1
|
Doktor F, Figueira RL, Fortuna V, Biouss G, Stasiewicz K, Obed M, Khalaj K, Antounians L, Zani A. Amniotic fluid stem cell extracellular vesicles promote lung development via TGF-beta modulation in a fetal rat model of oligohydramnios. J Control Release 2025; 377:427-441. [PMID: 39577465 DOI: 10.1016/j.jconrel.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Oligohydramnios (decreased amniotic fluid volume for gestational age) is a severe condition associated with high morbidity and mortality mainly due to fetal pulmonary hypoplasia. Currently, there are limited treatment options to promote fetal lung development. Administration of stem cells and their derivates have shown promising regenerative properties for several fetal and neonatal diseases related to arrested lung development. Herein, we first characterized pulmonary hypoplasia secondary to oligohydramnios in a surgical rat model. Experimental induction of oligohydramnios led to impaired lung growth, branching morphogenesis (fewer airspaces with decreased Fgf10, Nrp1, Ctnnb1 expression), proximal/distal progenitor cell patterning (decreased Sox2 and Sox9 expression), and TGF-β signaling. We then tested antenatal administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). In oligohydramnios lungs, AFSC-EV administration improved lung branching morphogenesis and airway progenitor cell patterning at least in part through the release of miR-93-5p. Our experiments suggest that AFSC-EV miR-93-5p blocked SMAD 7, resulting in upregulation of pSMAD2/3 and restoration of TGF-β signaling. Conversely, oligohydramnios lungs treated with antagomir 93-5p transfected AFSC-EVs had decreased branching morphogenesis and TGF-β signaling. This is the first study reporting that antenatal administration of stem cell derivatives could be a potential therapy to rescue lung development in fetuses with oligohydramnios.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada; Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Victoria Fortuna
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kaya Stasiewicz
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada; Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada.
| |
Collapse
|
2
|
Teillaud JL, Regard L, Martin C, Sibéril S, Burgel PR. Exploring the Role of Tertiary Lymphoid Structures Using a Mouse Model of Bacteria-Infected Lungs. Methods Mol Biol 2025; 2864:281-297. [PMID: 39527228 DOI: 10.1007/978-1-0716-4184-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Animal models can be helpful tools for deciphering the generation, maintenance, and role of tertiary lymphoid structures (TLS) during infections or tumor development. We describe here the establishment of a persistent lung infection in immune-competent mice by intratracheal instillation of agarose beads containing Pseudomonas aeruginosa or Staphylococcus aureus bacteria. After instillation, animals develop a chronic pulmonary infection, marked by the presence of TLS. This experimental setting allows the study of the function of TLS induced by bacteria encountered in patients with cystic fibrosis (CF) as P. aeruginosa and S. aureus are the two main bacterial strains that infect the bronchi of adult CF patients. Additionally, we describe also how to manipulate the immune response in these infected animals by targeting immune cells involved in TLS function. Overall, this approach makes it possible to explore the role of chronic inflammation in the induction and maintenance of TLS in infected tissues.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- UMRS 1135 Sorbonne Université, Faculté de Santé Sorbonne Université, Paris, France.
- Inserm U1135, Paris, France.
- Team "Immune Microenvironment and Immunotherapy", Center of Immunology and Microbial Infections (CIMI), Paris, France.
| | - Lucile Regard
- Université Paris Cité, Institut Cochin, Inserm U1016, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Université Paris Cité, Paris, France
- European Reference Network on Rare Respiratory Diseases (ERN-Lung, Cystic Fibrosis Core Network), Frankfurt, Germany
| | - Clémence Martin
- Université Paris Cité, Institut Cochin, Inserm U1016, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Université Paris Cité, Paris, France
- European Reference Network on Rare Respiratory Diseases (ERN-Lung, Cystic Fibrosis Core Network), Frankfurt, Germany
| | - Sophie Sibéril
- UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- Inserm U1138, Paris, France
- Team "Inflammation, Complement, and Cancer", Centre de Recherche des Cordeliers, Paris, France
| | - Pierre-Régis Burgel
- Université Paris Cité, Institut Cochin, Inserm U1016, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Université Paris Cité, Paris, France
- European Reference Network on Rare Respiratory Diseases (ERN-Lung, Cystic Fibrosis Core Network), Frankfurt, Germany
| |
Collapse
|
3
|
Vanhecke D, Nyengaard JR, Haenni B, Schipke J, Ochs M. Ultrastructural analysis of lamellar bodies in type II alveolar epithelial cells in the human lung. Am J Physiol Lung Cell Mol Physiol 2025; 328:L113-L119. [PMID: 39437759 DOI: 10.1152/ajplung.00284.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
Pulmonary surfactant is produced by type II alveolar epithelial cells (AEC2) and stored in lamellar bodies (LBs) before secretion. Here, we characterize AEC2 and their LBs in the human lung ultrastructurally and quantitatively. Five human lungs were analyzed by transmission electron microscopy, serial section electron tomography, and stereology. A human lung contained about 24 billion AEC2 with a mean size of about 650 µm3. The number of AEC2 as well as the total volume of LBs per lung, about 1.9 mL, strongly correlated with total lung volume. A single AEC2 contained an LB volume of about 74 µm3. This amount was packed in about 324 LBs with a mean size of 0.24 µm3. Three morphologically distinct subpopulations of LBs were identified: 1) isolated LBs which make up the majority (average 300 per AEC2), 2) LBs connected to each other via pores (average 23 per AEC2), and 3) LBs connected to the plasma membrane via a fusion pore (average 1 per AEC2). Along this sequence of subpopulations, the mean size of LBs increased. LBs that were connected either with each other or to the plasma membrane contained about 14% of an AEC2's LB volume. This is in line with the concept of an intermediate surfactant pool, stored in LBs either directly or indirectly connected to the plasma membrane. In summary, this study provides quantitative reference data on surfactant-storing LBs in AEC2 as well as morphological evidence for an intermediate surfactant pool in the human lung.NEW & NOTEWORTHY Human lung type II alveolar epithelial cells (AEC2) and their surfactant-storing lamellar bodies (LBs) are characterized quantitatively and ultrastructurally by transmission electron microscopy, serial section electron tomography, and stereology. On average, the 24 billion AEC2 in a human lung contain 324 LBs each. An intermediate surfactant pool in the human lung, comprising LBs in AEC2 not only directly but also indirectly connected to the plasma membrane via inter-LB connections, is demonstrated morphologically and characterized quantitatively.
Collapse
Affiliation(s)
- Dimitri Vanhecke
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Jens Randel Nyengaard
- Section for Stereology and Microscopy, Core Centre for Molecular Morphology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Beat Haenni
- Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| |
Collapse
|
4
|
Zhuang X, Wang Q, Joost S, Ferrena A, Humphreys DT, Li Z, Blum M, Krause K, Ding S, Landais Y, Zhan Y, Zhao Y, Chaligne R, Lee JH, Carrasco SE, Bhanot UK, Koche RP, Bott MJ, Katajisto P, Soto-Feliciano YM, Pisanic T, Thomas T, Zheng D, Wong ES, Tammela T. Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis. Nature 2025; 637:184-194. [PMID: 39633048 DOI: 10.1038/s41586-024-08285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Ageing is associated with a decline in the number and fitness of adult stem cells1,2. Ageing-associated loss of stemness is posited to suppress tumorigenesis3,4, but this hypothesis has not been tested in vivo. Here we use physiologically aged autochthonous genetically engineered5,6 mouse models and primary cells5,6 to demonstrate that ageing suppresses lung cancer initiation and progression by degrading the stemness of the alveolar cell of origin. This phenotype is underpinned by the ageing-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, which leads to functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescues stemness and promotes the tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1-lipocalin-2 axis is detrimental to young alveolar cells through ferroptosis induction. Ageing-associated DNA hypomethylation at specific enhancer sites is associated with increased NUPR1 expression, which is recapitulated in young alveolar cells through DNA methylation inhibition. We uncover that ageing drives functional iron insufficiency that leads to loss of stemness and tumorigenesis but promotes resistance to ferroptosis. These findings have implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate at a young age, thereby highlighting the importance of directing cancer prevention efforts towards young individuals.
Collapse
Affiliation(s)
- Xueqian Zhuang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qing Wang
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Simon Joost
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, New York, NY, USA
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Melissa Blum
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Klavdija Krause
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Selena Ding
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuna Landais
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Yingqian Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yang Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ronan Chaligne
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sebastian E Carrasco
- Laboratory of Comparative Pathology, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and Rockefeller University, New York, NY, USA
| | - Umeshkumar K Bhanot
- Pathology Core Facility, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew J Bott
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Yadira M Soto-Feliciano
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Pisanic
- Institute for NanoBioTechnology, Department of Oncology-Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, USA
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Deyou Zheng
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, New York, NY, USA
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Probst C, Denning-Jannace CA, du Plooy LM, Giamberardino C, Asfaw Y, Franz KJ, Alspaugh JA. A cysteine-rich domain of the Cuf1 transcription factor is required for high copper stress sensing and fungal virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628380. [PMID: 39713408 PMCID: PMC11661212 DOI: 10.1101/2024.12.13.628380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen Cryptococcus neoformans ( Cn ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how Cn senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood. In contrast to other fungi, Cn has a single transcription factor, Cuf1, to regulate adaptive responses to both high- and low-Cu stress. Sequence analysis of Cn Cuf1 identified three conserved cysteine (Cys)-rich regions that may play a role in Cu sensing. We mutated the 1 st Cys-rich region within the CUF1 gene to investigate its role for Cn high Cu stress sensing. Subsequent analysis of Cuf1 transcriptional activity and target gene promoter binding demonstrated that the 1 st Cys-rich region is required for Cuf1 transcriptional activity in high Cu stress. We performed an inhalational murine infection to analyze the effects of a blunted high Cu stress response on pathogenesis. No significant differences in lung fungal burden were observed based on variable Cuf1 activity. However, strains with defective high Cu stress regulation induced a markedly altered immune response in mice. Based on these findings, we hypothesize that Cuf1-driven high Cu responses are not required for initial survival but instead modulate immune recognition and inflammation within the mouse lung. Importance Copper is an essential micronutrient required for survival in all kingdoms of life as it is used as a catalytic cofactor for many essential processes in the cell. In turn, this reactivity of copper ions makes elevated levels of free copper toxic for the cell. This dual nature of copper-essential for life but toxic at elevated levels- is used by our innate immune system in a process called nutritional immunity to combat and kill invading pathogens. In this work we explore how the fungal human pathogen Cryptococcus neoformans senses high copper stress, a copper microenvironment encountered within the host lung. We identified a specific cysteine-rich region within the copper responsive transcription factor Cuf1 to be essential for high copper stress sensing. Mutation of this region led to an impaired high copper stress adaptation, which did not affect fitness of the yeast but did impact immune recognition and inflammation inside the host lung.
