1
|
Zidan E, Wilson G, Shin JJ, Chupp G. The next frontier: Defining and optimizing treatments for patients with type 2 low asthma. Ann Allergy Asthma Immunol 2024:S1081-1206(24)01571-0. [PMID: 39414022 DOI: 10.1016/j.anai.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Affiliation(s)
- Elena Zidan
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gabriella Wilson
- Section of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Junghee Jenny Shin
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Section of Pulmonary, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
2
|
Li S, Huff RD, Rider CF, Yuen ACY, Carlsten C. Controlled human exposures to diesel exhaust or particle-depleted diesel exhaust with allergen modulates transcriptomic responses in the lung. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173688. [PMID: 38851342 DOI: 10.1016/j.scitotenv.2024.173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The evidence associating traffic-related air pollution (TRAP) with allergic asthma is growing, but the underlying mechanisms for this association remain unclear. The airway epithelium is the primary tissue exposed to TRAP, hence understanding its interactions with TRAP and allergen is important. Diesel exhaust (DE), a paradigm of TRAP, consists of particulate matter (PM) and gases. Modern diesel engines often have catalytic diesel particulate filters to reduce PM output, but these may increase gaseous concentrations, and their benefits on human health cannot be assumed. We conducted a randomized, double-blinded, crossover study using our unique in vivo human exposure system to investigate the effects of DE and allergen co-exposure, with or without particle depletion as a proxy for catalytic diesel particulate filters, on the airway epithelial transcriptome. Participants were exposed for 2 h before an allergen inhalation challenge, with each receiving filtered air and saline (FA-S), filtered air and allergen (FA-A), DE and allergen (DE-A), or particle-depleted DE and allergen (PDDE-A), over four different occasions, each separated by a 4-week washout period. Endobronchial brushings were collected 48 h after each exposure, and total RNA was sequenced. Differentially expressed genes (DEGs) were identified using DESeq2, followed by GO enrichment and pathway analysis. FA-A, DE-A, and PDDE-A exposures significantly modulated genes relative to FA-S, with 462 unique DEGs identified. FA-A uniquely modulated the highest number (↑178, ↓155), followed by DE-A (↑44, ↓23), and then PDDE-A exposure (↑15, ↓2); 6 DEGs (↑4, ↓2) were modulated by all three conditions. Exposure to PDDE-A resulted in modulation of 285 DEGs compared to DE-A exposure, further revealing 26 biological process GO terms, including "cellular response to chemokine" and "inflammatory response". The transcriptional epithelial response to diesel exhaust and allergen co-exposure is enriched in inflammatory mediators, the pattern of which is altered upon particle depletion.
Collapse
Affiliation(s)
- Shijia Li
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan D Huff
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Agnes C Y Yuen
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Liu C, Wang K, Liu W, Zhang J, Fan Y, Sun Y. ALOX15 + M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2024; 154:592-608. [PMID: 38705258 DOI: 10.1016/j.jaci.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Epithelial remodeling is a prominent feature of eosinophilic chronic rhinosinusitis with nasal polyps (eCRSwNP), and infiltration of M2 macrophages plays a pivotal role in the pathogenesis of eCRSwNP, but the underlying mechanisms remain undefined. OBJECTIVE We sought to investigate the role of ALOX15+ M2 macrophages in the epithelial remodeling of eCRSwNP. METHODS Digital spatial transcriptomics and single-cell sequencing analyses were used to characterize the epithelial remodeling and cellular infiltrate in eCRSwNP. Hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining were used to explore the relationship between ALOX15+ M2 (CD68+CD163+) macrophages and epithelial remodeling. A coculture system of primary human nasal epithelial cells (hNECs) and the macrophage cell line THP-1 was used to determine the underlying mechanisms. RESULTS Spatial transcriptomics analysis showed the upregulation of epithelial remodeling-related genes, such as Vimentin and matrix metalloproteinase 10, and enrichment of epithelial-mesenchymal transition (EMT)-related pathways, in the epithelial areas in eCRSwNP, with more abundance of epithelial basal, goblet, and glandular cells. Single-cell analysis identified that ALOX15+, rather than ALOX15-, M2 macrophages were specifically highly expressed in eCRSwNP. CRSwNP with high ALOX15+ M2THP-1-IL-4+IL-13 macrophages had more obvious epithelial remodeling features and increased genes associated with epithelial remodeling and integrity of epithelial morphology versus that with low ALOX15+ M2THP-1-IL-4+IL-13 macrophages. IL-4/IL-13-polarized M2THP-1-IL-4+IL-13 macrophages upregulated expressions of EMT-related genes in hNECs, including Vimentin, TWIST1, Snail, and ZEB1. ALOX15 inhibition in M2THP-1-IL-4+IL-13 macrophages resulted in reduction of the EMT-related transcripts in hNECs. Blocking chemokine (C-C motif) ligand 13 signaling inhibited M2THP-1-IL-4+IL-13 macrophage-induced EMT alteration in hNECs. CONCLUSIONS ALOX15+ M2 macrophages are specifically increased in eCRSwNP and may contribute to the pathogenesis of epithelial remodeling via production of chemokine (C-C motif) ligand 13.
Collapse
Affiliation(s)
- Chang Liu
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kanghua Wang
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenqin Liu
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jinxiu Zhang
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yunping Fan
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Yueqi Sun
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
Yamada K, St Croix C, Stolz DB, Tyurina YY, Tyurin VA, Bradley LR, Kapralov AA, Deng Y, Zhou X, Wei Q, Liao B, Fukuda N, Sullivan M, Trudeau J, Ray A, Kagan VE, Zhao J, Wenzel SE. Compartmentalized mitochondrial ferroptosis converges with optineurin-mediated mitophagy to impact airway epithelial cell phenotypes and asthma outcomes. Nat Commun 2024; 15:5818. [PMID: 38987265 PMCID: PMC11237105 DOI: 10.1038/s41467-024-50222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Laura R Bradley
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yanhan Deng
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiuxia Zhou
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qi Wei
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bo Liao
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Otolaryngology-Head & Neck Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nobuhiko Fukuda
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mara Sullivan
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John Trudeau
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anuradha Ray
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jinming Zhao
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
5
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Zhang W, Huang F, Ding X, Qin J, Wang W, Luo L. Identifying ALOX15-initiated lipid peroxidation increases susceptibility to ferroptosis in asthma epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167176. [PMID: 38641013 DOI: 10.1016/j.bbadis.2024.167176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.
Collapse
Affiliation(s)
- Weizhen Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Fangfang Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuexuan Ding
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Jingtong Qin
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
7
|
Luo C, Zhu Y, Zhang S, Zhou J, Mao S, Tang R, Gu Y, Tan S, Lin H, Li Z, Zhang W. Increased SERPINB2 potentiates 15LO1 expression via STAT6 signalling in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Clin Exp Allergy 2024; 54:412-424. [PMID: 38639267 DOI: 10.1111/cea.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuelong Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
8
|
Groiss S, Somvilla I, Daxböck C, Stückler M, Pritz E, Brislinger D. Bei Mu Gua Lou San facilitates mucus expectoration by increasing surface area and hydration levels of airway mucus in an air-liquid-interface cell culture model of the respiratory epithelium. BMC Complement Med Ther 2023; 23:414. [PMID: 37978392 PMCID: PMC10655387 DOI: 10.1186/s12906-023-04251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Bei Mu Gua Lou San (BMGLS) is an ancient formulation known for its moisturizing and expectorant properties, but the underlying mechanisms remain unknown. We investigated concentration-dependent effects of BMGLS on its rehydrating and mucus-modulating properties using an air-liquid-interface (ALI) cell culture model of the Calu-3 human bronchial epithelial cell line and primary normal human bronchial epithelial cells (NHBE), and specifically focused on quantity and composition of the two major mucosal proteins MUC5AC and MUC5B. METHODS ALI cultures were treated with BMGLS at different concentrations over three weeks and evaluated by means of histology, immunostaining and electron microscopy. MUC5AC and MUC5B mRNA levels were assessed and quantified on protein level using an automated image-based approach. Additionally, expression levels of the major mucus-stimulating enzyme 15-lipoxygenase (ALOX15) were evaluated. RESULTS BMGLS induced concentration-dependent morphological changes in NHBE but not Calu-3 ALI cultures that resulted in increased surface area via the formation of herein termed intra-epithelial structures (IES). While cellular rates of proliferation, apoptosis or degeneration remained unaffected, BMGLS caused swelling of mucosal granules, increased the area of secreted mucus, decreased muco-glycoprotein density, and dispensed MUC5AC. Additionally, BMGLS reduced expression levels of MUC5AC, MUC5B and the mucus-stimulating enzyme 15-lipoxygenase (ALOX15). CONCLUSIONS Our studies suggest that BMGLS rehydrates airway mucus while stimulating mucus secretion by increasing surface areas and regulating goblet cell differentiation through modulating major mucus-stimulating pathways.
