knowledge gaps in PGD, AR, and CLAD. Their reviews and recommendations are summarized in this report. Furthermore, the participants outlined opportunities to collaborate and directions to accelerate research using these preclinical models.
Collapse
Affiliation(s)
- Vibha N Lama
- Department of Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - John A Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jason D Christie
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Souheil El-Chemaly
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, UCLA Center for the Health Sciences, Los Angeles, California, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wayne W Hancock
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shaf Keshavjee
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mark R Looney
- Department of Medicine, UCSF School of Medicine, San Francisco, California, USA
| | - John F McDyer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Rebecca A Shilling
- Department of Medicine, University of Illinois College of Medicine at Chicago, Illinois, USA
| | - Angela Panoskaltsis-Mortari
- Departments of Pediatrics, and Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - David S Wilkes
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jerry P Eu
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark R Nicolls
- Department of Medicine, Stanford University School of Medicine/VA Palo Alto Health Care System, Stanford, California, USA
| |
Collapse
|
28
|
Pirfenidone ameliorates murine chronic GVHD through inhibition of macrophage infiltration and TGF-β production. Blood 2017; 129:2570-2580. [PMID: 28254742 DOI: 10.1182/blood-2017-01-758854] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is hampered by chronic graft-versus-host disease (cGVHD), resulting in multiorgan fibrosis and diminished function. Fibrosis in lung and skin leads to progressive bronchiolitis obliterans (BO) and scleroderma, respectively, for which new treatments are needed. We evaluated pirfenidone, a Food and Drug Administration (FDA)-approved drug for idiopathic pulmonary fibrosis, for its therapeutic effect in cGVHD mouse models with distinct pathophysiology. In a full major histocompatibility complex (MHC)-mismatched, multiorgan system model with BO, donor T-cell responses that support pathogenic antibody production are required for cGVHD development. Pirfenidone treatment beginning one month post-transplant restored pulmonary function and reversed lung fibrosis, which was associated with reduced macrophage infiltration and transforming growth factor-β production. Pirfenidone dampened splenic germinal center B-cell and T-follicular helper cell frequencies that collaborate to produce antibody. In both a minor histocompatibility antigen-mismatched as well as a MHC-haploidentical model of sclerodermatous cGVHD, pirfenidone significantly reduced macrophages in the skin, although clinical improvement of scleroderma was only seen in one model. In vitro chemotaxis assays demonstrated that pirfenidone impaired macrophage migration to monocyte chemoattractant protein-1 (MCP-1) as well as IL-17A, which has been linked to cGVHD generation. Taken together, our data suggest that pirfenidone is a potential therapeutic agent to ameliorate fibrosis in cGVHD.
Collapse
|
29
|
Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, Fowler DH, van den Brink MRM, Hansen JA, Parkman R, Miklos DB, Martin PJ, Paczesny S, Vogelsang G, Pavletic S, Ritz J, Schultz KR, Blazar BR. The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:211-234. [PMID: 27713092 PMCID: PMC6020045 DOI: 10.1016/j.bbmt.2016.09.023] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) is the leading cause of late, nonrelapse mortality and disability in allogeneic hematopoietic cell transplantation recipients and a major obstacle to improving outcomes. The biology of chronic GVHD remains enigmatic, but understanding the underpinnings of the immunologic mechanisms responsible for the initiation and progression of disease is fundamental to developing effective prevention and treatment strategies. The goals of this task force review are as follows: This document is intended as a review of our understanding of chronic GVHD biology and therapies resulting from preclinical studies, and as a platform for developing innovative clinical strategies to prevent and treat chronic GVHD.
Collapse
Affiliation(s)
- Kenneth R Cooke
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland.
| | - Leo Luznik
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Immunology and Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Frances T Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Madan Jagasia
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marcel R M van den Brink
- Departments of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John A Hansen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Robertson Parkman
- Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, California
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Stanford University, Palo Alto, California
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Departments of Pediatrics and Immunology, Wells Center for Pediatric Research, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Georgia Vogelsang
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Steven Pavletic
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
30
|
Chronic graft-versus-host disease: biological insights from preclinical and clinical studies. Blood 2016; 129:13-21. [PMID: 27821504 DOI: 10.1182/blood-2016-06-686618] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
With the increasing use of mismatched, unrelated, and granulocyte colony-stimulating factor-mobilized peripheral blood stem cell donor grafts and successful treatment of older recipients, chronic graft-versus-host disease (cGVHD) has emerged as the major cause of nonrelapse mortality and morbidity. cGVHD is characterized by lichenoid changes and fibrosis that affects a multitude of tissues, compromising organ function. Beyond steroids, effective treatment options are limited. Thus, new strategies to both prevent and treat disease are urgently required. Over the last 5 years, our understanding of cGVHD pathogenesis and basic biology, born out of a combination of mouse models and correlative clinical studies, has radically improved. We now understand that cGVHD is initiated by naive T cells, differentiating predominantly within highly inflammatory T-helper 17/T-cytotoxic 17 and T-follicular helper paradigms with consequent thymic damage and impaired donor antigen presentation in the periphery. This leads to aberrant T- and B-cell activation and differentiation, which cooperate to generate antibody-secreting cells that cause the deposition of antibodies to polymorphic recipient antigens (ie, alloantibody) or nonpolymorphic antigens common to both recipient and donor (ie, autoantibody). It is now clear that alloantibody can, in concert with colony-stimulating factor 1 (CSF-1)-dependent donor macrophages, induce a transforming growth factor β-high environment locally within target tissue that results in scleroderma and bronchiolitis obliterans, diagnostic features of cGVHD. These findings have yielded a raft of potential new therapeutics, centered on naive T-cell depletion, interleukin-17/21 inhibition, kinase inhibition, regulatory T-cell restoration, and CSF-1 inhibition. This new understanding of cGVHD finally gives hope that effective therapies are imminent for this devastating transplant complication.