Collapse
|
6
|
Hirsch MS, Hildebrand CB, Geltinger F, Pich A, Mühlfeld C, Wedekind D, Brandenberger C. Senescence in Alveolar Epithelial Type II Cells Promotes Acute Lung Injury and Impairs Regeneration. Am J Respir Cell Mol Biol 2024; 71:688-701. [PMID: 39088755 DOI: 10.1165/rcmb.2024-0054oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/01/2024] [Indexed: 08/03/2024] Open
Abstract
The mortality associated with acute lung injury (ALI) increases with age. Alveolar epithelial type II (AEII) cells are the progenitor cells of the alveolar epithelium and are crucial for repair after injury. We hypothesize that telomere dysfunction-mediated AEII cell senescence impairs regeneration and promotes the development of ALI. To discriminate between the impact of old age and AEII cell senescence in ALI, young (3 mo) and old (18 mo) Sftpc-Ai9 mice with surfactant protein c mediated tdTomato expression, and young Sftpc-Ai9-Trf1 mice with additional telomeric repeat-binding factor 1 (Trf1) knockout-mediated senescence in AEII cells were treated with 1 μg LPS per gram body weight (n = 9-11). Control mice received saline solution (n = 7). Mice were killed 4 or 7 days later. Lung mechanics, pulmonary inflammation, and proteomes were analyzed, and parenchymal injury, AEII cell proliferation and AEI cell differentiation rate were quantified using stereology. Old mice showed 55% mortality by Day 4, whereas all young mice survived. Pulmonary inflammation was most severe in old Sftpc-Ai9 mice, followed by Sftpc-Ai9-Trf1 mice. Young Sftpc-Ai9 mice recovered almost completely by Day 7, whereas Sftpc-Ai9-Trf1 mice still showed mild signs of injury. An expansion of AEII cells was measured only in young Sftpc-Ai9 mice at Day 7. Aging and telomere dysfunction-mediated senescence had no impact on AEI differentiation rate in controls, but the reduced number of AEII cells in Sftpc-Ai9-Trf1 mice also affected de novo differentiation after injury. In conclusion, telomere dysfunction- mediated AEII cell senescence promoted parenchymal inflammation in ALI, but did not enhance mortality like old age. Although the differentiation rate remained functional with old age and AEII cell senescence, AEII cell proliferative capacity was impaired in ALI, affecting the regenerative ability.
Collapse
Affiliation(s)
- Merle S Hirsch
- Institute of Functional and Applied Anatomy
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
| | - Christina B Hildebrand
- Institute of Functional and Applied Anatomy
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Geltinger
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pich
- Institute of Toxicology, Core Facility Proteomics, and
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Schierz AK, Rößler G, Schneider JP, Tschanz SA, Werlein C, Jonigk DD, Schipke J, Mühlfeld C. Distribution and volume of mitochondria in alveolar epithelial type 1 cells in infant and adult human lungs. Histochem Cell Biol 2024; 163:7. [PMID: 39557665 PMCID: PMC11573795 DOI: 10.1007/s00418-024-02332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Alveolar epithelial type I (AE1) cells with their wide spatial expansion form approximately 95% of the outer surface area of the air-blood barrier inside the lung. Serial block-face scanning electron microscopy (SBF-SEM) investigations led to the hypothesis that AE1 cell mitochondria are preferentially distributed as aggregates in those parts of AE1 cells that are located above connective tissue pillars between capillaries, thus not increasing the thickness of the diffusion distance for oxygen and carbon dioxide. Furthermore, it was hypothesised that postnatal development requires adapting the amount and distribution of mitochondria in AE1 cells. Human lung samples from three infant (26 and 30 days, 6 months) and three adult (20, 39 and 40 years) samples were investigated by light microscopy, transmission electron microscopy and stereology. The volume fraction of mitochondria was similar in infant and adult lungs with a mean value of 6.3%. The ratio between mitochondrial profiles on top of capillaries or above connective tissue pillars was approximately 3:1 in infants and adults. However, regarding the volume of both cytoplasmic compartments, infants showed a higher number of mitochondrial profiles on top of capillaries while adults showed a higher number above connective tissue pillars. Samples of three additional adult lungs were analysed by confocal laser scanning microscopy. Again, mitochondria were not preferentially found as aggregates above connective tissue pillars. In conclusion, AE1 cell mitochondria were not preferentially found as aggregates, showed the same volume density in infants and adults but differed in distribution between the age groups.
Collapse
Affiliation(s)
- Arne K Schierz
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Giacomo Rößler
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jan Philipp Schneider
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan A Tschanz
- University of Bern, Institute of Anatomy, Baltzerstrasse 2, 3008, Bern, Switzerland
| | - Christopher Werlein
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Hannover Medical School, Institute of Pathology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Julia Schipke
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
8
|
Reynolds SD, Hill CL, Alsudayri A, Stack JT, Shontz KM, Carraro G, Stripp BR, Chiang T. Factor 3 regulates airway engraftment by human bronchial basal cells. Stem Cells Transl Med 2024:szae084. [PMID: 39485996 DOI: 10.1093/stcltm/szae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/01/2024] [Indexed: 11/03/2024] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) gene editing and transplantation of CFTR-gene corrected airway basal cells has the potential to cure CF lung disease. Although mouse studies established that cell transplantation was feasible, the engraftment rate was typically low and frequently less than the estimated therapeutic threshold. The purpose of this study was to identify genes and culture conditions that regulate the therapeutic potential of human bronchial basal cells. Factor 3 (F3, Tissue Factor 1) is a component of the extrinsic coagulation pathway and activates a cascade of proteases that convert fibrinogen to fibrin. Based on reports that F3 was necessary for human basal cell survival and adhesion in vitro, the present study evaluated F3 as a potential determinant of therapeutic fitness. The gene expression profile of F3 mRNA-positive human bronchial basal cells was evaluated by scRNAseq and the impact of the lung environment on F3 expression was modeled by varying in vitro culture conditions. F3 necessity for adhesion, proliferation, and differentiation was determined by CRISPR/Cas9 knockout (KO) of the F3 gene. Finally, the impact of F3 manipulation on engraftment was determined by orthotropic co-transplantation of wild-type and F3-KO cells into the airways of immunocompromised mice. In contrast with the hypothesis that F3 increases the therapeutic fitness of basal cells, F3 expression decreased engraftment. These studies guide the ongoing development of cellular therapies by showing that in vitro assessments may not predict therapeutic potential and that the lung milieu influences the functional properties of transplanted bronchial basal cells.
Collapse
Affiliation(s)
- Susan D Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH 43215, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Cynthia L Hill
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH 43215, United States
| | - Alfahdah Alsudayri
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH 43215, United States
| | - Jacob T Stack
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH 43215, United States
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH 43215, United States
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Barry R Stripp
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Tendy Chiang
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH 43215, United States
- Department of Otolaryngology, Nationwide Children's Hospital, Columbus, OH 43215, United States
| |
Collapse
|
9
|
Amatya S, Lanza M, Umstead TM, Chroneos ZC. Loss of Surfactant Protein A Alters Perinatal Lung Morphology and Susceptibility to Hyperoxia-Induced Bronchopulmonary Dysplasia. Antioxidants (Basel) 2024; 13:1309. [PMID: 39594451 PMCID: PMC11591242 DOI: 10.3390/antiox13111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a condition of poor alveolar formation that causes chronic breathing impairment in infants born prematurely. Preterm lungs lack surfactant and are vulnerable to oxidative injuries driving the development of BPD. Our recent studies reported that surfactant protein A (SP-A) genetic variants influence susceptibility to neonatal lung disease. SP-A modulates activation of alveolar macrophages and parturition onset in late gestation. We asked whether a lack of SP-A alters alveolarization in a mouse model of hyperoxia-induced BPD. SP-A-deficient and control newborn mice were exposed to either clinically relevant 60% O2 hyperoxia or normoxia for 5-7 days. Alveolar formation was then assessed by mean linear intercept (MLI) and radial alveolar count (RAC) measurements in lung tissue sections. We report that the combination of SP-A deficiency and hyperoxia reduces alveolar growth compared to WT mice. The morphometric analysis of normoxic SP-A-deficient lungs showed lower RAC compared to controls, indicating reduced alveolar number. In the presence of hyperoxia, MLI was higher in SP-A-deficient lungs compared to controls. Differences were statistically significant for female pups. Spatial proteomic profiling of lung tissue sections showed that hyperoxia caused a 4-fold increase in the DNA damage marker γH2Ax in macrophages of SP-A-deficient lungs compared to normoxia. Our short report suggests an important role for SP-A in perinatal lung development and the protection of lung macrophages from oxidant injury. These studies warrant future investigation to discern the temporal interaction of SP-A, gender, oxidant injury, and lung macrophages in perinatal alveolar formation and development of BPD.
Collapse
Affiliation(s)
- Shaili Amatya
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
| | - Matthew Lanza
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Todd M. Umstead
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Zissis C. Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Liu Y, Roy AK, Fan DE. Biomimetic Hierarchies for Universal Surface Enhancement and Applications in Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39370824 DOI: 10.1021/acsami.4c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Hierarchical superstructures, ubiquitously found in nature, offer enhanced efficiency in both substance reaction and mass transport owing to their unique multiscale features. Inspired by these natural systems, this research reports a general and scalable electrochemical scheme for creating highly branched, multilevel porous superstructures on various electrically conductive substrates. These structures exhibit cascading features from centimeters, submillimeters, micrometers, down to sub-100 nm, significantly increasing the surface area of substrates, such as foams, foils, and carbon cloth by 2 orders of magnitude─among the highest reported enhancements. This versatile and low-cost method, applicable to a range of electrically conductive substrates, enables innovative flow-assisted water purification with enhanced energy efficiency. The performance, successfully removing 99% of mercury within 0.5 h at 540 rpm and meeting the U.S. Environmental Protection Agency (EPA) safety standards for drinking water, further validates the advantages of these unique structures. Overall, the reported general, economical, and versatile scheme could broadly impact energy and environmental remediation.
Collapse
Affiliation(s)
- Yifei Liu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ajit K Roy
- Air Force Research Laboratory, Materials and Manufacturing, Dayton, Ohio 45402, United States
| | - Donglei Emma Fan
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Chandra Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Hough RF, Alvira CM, Bastarache JA, Erzurum SC, Kuebler WM, Schmidt EP, Shimoda LA, Abman SH, Alvarez DF, Belvitch P, Bhattacharya J, Birukov KG, Chan SY, Cornfield DN, Dudek SM, Garcia JGN, Harrington EO, Hsia CCW, Islam MN, Jonigk DD, Kalinichenko VV, Kolb TM, Lee JY, Mammoto A, Mehta D, Rounds S, Schupp JC, Shaver CM, Suresh K, Tambe DT, Ventetuolo CE, Yoder MC, Stevens T, Damarla M. Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 71:388-406. [PMID: 39189891 PMCID: PMC11450313 DOI: 10.1165/rcmb.2024-0330st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Collapse
|
12
|
Millan I, Pérez S, Rius-Pérez S, Asensi MÁ, Vento M, García-Verdugo JM, Torres-Cuevas I. Postnatal hypoxic preconditioning attenuates lung damage from hyperoxia in newborn mice. Pediatr Res 2024:10.1038/s41390-024-03457-0. [PMID: 39317699 DOI: 10.1038/s41390-024-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Preterm infants frequently require oxygen supplementation at birth. However, preterm lung is especially sensible to structural and functional damage caused by oxygen free radicals. METHODS The adaptive mechanisms implied in the fetal-neonatal transition from a lower to a higher oxygen environment were evaluated in a murine model using a custom-designed oxy-chamber. Pregnant mice were randomly assigned to deliver in 14% (hypoxic preconditioning group) or 21% (normoxic group) oxygen environment. Eight hours after birth FiO2 was increased to 100% for 60 min and then switched to 21% in both groups. A control group remained in 21% oxygen throughout the study. RESULTS Mice in the normoxic group exhibited thinning of the alveolar septa, increased cell death, increased vascular damage, and decreased synthesis of pulmonary surfactant. However, lung histology, lamellar bodies microstructure, and surfactant integrity were preserved in the hypoxic preconditioning group after the hyperoxic insult. CONCLUSION Postnatal hyperoxia has detrimental effects on lung structure and function when preceded by normoxia compared to controls. However, postnatal hypoxic preconditioning mitigates lung damage caused by a hyperoxic insult. IMPACT Hypoxic preconditioning, implemented shortly after birth mitigates lung damage caused by postnatal supplemental oxygenation. The study introduces an experimental mice model to investigate the effects of hypoxic preconditioning and its effects on lung development. This model enables researchers to delve into the intricate processes involved in postnatal lung maturation. Our findings suggest that hypoxic preconditioning may reduce lung parenchymal damage and increase pulmonary surfactant synthesis in reoxygenation strategies during postnatal care.