Collapse
Affiliation(s)
- Silvia Groiss
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Ina Somvilla
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Christine Daxböck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Manuela Stückler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Dagmar Brislinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria.
| |
Collapse
|
9
|
Zheng Y, Fan J, Jiang X. The role of ferroptosis-related genes in airway epithelial cells of asthmatic patients based on bioinformatics. Medicine (Baltimore) 2023; 102:e33119. [PMID: 36862916 PMCID: PMC9981416 DOI: 10.1097/md.0000000000033119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
It has been reported that airway epithelial cells and ferroptosis have certain effect on asthma. However, the action mechanism of ferroptosis-related genes in airway epithelial cells of asthmatic patients is still unclear. Firstly, the study downloaded the GSE43696 training set, GSE63142 validation set and GSE164119 (miRNA) dataset from the gene expression omnibus database. 342 ferroptosis-related genes were downloaded from the ferroptosis database. Moreover, differentially expressed genes (DEGs) between asthma and control samples in the GSE43696 dataset were screened by differential analysis. Consensus clustering analysis was performed on asthma patients to classify clusters, and differential analysis was performed on clusters to obtain inter-cluster DEGs. Asthma-related module was screened by weighted gene co-expression network analysis. Then, DEGs between asthma and control samples, inter-cluster DEGs and asthma-related module were subjected to venn analysis for obtaining candidate genes. The last absolute shrinkage and selection operator and support vector machines were respectively applied to the candidate genes to screen for feature genes, and functional enrichment analysis was performed. Finally, a competition endogenetic RNA network was constructed and drug sensitivity analysis was conducted. There were 438 DEGs (183 up-regulated and 255 down-regulated) between asthma and control samples. 359 inter-cluster DEGs (158 up-regulated and 201 down-regulated) were obtained by screening. Then, the black module was significantly and strongly correlated with asthma. The venn analysis yielded 88 candidate genes. 9 feature genes (NAV3, ITGA10, SYT4, NOX1, SNTG2, RNF182, UPK1B, POSTN, SHISA2) were screened and they were involved in proteasome, dopaminergic synapse etc. Besides, 4 mRNAs, 5 miRNAs, and 2 lncRNAs collectively formed competition endogenetic RNA regulatory network, which included RNF182-hsa-miR-455-3p-LINC00319 and so on. The predicted therapeutic drug network map contained NAV3-bisphenol A and other relationship pairs. The study investigated the potential molecular mechanisms of NAV3, ITGA10, SYT4, NOX1, SNTG2, RNF182, UPK1B, POSTN, SHISA2 in airway epithelial cells of asthmatic patients through bioinformatics analysis, providing a reference for the research of asthma and ferroptosis.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofeng Jiang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaofeng Jiang, Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, No. 766, Xiangan North Street, Harbin 150028, China (e-mail )
| |
Collapse
|
10
|
Seo EH, Lee SH, Choi BY, Oh CS, Kim JK. Exogenous Lipoxin A4 attenuates IL4-induced Mucin Expression in Human Airway Epithelial Cells. Int J Med Sci 2023; 20:406-414. [PMID: 36860679 PMCID: PMC9969498 DOI: 10.7150/ijms.79525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: The proinflammatory cytokine interleukin-4 (IL-4) induces mucus hypersecretion by human airway epithelial cells and the MAP kinase signalling pathway may be important in terms of IL-4-induced MUC5AC gene expression. Lipoxin A4 (LXA4) is an arachidonic acid-derived mediator that promotes inflammation by binding to the anti-inflammatory receptors (ALXs) or the formyl-peptide receptor like-1 (FPRL1) protein expressed by airway epithelial cells. Here, we explore the effects of LXA4 on IL-4-induced mucin gene expression in, and secretion from, human airway epithelial cells. Methods: We co-treated cells with IL-4 (20 ng/mL) and LXA4 (1 nM) and measured the expression levels of mRNAs encoding MUC5AC and 5B via real-time polymerase chain reaction; protein expression levels were determined by Western blotting and immunocytofluorescence. The ability of IL-4 and LXA4 to suppress protein expression was determined by Western blotting. Results: IL-4 increased MUC5AC and 5B gene and protein expression. LXA4 suppressed IL-4-induced MUC5AC and 5B gene and protein expression by interacting with the IL4 receptor and mitogen-activated protein kinase (MAPK) pathway, including both phospho-p38 MAPK and phospho-extracellular signal-regulated kinase (phospho-ERK). IL-4 and LXA4 increased and decreased, respectively, the number of cells that stained with anti-MUC5AC and 5B antibodies. Conclusions: LXA4 may regulate mucus hypersecretion induced by IL4 in human airway epithelial cells.