Collapse
|
31
|
Liu X, Yue Z, Yu J, Daguindau E, Kushekhar K, Zhang Q, Ogata Y, Gafken PR, Inamoto Y, Gracon A, Wilkes DS, Hansen JA, Lee SJ, Chen JY, Paczesny S. Proteomic Characterization Reveals That MMP-3 Correlates With Bronchiolitis Obliterans Syndrome Following Allogeneic Hematopoietic Cell and Lung Transplantation. Am J Transplant 2016; 16:2342-51. [PMID: 26887344 PMCID: PMC4956556 DOI: 10.1111/ajt.13750] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 01/25/2023]
Abstract
Improved diagnostic methods are needed for bronchiolitis obliterans syndrome (BOS), a serious complication after allogeneic hematopoietic cell transplantation (HCT) and lung transplantation. For protein candidate discovery, we compared plasma pools from HCT transplantation recipients with BOS at onset (n = 12), pulmonary infection (n = 16), chronic graft-versus-host disease without pulmonary involvement (n = 15) and no chronic complications after HCT (n = 15). Pools were labeled with different tags (isobaric tags for relative and absolute quantification), and two software tools identified differentially expressed proteins (≥1.5-fold change). Candidate proteins were further selected using a six-step computational biology approach. The diagnostic value of the lead candidate, matrix metalloproteinase 3 (MMP3), was evaluated by enzyme-linked immunosorbent assay in plasma of a verification cohort (n = 112) with and without BOS following HCT (n = 76) or lung transplantation (n = 36). MMP3 plasma concentrations differed significantly between patients with and without BOS (area under the receiver operating characteristic curve 0.77). Consequently, MMP3 represents a potential noninvasive blood test for diagnosis of BOS.
Collapse
Affiliation(s)
- Xiaowen Liu
- Departement of BioHealth Informatics, Indiana University
School of Informatics and Computing, Indianapolis, IN
| | - Zongliang Yue
- Departement of BioHealth Informatics, Indiana University
School of Informatics and Computing, Indianapolis, IN
| | - Jeffrey Yu
- Department of Pediatrics, Indiana University School of
Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana
University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology & Immunology, Indiana
University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Cancer Center, Indiana University
School of Medicine, Indianapolis, IN, USA
| | - Etienne Daguindau
- Department of Pediatrics, Indiana University School of
Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana
University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology & Immunology, Indiana
University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Cancer Center, Indiana University
School of Medicine, Indianapolis, IN, USA
| | - Kushi Kushekhar
- Department of Pediatrics, Indiana University School of
Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana
University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology & Immunology, Indiana
University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Cancer Center, Indiana University
School of Medicine, Indianapolis, IN, USA
| | - Qing Zhang
- Proteomics Shared Resource, Fred Hutchinson Cancer Research
Center, Seattle, WA, USA
| | - Yuko Ogata
- Proteomics Shared Resource, Fred Hutchinson Cancer Research
Center, Seattle, WA, USA
| | - Philip R. Gafken
- Proteomics Shared Resource, Fred Hutchinson Cancer Research
Center, Seattle, WA, USA
| | - Yoshihiro Inamoto
- Clinical Research Division, Fred Hutchinson Cancer Research
Center, Seattle, WA, USA
- Division of Hematopoietic Stem Cell Transplantation,
National Cancer Center Hospital, Tokyo, Japan
| | - Adam Gracon
- Pulmonary Division, Indiana University School of Medicine,
Indianapolis, IN, USA
| | - David S. Wilkes
- Pulmonary Division, Indiana University School of Medicine,
Indianapolis, IN, USA
| | - John A. Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research
Center, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA,
USA
| | - Stephanie J. Lee
- Clinical Research Division, Fred Hutchinson Cancer Research
Center, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA,
USA
| | - Jake Y. Chen
- Departement of BioHealth Informatics, Indiana University
School of Informatics and Computing, Indianapolis, IN
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of
Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana
University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology & Immunology, Indiana
University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Cancer Center, Indiana University
School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
32
|
Borges CM, Reichenbach DK, Kim BS, Misra A, Blazar BR, Turka LA. Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival. Transpl Int 2016; 29:930-40. [PMID: 27112509 DOI: 10.1111/tri.12788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/15/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023]
Abstract
MyD88 signaling directly promotes T-cell survival and is required for optimal T-cell responses to pathogens. To examine the role of T-cell-intrinsic MyD88 signals in transplantation, we studied mice with targeted T-cell-specific MyD88 deletion. Contrary to expectations, we found that these mice were relatively resistant to prolongation of graft survival with anti-CD154 plus rapamycin in a class II-mismatched system. To specifically examine the role of MyD88 in Tregs, we created a Treg-specific MyD88-deficient mouse. Transplant studies in these animals replicated the findings observed with a global T-cell MyD88 knockout. Surprisingly, given the role of MyD88 in conventional T-cell survival, we found no defect in the survival of MyD88-deficient Tregs in vitro or in the transplant recipients and also observed intact cell homing and expression of Treg effector molecules. MyD88-deficient Tregs also fail to protect allogeneic bone marrow transplant recipients from chronic graft-versus-host disease, confirming the observations of defective regulation seen in a solid organ transplant system. Together, our data define MyD88 as having a divergent requirement for cell survival in non-Tregs and Tregs, and a yet-to-be defined survival-independent requirement for Treg function during the response to alloantigen.