Collapse
Affiliation(s)
- Iván Millan
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, University of Valencia, Burjassot, Spain
| | - Sergio Rius-Pérez
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | | | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain.
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Department of Physiology, University of Valencia, Burjassot, Spain.
| |
Collapse
|
13
|
Rößler G, Labode J, Schipke J, Tschanz SA, Mühlfeld C. Three-dimensional characteristics of the alveolar capillary network in infant and adult human lungs. Pediatr Res 2024:10.1038/s41390-024-03572-y. [PMID: 39313553 DOI: 10.1038/s41390-024-03572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND A comprehensive understanding of vascular development in the human lung is still missing. METHODS Therefore, samples of infant (n = 5, 26 days to 18 months postnatally) and adult (n = 5, 20 to 40 years) human lungs were subjected to unbiased stereological estimation of the total number of capillary loops. Serial sections were segmented to visualize the alveolar capillary network (ACN) in 3D. RESULTS The number of capillary loops increased in parallel to lung volume from 26 days to 18 months, while in adults, it was not correlated to lung volume. In infant lungs, two capillary layers were separated by a connective tissue sheet with a growing number of interconnections. In adults, the mature ACN was almost, but not completely, single-layered. Here, the connective tissue was thinner but still centrally positioned, suggesting the persistence of interconnected parts of both layers of the previously double-layered ACN. CONCLUSIONS Small parts of the capillaries remain double-layered and seem to be grouped around the thin connective tissue sheet, suggesting a different mechanism of microvascular maturation than simple fusion of the two layers. These spots are a potential basis for further alveolarization after completion of bulk formation. IMPACT The 3D data offer a new conceptual approach to microvascular maturation of the lung. Microvascular maturation rather results from reduction than simple fusion of capillary fragments. Adult lungs maintain small double-layered capillary spots. These could offer a potential source of regeneration. The data are important to better understand normal and pathological lung development.
Collapse
Affiliation(s)
- Giacomo Rößler
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jonas Labode
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
14
|
Maldonado-Velez G, Mickler EA, Cook TG, Aldred MA. Loss of Tbx4 Affects Postnatal Lung Development and Predisposes to Pulmonary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613783. [PMID: 39345561 PMCID: PMC11429984 DOI: 10.1101/2024.09.18.613783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the precapillary pulmonary arteries. Genomic variation within the T-box 4 (TBX4) transcription factor is the second most common genetic cause of PAH, and can also cause severe lung developmental disorders with neonatal PH. Currently, the effect of TBX4 loss-of-function on later stages of lung development and predisposition to lung disease, including PH, is not well understood. Therefore, we have generated Tbx4 conditional knockout ( Tbx4-CKO ) mice in which Cre recombinase deletes exon 5 of Tbx4 within the embryonic lung mesenchyme to create a null allele. We harvested lungs from these mice at various timepoints to examine alveologenesis, vascularization, vascular remodeling, lung cellular composition, and disruption of transcriptional activity compared with control lungs. Right ventricular systolic pressure (RVSP) was measured in six-month-old mice to evaluate for PH. Tbx4-CKO lungs show enlargement of airspaces, as confirmed by an increase in mean linear intercept at P14 (24.9%), P36 (31.5%), and P180 (49.6%). These lungs also show a 39.3% decrease in von Willebrand Factor-positive vessels and a 14.2% increase in vessel wall thickness. Consistent with these results, Tbx4-CKO mice show a statistically significant increase of 15.7% in RVSP and 16.3% in the Fulton index. Bulk-RNA sequencing analysis revealed enrichment of pathways and genes relevant to lung alveologenesis, angiogenesis, and PH. Our results show that disruption of Tbx4 expression during early lung development is sufficient to disrupt postnatal lung development and circulation.
Collapse
|
15
|
Oliveira EH, Monteleone-Cassiano AC, Tavares L, Santos JC, Lima TM, Gomes GF, Tanaka PP, Monteiro CJ, Munuera M, Batah SS, Fabro AT, Faça VM, Masson AP, Donadi EA, Dametto M, Bonacin R, Martins RB, Neto EA, daSilva LLP, Cunha TM, Passos GA. A mimetic peptide of ACE2 protects against SARS-CoV-2 infection and decreases pulmonary inflammation related to COVID-19. Antiviral Res 2024; 229:105968. [PMID: 39004311 DOI: 10.1016/j.antiviral.2024.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Since human angiotensin-converting enzyme 2 (ACE2) serves as a primary receptor for SARS-CoV-2, characterizing ACE2 regions that allow SARS-CoV-2 to enter human cells is essential for designing peptide-based antiviral blockers and elucidating the pathogenesis of the virus. We identified and synthesized a 25-mer mimetic peptide (encompassing positions 22-46 of the ACE2 alpha-helix α1) implicated in the S1 receptor-binding domain (RBD)-ACE2 interface. The mimetic (wild-type, WT) ACE2 peptide significantly inhibited SARS-CoV-2 infection of human pulmonary Calu-3 cells in vitro. In silico protein modeling predicted that residues F28, K31, F32, F40, and Y41 of the ACE2 alpha-helix α1 are critical for the original, Delta, and Omicron strains of SARS-CoV-2 to establish the Spike RBD-ACE2 interface. Substituting these residues with alanine (A) or aspartic acid (D) abrogated the antiviral protective effect of the peptides, indicating that these positions are critical for viral entry into pulmonary cells. WT ACE2 peptide, but not the A or D mutated peptides, exhibited significant interaction with the SARS-CoV-2 S1 RBD, as shown through molecular dynamics simulations. Through identifying the critical amino acid residues of the ACE2 alpha-helix α1, which is necessary for the Spike RBD-ACE2 interface and mobilized during the in vitro viral infection of cells, we demonstrated that the WT ACE2 peptide protects susceptible K18-hACE2 mice against in vivo SARS-CoV-2 infection and is effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Lucas Tavares
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jadson C Santos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thais M Lima
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Giovanni F Gomes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cintia J Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Munuera
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana P Masson
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariangela Dametto
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Rodrigo Bonacin
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Ronaldo B Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eurico Arruda Neto
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luis Lamberti P daSilva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Figueira RL, Khoshgoo N, Doktor F, Khalaj K, Islam T, Moheimani N, Blundell M, Antounians L, Post M, Zani A. Antenatal Administration of Extracellular Vesicles Derived From Amniotic Fluid Stem Cells Improves Lung Function in Neonatal Rats With Congenital Diaphragmatic Hernia. J Pediatr Surg 2024; 59:1771-1777. [PMID: 38519389 DOI: 10.1016/j.jpedsurg.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The severity of pulmonary hypoplasia is a main determinant of outcome for babies with congenital diaphragmatic hernia (CDH). Antenatal administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs) has been shown to rescue morphological features of lung development in the rat nitrofen model of CDH. Herein, we evaluated whether AFSC-EV administration to fetal rats with CDH is associated with neonatal improvement in lung function. METHODS AFSC-EVs were isolated by ultracentrifugation and characterized by size, morphology, and canonical marker expression. At embryonic (E) day 9.5, dams were gavaged with olive oil (control) or nitrofen to induce CDH. At E18.5, fetuses received an intra-amniotic injection of either saline or AFSC-EVs. At E21.5, rats were delivered and subjected to a tracheostomy for mechanical ventilation (flexiVent system). Groups were compared for lung compliance, resistance, Newtonian resistance, tissue damping and elastance. Lungs were evaluated for branching morphogenesis and collagen quantification. RESULTS Compared to healthy control, saline-treated pups with CDH had fewer airspaces, more collagen deposition, and functionally exhibited reduced compliance and increased airway resistance, elastance, and tissue damping. Conversely, AFSC-EV administration resulted in improvement of lung mechanics (compliance, resistance, tissue damping, elastance) as well as lung branching morphogenesis and collagen deposition. CONCLUSIONS Our studies show that the rat nitrofen model reproduces lung function impairment similar to that of human babies with CDH. Antenatal administration of AFSC-EVs improves lung morphology and function in neonatal rats with CDH. LEVEL OF EVIDENCE N/A (animal and laboratory study).
Collapse
Affiliation(s)
- Rebeca L Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naghmeh Khoshgoo
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tasneem Islam
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nazgol Moheimani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Costa-Ferro ZSM, Rocha GV, da Silva KN, Paredes BD, Loiola EC, Silva JD, Santos JLDS, Dias RB, Figueira CP, de Oliveira CI, de Moura LD, Ribeiro LNDM, de Paula E, Zanette DL, Rocha CAG, Rocco PRM, Souza BSDF. GMP-compliant extracellular vesicles derived from umbilical cord mesenchymal stromal cells: manufacturing and pre-clinical evaluation in ARDS treatment. Cytotherapy 2024; 26:1013-1025. [PMID: 38762805 DOI: 10.1016/j.jcyt.2024.04.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AIMS Extracellular vesicles (EVs) represent a new axis of intercellular communication that can be harnessed for therapeutic purposes, as cell-free therapies. The clinical application of mesenchymal stromal cell (MSC)-derived EVs, however, is still in its infancy and faces many challenges. The heterogeneity inherent to MSCs, differences among donors, tissue sources, and variations in manufacturing conditions may influence the release of EVs and their cargo, thus potentially affecting the quality and consistency of the final product. We investigated the influence of cell culture and conditioned medium harvesting conditions on the physicochemical and proteomic profile of human umbilical cord MSC-derived EVs (hUCMSC-EVs) produced under current good manufacturing practice (cGMP) standards. We also evaluated the efficiency of the protocol in terms of yield, purity, productivity, and expression of surface markers, and assessed the biodistribution, toxicity and potential efficacy of hUCMSC-EVs in pre-clinical studies using the LPS-induced acute lung injury model. METHODS hUCMSCs were isolated from a cord tissue, cultured, cryopreserved, and characterized at a cGMP facility. The conditioned medium was harvested at 24, 48, and 72 h after the addition of EV collection medium. Three conventional methods (nanoparticle tracking analysis, transmission electron microscopy, and nanoflow cytometry) and mass spectrometry were used to characterize hUCMSC-EVs. Safety (toxicity of single and repeated doses) and biodistribution were evaluated in naive mice after intravenous administration of the product. Efficacy was evaluated in an LPS-induced acute lung injury model. RESULTS hUCMSC-EVs were successfully isolated using a cGMP-compliant protocol. Comparison of hUCMSC-EVs purified from multiple harvests revealed progressive EV productivity and slight changes in the proteomic profile, presenting higher homogeneity at later timepoints of conditioned medium harvesting. Pooled hUCMSC-EVs showed a non-toxic profile after single and repeated intravenous administration to naive mice. Biodistribution studies demonstrated a major concentration in liver, spleen and lungs. HUCMSC-EVs reduced lung damage and inflammation in a model of LPS-induced acute lung injury. CONCLUSIONS hUCMSC-EVs were successfully obtained following a cGMP-compliant protocol, with consistent characteristics and pre-clinical safety profile, supporting their future clinical development as cell-free therapies.