Collapse
Affiliation(s)
- Eun-Hye Seo
- BKPlus21, Department of Microbiology, School of medicine, Konkuk University, Seoul, Korea
| | - Seung Hyun Lee
- BKPlus21, Department of Microbiology, School of medicine, Konkuk University, Seoul, Korea
| | - Bo Yoon Choi
- Departments of Otorhinolaryngology-Head & Neck Surgery, School of medicine, Konkuk University, Seoul, Korea
| | - Chung-Sik Oh
- Department of Anesthesiology and Pain Medicine, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Jin Kook Kim
- Departments of Otorhinolaryngology-Head & Neck Surgery, School of medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
11
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
12
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Shaban NZ, Mohammed AS, Abu-Serie MM, Maher AM, Habashy NH. Inhibition of oxidative stress, IL-13, and WNT/β-catenin in ovalbumin-sensitized rats by a novel organogel of Punica granatum seed oil saponifiable fraction. Biomed Pharmacother 2022; 154:113667. [PMID: 36942603 DOI: 10.1016/j.biopha.2022.113667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/19/2022] Open
Abstract
Bronchial asthma is a chronic inflammatory disease marked by inflammation, oxidative stress, and structural remodeling. Here, we prepared two pomegranate fractions from the seed oil, saponifiable (Sap) and unsaponifiable (UnSap). Two organogels (Orgs) were also formulated with the Sap (Org1) or the UnSap (Org2) fraction and beeswax (BW). All preparations were evaluated in vitro for their antioxidant and anti-inflammatory impacts. The transdermal delivery of the most efficient one was evaluated against ovalbumin (OV)-induced bronchial asthma in rats compared to dexamethasone (DEX). The results showed that the prepared pomegranate fractions and BW had considerable amounts of phenolics (flavonoids and tannins) and triterpenoids. Org1 was shown to be the most effective antioxidant and anti-inflammatory fraction with synergistic activities (combination index, 1), as well as having protective and therapeutic influences on OV-sensitized rats. Org1 inhibited the multiple OV-induced signaling pathways, comprising ROS, WNT/β-catenin, and AKT, with an efficiency superior to DEX. Subsequently, the pro-inflammatory (COX-2, NO, and IL-13), and pro-fibrotic (COL1A1) mediators, oxidative stress, and mucin secretion, were all down-regulated. These outcomes were verified by the histopathological results of lung tissue. Collectively, these outcomes suggest that the transdermal delivery of Org1 to OV-sensitized rats shows promise in the protection and treatment of the pathological hallmarks of asthma.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Alaa S Mohammed
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab 21934, Alexandria, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
14
|
Shaban NZ, Sleem AA, Abu-Serie MM, Maher AM, Habashy NH. Regulation of the NF-κB signaling pathway and IL-13 in asthmatic rats by aerosol inhalation of the combined active constituents of Punica granatum juice and peel. Biomed Pharmacother 2022; 155:113721. [PMID: 36152413 DOI: 10.1016/j.biopha.2022.113721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/22/2022] Open
Abstract
Bronchial asthma is a chronic inflammatory airway illness. For the first time, we evaluated the proposed anti-asthmatic protective and therapeutic potency of inhaling Punica granatum juice (PJE) and peel (PPE) extract mixture (PM). Rats were challenged with ovalbumin (OVA) for 23 days and aerosolized with PM before each OVA challenge (protected group) or following the final OVA challenge for 3 days (therapeutic group). Considerable concentrations of phenolics were detected in PJE and PPE. Therefore, PM demonstrated synergistic scavenging abilities of NO and DPPH radicals. It also showed synergistic anti-inflammatory activities against lipopolysaccharide (LPS)-induced inflammation in the white blood cells by lowering the gene expression of CXCR1, CXCR2, IL-6, and IL-8. In addition, PM increased IL-10 gene expression while decreasing NO and TNF-α levels in LPS-exposed cells. Regarding the rats that were protected with PM, they exerted pulmonary pro-oxidant effects but prevented the OVA-induced upregulation of NF-κB, IKK, TNF-α, COX-2, iNOS, IL-13, and COL1A1, as well as MUC5AC and mucin over-secretion. While PM in the therapeutic group improved reactive oxygen species levels and normalized most of the investigated inflammatory and fibrotic mediators and mucin formation, but slightly improved the antioxidant indices. In addition, OVA-induced morphological alterations were massively improved after PM inhalation for short or long periods. Thus, PM inhalation prevented and treated OVA-induced pulmonary inflammation and fibrosis, while the inhalation period between 3 and 23 days needs to be optimized to acquire a better impact on the antioxidant indices.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Alyaa A Sleem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
15
|
Petan T, Manček-Keber M. Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med 2022; 188:351-362. [PMID: 35779690 DOI: 10.1016/j.freeradbiomed.2022.06.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Studies in the last decade have established the roles of oxidized phospholipids as modulators of various cellular processes, from inflammation and immunity to cell death. Oxidized lysophospholipids, formed through the activity of phospholipases and oxidative enzymes and lacking an acyl chain in comparison with parent phospholipids, are now emerging as novel bioactive lipid mediators. Their detection and structural characterization have been limited in the past due to low amounts and the complexity of their biosynthetic and removal pathways, but recent studies have unequivocally demonstrated their formation under inflammatory conditions. The involvement of oxidized lysophospholipids in immune regulation classifies them as damage-associated molecular patterns (DAMPs), which can promote sterile inflammation and contribute to autoimmune and chronic diseases as well as aging-related diseases. Their signaling pathways are just beginning to be revealed. As the first publications indicate that oxidized lysophospholipids use the same receptors as pathogen-associated molecular patterns (PAMPs), it is likely that the inhibition of signaling pathways activated by oxidized lysophospholipids would affect innate immunity per se. On the other hand, inhibition or modulation of their enzymatic formation, which would not interfere with the response to pathogens, might be beneficial and is potentially a promising new field of research.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Li Y, Yang Y, Yang Y. Multifaceted Roles of Ferroptosis in Lung Diseases. Front Mol Biosci 2022; 9:919187. [PMID: 35813823 PMCID: PMC9263225 DOI: 10.3389/fmolb.2022.919187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a distinct type of programmed cell death (PCD) that depends on iron and is characterized by the accumulation of intracellular iron, exhaustion of glutathione, deactivation of glutathione peroxidase, and promotion of lipid peroxidation. Recently, accumulated investigations have demonstrated that ferroptosis is strongly correlated with the initiation and development of many lung diseases. In this review, we summarized the contribution of ferroptosis to the pathologic process of lung diseases, namely, obstructive lung diseases (chronic obstructive pulmonary disease, asthma, and cystic fibrosis), interstitial lung diseases (pulmonary fibrosis of different causes), pulmonary diseases of vascular origin (ischemia-reperfusion injury and pulmonary hypertension), pulmonary infections (bacteria, viruses, and fungi), acute lung injury, acute respiratory distress syndrome, obstructive sleep apnea, pulmonary alveolar proteinosis, and lung cancer. We also discussed the therapeutic potential of targeting ferroptosis for these lung diseases.
Collapse
Affiliation(s)
- Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yongfeng Yang,
| |
Collapse
|
17
|
Ulrich BJ, Kharwadkar R, Chu M, Pajulas A, Muralidharan C, Koh B, Fu Y, Gao H, Hayes TA, Zhou HM, Goplen NP, Nelson AS, Liu Y, Linnemann AK, Turner MJ, Licona-Limón P, Flavell RA, Sun J, Kaplan MH. Allergic airway recall responses require IL-9 from resident memory CD4 + T cells. Sci Immunol 2022; 7:eabg9296. [PMID: 35302861 PMCID: PMC9295820 DOI: 10.1126/sciimmunol.abg9296] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.
Collapse
Affiliation(s)
- Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rakshin Kharwadkar
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michelle Chu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Charanya Muralidharan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Byunghee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tristan A Hayes
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Nick P Goplen
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Rochester, MN 55902, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amelia K Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew J Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Mexico City 04020, Mexico
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Rochester, MN 55902, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Jin M, Watkins S, Larriba Y, Wallace C, St. Croix C, Zhou X, Zhao J, Peddada S, Wenzel SE. Real-time imaging of asthmatic epithelial cells identifies migratory deficiencies under type-2 conditions. J Allergy Clin Immunol 2022; 149:579-588. [PMID: 34547368 PMCID: PMC8821171 DOI: 10.1016/j.jaci.2021.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The epithelium is increasingly recognized as a pathologic contributor to asthma and its phenotypes. Although delayed wound closure by asthmatic epithelial cells is consistently observed, underlying mechanisms remain poorly understood, partly due to difficulties in studying dynamic physiologic processes involving polarized multilayered cell systems. Although type-2 immunity has been suggested to play a role, the mechanisms by which repair is diminished are unclear. OBJECTIVES This study sought to develop and utilize primary multilayered polarized epithelial cell systems, derived from patients with asthma, to evaluate cell migration in response to wounding under type-2 and untreated conditions. METHODS A novel wounding device for multilayered polarized cells, along with time-lapse live cell/real-time confocal imaging were evaluated under IL-13 and untreated conditions. The influence of inhibition of 15 lipoxygenase (15LO1), a type-2 enzyme, on the process was also addressed. Cell migration patterns were analyzed by high-dimensional frequency modulated Möbius for statistical comparisons. RESULTS IL-13 stimulation negatively impacts wound healing by altering the total speed, directionality, and acceleration of individual cells. Inhibition 15LO1 partially improved the wound repair through improving total speed. CONCLUSIONS Migration abnormalities contributed to markedly slower wound closure of IL-13 treated cells, which was modestly reversed by 15LO1 inhibition, suggesting its potential as an asthma therapeutic target. These novel methodologies offer new ways to dynamically study cell movements and identify contributing pathologic processes.