Collapse
Affiliation(s)
- Christopher M Borges
- Center for Transplantation Science, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Immunology, Harvard University Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Dawn K Reichenbach
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Beom Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Aditya Misra
- Summer Immunology Research Program, Harvard University, Boston, MA, USA.,School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Laurence A Turka
- Center for Transplantation Science, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
33
|
Williams KM, Cheng GS, Pusic I, Jagasia M, Burns L, Ho VT, Pidala J, Palmer J, Johnston L, Mayer S, Chien JW, Jacobsohn DA, Pavletic SZ, Martin PJ, Storer BE, Inamoto Y, Chai X, Flowers MED, Lee SJ. Fluticasone, Azithromycin, and Montelukast Treatment for New-Onset Bronchiolitis Obliterans Syndrome after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:710-716. [PMID: 26475726 PMCID: PMC4801753 DOI: 10.1016/j.bbmt.2015.10.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022]
Abstract
Bronchiolitis obliterans syndrome (BOS) after allogeneic hematopoietic cell transplantation (HCT) is associated with high mortality. We hypothesized that inhaled fluticasone, azithromycin, and montelukast (FAM) with a brief steroid pulse could avert progression of new-onset BOS. We tested this in a phase II, single-arm, open-label, multicenter study (NCT01307462). Thirty-six patients were enrolled within 6 months of BOS diagnosis. The primary endpoint was treatment failure, defined as 10% or greater forced expiratory volume in 1 second decline at 3 months. At 3 months, 6% (2 of 36, 95% confidence interval, 1% to 19%) had treatment failure (versus 40% in historical controls, P < .001). FAM was well tolerated. Steroid dose was reduced by 50% or more at 3 months in 48% of patients who could be evaluated (n = 27). Patient-reported outcomes at 3 months were statistically significantly improved for Short-Form 36 social functioning score and mental component score, Functional Assessment of Cancer Therapies emotional well-being, and Lee symptom scores in lung, skin, mouth, and the overall summary score compared to enrollment (n = 24). At 6 months, 36% had treatment failure (95% confidence interval, 21% to 54%, n = 13 of 36, with 6 documented failures, 7 missing pulmonary function tests). Overall survival was 97% (95% confidence interval, 84% to 100%) at 6 months. These data suggest that FAM was well tolerated and that treatment with FAM and steroid pulse may halt pulmonary decline in new-onset BOS in the majority of patients and permit reductions in systemic steroid exposure, which collectively may improve quality of life. However, additional treatments are needed for progressive BOS despite FAM.
Collapse
Affiliation(s)
- Kirsten M Williams
- Division of Blood and Marrow Transplantation, Children's Research Institute, Children's National Health System, Washington, DC; Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Iskra Pusic
- Division of Medicine and Oncology, Washington University, Saint Louis, Missouri
| | - Madan Jagasia
- Division of Hematology/Oncology, Vandebilt University, Nashville, Tennessee
| | - Linda Burns
- Division of Hematology/Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Vincent T Ho
- Division of Hematological Malignancies, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jeanne Palmer
- Division of Hematology/Oncology, Mayo Clinic- Scottsdale, Scottsdale, Arizona
| | - Laura Johnston
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Sebastian Mayer
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - David A Jacobsohn
- Division of Blood and Marrow Transplantation, Children's Research Institute, Children's National Health System, Washington, DC
| | - Steven Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yoshihiro Inamoto
- Division of Hematopoietic stem cell transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Xiaoyu Chai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mary E D Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
34
|
Burgel PR, Bergeron A, Knoop C, Dusser D. [Small airway diseases and immune deficiency]. Rev Mal Respir 2016; 33:145-55. [PMID: 26854188 DOI: 10.1016/j.rmr.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/09/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. BACKGROUND In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. VIEWPOINT AND CONCLUSION Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- P-R Burgel
- Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; Service de pneumologie, hôpital Cochin, AP-HP, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France.