Collapse
Affiliation(s)
- Zaquer Suzana Munhoz Costa-Ferro
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Gisele Vieira Rocha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Katia Nunes da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Erick Correia Loiola
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - John Lenon de Souza Santos
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Rosane Borges Dias
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Federal University of Bahia, UFBA, Salvador, Brazil
| | | | | | | | - Lígia Nunes de Morais Ribeiro
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eneida de Paula
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Clarissa Araújo Gurgel Rocha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Federal University of Bahia, UFBA, Salvador, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.
| |
Collapse
|
18
|
Perlman CE, Knudsen L, Smith BJ. The fix is not yet in: recommendation for fixation of lungs within physiological/pathophysiological volume range in preclinical pulmonary structure-function studies. Am J Physiol Lung Cell Mol Physiol 2024; 327:L218-L231. [PMID: 38712433 PMCID: PMC11444500 DOI: 10.1152/ajplung.00341.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Quantitative characterization of lung structures by morphometrical or stereological analysis of histological sections is a powerful means of elucidating pulmonary structure-function relations. The overwhelming majority of studies, however, fix lungs for histology at pressures outside the physiological/pathophysiological respiratory volume range. Thus, valuable information is being lost. In this perspective article, we argue that investigators performing pulmonary histological studies should consider whether the aims of their studies would benefit from fixation at functional transpulmonary pressures, particularly those of end-inspiration and end-expiration. We survey the pressures at which lungs are typically fixed in preclinical structure-function studies, provide examples of conditions that would benefit from histological evaluation at functional lung volumes, summarize available fixation methods, discuss alternative imaging modalities, and discuss challenges to implementing the suggested approach and means of addressing those challenges. We aim to persuade investigators that modifying or complementing the traditional histological approach by fixing lungs at minimal and maximal functional volumes could enable new understanding of pulmonary structure-function relations.
Collapse
Affiliation(s)
- Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
19
|
Tuder RM, Gandjeva A, Williams S, Kumar S, Kheyfets VO, Hatton-Jones KM, Starr JR, Yun J, Hong J, West NP, Stenmark KR. Digital Spatial Profiling Identifies Distinct Molecular Signatures of Vascular Lesions in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2024; 210:329-342. [PMID: 38568479 PMCID: PMC11348978 DOI: 10.1164/rccm.202307-1310oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/03/2024] [Indexed: 06/09/2024] Open
Abstract
Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling caused by plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. Objective: We sought to test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. Methods: We used digital spatial transcriptomics to profile the genomewide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n = 11) and compared these data with the intima+media hypertrophy and adventitia of control pulmonary artery (n = 5). Measurements and Main Results: We detected 8,273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima+media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for 1) genes associated with transforming growth factor β signaling and 2) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and IFN signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. Conclusions: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.
Collapse
Affiliation(s)
- Rubin M. Tuder
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
| | - Aneta Gandjeva
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
| | - Sarah Williams
- Queensland Cyber Infrastructure Foundation, St. Lucia, Queensland, Australia
- Griffith Institute for Drug Discovery
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
| | - Vitaly O. Kheyfets
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
- Division of Pediatric Critical Care Medicine and Cardiovascular Pulmonary Research Laboratory, and
- Department of Biomedical Informatics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | | | - Jacqueline R. Starr
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Jeong Yun
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Jason Hong
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Nicholas P. West
- Menzies Health Institute, and
- School of Pharmacy and Medical Science, Griffith University, Nathan, Queensland, Australia
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Division of Pediatric Critical Care Medicine and Cardiovascular Pulmonary Research Laboratory, and
| |
Collapse
|
20
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
21
|
Assayag M, Obedeyah T, Abutbul A, Berkman N. The integrin receptor beta 7 subunit mediates airway remodeling and hyperresponsiveness in allergen exposed mice. Respir Res 2024; 25:273. [PMID: 38997751 PMCID: PMC11241790 DOI: 10.1186/s12931-024-02899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Fibroblast differentiation to a myofibroblast phenotype is a feature of airway remodeling in asthma. Lung fibroblasts express the integrin receptor α4β7 and fibronectin induces myofibroblast differentiation via this receptor. OBJECTIVES To investigate the role of the β7 integrin receptor subunit and α4β7 integrin complex in airway remodeling and airway hyperresponsiveness (AHR) in a murine model of chronic allergen exposure. METHODS C57BL/6 wild type (WT) and β7 integrin null mice (β7 -/-) were sensitized (days 1,10) and challenged with ovalbumin (OVA) three times a week for one or 4 weeks. Similar experiments were performed with WT mice in the presence or absence of α4β7 blocking antibodies. Bronchoalveolar (BAL) cell counts, AHR, histological evaluation, soluble collagen content, Transforming growth factor-β (TGFβ) and Interleukin-13 (IL13) were measured. Phenotype of fibroblasts cultured from WT and β7 -/- saline (SAL) and OVA treated mice was evaluated. RESULTS Eosinophil numbers were similar in WT vs β7-/- mice. Prolonged OVA exposure in β7-/- mice was associated with reduced AHR, lung collagen content, peribronchial smooth muscle, lung tissue TGFβ and IL13 expression as compared to WT. Similar findings were observed in WT mice treated with α4β7 blocking antibodies. Fibroblast migration was enhanced in response to OVA in WT but not β7 -/- fibroblasts. α-SMA and fibronectin expression were reduced in β7-/- fibroblasts relative to WT. CONCLUSIONS The β7 integrin subunit and the α4β7 integrin complex modulate AHR and airway remodeling in a murine model of allergen exposure. This effect is, at least in part, explained by inhibition of fibroblast activation and is independent of eosinophilic inflammation.
Collapse
Affiliation(s)
- Miri Assayag
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Tahrir Obedeyah
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Avraham Abutbul
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Neville Berkman
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel.
| |
Collapse
|
22
|
Sato H, Kato A, Adachi H, Takahashi K, Arai H, Ito M, Namba F, Takahashi T. High oxygen exposure's impact on newborn mice: Temporal changes observed via micro-computed tomography. Exp Lung Res 2024; 50:127-135. [PMID: 38973401 DOI: 10.1080/01902148.2024.2375099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) impacts life expectancy and long-term quality of life. Currently, BPD mouse models exposed to high oxygen are frequently used, but to reevaluate their relevance to human BPD, we attempted an assessment using micro-computed tomography (µCT). METHODS Newborn wildtype male mice underwent either 21% or 95% oxygen exposure for 4 days, followed until 8 wk. Weekly µCT scans and lung histological evaluations were performed independently. RESULTS Neonatal hyperoxia for 4 days hindered lung development, causing alveolar expansion and simplification. Histologically, during the first postnatal week, the exposed group showed a longer mean linear intercept, enlarged alveolar area, and a decrease in alveolar number, diminishing by week 4. Weekly µCT scans supported these findings, revealing initially lower lung density in newborn mice, increasing with age. However, the high-oxygen group displayed higher lung density initially. This difference diminished over time, with no significant contrast to controls at 3 wk. Although no significant difference in total lung volume was observed at week 1, the high-oxygen group exhibited a decrease by week 2, persisting until 8 wk. CONCLUSION This study highlights µCT-detected changes in mice exposed to high oxygen. BPD mouse models might follow a different recovery trajectory than humans, suggesting the need for further optimization.
Collapse
Affiliation(s)
- Himeko Sato
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Akie Kato
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Hiroyuki Adachi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Kiichi Takahashi
- Department of Neonatology, Akita Red Cross Hospital, Akita City, Japan
| | - Hirokazu Arai
- Department of Neonatology, Akita Red Cross Hospital, Akita City, Japan
| | - Masato Ito
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe City, Japan
| | - Tsutomu Takahashi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| |
Collapse
|
23
|
Zimmermann R, Roeder F, Ruppert C, Smith BJ, Knudsen L. Low-volume ventilation of preinjured lungs degrades lung function via stress concentration and progressive alveolar collapse. Am J Physiol Lung Cell Mol Physiol 2024; 327:L19-L39. [PMID: 38712429 DOI: 10.1152/ajplung.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.
Collapse
Affiliation(s)
- Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Zhuang X, Wang Q, Joost S, Ferrena A, Humphreys DT, Li Z, Blum M, Bastl K, Ding S, Landais Y, Zhan Y, Zhao Y, Chaligne R, Lee JH, Carrasco SE, Bhanot UK, Koche RP, Bott MJ, Katajisto P, Soto-Feliciano YM, Pisanic T, Thomas T, Zheng D, Wong ES, Tammela T. Aging limits stemness and tumorigenesis in the lung by reprogramming iron homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600305. [PMID: 38979280 PMCID: PMC11230188 DOI: 10.1101/2024.06.23.600305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Aging is associated with a decline in the number and fitness of adult stem cells 1-4 . Aging-associated loss of stemness is posited to suppress tumorigenesis 5,6 , but this hypothesis has not been tested in vivo . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells 7,8 , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin. This phenotype is underpinned by aging-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, leading to a functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescue stemness and promote tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1- lipocalin-2 axis is detrimental to young alveolar cells via induction of ferroptosis. We find that aging-associated DNA hypomethylation at specific enhancer sites associates with elevated NUPR1 expression, which is recapitulated in young alveolar cells by inhibition of DNA methylation. We uncover that aging drives a functional iron insufficiency, which leads to loss of stemness and tumorigenesis, but promotes resistance to ferroptosis. These findings have significant implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate in young individuals, revealing a critical window for such cancer prevention efforts.
Collapse
|
25
|
Biouss G, Antounians L, Aguet J, Kopcalic K, Fakhari N, Baranger J, Mertens L, Villemain O, Zani A. The brain of fetuses with congenital diaphragmatic hernia shows signs of hypoxic injury with loss of progenitor cells, neurons, and oligodendrocytes. Sci Rep 2024; 14:13680. [PMID: 38871804 DOI: 10.1038/s41598-024-64412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a birth defect characterized by incomplete closure of the diaphragm, herniation of abdominal organs into the chest, and compression of the lungs and the heart. Besides complications related to pulmonary hypoplasia, 1 in 4 survivors develop neurodevelopmental impairment, whose etiology remains unclear. Using a fetal rat model of CDH, we demonstrated that the compression exerted by herniated organs on the mediastinal structures results in decreased brain perfusion on ultrafast ultrasound, cerebral hypoxia with compensatory angiogenesis, mature neuron and oligodendrocyte loss, and activated microglia. In CDH fetuses, apoptosis was prominent in the subventricular and subgranular zones, areas that are key for neurogenesis. We validated these findings in the autopsy samples of four human fetuses with CDH compared to age- and sex-matched controls. This study reveals the molecular mechanisms and cellular changes that occur in the brain of fetuses with CDH and creates opportunities for therapeutic targets.
Collapse
Affiliation(s)
- George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Julien Aguet
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, ON, M5T 1W7, Canada
| | - Katarina Kopcalic
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Nikan Fakhari
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Jerome Baranger
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Luc Mertens
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Olivier Villemain
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
26
|
Paget TL, Larcombe AN, Pinniger GJ, Tsioutsias I, Schneider JP, Parkinson-Lawrence EJ, Orgeig S. Mucopolysaccharidosis (MPS IIIA) mice have increased lung compliance and airway resistance, decreased diaphragm strength, and no change in alveolar structure. Am J Physiol Lung Cell Mol Physiol 2024; 326:L713-L726. [PMID: 38469649 DOI: 10.1152/ajplung.00445.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 03/13/2024] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.NEW & NOTEWORTHY Heparan sulfate storage in the lungs of mucopolysaccharidosis type IIIA (MPS IIIA) mice leads to changes in lung function consistent with those of an obstructive lung disease and includes an increase in lung compliance and airway resistance and a decrease in tissue elastance. In addition, diaphragm muscle contractile strength is reduced, potentially further contributing to lung function impairment. However, no changes in parenchymal lung structure were observed in mice at 20 wk of age.