Collapse
Affiliation(s)
- Mingzhu Jin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA,Department of Rhinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Simon Watkins
- Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Yolanda Larriba
- Department of Statistics and Operations Research, Universidad de Valladolid, Valladolid, Spain
| | - Callen Wallace
- Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Claudette St. Croix
- Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Xiuxia Zhou
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Jinming Zhao
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Shyamal Peddada
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA,Asthma and Environmental Lung Health Institute @UPMC, Pittsburgh, USA
| |
Collapse
|
19
|
Boyce JA. The role of 15 lipoxygenase 1 in asthma comes into focus. J Clin Invest 2022; 132:155884. [PMID: 34981786 PMCID: PMC8718133 DOI: 10.1172/jci155884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IL-4– and IL-13–driven epithelial cell expression of 15 lipoxygenase 1 (15LO1) is a consistent feature of eosinophil-dominated asthma known as type 2–high (T2-high) asthma. The abundant soluble products of arachidonic acid (AA) metabolized by 15LO1 reflect a high level of enzymatic activity in asthma and chronic rhinosinusitis. However, the precise role of 15LO1 and its products in disease pathogenesis remains enigmatic. In this issue of the JCI, Nagasaki and colleagues demonstrate a role for 15LO1 in controlling redox balance and epithelial homeostasis in T2-high asthma by metabolizing AA that is esterified to membrane phospholipids. The findings may pave the way toward the development of 15LO1 inhibitors as asthma treatments.
Collapse
|
20
|
Kim HJ, Song JY, Park TI, Choi WS, Kim JH, Kwon OS, Lee JY. The effects of BRL-50481 on ovalbumin-induced asthmatic lung inflammation exacerbated by co-exposure to Asian sand dust in the murine model. Arch Pharm Res 2022; 45:51-62. [PMID: 34984603 PMCID: PMC8726530 DOI: 10.1007/s12272-021-01367-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022]
Abstract
Asian sand dust (ASD), which mainly originates in China and Mongolia in the spring and blows into Korea, can exacerbate respiratory and immunological diseases. This study aims to observe effects of co-exposure to ASD on ovalbumin (OVA)-induced asthmatic lung inflammation and of treatment with a phosphodiesterase 7 (PDE7) inhibitor in a mouse model. The challenge with OVA increased airway hyperresponsiveness (AHR) and inflammatory cell infiltration into the lung tissue. Interleukin (IL)-13, tumor necrosis factor-alpha, monocyte-protein-1, mucin, and antigen-specific IgE and IgG1 production increased in mouse serum. The co-exposure of ASD significantly exacerbated these effects in this asthma model. Notably, the administration of a PDE7 inhibitor, BRL-50481 (BRL), significantly reduced AHR, infiltration of inflammatory cells into the lungs, and the levels of type 2 T helper cell-related cytokines, antigen-specific immunoglobulins, and mucin. Thus, the administration of BRL ameliorated OVA-induced allergic asthmatic responses exacerbated by co-exposure to ASD. This study suggests that PDE7 inhibition can be a therapeutic strategy for inflammatory lung diseases and asthma via the regulation of T lymphocytes and reduction of IL-13, and, consequently, mucin production.
Collapse
Affiliation(s)
- Hong Jo Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jin Yong Song
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Tae Il Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jong Heon Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Oh Seong Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
- Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
21
|
Nagasaki T, Schuyler AJ, Zhao J, Samovich SN, Yamada K, Deng Y, Ginebaugh SP, Christenson SA, Woodruff PG, Fahy JV, Trudeau JB, Stoyanovsky D, Ray A, Tyurina YY, Kagan VE, Wenzel SE. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type-2 inflammation. J Clin Invest 2021; 132:151685. [PMID: 34762602 PMCID: PMC8718153 DOI: 10.1172/jci151685] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Altered redox biology challenges all cells, with compensatory responses often determining a cell’s fate. When 15 lipoxygenase 1 (15LO1), a lipid-peroxidizing enzyme abundant in asthmatic human airway epithelial cells (HAECs), binds phosphatidylethanolamine-binding protein 1 (PEBP1), hydroperoxy-phospholipids, which drive ferroptotic cell death, are generated. Peroxidases, including glutathione peroxidase 4 (GPX4), metabolize hydroperoxy-phospholipids to hydroxy derivatives to prevent ferroptotic death, but consume reduced glutathione (GSH). The cystine transporter SLC7A11 critically restores/maintains intracellular GSH. We hypothesized that high 15LO1, PEBP1, and GPX4 activity drives abnormal asthmatic redox biology, evidenced by lower bronchoalveolar lavage (BAL) fluid and intraepithelial cell GSH:oxidized GSH (GSSG) ratios, to enhance type 2 (T2) inflammatory responses. GSH, GSSG (enzymatic assays), 15LO1, GPX4, SLC7A11, and T2 biomarkers (Western blot and RNA-Seq) were measured in asthmatic and healthy control (HC) cells and fluids, with siRNA knockdown as appropriate. GSSG was higher and GSH:GSSG lower in asthmatic compared with HC BAL fluid, while intracellular GSH was lower in asthma. In vitro, a T2 cytokine (IL-13) induced 15LO1 generation of hydroperoxy-phospholipids, which lowered intracellular GSH and increased extracellular GSSG. Lowering GSH further by inhibiting SLC7A11 enhanced T2 inflammatory protein expression and ferroptosis. Ex vivo, redox imbalances corresponded to 15LO1 and SLC7A11 expression, T2 biomarkers, and worsened clinical outcomes. Thus, 15LO1 pathway–induced redox biology perturbations worsen T2 inflammation and asthma control, supporting 15LO1 as a therapeutic target.
Collapse
Affiliation(s)
- Tadao Nagasaki
- Department of Respiratory Medicine, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Alexander J Schuyler
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Jinming Zhao
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Svetlana N Samovich
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Kazuhiro Yamada
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Yanhan Deng
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Scott P Ginebaugh
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, United States of America
| | - Stephanie A Christenson
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - John V Fahy
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - John B Trudeau
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Detcho Stoyanovsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma and Environmental Lung Health Institute, Pittsburgh, United States of America
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh Asthma and Environmental Lung Health Institute, Pittsburgh, United States of America
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, Pittsburgh, United States of America
| |
Collapse
|
22
|
Corcoran TE, Huber AS, Hill SL, Locke LW, Weber L, Muthukrishnan A, Heidrich EM, Wenzel S, Myerburg MM. Mucociliary Clearance Differs in Mild Asthma by Levels of Type 2 Inflammation. Chest 2021; 160:1604-1613. [PMID: 34029561 PMCID: PMC8628176 DOI: 10.1016/j.chest.2021.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Although mucus plugging is a well-reported feature of asthma, whether asthma and type 2 inflammation affect mucociliary clearance (MCC) is unknown. RESEARCH QUESTION Does type 2 inflammation influence mucus clearance rates in patients with mild asthma who are not receiving corticosteroids? STUDY DESIGN AND METHODS The clearance rates of inhaled radiolabeled particles were compared between patients with mild asthma with low (n = 17) and high (n = 18) levels of T2 inflammation. Fraction exhaled nitric oxide (Feno) was used to prospectively segregate subjects into T2 Lo (Feno < 25 ppb) and T2 Hi (Feno > 35 ppb) cohorts. Bronchial brush samples were collected with fiber-optic bronchoscopy, and quantitative polymerase chain reaction was performed to measure expression of genes associated with T2 asthma. MCC rate comparisons were also made with a historical group of healthy control subjects (HCs, n = 12). RESULTS The T2 Lo cohort demonstrated increased MCC when compared with both T2 Hi and historic HCs. MCC within the T2 Hi group varied significantly, with some subjects having low or zero clearance. MCC decreased with increasing expression of several markers of T2 airway inflammation (CCL26, NOS2, and POSTN) and with Feno. MUC5AC and FOXJ1 expression was similar between the T2Lo and T2Hi cohorts. INTERPRETATION Increasing T2 inflammation was associated with decreasing MCC. High rates of MCC in T2 Lo subjects may indicate a compensatory mechanism present in mild disease but lost with high levels of inflammation. Future studies are required to better understand mechanisms and whether impairments in MCC in more severe asthma drive worse clinical outcomes.