| | - A Bergeron
- Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; Service de pneumologie, hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - C Knoop
- Department of Chest Medicine, Erasme University Hospital, université libre de Bruxelles, Bruxelles, Belgique
| | - D Dusser
- Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; Service de pneumologie, hôpital Cochin, AP-HP, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| |
Collapse
|
35
|
Fiuza-Luces C, Simpson RJ, Ramírez M, Lucia A, Berger NA. Physical function and quality of life in patients with chronic GvHD: a summary of preclinical and clinical studies and a call for exercise intervention trials in patients. Bone Marrow Transplant 2015; 51:13-26. [PMID: 26367233 DOI: 10.1038/bmt.2015.195] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/23/2015] [Accepted: 07/15/2015] [Indexed: 01/12/2023]
Abstract
Allogeneic hematopoietic stem cell transplant, to reconstitute the hematopoietic and immune status of patients undergoing myeloablative therapy for hematologic disorders, has been of great benefit in minimizing or eradicating disease and extending survival. Patients who undergo allogeneic hematopoietic stem cell transplant (allo-HSCT) are subject to many comorbidities among which the most significant, affecting quality of life (QoL) and survival, are acute GvHD (aGvHD) and chronic GvHD (cGvHD), resulting from donor lymphocytes reacting to and damaging host tissues. Physical activity and exercise have clearly been shown, in both children and adults, to enhance fitness, improve symptomatology and QoL, reduce disease progression and extend survival for many diseases including malignancies. In some cases, vigorous exercise has been shown to be equal to or more effective than pharmacologic therapy. This review addresses how cGvHD affects patients' physical function and physical domain of QoL, and the potential benefits of exercise interventions along with recommendations for relevant research and evaluation targeted at incorporating this strategy as soon as possible after allo-HSCT and ideally, as soon as possible upon diagnosis of the condition leading to allo-HSCT.
Collapse
Affiliation(s)
- C Fiuza-Luces
- Institute of Health Carlos III and Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain
| | - R J Simpson
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - M Ramírez
- Pediatric Hematology & Oncology, Hospital Niño Jesus, Madrid, Spain
| | - A Lucia
- Departamento de Biomedicina, Universidad Europea and Research Institute (i+12), Polideportivo, Villaviciosa de Odón, Madrid, Spain
| | - N A Berger
- Center for Science, Health and Society, Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Sarantopoulos S, Blazar BR, Cutler C, Ritz J. Reprint of: B cells in chronic graft-versus-host disease. Biol Blood Marrow Transplant 2015; 21:S11-8. [PMID: 25620647 DOI: 10.1016/j.bbmt.2014.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation. Unlike acute graft-versus-host disease, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr Blazar describes recent studies in preclinical models that have identified novel B cell-directed agents that may be effective for prevention or treatment of cGVHD. Some B cell-directed therapies have already been tested in patients with cGVHD and Dr Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by mechanistic studies in patients and preclinical models, new B cell-directed therapies for cGVHD will now be evaluated in clinical trials.
Collapse
Affiliation(s)
- Stefanie Sarantopoulos
- Division of Cell Therapy and Hematologic Malignancies, Department of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Corey Cutler
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
37
|
Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease. Blood 2015; 125:4085-94. [PMID: 25852057 DOI: 10.1182/blood-2014-08-595470] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/15/2015] [Indexed: 01/03/2023] Open
Abstract
Novel therapies for chronic graft-versus-host disease (cGVHD) are needed. Aberrant B-cell activation has been demonstrated in mice and humans with cGVHD. Having previously found that human cGVHD B cells are activated and primed for survival, we sought to further evaluate the role of the spleen tyrosine kinase (Syk) in cGVHD in multiple murine models and human peripheral blood cells. In a murine model of multiorgan system, nonsclerodermatous disease with bronchiolitis obliterans where cGVHD is dependent on antibody and germinal center (GC) B cells, we found that activation of Syk was necessary in donor B cells, but not T cells, for disease progression. Bone marrow-specific Syk deletion in vivo was effective in treating established cGVHD, as was a small-molecule inhibitor of Syk, fostamatinib, which normalized GC formation and decreased activated CD80/86(+) dendritic cells. In multiple distinct models of sclerodermatous cGVHD, clinical and pathological disease manifestations were not eliminated when mice were therapeutically treated with fostamatinib, though both clinical and immunologic effects could be observed in one of these scleroderma models. We further demonstrated that Syk inhibition was effective at inducing apoptosis of human cGVHD B cells. Together, these data demonstrate a therapeutic potential of targeting B-cell Syk signaling in cGVHD.