Collapse
Affiliation(s)
- Tamara L Paget
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander N Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Gavin J Pinniger
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Irene Tsioutsias
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jan Philipp Schneider
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Emma J Parkinson-Lawrence
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandra Orgeig
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Albertine KH, Rebentisch A, Dawson E, Van Boerum J, Major E, Štipka J, Foreman H, Headden D, Vordos Z, Beck E, Wang Z, Yang H, Yu B, Dahl MJ, Null DM, Bizzotto D, Veneroni C, Lavizzari A, Dellacà RL, Delavogia E, Mitsialis SA, Kourembanas S. Mesenchymal stromal cell extracellular vesicles improve lung development in mechanically ventilated preterm lambs. Am J Physiol Lung Cell Mol Physiol 2024; 326:L770-L785. [PMID: 38563994 PMCID: PMC11380989 DOI: 10.1152/ajplung.00349.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Novel therapies are needed for bronchopulmonary dysplasia (BPD) because no effective treatment exists. Mesenchymal stromal cell extracellular vesicles (MSC-sEVs) have therapeutic efficacy in a mouse pup neonatal hyperoxia BPD model. We tested the hypothesis that MSC-sEVs will improve lung functional and structural development in mechanically ventilated preterm lambs. Preterm lambs (∼129 days; equivalent to human lung development at ∼28 wk gestation) were exposed to antenatal steroids, surfactant, caffeine, and supported by mechanical ventilation for 6-7 days. Lambs were randomized to blinded treatment with either MSC-sEVs (human bone marrow MSC-derived; 2 × 1011 particles iv; n = 8; 4 F/4 M) or vehicle control (saline iv; 4 F/4 M) at 6 and 78 h post delivery. Physiological targets were pulse oximetry O2 saturation 90-94% ([Formula: see text] 60-90 mmHg), [Formula: see text] 45-60 mmHg (pH 7.25-7.35), and tidal volume 5-7 mL/kg. MSC-sEVs-treated preterm lambs tolerated enteral feedings compared with vehicle control preterm lambs. Differences in weight patterns were statistically significant. Respiratory severity score, oxygenation index, A-a gradient, distal airspace wall thickness, and smooth muscle thickness around terminal bronchioles and pulmonary arterioles were significantly lower for the MSC-sEVs group. S/F ratio, radial alveolar count, secondary septal volume density, alveolar capillary surface density, and protein abundance of VEGF-R2 were significantly higher for the MSC-sEVs group. MSC-sEVs improved respiratory system physiology and alveolar formation in mechanically ventilated preterm lambs. MSC-sEVs may be an effective and safe therapy for appropriate functional and structural development of the lung in preterm infants who require mechanical ventilation and are at risk of developing BPD.NEW & NOTEWORTHY This study focused on potential treatment of preterm infants at risk of developing bronchopulmonary dysplasia (BPD), for which no effective treatment exists. We tested treatment of mechanically ventilated preterm lambs with human mesenchymal stromal cell extracellular vesicles (MSC-sEVs). The results show improved respiratory gas exchange and parenchymal growth of capillaries and epithelium that are necessary for alveolar formation. Our study provides new mechanistic insight into potential efficacy of MSC-sEVs for preterm infants at risk of developing BPD.
Collapse
Affiliation(s)
- Kurt H Albertine
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Andrew Rebentisch
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Elaine Dawson
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Jakob Van Boerum
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Emily Major
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Juraj Štipka
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Hannah Foreman
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - David Headden
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Zoë Vordos
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Emily Beck
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Zhengming Wang
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Haixia Yang
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Baifeng Yu
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Mar Janna Dahl
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Donald M Null
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Davide Bizzotto
- TechRes Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Chiara Veneroni
- TechRes Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Anna Lavizzari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Raffaele L Dellacà
- TechRes Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Eleni Delavogia
- Division of Neonatology, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States
| | - S Alex Mitsialis
- Division of Neonatology, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States
| | - Stella Kourembanas
- Division of Neonatology, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
28
|
Villa B, Erranz B, Cruces P, Retamal J, Hurtado DE. Mechanical and morphological characterization of the emphysematous lung tissue. Acta Biomater 2024; 181:282-296. [PMID: 38705223 DOI: 10.1016/j.actbio.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Irreversible alveolar airspace enlargement is the main characteristic of pulmonary emphysema, which has been extensively studied using animal models. While the alterations in lung mechanics associated with these morphological changes have been documented in the literature, the study of the mechanical behavior of parenchymal tissue from emphysematous lungs has been poorly investigated. In this work, we characterize the mechanical and morphological properties of lung tissue in elastase-induced emphysema rat models under varying severity conditions. We analyze the non-linear tissue behavior using suitable hyperelastic constitutive models that enable to compare different non-linear responses in terms of hyperelastic material parameters. We further analyze the effect of the elastase dose on alveolar morphology and tissue material parameters and study their connection with respiratory-system mechanical parameters. Our results show that while the lung mechanical function is not significantly influenced by the elastase treatment, the tissue mechanical behavior and alveolar morphology are markedly affected by it. We further show a strong association between alveolar enlargement and tissue softening, not evidenced by respiratory-system compliance. Our findings highlight the importance of understanding tissue mechanics in emphysematous lungs, as changes in tissue properties could detect the early stages of emphysema remodeling. STATEMENT OF SIGNIFICANCE: Gas exchange is vital for life and strongly relies on the mechanical function of the lungs. Pulmonary emphysema is a prevalent respiratory disease where alveolar walls are damaged, causing alveolar enlargement that induces harmful changes in the mechanical response of the lungs. In this work, we study how the mechanical properties of lung tissue change during emphysema. Our results from animal models show that tissue properties are more sensitive to alveolar enlargement due to emphysema than other mechanical properties that describe the function of the whole respiratory system.
Collapse
Affiliation(s)
- Benjamín Villa
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Vicuña Mackenna 4860, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Benjamín Erranz
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Pablo Cruces
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile. Avenida Repblica 440, Santiago, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile, Santiago, Chile
| | - Daniel E Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Vicuña Mackenna 4860, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA.
| |
Collapse
|
29
|
Evans VJ, Wu X, Tran KK, Tabofunda SK, Ding L, Yin L, Edwards P, Zhang QY, Ding X, Van Winkle LS. Impact of aging and ergothioneine pre-treatment on naphthalene toxicity in lung. Toxicol Lett 2024; 397:89-102. [PMID: 38768835 PMCID: PMC11531314 DOI: 10.1016/j.toxlet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Aging increases susceptibility to lung disease, but the topic is understudied, especially in relation to environmental exposures with the bulk of rodent studies using young adults. This study aims to define the pulmonary toxicity of naphthalene (NA) and the impacts of a dietary antioxidant, ergothioneine (ET), in the liver and lungs of middle-aged mice. NA causes a well-characterized pattern of conducting airway epithelial injury in the lung in young adult mice, but NA's toxicity has not been characterized in middle-aged mice, aged 1-1.5 years. ET is a dietary antioxidant that is synthesized by bacteria and fungi. The ET transporter (ETT), SLC22A4, is upregulated in tissues that experience high levels of oxidative stress. In this study, middle-aged male and female C57BL/6 J mice, maintained on an ET-free synthetic diet from conception, were gavaged with 70 mg/kg of ET for five consecutive days. On day 8, the mice were exposed to a single intraperitoneal NA dose of 50, 100, 150, or 200 mg/kg. At 24 hours post NA injection samples were collected and analyzed for ET concentration and reduced (GSH) and oxidized glutathione (GSSG) concentrations. Histopathology, morphometry, and gene expression were examined. Histopathology of mice exposed to 100 mg/kg of NA suggests reduction in toxicity in the terminal airways of both male (p ≤ 0.001) and female (p ≤ 0.05) middle-aged mice by the ET pretreatment. Our findings in this study are the first to document the toxicity of NA in middle-aged mice and show some efficacy of ET in reducing NA toxicity.
Collapse
Affiliation(s)
- Veneese Jb Evans
- Center for Health and the Environment, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Xiangmeng Wu
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Kyle K Tran
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Shanlea K Tabofunda
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Liang Ding
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Lei Yin
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Patricia Edwards
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Qing-Yu Zhang
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Xinxin Ding
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207.
| | - Laura S Van Winkle
- Center for Health and the Environment, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA.
| |
Collapse
|
30
|
João JMLG, Silva Barbosa JA, Sales da Silva LL, Fukuzaki S, de Campos EC, Camargo LDN, dos Santos TM, Moreira Bezerra SK, de Almeida FM, Saraiva-Romanholo BM, Lopes FDTQDS, Bonturi CR, Righetti RF, Oliva MLV, Tibério IDFLC, Leick EA. Effects of plant protease inhibitors (Pep-3-EcTI, Pep-BbKI, and Pep-BrTI) versus corticosteroids on inflammation, remodeling, and oxidative stress in an asthma-COPD (ACO) model. Front Pharmacol 2024; 15:1282870. [PMID: 38774212 PMCID: PMC11106483 DOI: 10.3389/fphar.2024.1282870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/08/2024] [Indexed: 05/24/2024] Open
Abstract
The peptide derived from E. contortisiliquum trypsin inhibitor (Pep-3-EcTI), peptide derived from kallikrein inhibitor isolated from B. bauhinioides (Pep-BbKI), and B. rufa peptide modified from B. bauhinioides (Pep-BrTI) peptides exhibit anti-inflammatory and antioxidant activities, suggesting their potential for treating asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO). We compared the effects of these peptides with dexamethasone (DX) treatment in an ACO model. In this study, 11 groups of male BALB/c mice were pre-treated under different conditions, including sensitization with intraperitoneal injection and inhalation of ovalbumin (OVA), intratracheal instillation of porcine pancreatic elastase (ELA), sensitization with intraperitoneal injection, and various combinations of peptide treatments with Pep-3-EcTI, Pep-BbKI, Pep-BrTI, dexamethasone, and non-treated controls (SAL-saline). Respiratory system resistance, airway resistance, lung tissue resistance, exhaled nitric oxide, linear mean intercept, immune cell counts in the bronchoalveolar lavage fluid, cytokine expression, extracellular matrix remodeling, and oxidative stress in the airways and alveolar septa were evaluated on day 28. Results showed increased respiratory parameters, inflammatory markers, and tissue remodeling in the ACO group compared to controls. Treatment with the peptides or DX attenuated or reversed these responses, with the peptides showing effectiveness in controlling hyperresponsiveness, inflammation, remodeling, and oxidative stress markers. These peptides demonstrated an efficacy comparable to that of corticosteroids in the ACO model. However, this study highlights the need for further research to assess their safety, mechanisms of action, and potential translation to clinical studies before considering these peptides for human use.
Collapse
Affiliation(s)
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | |
Collapse
|
31
|
Gutor SS, Salinas RI, Nichols DS, Bazzano JMR, Han W, Gokey JJ, Vasiukov G, West JD, Newcomb DC, Dikalova AE, Richmond BW, Dikalov SI, Blackwell TS, Polosukhin VV. Repetitive sulfur dioxide exposure in mice models post-deployment respiratory syndrome. Am J Physiol Lung Cell Mol Physiol 2024; 326:L539-L550. [PMID: 38410870 PMCID: PMC11380962 DOI: 10.1152/ajplung.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO2-exposed mice. SO2 exposure led to increased formation of isolevuglandins (isoLGs) adducts and superoxide dismutase 2 (SOD2) acetylation in endothelial cells, which were attenuated by treatment with the isoLG scavenger 2-hydroxybenzylamine acetate (2-HOBA). In addition, 2-HOBA treatment or Siruin-3 overexpression in a transgenic mouse model prevented vascular remodeling following SO2 exposure. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress appears to mediate PV remodeling in this model. Together, these findings provide new insights regarding the critical mechanisms underlying PDRS.NEW & NOTEWORTHY We developed a mice model of "post-deployment respiratory syndrome" (PDRS), a condition in Veterans with unexplained exertional dyspnea. Our model successfully recapitulates many of the pathological and physiological features of the syndrome, revealing involvement of the ROS-isoLGs-Sirt3-SOD2 pathway in pulmonary vasculature pathology. Our study provides additional knowledge about effects and long-term consequences of sulfur dioxide exposure on the respiratory system, serving as a valuable tool for future PDRS research.