Collapse
Affiliation(s)
- Timothy E Corcoran
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, PA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA.
| | - Alex S Huber
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA
| | - Sherri L Hill
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA
| | - Landon W Locke
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Lawrence Weber
- Nuclear Medicine Department, University of Pittsburgh Medical Center, PA
| | | | - Elisa M Heidrich
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA
| | - Sally Wenzel
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA; Department of Environmental & Occupational Health, University of Pittsburgh, PA
| | - Mike M Myerburg
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA
| |
Collapse
|
23
|
Xu X, Li J, Zhang Y, Zhang L. Arachidonic Acid 15-Lipoxygenase: Effects of Its Expression, Metabolites, and Genetic and Epigenetic Variations on Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:684-696. [PMID: 34486255 PMCID: PMC8419644 DOI: 10.4168/aair.2021.13.5.684] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023]
Abstract
Arachidonic acid 15-lipoxygenase (ALOX15) is an enzyme that can oxidize polyunsaturated fatty acids. ALOX15 is strongly expressed in airway epithelial cells, where it catalyzes the conversion of arachidonic acid to 15-hydroxyeicosatetraenoic acid (15-HETE) involved in various airway inflammatory diseases. Interleukin (IL)-4 and IL-13 induce ALOX15 expression by activating Jak2 and Tyk2 kinases as well as signal transducers and activators of transcription (STATs) 1/3/5/6. ALOX15 up-regulation and subsequent association with phosphatidylethanolamine-binding protein 1 (PEBP1) activate the mitogen-activated extracellular signal-regulated kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway, thus inducing eosinophil-mediated airway inflammation. In addition, ALOX15 plays a significant role in promoting the migration of immune cells, such as immature dendritic cells, activated T cells, and mast cells, and airway remodeling, including goblet cell differentiation. Genome-wide association studies have revealed multiple ALOX15 variants and their significant correlation with the risk of developing airway diseases. The epigenetic modifications of the ALOX15 gene, such as DNA methylation and histone modifications, have been shown to closely relate with airway inflammation. This review summarizes the role of ALOX15 in different phenotypes of asthma, chronic obstructive pulmonary disease, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, and nasal polyps, suggesting new treatment strategies for these airway inflammatory diseases with complex etiology and poor treatment response.
Collapse
Affiliation(s)
- Xu Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Berman R, Min E, Huang J, Kopf K, Downey GP, Riemondy K, Smith HA, Rose CS, Seibold MA, Chu HW, Day BJ. Single-Cell RNA Sequencing Reveals a Unique Monocyte Population in Bronchoalveolar Lavage Cells of Mice Challenged With Afghanistan Particulate Matter and Allergen. Toxicol Sci 2021; 182:297-309. [PMID: 34051097 DOI: 10.1093/toxsci/kfab065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Upon returning from deployment to Afghanistan, a substantial number of U.S. military personnel report deployment-related lung disease (DRLD) symptoms, including those consistent with an asthma-like airways disease. DRLD is thought to be caused by prolonged inhalation of toxic desert particulate matter, which can persist in the postdeployment setting such as exposure to common household allergens. The goal of this study was to define the transcriptomic responses of lung leukocytes of mice exposed to Afghanistan desert particulate matter (APM) and house dust mite (HDM). C57BL/6 mice (n = 15/group) were exposed to filtered air or aerosolized APM for 12 days, followed by intranasal PBS or HDM allergen challenges for 24 h. Bronchoalveolar lavage (BAL) cells were collected for single-cell RNA sequencing (scRNAseq), and assessment of inflammation and airway hyper-responsiveness. Unsupervised clustering of BAL cell scRNAseq data revealed a unique monocyte population induced only by both APM and allergen treatments. This population of monocytes is characterized by the expression of genes involved in allergic asthma, including Alox15. We validated Alox15 expression in monocytes via immunostaining of lung tissue. APM pre-exposure, followed by the HDM challenge, led to significantly increased total respiratory system resistance compared with filtered air controls. Using this mouse model to mimic DRLD, we demonstrated that inhalation of airborne PM during deployment may prime airways to be more responsive to allergen exposure after returning home, which may be linked to dysregulated immune responses such as induction of a unique lung monocyte population.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Jie Huang
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Katrina Kopf
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Harry A Smith
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cecile S Rose
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
25
|
Mucus composition abnormalities in sinonasal mucosa of chronic rhinosinusitis with and without nasal polyps. Inflammation 2021; 44:1937-1948. [PMID: 33999330 DOI: 10.1007/s10753-021-01471-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/11/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
Mucus secretion and its composition are vital in the maintenance of airway health, among which hypoxia-inducible factors (HIFs) are thought to be involved in the regulation of mucin synthesis and regulation. Nasal mucus composition difference between healthy individuals and chronic rhinosinusitis (CRS) patients may contribute to the pathology of chronic nasal diseases, but so far, their role has yet to be completely understood. Nasal biopsy specimens were obtained from 24 healthy subjects and 99 patients with CRS without (CRSsNP, n=36) or with (CRSwNP, n=63) nasal polyps. Immunohistochemical (IHC) and immunofluorescent (IF) staining, quantitative real-time PCR, and western blot were performed to compare the nasal mucus composition between the subjects. Areas of the serous gland and mucous gland were both significantly increased in CRSsNP patients. In CRSwNP patients, a decrease in submucosal gland density and a marked increase in goblet cells were observed. The major gel-forming mucins in the sinonasal mucosa of CRSsNP and CRSwNP are MUC5B and MUC5AC respectively. Mucous cells are found in a higher proportion in both CRSsNP and CRSwNP. The proportion of MUC5AC-positive goblet cells was increased in CRSwNP. The mRNA level of HIF-2α was significantly increased in CRS, and both HIF-1α and HIF-2α were expressed in serous cell but not mucous cell. Over secretion and altered composition of mucus are observed in sinonasal mucosa of CRS, which was mainly associated with glandular hyperplasia in CRSsNP and goblet cell hyperplasia in CRSwNP. Mucus abnormality compromised both non-specific and specific antimicrobial capabilities in the sinonasal mucosa. HIF expression may contribute to differences in mucin synthesis and serous gland regulation, which needs further investigation to understand the pathology of CRS.
Collapse
|
26
|
Chen X, Gu M, Li T, Sun Y. Metabolite reanalysis revealed potential biomarkers for COVID-19: a potential link with immune response. Future Microbiol 2021; 16:577-588. [PMID: 33973485 PMCID: PMC8112156 DOI: 10.2217/fmb-2021-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To understand the pathological progress of COVID-19 and to
explore the potential biomarkers. Background: The COVID-19 pandemic
is ongoing. There is metabolomics research about COVID-19 indicating the
rich information of metabolomics is worthy of further data mining.