Collapse
|
38
|
Sarantopoulos S, Blazar BR, Cutler C, Ritz J. B cells in chronic graft-versus-host disease. Biol Blood Marrow Transplant 2015; 21:16-23. [PMID: 25452031 PMCID: PMC4295503 DOI: 10.1016/j.bbmt.2014.10.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 12/18/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation. Unlike acute graft-versus-host disease, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr Blazar describes recent studies in preclinical models that have identified novel B cell-directed agents that may be effective for prevention or treatment of cGVHD. Some B cell-directed therapies have already been tested in patients with cGVHD and Dr Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by mechanistic studies in patients and preclinical models, new B cell-directed therapies for cGVHD will now be evaluated in clinical trials.
Collapse
Affiliation(s)
- Stefanie Sarantopoulos
- Division of Cell Therapy and Hematologic Malignancies, Department of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Corey Cutler
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
39
|
Pulmonary Manifestations of Hematological Malignancies: Focus on Pulmonary Chronic Graft-Versus Host Disease. ORPHAN LUNG DISEASES 2015. [PMCID: PMC7120310 DOI: 10.1007/978-1-4471-2401-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advances in the management of patients in terms of the diagnosis and treatment of hematologic malignancies and treatment-related complications, especially infectious complications, have increased survival time. However, more than half of the patients treated for hematologic malignancies will develop a pulmonary complication during their follow-up, infectious pneumonia remaining the most common diagnosis that should be considered first in regard to its potential severity. Otherwise, new complications that may involve different organs, including the lungs, have been increasingly reported. Currently, over a quarter of lung infiltrates occurring in the context of hematological diseases are due to noninfectious causes. Thus, lung physicians may be increasingly confronted with these lung disorders. Various noninfectious pulmonary complications have been described in the different hematological malignancies; however, these complications are most often studied in the context of allogeneic hematopoietic stem cell transplantation (HSCT). In this chapter, we will briefly review the lung diseases associated with various hematological malignancies before focusing on noninfectious pulmonary complications following allogeneic HSCT.
Collapse
|
40
|
Takeuchi Y, Miyagawa-Hayashino A, Chen F, Kubo T, Handa T, Date H, Haga H. Pleuroparenchymal fibroelastosis and non-specific interstitial pneumonia: frequent pulmonary sequelae of haematopoietic stem cell transplantation. Histopathology 2014; 66:536-44. [PMID: 25234860 DOI: 10.1111/his.12553] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 11/29/2022]
Abstract
AIMS Pulmonary sequelae, reported as chronic graft-versus-host disease (cGVHD), of haematopoietic stem cell transplantation (HSCT) include constrictive bronchiolitis obliterans (CBO), lymphocytic bronchiolitis (LB), and veno-occlusive disease (VOD); recently, pleuroparenchymal fibroelastosis (PPFE) has also been described in bone marrow transplant recipients. The histological features of pulmonary HSCT sequelae have not been described systematically. The aim of the study was to review and identify the histological features of PPFE after bone marrow transplant. METHODS AND RESULTS A retrospective review of 20 patients who underwent lung transplantation for pulmonary disease following HSCT between 2004 and 2013 was conducted. The patient age at transplantation ranged from 8 years to 57 years (median, 27.5 years). Fifteen patients had cGVHD in other organs (skin, nine; liver, six; salivary gland, six). Lung transplantation was performed at a median of 4.6 years (range, 1.2-14.8 years) post-HSCT. Histologically, all cases had CBO, with concurrent LB in 10, and VOD in three. PPFE was identified in 15 cases (75%), with subpleural (15), paraseptal (11) and centrilobular (13) distributions; and non-specific interstitial pneumonia (NSIP) was identified in 15 cases (75%), with fibrotic (nine) and cellular (six) patterns. PPFE was distributed in all lobes, with a predominance in the upper lobe. NSIP was mostly focal, with two cases having diffuse involvement. CONCLUSIONS PPFE and NSIP were frequently seen in HSCT patients. Possible causes may include reactions to drugs or radiation, or cGVHD.
Collapse
Affiliation(s)
- Yasuhide Takeuchi
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Radhakrishnan SV, Palaniyandi S, Mueller G, Miklos S, Hager M, Spacenko E, Karlsson FJ, Huber E, Kittan NA, Hildebrandt GC. Preventive azithromycin treatment reduces noninfectious lung injury and acute graft-versus-host disease in a murine model of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 21:30-8. [PMID: 25445642 DOI: 10.1016/j.bbmt.2014.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Noninfectious lung injury and acute graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) are associated with significant morbidity and mortality. Azithromycin is widely used in allogeneic HCT recipients for pulmonary chronic GVHD, although current data appear controversial. We induced GVHD and noninfectious lung injury in lethally irradiated B6D2F1 mice by transplanting bone marrow and splenic T cells from allogeneic C57BL/6 mice. Experimental groups were treated with oral azithromycin starting on day 14 until the end of week 6 or week 14 after transplantation. Azithromycin treatment resulted in improved survival and decreased lung injury; the latter characterized by improved pulmonary function, reduced peribronchial and perivascular inflammatory cell infiltrates along with diminished collagen deposition, and a decrease in lung cytokine and chemokine expression. Azithromycin also improved intestinal GVHD but did not affect liver GVHD at week 6 early after transplantation. At week 14, azithromycin decreased liver GVHD but had no effect on intestinal GVHD. In vitro, allogeneic antigen-presenting cell (APC)- dependent T cell proliferation and cytokine production were suppressed by azithromycin and inversely correlated with relative regulatory T cell (Treg) expansion, whereas no effect was seen when T cell proliferation occurred APC independently through CD3/CD28-stimulation. Further, azithromycin reduced alloreactive T cell expansion but increased Treg expansion in vivo with corresponding downregulation of MHC II on CD11c(+) dendritic cells. These results demonstrate that preventive administration of azithromycin can reduce the severity of acute GVHD and noninfectious lung injury after allo-HCT, supporting further investigation in clinical trials.