Collapse
Affiliation(s)
- Sergey S Gutor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rodrigo I Salinas
- Department of Chemistry, Emory University, Atlanta, Georgia, United States
| | - David S Nichols
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julia M R Bazzano
- Department of Surgery, Emory University, Atlanta, Georgia, United States
| | - Wei Han
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason J Gokey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Georgii Vasiukov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - James D West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Anna E Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Bradley W Richmond
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Sergey I Dikalov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Timothy S Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Vasiliy V Polosukhin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
32
|
Castro CFG, Nardiello C, Hadzic S, Kojonazarov B, Kraut S, Gierhardt M, Schäffer J, Bednorz M, Quanz K, Heger J, Korfei M, Wilhelm J, Hecker M, Bartkuhn M, Arnhold S, Guenther A, Seeger W, Schulz R, Weissmann N, Sommer N, Pak O. The Role of the Redox Enzyme p66Shc in Biological Aging of the Lung. Aging Dis 2024; 15:911-926. [PMID: 37548932 PMCID: PMC10917546 DOI: 10.14336/ad.2023.0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/15/2023] [Indexed: 08/08/2023] Open
Abstract
The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.
Collapse
Affiliation(s)
- Claudia F. Garcia Castro
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Claudio Nardiello
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Baktybek Kojonazarov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Mareike Gierhardt
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Julia Schäffer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Mariola Bednorz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Karin Quanz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Martina Korfei
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Marek Bartkuhn
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Andreas Guenther
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- European IPF Registry & Biobank (eurIPFreg), Giessen, Germany.
- Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| |
Collapse
|
33
|
McGinn EA, Bye E, Gonzalez T, Sosa A, Bilodeaux J, Seedorf G, Smith BJ, Abman SH, Mandell EW. Antenatal Endotoxin Induces Dysanapsis in Experimental Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2024; 70:283-294. [PMID: 38207120 PMCID: PMC11478127 DOI: 10.1165/rcmb.2023-0157oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is characterized by impaired lung development with sustained functional abnormalities due to alterations of airways and the distal lung. Although clinical studies have shown striking associations between antenatal stress and BPD, little is known about the underlying pathogenetic mechanisms. Whether dysanapsis, the concept of discordant growth of the airways and parenchyma, contributes to late respiratory disease as a result of antenatal stress is unknown. We hypothesized that antenatal endotoxin (ETX) impairs juvenile lung function as a result of altered central airway and distal lung structure, suggesting the presence of dysanapsis in this preclinical BPD model. Fetal rats were exposed to intraamniotic ETX (10 μg) or saline solution (control) 2 days before term. We performed extensive structural and functional evaluation of the proximal airways and distal lung in 2-week-old rats. Distal lung structure was quantified by stereology. Conducting airway diameters were measured using micro-computed tomography. Lung function was assessed during invasive ventilation to quantify baseline mechanics, response to methacholine challenge, and spirometry. ETX-exposed pups exhibited distal lung simplification, decreased alveolar surface area, and decreased parenchyma-airway attachments. ETX-exposed pups exhibited decreased tracheal and second- and third-generation airway diameters. ETX increased respiratory system resistance and decreased lung compliance at baseline. Only Newtonian resistance, specific to large airways, exhibited increased methacholine reactivity in ETX-exposed pups compared with controls. ETX-exposed pups had a decreased ratio of FEV in 0.1 second to FVC and a normal FEV in 0.1 second, paralleling the clinical definition of dysanapsis. Antenatal ETX causes abnormalities of the central airways and distal lung growth, suggesting that dysanapsis contributes to abnormal lung function in juvenile rats.
Collapse
Affiliation(s)
- Elizabeth A. McGinn
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Pediatric Critical Care Medicine
| | - Elisa Bye
- Pediatric Heart Lung Center, Department of Pediatrics
| | | | - Alexander Sosa
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jill Bilodeaux
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Bradford J. Smith
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Pediatric Pulmonary and Sleep Medicine, and
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Steven H. Abman
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Pediatric Pulmonary and Sleep Medicine, and
| | - Erica W. Mandell
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Neonatology, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
34
|
Watanabe K, Kato A, Adachi H, Noguchi A, Arai H, Ito M, Namba F, Takahashi T. Genetic Ablation of Pyruvate Dehydrogenase Kinase Isoform 4 Gene Enhances Recovery from Hyperoxic Lung Injury: Insights into Antioxidant and Inflammatory Mechanisms. Biomedicines 2024; 12:746. [PMID: 38672101 PMCID: PMC11047825 DOI: 10.3390/biomedicines12040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Pyruvate dehydrogenase kinase isoform 4 (PDK4) plays a pivotal role in the regulation of cellular proliferation and apoptosis. The objective of this study was to examine whether the genetic depletion of the PDK4 gene attenuates hyperoxia-induced lung injury in neonatal mice. METHODS Neonatal PDK4-/- mice and wild-type (WT) mice were exposed to oxygen concentrations of 21% (normoxia) and 95% (hyperoxia) for the first 4 days of life. Pulmonary histological assessments were performed, and the mRNA levels of lung PDK4, monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-6 were assessed. The levels of inflammatory cytokines in lung tissue were quantified. RESULTS Following convalescence from neonatal hyperoxia, PDK4-/- mice exhibited improved lung alveolarization. Notably, PDK4-/- mice displayed significantly elevated MCP-1 protein levels in pulmonary tissues following 4 days of hyperoxic exposure, whereas WT mice showed increased IL-6 protein levels under similar conditions. Furthermore, neonatal PDK4-/- mice subjected to hyperoxia demonstrated markedly higher MCP-1 mRNA expression at 4 days of age compared to WT mice, while IL-6 mRNA expression remained unaffected in PDK4-/- mice. CONCLUSIONS Newborn PDK4-/- mice exhibited notable recovery from hyperoxia-induced lung injury, suggesting the potential protective role of PDK4 depletion in mitigating lung damage.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Akie Kato
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Hiroyuki Adachi
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Atsuko Noguchi
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Hirokazu Arai
- Department of Neonatology, Akita Red Cross Hospital, Akita 010-1495, Japan;
| | - Masato Ito
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan;
| | - Tsutomu Takahashi
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| |
Collapse
|
35
|
Aydın E, Durmuş F, Torlak N, Oria M, Güler Bayazıt N, Öztürk Işık E, Aslanyürek B, Peiro JL. Pulmonary vasculature development in congenital diaphragmatic hernia: a novel automated quantitative imaging analysis. Pediatr Surg Int 2024; 40:81. [PMID: 38498203 DOI: 10.1007/s00383-024-05643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Impaired fetal lung vasculature determines the degree of pulmonary hypertension in the congenital diaphragmatic hernia (CDH). This study aims to demonstrate the morphometric measurements that differ in pulmonary vessels of fetuses with CDH. METHODS Nitrofen-induced CDH Sprague-Dawley rat fetuses were scanned with microcomputed tomography. The analysis of the pulmonary vascular tree was performed with artificial intelligence. RESULTS The number of segments in CDH was significantly lower than that in the control group on the left (U = 2.5, p = 0.004) and right (U = 0, p = 0.001) sides for order 1(O1), whereas there was a significant difference only on the right side for O2 and O3. The pooled element numbers in the control group obeyed Horton's law (R2 = 0.996 left and R2 = 0.811 right lungs), while the CDH group broke it. Connectivity matrices showed that the average number of elements of O1 springing from elements of O1 on the left side and the number of elements of O1 springing from elements of O3 on the right side were significantly lower in CDH samples. CONCLUSION According to these findings, CDH not only reduced the amount of small order elements, but also destroyed the fractal structure of the pulmonary arterial trees.
Collapse
Affiliation(s)
- Emrah Aydın
- Division of Pediatric General and Thoracic Surgery, The Center for Fetal and Placental Research, Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.
| | - Furkan Durmuş
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Nilhan Torlak
- Division of Pediatric General and Thoracic Surgery, The Center for Fetal and Placental Research, Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Marc Oria
- Division of Pediatric General and Thoracic Surgery, The Center for Fetal and Placental Research, Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nilgün Güler Bayazıt
- Department A: Mathematical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Esin Öztürk Işık
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Birol Aslanyürek
- Department A: Mathematical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Jose L Peiro
- Division of Pediatric General and Thoracic Surgery, The Center for Fetal and Placental Research, Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
36
|
Tanabe N. Increase Attention to Computed Tomography Findings of Emphysema without Airflow Limitation: Small Airway Disease Is Already There. Am J Respir Crit Care Med 2024; 209:619-621. [PMID: 38207095 PMCID: PMC10945056 DOI: 10.1164/rccm.202312-2245ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine Kyoto University Kyoto, Japan
| |
Collapse
|
37
|
Roeder F, Knudsen L, Schmiedl A. The expression of the surfactant proteins SP-A and SP-B during postnatal alveolarization of the rat lung. PLoS One 2024; 19:e0297889. [PMID: 38483982 PMCID: PMC10939297 DOI: 10.1371/journal.pone.0297889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/03/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVE Surfactant-specific proteins (SP) are responsible for the functional and structural integrity as well as for the stabilization of the intra-alveolar surfactant. Morphological lung maturation starts in rat lungs after birth. The aim of this study was to investigate whether the expression of the hydrophilic SP-A and the hydrophobic SP-B is associated with characteristic postnatal changes characterizing morphological lung maturation. METHODS Stereological methods were performed on the light microscope. Using immunohistochemical and molecular biological methods (Western Blot, RT-qPCR), the SP-A and SP-B of adult rat lungs and of those with different postnatal developmental stages (3, 7, 14 and 21 days after birth) were characterized. RESULTS As signs of alveolarization the total septal surface and volume increased and the septal thickness decreased. The significantly highest relative surface fraction of SP-A labeled alveolar epithelial cells type II (AEII) was found together with the highest relative SP-A gene expression before the alveolarization (3th postnatal day). With the downregulation of SP-A gene expression during and after alveolarization (between postnatal days 7 and 14), the surface fraction of the SP-A labeled AEII also decreased, so they are lowest in adult animals. The surface fraction of SP-B labeled AEII and the SP-B gene expression showed the significantly highest levels in adults, the protein expression increased also significantly at the end of morphological lung maturation. There were no alterations in the SP-B expression before and during alveolarization until postnatal day 14. The protein expression as well as the gene expression of SP-A and SP-B correlated very well with the total surface of alveolar septa independent of the postnatal age. CONCLUSION The expression of SP-A and SP-B is differentially associated with morphological lung maturation and correlates with increased septation of alveoli as indirect clue for alveolarization.