Methods: We applied bioinformatics technology to reanalyze the
published metabolomics data of COVID-19. Results: Benzoate,
β-alanine and 4-chlorobenzoic acid were first reported to be used
as potential biomarkers to distinguish COVID-19 patients from healthy
individuals; taurochenodeoxycholic acid 3-sulfate, glucuronate
and N,N,N-trimethyl-alanylproline betaine TMAP are the top classifiers in
the receiver operating characteristic curve of COVID-severe and
COVID-nonsevere patients. Conclusion: These unique metabolites
suggest an underlying immunoregulatory treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Xin Chen
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Princeton High School, Princeton, NJ 08540, USA
| | - Mingli Gu
- Department of Laboratory Diagnosis, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yi Sun
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
27
|
Predictive significance of arachidonate 15-lipoxygenase for eosinophilic chronic rhinosinusitis with nasal polyps. Allergy Asthma Clin Immunol 2020; 16:82. [PMID: 32973910 PMCID: PMC7493848 DOI: 10.1186/s13223-020-00480-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Background Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) exhibits a poorer outcome compared with non-eosinophilic chronic rhinosinusitis with nasal polyps (nonECRSwNP), so it is significant to identify effective markers to differentiate ECRSwNP in guiding the treatment strategies of these patients. Although arachidonate 15-lipoxygenase (ALOX15) is positioned as a marker of eosinophilic inflammation, its study in differentiating ECRSwNP has not been reported. The aim of this study is to assess the potential of ALOX15 in distinguishing and predicting ECRSwNP. Methods Forty-eight patients with chronic rhinosinusitis with nasal polyps (CRSwNP), including 30 ECRSwNP and 18 nonECRSwNP patients, were enrolled. ALOX15 mRNA level was determined in polyps by real-time polymerase chain reaction (RT-PCR). The patients’ baseline characteristics were evaluated and analyzed for correlations with ALOX15. Receiver operating characteristic (ROC) curve was used to assess the predictive significance of the potential predictors for ECRSwNP. Results ALOX15 mRNA level was significantly higher in ECRSwNP patients than in nonECRSwNP patients (P < 0.001). ALOX15 mRNA was significantly correlated with tissue and blood eosinophil percentages (r = 0.565, P < 0.001 and r = 0.395, P = 0.006), olfaction scores (r = 0.400, P = 0.005), total visual analogue scale (VAS) symptom scores (r = 0.383, P = 0.007), ethmoid/maxillary sinus (E/M) ratio (r = 0.463, P = 0.001), and endoscopy scores (r = 0.409, P = 0.004). Logistic regression analysis showed ALOX15 mRNA level and percentage of blood eosinophils to be predictive factors for ECRSwNP (P = 0.004 and P = 0.036, respectively). ROC curve indicated ALOX15 to have high predictive accuracy for ECRSwNP (area under the curve (AUC) = 0.909), which was further improved by combination of ALOX15 with percentage of blood eosinophils (AUC = 0.933). Conclusions The relative ALOX15 mRNA level alone or in combination with blood eosinophils might be a reliable biomarker for predicting a diagnosis of ECRSwNP.
Collapse
|
28
|
PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. Proc Natl Acad Sci U S A 2020; 117:14376-14385. [PMID: 32513718 PMCID: PMC7321965 DOI: 10.1073/pnas.1921618117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Temporally harmonized elimination of damaged or unnecessary organelles and cells is a prerequisite of health. Under Type 2 inflammatory conditions, human airway epithelial cells (HAECs) generate proferroptotic hydroperoxy-arachidonoyl-phosphatidylethanolamines (HpETE-PEs) as proximate death signals. Production of 15-HpETE-PE depends on activation of 15-lipoxygenase-1 (15LO1) in complex with PE-binding protein-1 (PEBP1). We hypothesized that cellular membrane damage induced by these proferroptotic phospholipids triggers compensatory prosurvival pathways, and in particular autophagic pathways, to prevent cell elimination through programmed death. We discovered that PEBP1 is pivotal to driving dynamic interactions with both proferroptotic 15LO1 and the autophagic protein microtubule-associated light chain-3 (LC3). Further, the 15LO1-PEBP1-generated ferroptotic phospholipid, 15-HpETE-PE, promoted LC3-I lipidation to stimulate autophagy. This concurrent activation of autophagy protects cells from ferroptotic death and release of mitochondrial DNA. Similar findings are observed in Type 2 Hi asthma, where high levels of both 15LO1-PEBP1 and LC3-II are seen in HAECs, in association with low bronchoalveolar lavage fluid mitochondrial DNA and more severe disease. The concomitant activation of ferroptosis and autophagy by 15LO1-PEBP1 complexes and their hydroperoxy-phospholipids reveals a pathobiologic pathway relevant to asthma and amenable to therapeutic targeting.
Collapse
|
29
|
Stevens WW, Staudacher AG, Hulse KE, Carter RG, Winter DR, Abdala-Valencia H, Kato A, Suh L, Norton JE, Huang JH, Peters AT, Grammer LC, Price CPE, Conley DB, Shintani-Smith S, Tan BK, Welch KC, Kern RC, Schleimer RP. Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 147:600-612. [PMID: 32371071 DOI: 10.1016/j.jaci.2020.04.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is characterized by asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), and an intolerance of medications that inhibit cyclooxygenase-1. Patients with AERD have more severe upper and lower respiratory tract disease than do aspirin-tolerant patients with CRSwNP. A dysregulation in arachidonic acid metabolism is thought to contribute to the enhanced sinonasal inflammation in AERD. OBJECTIVE Our aim was to utilize an unbiased approach investigating arachidonic acid metabolic pathways in AERD. METHODS Single-cell RNA sequencing (10× Genomics, Pleasanton, Calif) was utilized to compare the transcriptional profile of nasal polyp (NP) cells from patients with AERD and patients with CRSwNP and map differences in the expression of select genes among identified cell types. Findings were confirmed by traditional real-time PCR. Lipid mediators in sinonasal tissue were measured by mass spectrometry. Localization of various proteins within NPs was assessed by immunofluorescence. RESULTS The gene encoding for 15-lipooxygenase (15-LO), ALOX15, was significantly elevated in NPs of patients with AERD compared to NPs of patients with CRSwNP (P < .05) or controls (P < .001). ALOX15 was predominantly expressed by epithelial cells. Expression levels significantly correlated with radiographic sinus disease severity (r = 0.56; P < .001) and were associated with asthma. The level of 15-oxo-eicosatetraenoic acid (15-Oxo-ETE), a downstream product of 15-LO, was significantly elevated in NPs from patients with CRSwNP (27.93 pg/mg of tissue) and NPs from patients with AERD (61.03 pg/mg of tissue) compared to inferior turbinate tissue from controls (7.17 pg/mg of tissue [P < .001]). Hydroxyprostaglandin dehydrogenase, an enzyme required for 15-Oxo-ETE synthesis, was predominantly expressed in mast cells and localized near 15-LO+ epithelium in NPs from patients with AERD. CONCLUSIONS Epithelial and mast cell interactions, leading to the synthesis of 15-Oxo-ETE, may contribute to the dysregulation of arachidonic acid metabolism via the 15-LO pathway and to the enhanced sinonasal disease severity observed in AERD.
Collapse
Affiliation(s)
- Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Anna G Staudacher
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Deborah R Winter
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julia H Huang
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Caroline P E Price
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
30
|
Interleukin-13 Stimulation Reveals the Cellular and Functional Plasticity of the Airway Epithelium. Ann Am Thorac Soc 2019; 15:S98-S102. [PMID: 29676620 DOI: 10.1513/annalsats.201711-868mg] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 50% of patients with asthma exhibit chronic airway inflammation driven by the type 2 cytokines interleukin (IL)-4, IL-5, and IL-13. These patients with type 2-high asthma experience more allergic symptoms, greater airway hyperresponsiveness, and more severe mucus obstruction than patients with type 2-low asthma. Mouse models of asthma have shown that much of the airway dysfunction in these models can be generated by IL-13 stimulation of the airway epithelium alone. Both in vivo mouse model studies and in vitro studies of human mucociliary airway epithelial cultures have shown that IL-13 induces cellular remodeling of the airway epithelium through proliferation-independent transdifferentiation processes. In both humans and mice, IL-13 stimulation of the airway epithelium results in generation of hypersecretory mucin 5AC (MUC5AC)-expressing mucus cells. Whereas club cells have been shown to be the source of these mucin 5AC-positive mucus cells in mice, the origin of these mucus cells in humans is unclear. In humans, chronic IL-13 stimulation appears to result in loss of ciliated cells. Moreover, IL-13 stimulation can block ciliated cell differentiation from human basal airway epithelial cells. Coincident with IL-13 cellular remodeling are reported decreases in mucociliary transport and ciliary beat frequency. These IL-13-mediated changes in mucociliary function are accompanied by disorganization of cilia, a decrease in the ratio of mucin 5B (MUC5B) to mucin 5AC, and mucus gel tethering to the epithelial surface by mucin 5AC. These airway epithelial responses to IL-13 are mediated by multiple transcription factors, including signal transducer and activator of transcription-6 (STAT6), SAM pointed domain-containing Ets transcription factor (SPDEF), Forkhead box A2 (FOXA2), and Forkhead box J1 (FOXJ1). In addition, analysis of RNA-sequencing data derived from airway epithelial cells shows how IL-13 stimulation promotes broad changes in gene expression across the transcriptome. These results reveal the plastic nature of airway epithelial cells that enables the epithelium to undergo remodeling and functional shifts in response to IL-13 stimulation. With use of new technology, future studies should lead to greater understanding of how IL-13 and other stimuli of disease bring about airway epithelial remodeling, which may aid in the development of therapies that ameliorate airway dysfunction in asthma and other diseases.