Collapse
Affiliation(s)
- Sabarinath Venniyil Radhakrishnan
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Shreveport, Louisiana; Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Senthilnathan Palaniyandi
- Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah; Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Gunnar Mueller
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Sandra Miklos
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Max Hager
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Elena Spacenko
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Fridrik J Karlsson
- Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Elisabeth Huber
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Nicolai A Kittan
- Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Gerhard C Hildebrandt
- Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah; Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana.
| |
Collapse
|
42
|
Dubovsky JA, Flynn R, Du J, Harrington BK, Zhong Y, Kaffenberger B, Yang C, Towns WH, Lehman A, Johnson AJ, Muthusamy N, Devine SM, Jaglowski S, Serody JS, Murphy WJ, Munn DH, Luznik L, Hill GR, Wong HK, MacDonald KKP, Maillard I, Koreth J, Elias L, Cutler C, Soiffer RJ, Antin JH, Ritz J, Panoskaltsis-Mortari A, Byrd JC, Blazar BR. Ibrutinib treatment ameliorates murine chronic graft-versus-host disease. J Clin Invest 2014; 124:4867-76. [PMID: 25271622 DOI: 10.1172/jci75328] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/21/2014] [Indexed: 11/17/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a life-threatening impediment to allogeneic hematopoietic stem cell transplantation, and current therapies do not completely prevent and/or treat cGVHD. CD4+ T cells and B cells mediate cGVHD; therefore, targeting these populations may inhibit cGVHD pathogenesis. Ibrutinib is an FDA-approved irreversible inhibitor of Bruton's tyrosine kinase (BTK) and IL-2 inducible T cell kinase (ITK) that targets Th2 cells and B cells and produces durable remissions in B cell malignancies with minimal toxicity. Here, we evaluated whether ibrutinib could reverse established cGVHD in 2 complementary murine models, a model interrogating T cell-driven sclerodermatous cGVHD and an alloantibody-driven multiorgan system cGVHD model that induces bronchiolar obliterans (BO). In the T cell-mediated sclerodermatous cGVHD model, ibrutinib treatment delayed progression, improved survival, and ameliorated clinical and pathological manifestations. In the alloantibody-driven cGVHD model, ibrutinib treatment restored pulmonary function and reduced germinal center reactions and tissue immunoglobulin deposition. Animals lacking BTK and ITK did not develop cGVHD, indicating that these molecules are critical to cGVHD development. Furthermore, ibrutinib treatment reduced activation of T and B cells from patients with active cGVHD. Our data demonstrate that B cells and T cells drive cGVHD and suggest that ibrutinib has potential as a therapeutic agent, warranting consideration for cGVHD clinical trials.
Collapse
|
43
|
Raza K, Larsen T, Samaratunga N, Price AP, Meyer C, Matson A, Ehrhardt MJ, Fogas S, Tolar J, Hertz MI, Panoskaltsis-Mortari A. MSC therapy attenuates obliterative bronchiolitis after murine bone marrow transplant. PLoS One 2014; 9:e109034. [PMID: 25272285 PMCID: PMC4182803 DOI: 10.1371/journal.pone.0109034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/03/2014] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Obliterative bronchiolitis (OB) is a significant cause of morbidity and mortality after lung transplant and hematopoietic cell transplant. Mesenchymal stromal cells (MSCs) have been shown to possess immunomodulatory properties in chronic inflammatory disease. OBJECTIVE Administration of MSCs was evaluated for the ability to ameliorate OB in mice using our established allogeneic bone marrow transplant (BMT) model. METHODS Mice were lethally conditioned and received allogeneic bone marrow without (BM) or with spleen cells (BMS), as a source of OB-causing T-cells. Cell therapy was started at 2 weeks post-transplant, or delayed to 4 weeks when mice developed airway injury, defined as increased airway resistance measured by pulmonary function test (PFT). BM-derived MSC or control cells [mouse pulmonary vein endothelial cells (PVECs) or lung fibroblasts (LFs)] were administered. Route of administration [intratracheally (IT) and IV] and frequency (every 1, 2 or 3 weeks) were compared. Mice were evaluated at 3 months post-BMT. MEASUREMENTS AND MAIN RESULTS No ectopic tissue formation was identified in any mice. When compared to BMS mice receiving control cells or no cells, those receiving MSCs showed improved resistance, compliance and inspiratory capacity. Interim PFT analysis showed no difference in route of administration. Improvements in PFTs were found regardless of dose frequency; but once per week worked best even when administration began late. Mice given MSC also had decreased peribronchiolar inflammation, lower levels of hydroxyproline (collagen) and higher frequencies of macrophages staining for the alternatively activated macrophage (AAM) marker CD206. CONCLUSIONS These results warrant study of MSCs as a potential management option for OB in lung transplant and BMT recipients.