Collapse
Affiliation(s)
- Franziska Roeder
- Institute of Functional and Applied Anatomy, Medical Hannover School, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Medical Hannover School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Medical Hannover School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
38
|
Kim JW, Kim JH, Kim CY, Jeong JS, Ko JW, Kim TW. Korean Red Ginseng suppresses emphysematous lesions induced by cigarette smoke condensate through inhibition of macrophage-driven apoptosis pathways. J Ginseng Res 2024; 48:181-189. [PMID: 38465217 PMCID: PMC10920012 DOI: 10.1016/j.jgr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 03/12/2024] Open
Abstract
Background Cigarette smoke is generally accepted as a major contributor to chronic obstructive pulmonary disease (COPD), which is characterized by emphysematous lesions. In this study, we investigated the protective effects of Korean Red Ginseng (KRG) against cigarette smoke condensate (CSC)-induced emphysema. Methods Mice were instilled with 50 mg/kg of CSC intranasally once a week for 4 weeks, KRG was administered to the mice once daily for 4 weeks at doses of 100 or 300 mg/kg, and dexamethasone (DEX, positive control) was administered to the mice once daily for 2 weeks at 3 mg/kg. Results KRG markedly decreased the macrophage population in bronchoalveolar lavage fluid and reduced emphysematous lesions in the lung tissues. KRG suppressed CSC-induced apoptosis as revealed by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling staining and Caspase 3 immunohistochemistry. Additionally, KRG effectively inhibited CSC-mediated activation of Bcl-2-associated X protein/Caspase 3 signaling, followed by the induction of cell survival signaling, including vascular endothelial growth factor/phosphoinositide 3-kinase/protein kinase B in vivo and in vitro. The DEX group also showed similar improved results in vivo and in vitro. Conclusion Taken together, KRG effectively inhibits macrophage-mediated emphysema induced by CSC exposure, possibly via the suppression of pro-apoptotic signaling, which results in cell survival pathway activation. These findings suggest that KRG has therapeutic potential for the prevention of emphysema in COPD patients.
Collapse
Affiliation(s)
- Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, Republic of Korea
| |
Collapse
|
39
|
Azman Z, Vidinopoulos K, Somers A, Hooper SB, Zahra VA, Thiel AM, Galinsky R, Tran NT, Allison BJ, Polglase GR. In utero ventilation induces lung parenchymal and vascular alterations in extremely preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol 2024; 326:L330-L343. [PMID: 38252635 DOI: 10.1152/ajplung.00249.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Extremely preterm infants are often exposed to long durations of mechanical ventilation to facilitate gas exchange, resulting in ventilation-induced lung injury (VILI). New lung protective strategies utilizing noninvasive ventilation or low tidal volumes are now common but have not reduced rates of bronchopulmonary dysplasia. We aimed to determine the effect of 24 h of low tidal volume ventilation on the immature lung by ventilating preterm fetal sheep in utero. Preterm fetal sheep at 110 ± 1(SD) days' gestation underwent sterile surgery for instrumentation with a tracheal loop to enable in utero mechanical ventilation (IUV). At 112 ± 1 days' gestation, fetuses received either in utero mechanical ventilation (IUV, n = 10) targeting 3-5 mL/kg for 24 h, or no ventilation (CONT, n = 9). At necropsy, fetal lungs were collected to assess molecular and histological markers of lung inflammation and injury. IUV significantly increased lung mRNA expression of interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) compared with CONT, and increased surfactant protein (SP)-A1, SP-B, and SP-C mRNA expression compared with CONT. IUV produced modest structural changes to the airways, including reduced parenchymal collagen and myofibroblast density. IUV increased pulmonary arteriole thickness compared with CONT but did not alter overall elastin or collagen content within the vasculature. In utero ventilation of an extremely preterm lung, even at low tidal volumes, induces lung inflammation and injury to the airways and vasculature. In utero ventilation may be an important model to isolate the confounding mechanisms of VILI to develop effective therapies for preterm infants requiring prolonged respiratory support.NEW & NOTEWORTHY Preterm infants often require prolonged respiratory support, but the relative contribution of ventilation to the development of lung injury is difficult to isolate. In utero mechanical ventilation allows for mechanistic investigations into ventilation-induced lung injury without confounding factors associated with sustaining extremely preterm lambs ex utero. Twenty-four hours of in utero ventilation, even at low tidal volumes, increased lung inflammation and surfactant protein expression and produced structural changes to the lung parenchyma and vasculature.
Collapse
Affiliation(s)
- Zahrah Azman
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Kayla Vidinopoulos
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Ainsley Somers
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Alison M Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
40
|
Zheng X, Chen X, Hu X, Chen L, Mi N, Zhong Q, Wang L, Lin C, Chen Y, Lai F, Hu X, Zhang Y. Downregulated BMP-Smad1/5/8 signaling causes emphysema via dysfunction of alveolar type II epithelial cells. J Pathol 2024; 262:320-333. [PMID: 38108121 DOI: 10.1002/path.6234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Bone morphogenetic protein (BMP)-Smad1/5/8 signaling plays a crucial regulatory role in lung development and adult lung homeostasis. However, it remains elusive whether BMP-Smad1/5/8 signaling is involved in the pathogenesis of emphysema. In this study, we downregulated BMP-Smad1/5/8 signaling by overexpressing its antagonist Noggin in adult mouse alveolar type II epithelial cells (AT2s), resulting in an emphysematous phenotype mimicking the typical pathological features of human emphysema, including distal airspace enlargement, pulmonary inflammation, extracellular matrix remodeling, and impaired lung function. Dysregulation of BMP-Smad1/5/8 signaling in AT2s leads to inflammatory destruction dominated by macrophage infiltration, associated with reduced secretion of surfactant proteins and inhibition of AT2 proliferation and differentiation. Reactivation of BMP-Smad1/5/8 signaling by genetics or chemotherapy significantly attenuated the morphology and pathophysiology of emphysema and improved the lung function in Noggin-overexpressing lungs. We also found that BMP-Smad1/5/8 signaling was downregulated in cigarette smoke-induced emphysema, and that enhancing its activity in AT2s prevented or even reversed emphysema in the mouse model. Our data suggest that BMP-Smad1/5/8 signaling, located at the top of the signaling cascade that regulates lung homeostasis, represents a key molecular regulator of alveolar stem cell secretory and regenerative function, and could serve as a potential target for future prevention and treatment of pulmonary emphysema. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xi Zheng
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, PR China
| | - Xiaoying Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Lidan Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Nana Mi
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Qianqian Zhong
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Linfang Wang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Fancai Lai
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| |
Collapse
|
41
|
Ferner K. Development of the terminal air spaces in the gray short-tailed opossum (Monodelphis domestica)- 3D reconstruction by microcomputed tomography. PLoS One 2024; 19:e0292482. [PMID: 38363783 PMCID: PMC10871483 DOI: 10.1371/journal.pone.0292482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/13/2024] [Indexed: 02/18/2024] Open
Abstract
Marsupials are born with structurally immature lungs when compared to eutherian mammals. The gray short-tailed opossum (Monodelphis domestica) is born at the late canalicular stage of lung development. Despite the high degree of immaturity, the lung is functioning as respiratory organ, however supported by the skin for gas exchange during the first postnatal days. Consequently, the majority of lung development takes place in ventilated functioning state during the postnatal period. Microcomputed tomography (μCT) was used to three-dimensionally reconstruct the terminal air spaces in order to reveal the timeline of lung morphogenesis. In addition, lung and air space volume as well as surface area were determined to assess the functional relevance of the structural changes in the developing lung. The development of the terminal air spaces was examined in 35 animals from embryonic day 13, during the postnatal period (neonate to 57 days) and in adults. At birth, the lung of Monodelphis domestica consists of few large terminal air spaces, which are poorly subdivided and open directly from short lobar bronchioles. During the first postnatal week the number of smaller terminal air spaces increases and numerous septal ridges indicate a process of subdivision, attaining the saccular stage by 7 postnatal days. The 3D reconstructions of the terminal air spaces demonstrated massive increases in air sac number and architectural complexity during the postnatal period. Between 28 and 35 postnatal days alveolarization started. Respiratory bronchioles, alveolar ducts and a typical acinus developed. The volume of the air spaces and the surface area for gas exchange increased markedly with alveolarization. The structural transformation from large terminal sacs to the final alveolar lung in the gray short-tailed opossum follows similar patterns as described in other marsupial and placental mammals. The processes involved in sacculation and alveolarization during lung development seem to be highly conservative within mammalian evolution.
Collapse
Affiliation(s)
- Kirsten Ferner
- Department Evolutionary Morphology, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| |
Collapse
|
42
|
Jing X, Jia S, Teng M, Day BW, Afolayan AJ, Jarzembowski JA, Lin CW, Hessner MJ, Pritchard KA, Naylor S, Konduri GG, Teng RJ. Cellular Senescence Contributes to the Progression of Hyperoxic Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2024; 70:94-109. [PMID: 37874230 DOI: 10.1165/rcmb.2023-0038oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023] Open
Abstract
Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. N-acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.
Collapse
Affiliation(s)
- Xigang Jing
- Department of Pediatrics
- Children's Research Institute
| | - Shuang Jia
- Department of Pediatrics
- Children's Research Institute
| | - Maggie Teng
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri; and
| | | | | | | | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, and
| | | | - Kirkwood A Pritchard
- Children's Research Institute
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- ReNeuroGen LLC, Milwaukee, Wisconsin
| | | | | | - Ru-Jeng Teng
- Department of Pediatrics
- Children's Research Institute
| |
Collapse
|
43
|
Kamp JC, Neubert L, Schupp JC, Braubach P, Wrede C, Laenger F, Salditt T, Reichmann J, Welte T, Ruhparwar A, Ius F, Schwerk N, Bergmann AK, von Hardenberg S, Griese M, Rapp C, Olsson KM, Fuge J, Park DH, Hoeper MM, Jonigk DD, Knudsen L, Kuehnel MP. Multilamellated Basement Membranes in the Capillary Network of Alveolar Capillary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:180-194. [PMID: 38029923 DOI: 10.1016/j.ajpath.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.
Collapse
Affiliation(s)
- Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany.
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jonas C Schupp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Florian Laenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Tim Salditt
- Institute of X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Jakob Reichmann
- Institute of X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Arjang Ruhparwar
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital of Ludwig Maximilian University Munich, German Center for Lung Research, Munich, Germany
| | - Christina Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital of Ludwig Maximilian University Munich, German Center for Lung Research, Munich, Germany
| | - Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Jan Fuge
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Da-Hee Park
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, University of Aachen, Aachen, Germany
| | - Lars Knudsen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, University of Aachen, Aachen, Germany
| |
Collapse
|
44
|
Wohnhaas CT, Baßler K, Watson CK, Shen Y, Leparc GG, Tilp C, Heinemann F, Kind D, Stierstorfer B, Delić D, Brunner T, Gantner F, Schultze JL, Viollet C, Baum P. Monocyte-derived alveolar macrophages are key drivers of smoke-induced lung inflammation and tissue remodeling. Front Immunol 2024; 15:1325090. [PMID: 38348034 PMCID: PMC10859862 DOI: 10.3389/fimmu.2024.1325090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Smoking is a leading risk factor of chronic obstructive pulmonary disease (COPD), that is characterized by chronic lung inflammation, tissue remodeling and emphysema. Although inflammation is critical to COPD pathogenesis, the cellular and molecular basis underlying smoking-induced lung inflammation and pathology remains unclear. Using murine smoke models and single-cell RNA-sequencing, we show that smoking establishes a self-amplifying inflammatory loop characterized by an influx of molecularly heterogeneous neutrophil subsets and excessive recruitment of monocyte-derived alveolar macrophages (MoAM). In contrast to tissue-resident AM, MoAM are absent in homeostasis and characterized by a pro-inflammatory gene signature. Moreover, MoAM represent 46% of AM in emphysematous mice and express markers causally linked to emphysema. We also demonstrate the presence of pro-inflammatory and tissue remodeling associated MoAM orthologs in humans that are significantly increased in emphysematous COPD patients. Inhibition of the IRAK4 kinase depletes a rare inflammatory neutrophil subset, diminishes MoAM recruitment, and alleviates inflammation in the lung of cigarette smoke-exposed mice. This study extends our understanding of the molecular signaling circuits and cellular dynamics in smoking-induced lung inflammation and pathology, highlights the functional consequence of monocyte and neutrophil recruitment, identifies MoAM as key drivers of the inflammatory process, and supports their contribution to pathological tissue remodeling.