Collapse
|
31
|
Li Z, Zeng M, Deng Y, Zhao J, Zhou X, Trudeau JB, Goldschmidt E, Moore JA, Chu H, Zhang W, Yin S, Liu Z, Di YP, Lee SE, Wenzel SE. 15-Lipoxygenase 1 in nasal polyps promotes CCL26/eotaxin 3 expression through extracellular signal-regulated kinase activation. J Allergy Clin Immunol 2019; 144:1228-1241.e9. [PMID: 31301373 PMCID: PMC6842430 DOI: 10.1016/j.jaci.2019.06.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND 15-Lipoxygenase 1 (15LO1) is expressed in airway epithelial cells in patients with type 2-high asthma in association with eosinophilia. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also associated with type 2 inflammation and eosinophilia. CCL26/eotaxin 3 has been reported to be regulated by 15LO1 in lower airway epithelial cells. However, its relation to 15LO1 in patients with CRSwNP or mechanisms for its activation are unclear. OBJECTIVE We sought to evaluate 15LO1 and CCL26 expression in nasal epithelial cells (NECs) from patients with CRSwNP and healthy control subjects (HCs) and determine whether 15LO1 regulates CCL26 in NECs through extracellular signal-regulated kinase (ERK) activation. METHODS 15LO1, CCL26, and phosphorylated ERK were evaluated in NECs from patients with CRSwNP and HCs. 15LO1/CCL26 and CCL26/cytokeratin 5 were colocalized by means of immunofluorescence. IL-13-stimulated NECs were cultured at an air-liquid interface with or without 15-lipoxygenase 1 gene (ALOX15) Dicer-substrate short interfering RNAs (DsiRNA) transfection, a specific 15LO1 enzymatic inhibitor, and 2 ERK inhibitors. Expression of 15LO1 and CCL26 mRNA and protein was analyzed by using quantitative RT-PCR, Western blotting, and ELISA. RESULTS 15LO1 expression was increased in nasal polyp (NP) epithelial cells compared with middle turbinate epithelial cells from patients with CRSwNP and HCs. 15LO1 expression correlated with CCL26 expression and colocalized with CCL26 expression in basal cells of the middle turbinate and NPs from patients with CRSwNP. In primary NECs in vitro, IL-13 induced 15LO1 and CCL26 expression. 15LO1 knockdown and inhibition decreased IL-13-induced ERK phosphorylation and CCL26 expression. ERK inhibition (alone) similarly decreased IL-13-induced CCL26. Phosphorylated ERK expression was increased in NECs from CRSwNP subjects and positively correlated with both 15LO1 and CCL26 expression. CONCLUSIONS 15LO1 expression is increased in NP epithelial cells and contributes to CCL26 expression through ERK activation. 15LO1 could be considered a novel therapeutic target for CRSwNP.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Ming Zeng
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Yanhan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Jinming Zhao
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Xiuxia Zhou
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - John B Trudeau
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Ezequiel Goldschmidt
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - John A Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Mercy Hospital, Pittsburgh, Pa
| | - Hongwei Chu
- Department of Medicine, National Jewish Health, Denver, Colo
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Peter Di
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Stella E Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Mercy Hospital, Pittsburgh, Pa.
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa.
| |
Collapse
|
32
|
Tyurina YY, St Croix CM, Watkins SC, Watson AM, Epperly MW, Anthonymuthu TS, Kisin ER, Vlasova II, Krysko O, Krysko DV, Kapralov AA, Dar HH, Tyurin VA, Amoscato AA, Popova EN, Bolevich SB, Timashev PS, Kellum JA, Wenzel SE, Mallampalli RK, Greenberger JS, Bayir H, Shvedova AA, Kagan VE. Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. J Leukoc Biol 2019; 106:57-81. [PMID: 31071242 PMCID: PMC6626990 DOI: 10.1002/jlb.3mir0119-004rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA3 and LTB4, by an iPLA2 γ inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claudette M St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tamil S Anthonymuthu
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena R Kisin
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena N Popova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Sergey B Bolevich
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Peter S Timashev
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
33
|
Tyurina YY, Tyurin VA, Anthonymuthu T, Amoscato AA, Sparvero LJ, Nesterova AM, Baynard ML, Sun W, He R, Khaitovich P, Vladimirov YA, Gabrilovich DI, Bayır H, Kagan VE. "Redox lipidomics technology: Looking for a needle in a haystack". Chem Phys Lipids 2019; 221:93-107. [PMID: 30928338 PMCID: PMC6714565 DOI: 10.1016/j.chemphyslip.2019.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics. Although non-enzymatic free radical reactions of lipid peroxidation have been mostly associated with the aberrant metabolism typical of acute injury or chronic degenerative processes, newly accumulated evidence suggests that enzymatically catalyzed (phospho)lipid oxygenation reactions are essential mechanisms of many physiological pathways. In this review, we discuss a variety of contemporary protocols applicable for identification and quantitative characterization of different classes of peroxidized (phospho)lipids. We describe applications of different types of LCMS for analysis of peroxidized (phospho)lipids, particularly cardiolipins and phosphatidylethanolalmines, in two important types of programmed cell death - apoptosis and ferroptosis. We discuss the role of peroxidized phosphatidylserines in phagocytotic signaling. We exemplify the participation of peroxidized neutral lipids, particularly tri-acylglycerides, in immuno-suppressive signaling in cancer. We also consider new approaches to exploring the spatial distribution of phospholipids in the context of their oxidizability by MS imaging, including the latest achievements in high resolution imaging techniques. We present innovative approaches to the interpretation of LC-MS data, including audio-representation analysis. Overall, we emphasize the role of redox lipidomics as a communication language, unprecedented in diversity and richness, through the analysis of peroxidized (phospho)lipids.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Tamil Anthonymuthu
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Louis J Sparvero
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Anastasiia M Nesterova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Matthew L Baynard
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Wanyang Sun
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | - RongRong He
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | | | - Yuri A Vladimirov
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Pharmacology and Chemical Biology, Pittsburgh, PA, USA; Radiation Oncology, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
34
|
Prismawan D, van der Vlag R, Guo H, Dekker FJ, Hirsch AKH. Replacement of an Indole Scaffold Targeting Human 15-Lipoxygenase-1 Using Combinatorial Chemistry. Helv Chim Acta 2019; 102:e1900040. [PMID: 31231138 PMCID: PMC6563716 DOI: 10.1002/hlca.201900040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/29/2019] [Indexed: 01/02/2023]
Abstract
Human 15-lipoxygenase-1 (15-LOX-1) belongs to the class of lipoxygenases, which catalyze oxygenation of polyunsaturated fatty acids, such as arachidonic and linoleic acid. Recent studies have shown that 15-LOX-1 plays an important role in physiological processes linked to several diseases such as airway inflammation disease, coronary artery disease, and several types of cancer such as rectal, colon, breast and prostate cancer. In this study, we aimed to extend the structural diversity of 15-LOX-1 inhibitors, starting from the recently identified indolyl core. In order to find new scaffolds, we employed a combinatorial approach using various aromatic aldehydes and an aliphatic hydrazide tail. This scaffold-hopping study resulted in the identification of the 3-pyridylring as a suitable replacement of the indolyl core with an inhibitory activity in the micromolar range (IC 50=16±6 μm) and a rapid and efficient structure-activity relationship investigation.