Collapse
Affiliation(s)
- Kashif Raza
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Trevor Larsen
- Breck High School, Edina, Minnesota, United States of America
| | | | - Andrew P Price
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Carolyn Meyer
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Amy Matson
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Michael J Ehrhardt
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Samuel Fogas
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Jakub Tolar
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Marshall I Hertz
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Angela Panoskaltsis-Mortari
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America; Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| |
Collapse
|
44
|
De Vleeschauwer S, Vanaudenaerde B, Vos R, Meers C, Wauters S, Dupont L, Van Raemdonck D, Verleden G. The need for a new animal model for chronic rejection after lung transplantation. Transplant Proc 2014; 43:3476-85. [PMID: 22099823 DOI: 10.1016/j.transproceed.2011.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The single most important cause of late mortality after lung transplantation is obliterative bronchiolitis (OB), clinically characterized by a decrease in lung function and morphologically by characteristic changes. Recently, new insights into its pathogenesis have been acquired: risk factors have been identified and the use of azithromycin showed a dichotomy with at least 2 different phenotypes of bronchiolitis obliterans syndrome (BOS). It is clear that a good animal model is indispensable to further dissect and unravel the pathogenesis of BOS. Many animal models have been developed to study BOS but, so far, none of these models truly mimics the human situation. Looking at the definition of BOS, a good animal model implies histological OB lesions, possibility to measure lung function, and airway inflammation. This review sought to discuss, including pros and cons, all potential animal models that have been developed to study OB/BOS. It has become clear that a new animal model is needed; recent developments using an orthotopic mouse lung transplantation model may offer the answer because it mimics the human situation. The genetic variants among this species may open new perspectives for research into the pathogenesis of OB/BOS.
Collapse
Affiliation(s)
- S De Vleeschauwer
- Laboratory of Pneumology, Kathoholieke Universiteit Leuven and UZ Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Alexander KA, Flynn R, Lineburg KE, Kuns RD, Teal BE, Olver SD, Lor M, Raffelt NC, Koyama M, Leveque L, Le Texier L, Melino M, Markey KA, Varelias A, Engwerda C, Serody JS, Janela B, Ginhoux F, Clouston AD, Blazar BR, Hill GR, MacDonald KPA. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J Clin Invest 2014; 124:4266-80. [PMID: 25157821 DOI: 10.1172/jci75935] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/10/2014] [Indexed: 12/23/2022] Open
Abstract
Chronic GVHD (cGVHD) is the major cause of late, nonrelapse death following stem cell transplantation and characteristically develops in organs such as skin and lung. Here, we used multiple murine models of cGVHD to investigate the contribution of macrophage populations in the development of cGVHD. Using an established IL-17-dependent sclerodermatous cGVHD model, we confirmed that macrophages infiltrating the skin are derived from donor bone marrow (F4/80+CSF-1R+CD206+iNOS-). Cutaneous cGVHD developed in a CSF-1/CSF-1R-dependent manner, as treatment of recipients after transplantation with CSF-1 exacerbated macrophage infiltration and cutaneous pathology. Additionally, recipients of grafts from Csf1r-/- mice had substantially less macrophage infiltration and cutaneous pathology as compared with those receiving wild-type grafts. Neither CCL2/CCR2 nor GM-CSF/GM-CSFR signaling pathways were required for macrophage infiltration or development of cGVHD. In a different cGVHD model, in which bronchiolitis obliterans is a prominent manifestation, F4/80+ macrophage infiltration was similarly noted in the lungs of recipients after transplantation, and lung cGVHD was also IL-17 and CSF-1/CSF-1R dependent. Importantly, depletion of macrophages using an anti-CSF-1R mAb markedly reduced cutaneous and pulmonary cGVHD. Taken together, these data indicate that donor macrophages mediate the development of cGVHD and suggest that targeting CSF-1 signaling after transplantation may prevent and treat cGVHD.