Collapse
Affiliation(s)
- Christian T. Wohnhaas
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Carolin K. Watson
- Immunology & Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Yang Shen
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Germán G. Leparc
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Cornelia Tilp
- Immunology & Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Fabian Heinemann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Kind
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Denis Delić
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Gantner
- Department of Biology, University of Konstanz, Konstanz, Germany
- Translational Medicine & Clinical Pharmacology, C. H. Boehringer Sohn AG & Co. KG, Biberach, Germany
| | - Joachim L. Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn, Bonn, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Patrick Baum
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
45
|
De Bie FR, Regin Y, Dubois A, Scuglia M, Arai T, Muylle E, Basurto D, Regin M, Croubels S, Cherlet M, Partridge EA, Allegaert K, Russo FM, Deprest JA. Prenatal treprostinil improves pulmonary arteriolar hypermuscularization in the rabbit model of congenital diaphragmatic hernia. Biomed Pharmacother 2024; 170:115996. [PMID: 38086148 DOI: 10.1016/j.biopha.2023.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation characterized by pulmonary hypoplasia, pulmonary hypertension, and cardiac dysfunction. Pulmonary hypertension represents the major cause of neonatal mortality and morbidity. Prenatal diagnosis allows assessment of severity and selection of foetal surgery candidates. We have shown that treprostinil, a prostacyclin analogue with an anti-remodelling effect, attenuates the relative hypermuscularization of the pulmonary vasculature in rats with nitrofen-induced CDH. Here we confirm these observations in a large animal model of surgically-created CDH. In the rabbit model, subcutaneous maternal administration of treprostinil at 150 ng/kg/min consistently reached target foetal concentrations without demonstrable detrimental foetal or maternal adverse effects. In pups with CDH, prenatal treprostinil reduced pulmonary arteriolar proportional medial wall thickness and downregulated inflammation and myogenesis pathways. No effect on alveolar morphometry or lung mechanics was observed. These findings provide further support towards clinical translation of prenatal treprostinil for CDH.
Collapse
Affiliation(s)
- Felix R De Bie
- Unit of Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Belgium
| | - Yannick Regin
- Unit of Woman and Child, Department of Development and Regeneration, KU Leuven, Belgium
| | - Antoine Dubois
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Marianna Scuglia
- Unit of Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Belgium
| | - Tomohiro Arai
- Unit of Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Belgium
| | - Ewout Muylle
- Unit of Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Belgium
| | - David Basurto
- Unit of Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marc Cherlet
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Emily A Partridge
- Center for Fetal Research, The Children's Hospital of Philadelphia, United States
| | - Karel Allegaert
- Unit of Woman and Child, Department of Development and Regeneration, KU Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands
| | - Francesca M Russo
- Unit of Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Belgium; Division of Obstetrics and Gynecology, University Hospitals Leuven, Belgium
| | - Jan A Deprest
- Unit of Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Belgium; Division of Obstetrics and Gynecology, University Hospitals Leuven, Belgium; Institute for Women's Health, University College London, United Kingdom.
| |
Collapse
|
46
|
Kuwana S, Sato S, Sakurai Y, Koshinami S, Watanabe S, Watanabe T, Hanita T. Reduced number of alveoli after birth in rats exposed to iron in utero. Pediatr Int 2024; 66:e15820. [PMID: 39692218 DOI: 10.1111/ped.15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Clinical studies have shown that diffuse chorioamniotic hemosiderosis (DCH) is a risk factor for bronchopulmonary dysplasia (BPD). However, the details of the underlying mechanism are unknown. We focused on iron, one of the blood components that diffuses within the amniotic cavity in DCH. Specifically, we conducted a histological evaluation of its effects on fetal lung development. METHODS Iron dextran 10 mg (Fe group) or physiological saline (control group) was injected into the individual amniotic cavities of pregnant Sprague Dawley rats on gestational day 19. The pups were born naturally, and the placentas and lungs collected on postnatal days 1, 14, and 60 were subjected to histological analysis. RESULTS The placenta and lungs of the Fe group on day 14 contained significantly larger numbers of iron-positive granules. Morphological analysis of the lungs showed that on day 60, the total number of alveoli was significantly lower in the Fe group (p = 0.015). Immunohistochemical staining of the lung tissue for 8-hydroxy-2'-deoxyguanosine showed that, on day 1, there were significantly more positive cells in the Fe group (p = 0.003). The number of ectodermal dysplasia 1 positive cells on day 14 was significantly increased in the Fe group (p = 0.001). CONCLUSIONS These results suggest that diffuse iron deposition in immature fetal lungs increases oxidative stress and decreases the number of postnatal alveoli associated with impaired lung development.
Collapse
Affiliation(s)
- Shouta Kuwana
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yoshie Sakurai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shouta Koshinami
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tatsuya Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
47
|
Rojas-Quintero J, Ochsner SA, New F, Divakar P, Yang CX, Wu TD, Robinson J, Chandrashekar DS, Banovich NE, Rosas IO, Sauler M, Kheradmand F, Gaggar A, Margaroli C, San Jose Estepar R, McKenna NJ, Polverino F. Spatial Transcriptomics Resolve an Emphysema-Specific Lymphoid Follicle B Cell Signature in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 209:48-58. [PMID: 37934672 PMCID: PMC10870877 DOI: 10.1164/rccm.202303-0507le] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023] Open
Abstract
Rationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. Objectives: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Methods: Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin- and O.C.T.-fixed lung samples obtained from biopsies or lung explants were assessed for LF presence. Emphysema measurements were obtained from clinical chest computed tomographic scans. High-confidence transcriptional target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. Measurements and Main Results: Overall, 115 LFs from ever-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell marker genes in subjects with severe emphysema. High-confidence transcriptional analysis revealed activation of an abnormal B cell activity signature in LFs (q-value = 2.56E-111). LFs from patients with GOLD 1-2 COPD with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from patients with GOLD 1-2 COPD without emphysema showed an antiinflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed toward chronic B cell activation. Conclusions: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.
Collapse
Affiliation(s)
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Felicia New
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | - Prajan Divakar
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | - Chen Xi Yang
- Center for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jerid Robinson
- Field Application Scientists, Nanostring Biotechnologies, Seattle, Washington
| | | | | | | | - Maor Sauler
- Pulmonary and Critical Care Medicine, Yale University, New Haven, Connecticut
| | - Farrah Kheradmand
- Pulmonary Division, Department of Medicine, and
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Amit Gaggar
- Pulmonary and Critical Care Medicine, and
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Camilla Margaroli
- Pathology – Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neil J. McKenna
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | | |
Collapse
|
48
|
D'Addario CA, Matsumura S, Kitagawa A, Lainer GM, Zhang F, D'silva M, Khan MY, Froogh G, Gruzdev A, Zeldin DC, Schwartzman ML, Gupte SA. Global and endothelial G-protein coupled receptor 75 (GPR75) knockout relaxes pulmonary artery and mitigates hypoxia-induced pulmonary hypertension. Vascul Pharmacol 2023; 153:107235. [PMID: 37742819 PMCID: PMC10841449 DOI: 10.1016/j.vph.2023.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
RATIONALE Pulmonary hypertension (PH) is a multifactorial disease with a poor prognosis and inadequate treatment options. We found two-fold higher expression of the orphan G-Protein Coupled Receptor 75 (GPR75) in leukocytes and pulmonary arterial smooth muscle cells from idiopathic PH patients and from lungs of C57BL/6 mice exposed to hypoxia. We therefore postulated that GPR75 signaling is critical to the pathogenesis of PH. METHODS To test this hypothesis, we exposed global (Gpr75-/-) and endothelial cell (EC) GPR75 knockout (EC-Gpr75-/-) mice and wild-type (control) mice to hypoxia (10% oxygen) or normal atmospheric oxygen for 5 weeks. We then recorded echocardiograms and performed right heart catheterizations. RESULTS Chronic hypoxia increased right ventricular systolic and diastolic pressures in wild-type mice but not Gpr75-/- or EC-Gpr75-/- mice. In situ hybridization and qPCR results revealed that Gpr75 expression was increased in the alveoli, airways and pulmonary arteries of mice exposed to hypoxia. In addition, levels of chemokine (CC motif) ligand 5 (CCL5), a low affinity ligand of GPR75, were increased in the lungs of wild-type, but not Gpr75-/-, mice exposed to hypoxia, and CCL5 enhanced hypoxia-induced contraction of intra-lobar pulmonary arteries in a GPR75-dependent manner. Gpr75 knockout also increased pulmonary cAMP levels and decreased contraction of intra-lobar pulmonary arteries evoked by endothelin-1 or U46619 in cAMP-protein kinase A-dependent manner. CONCLUSION These results suggest GPR75 has a significant role in the development of hypoxia-induced PH.
Collapse
Affiliation(s)
| | - Shun Matsumura
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Gregg M Lainer
- Department of Cardiology, and Heart and Vascular Institute, Westchester Medical Center and New York Medical College, Valhalla, NY 10595, USA
| | - Frank Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Mohammad Y Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ghezal Froogh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Artiom Gruzdev
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Darryl C Zeldin
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
49
|
Kornfield J, De La Torre U, Mize E, Drake MG. Illuminating Airway Nerve Structure and Function in Chronic Cough. Lung 2023; 201:499-509. [PMID: 37985513 PMCID: PMC10673771 DOI: 10.1007/s00408-023-00659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.
Collapse
Affiliation(s)
- James Kornfield
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Ubaldo De La Torre
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Emily Mize
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
50
|
Doktor F, Figueira RL, Khalaj K, Ijaz A, Lacher M, Blundell M, Antounians L, Zani A. Characterization of the congenital diaphragmatic hernia model in C57BL/6J fetal mice: a step toward lineage tracing experiments. Pediatr Surg Int 2023; 39:296. [PMID: 37981587 DOI: 10.1007/s00383-023-05583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE Lineage tracing is key to study the fate of individual cells and their progeny especially in developmental biology. To conduct these studies, we aimed to establish a reproducible model of CDH in the most commonly used genetic background strain that is C57BL/6J mice. METHODS CDH was induced in C57BL/6J dams by maternal administration of nitrofen + bisdiamine at E8.5. Fetuses from olive oil-gavaged mothers served as controls. Lungs from CDH and control fetuses were compared for (1) growth via radial airspace count (RAC), mean linear intercept (MLI) and gene expression for Fgf10, Nrp1, and Ctnnb1; (2) maturation (Pdpn, Spc, Ager, Abca3, Eln, Acta2, Pdgfra) via gene and protein expression; (3) vascularization via gene and protein expression (CD31, Vegfa, Vegfr1/2, Epas1, Enos). STATISTICS unpaired t-test or Mann-Whitney test. RESULTS Nitrofen + bisdiamine administration resulted in 36% left-sided CDH (31% mortality). CDH fetuses had hypoplastic lungs and impaired growth (lower RAC, higher MLI, lower Fgf10, Nrp1, Ctnnb1), maturation (decreased Pdpn, Ager, Eln gene expression), and vascularization (decreased Cd31, Vegfr1/2; Epas1 and Enos). Lower protein expression was confirmed for PDPN, ELN and CD31. CONCLUSION Modeling CDH in C57BL/6J mouse fetuses is effective in reproducing the classical CDH hallmarks. This model will be critical for lineage tracing experiments.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Department of Pediatric Surgery, University of Leipzig, 04109, Leipzig, Germany
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Aizah Ijaz
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, 04109, Leipzig, Germany
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada.
| |
Collapse
|