Collapse
|
46
|
Martinu T, Kinnier CV, Sun J, Kelly FL, Nelson ME, Garantziotis S, Foster WM, Palmer SM. Allogeneic splenocyte transfer and lipopolysaccharide inhalations induce differential T cell expansion and lung injury: a novel model of pulmonary graft-versus-host disease. PLoS One 2014; 9:e97951. [PMID: 24844383 PMCID: PMC4028236 DOI: 10.1371/journal.pone.0097951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/26/2014] [Indexed: 12/31/2022] Open
Abstract
Background Pulmonary GVHD (pGVHD) is an important complication of hematopoietic cell transplant (HCT) and is thought to be a consequence of the HCT conditioning regimen, allogeneic donor cells, and posttransplant lung exposures. We have previously demonstrated that serial inhaled lipopolysaccharide (LPS) exposures potentiate the development of pGVHD after murine allogeneic HCT. In the current study we hypothesized that allogeneic lymphocytes and environmental exposures alone, in the absence of a pre-conditioning regimen, would cause features of pGVHD and would lead to a different T cell expansion pattern compared to syngeneic cells. Methods Recipient Rag1−/− mice received a transfer of allogeneic (Allo) or syngeneic (Syn) spleen cells. After 1 week of immune reconstitution, mice received 5 daily inhaled LPS exposures and were sacrificed 72 hours after the last LPS exposure. Lung physiology, histology, and protein levels in bronchoalveolar lavage (BAL) were assessed. Lung cells were analyzed by flow cytometry. Results Both Allo and Syn mice that undergo LPS exposures (AlloLPS and SynLPS) have prominent lymphocytic inflammation in their lungs, resembling pGVHD pathology, not seen in LPS-unexposed or non-transplanted controls. Compared to SynLPS, however, AlloLPS have significantly increased levels of BAL protein and enhancement of airway hyperreactivity, consistent with more severe lung injury. This injury in AlloLPS mice is associated with an increase in CD8 T cells and effector CD4 T cells, as well as a decrease in regulatory to effector CD4 T cell ratio. Additionally, cytokine analysis is consistent with a preferential Th1 differentiation and upregulation of pulmonary CCL5 and granzyme B. Conclusions Allogeneic lymphocyte transfer into lymphocyte-deficient mice, followed by LPS exposures, causes features of pGVHD and lung injury in the absence of a pre-conditioning HCT regimen. This lung disease associated with an expansion of allogeneic effector T cells provides a novel model to dissect mechanisms of pGVHD independent of conditioning.
Collapse
Affiliation(s)
- Tereza Martinu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - Christine V. Kinnier
- Department of General Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jesse Sun
- School of medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Francine L. Kelly
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Margaret E. Nelson
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stavros Garantziotis
- Respiratory Biology Branch, National Institutes of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - W. Michael Foster
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Scott M. Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
47
|
Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans. Blood 2014; 123:3988-98. [PMID: 24820310 DOI: 10.1182/blood-2014-03-562231] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Having shown that germinal center (GC) formation and immunoglobulin deposition are required for multiorgan system cGVHD and associated bronchiolitis obliterans syndrome (BOS) in a murine model, we hypothesized that T follicular helper (Tfh) cells are necessary for cGVHD by supporting GC formation and maintenance. We show that increased frequency of Tfh cells correlated with increased GC B cells, cGVHD, and BOS. Although administering a highly depletionary anti-CD20 monoclonal antibody (mAb) to mice with established cGVHD resulted in peripheral B-cell depletion, B cells remained in the lung, and BOS was not reversed. BOS could be treated by eliminating production of interleukin-21 (IL-21) by donor T cells or IL-21 receptor (IL-21R) signaling of donor B cells. Development of BOS was dependent upon T cells expressing the chemokine receptor CXCR5 to facilitate T-cell trafficking to secondary lymphoid organ follicles. Blocking mAbs for IL-21/IL-21R, inducible T-cell costimulator (ICOS)/ICOS ligand, and CD40L/CD40 hindered GC formation and cGVHD. These data provide novel insights into cGVHD pathogenesis, indicate a role for Tfh cells in these processes, and suggest a new line of therapy using mAbs targeting Tfh cells to reverse cGVHD.
Collapse
|
48
|
Affiliation(s)
- Alan F Barker
- From the Division of Pulmonary and Critical Care, Department of Medicine, Oregon Health and Science University, Portland (A.F.B.); Service de Pneumologie; Assistance Publique-Hôpitaux de Paris, Hôpital Saint Louis, Paris (A.B.); Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, New York (W.N.R.); and Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis (M.I.H.)
| | | | | | | |
Collapse
|
49
|
Cooke KR. A "window of opportunity" for patients with late-onset pulmonary dysfunction after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 20:291-2. [PMID: 24472717 DOI: 10.1016/j.bbmt.2014.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Kenneth R Cooke
- Pediatric Blood and Marrow Transplantation Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Medicine and The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
50
|
Smith FO, Reaman GH, Racadio JM. Pulmonary and Hepatic Complications of Hematopoietic Cell Transplantation. ACTA ACUST UNITED AC 2013. [PMCID: PMC7123560 DOI: 10.1007/978-3-642-39920-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Judy M. Racadio
- Division of Hematology/Oncology, Dept. of Internal Medicine, University of Cincinnati College of Medicine, Madeira, Ohio USA
| |
Collapse
|