Collapse
Affiliation(s)
- Deka Prismawan
- Stratingh Institute for ChemistryUniversity of Groningen, Nijenborgh 7NL-9747AG GroningenThe Netherlands
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP)University of Groningen, Antonius Deusinglaan 1, NL-9713AV GroningenThe Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for ChemistryUniversity of Groningen, Nijenborgh 7NL-9747AG GroningenThe Netherlands
| | - Hao Guo
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP)University of Groningen, Antonius Deusinglaan 1, NL-9713AV GroningenThe Netherlands
| | - Frank J. Dekker
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP)University of Groningen, Antonius Deusinglaan 1, NL-9713AV GroningenThe Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of Groningen, Nijenborgh 7NL-9747AG GroningenThe Netherlands
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationCampus Building E8.1DE-66123SaarbrückenGermany
- Department of PharmacySaarland UniversityDE-66123SaarbrückenGermany
| |
Collapse
|
35
|
Carr TF, Zeki AA, Kraft M. Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med 2019; 197:22-37. [PMID: 28910134 DOI: 10.1164/rccm.201611-2232pp] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tara F Carr
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Amir A Zeki
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
| | - Monica Kraft
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
36
|
O'Donnell VB, Aldrovandi M, Murphy RC, Krönke G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci Signal 2019; 12:12/574/eaau2293. [PMID: 30914483 DOI: 10.1126/scisignal.aau2293] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymatically oxidized phospholipids (eoxPLs) are formed through regulated processes by which eicosanoids or prostaglandins are attached to phospholipids (PLs) in immune cells. These eoxPLs comprise structurally diverse families of biomolecules with potent bioactivities, and they have important immunoregulatory roles in both health and disease. The formation of oxPLs through enzymatic pathways and their signaling capabilities are emerging concepts. This paradigm is changing our understanding of eicosanoid, prostaglandin, and PL biology in health and disease. eoxPLs have roles in cellular events such as ferroptosis, apoptosis, and blood clotting and diseases such as arthritis, diabetes, and cardiovascular disease. They are increasingly recognized as endogenous bioactive mediators and potential targets for drug development. This review will describe recent evidence that places eoxPLs and their biosynthetic pathways center stage in immunoregulation.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK.
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU) 91054, Erlangen, Germany
| |
Collapse
|
37
|
Zhou X, Kinlough CL, Hughey RP, Jin M, Inoue H, Etling E, Modena BD, Kaminski N, Bleecker ER, Meyers DA, Jarjour NN, Trudeau JB, Holguin F, Ray A, Wenzel SE. Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight 2019; 4:122475. [PMID: 30730306 DOI: 10.1172/jci.insight.122475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Although type-2-induced (T2-induced) epithelial dysfunction is likely to profoundly alter epithelial differentiation and repair in asthma, the mechanisms for these effects are poorly understood. A role for specific mucins, heavily N-glycosylated epithelial glycoproteins, in orchestrating epithelial cell fate in response to T2 stimuli has not previously been investigated. Levels of a sialylated MUC4β isoform were found to be increased in airway specimens from asthmatic patients in association with T2 inflammation. We hypothesized that IL-13 would increase sialylation of MUC4β, thereby altering its function and that the β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) would regulate the sialylation. Using human biologic specimens and cultured primary human airway epithelial cells (HAECs),we demonstrated that IL-13 increases ST6GAL1-mediated sialylation of MUC4β and that both were increased in asthma, particularly in sputum supernatant and/or fresh isolated HAECs with elevated T2 biomarkers. ST6GAL1-induced sialylation of MUC4β altered its lectin binding and secretion. Both ST6GAL1 and MUC4β inhibited epithelial cell proliferation while promoting goblet cell differentiation. These in vivo and in vitro data provide strong evidence for a critical role for ST6GAL1-induced sialylation of MUC4β in epithelial dysfunction associated with T2-high asthma, thereby identifying specific sialylation pathways as potential targets in asthma.
Collapse
Affiliation(s)
- Xiuxia Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Carol L Kinlough
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mingzhu Jin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hideki Inoue
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Division of Pulmonary and Allergy Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Emily Etling
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brian D Modena
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - John B Trudeau
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Fernando Holguin
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Bolmarcich J, Wilbert S, Jackson GR, Oldach J, Bachelor M, Kenney T, Wright CD, Hayden PJ. In VitroHuman Airway Models for Study of Goblet Cell Hyperplasia and Mucus Production: Effects of Th2 Cytokines, Double-Stranded RNA, and Tobacco Smoke. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Yan B, Wang Y, Li Y, Wang C, Zhang L. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2018; 9:270-280. [PMID: 30452122 DOI: 10.1002/alr.22243] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy, Beijing TongRen Hospital; Capital Medical University; Beijing China
| |
Collapse
|
40
|
Çolakoğlu M, Tunçer S, Banerjee S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif 2018; 51:e12472. [PMID: 30062726 DOI: 10.1111/cpr.12472] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through lipoxygenases (LOXs) and cyclooxygenases (COXs) leads to the production of bioactive lipids that are important both in the induction of acute inflammation and its resolution. Amongst the several isoforms of LOX that are expressed in mammals, 15-LOX-1 was shown to be important both in the context of inflammation, being expressed in cells of the immune system, and in epithelial cells where the enzyme has been shown to crosstalk with a number of important signalling pathways. This review looks into the latest developments in understanding the role of 15-LOX-1 in different disease states with emphasis on the emerging role of the enzyme in the tumour microenvironment as well as a newly re-discovered form of cell death called ferroptosis. We also discuss future perspectives on the feasibility of use of this protein as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Melis Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
41
|
Dhabal S, Das P, Biswas P, Kumari P, Yakubenko VP, Kundu S, Cathcart MK, Kundu M, Biswas K, Bhattacharjee A. Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13-stimulated monocytes and A549 lung carcinoma cells. J Biol Chem 2018; 293:14040-14064. [PMID: 30021838 DOI: 10.1074/jbc.ra118.002321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Monoamine oxidase A (MAO-A) is a mitochondrial flavoenzyme implicated in the pathogenesis of atherosclerosis and inflammation and also in many neurological disorders. MAO-A also has been reported as a potential therapeutic target in prostate cancer. However, the regulatory mechanisms controlling cytokine-induced MAO-A expression in immune or cancer cells remain to be identified. Here, we show that MAO-A expression is co-induced with 15-lipoxygenase (15-LO) in interleukin 13 (IL-13)-activated primary human monocytes and A549 non-small cell lung carcinoma cells. We present evidence that MAO-A gene expression and activity are regulated by signal transducer and activator of transcription 1, 3, and 6 (STAT1, STAT3, and STAT6), early growth response 1 (EGR1), and cAMP-responsive element-binding protein (CREB), the same transcription factors that control IL-13-dependent 15-LO expression. We further established that in both primary monocytes and in A549 cells, IL-13-stimulated MAO-A expression, activity, and function are directly governed by 15-LO. In contrast, IL-13-driven expression and activity of MAO-A was 15-LO-independent in U937 promonocytic cells. Furthermore, we demonstrate that the 15-LO-dependent transcriptional regulation of MAO-A in response to IL-13 stimulation in monocytes and in A549 cells is mediated by peroxisome proliferator-activated receptor γ (PPARγ) and that signal transducer and activator of transcription 6 (STAT6) plays a crucial role in facilitating the transcriptional activity of PPARγ. We further report that the IL-13-STAT6-15-LO-PPARγ axis is critical for MAO-A expression, activity, and function, including migration and reactive oxygen species generation. Altogether, these results have major implications for the resolution of inflammation and indicate that MAO-A may promote metastatic potential in lung cancer cells.
Collapse
Affiliation(s)
- Sukhamoy Dhabal
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Pradip Das
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Pritam Biswas
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Priyanka Kumari
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Valentin P Yakubenko
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Suman Kundu
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Martha K Cathcart
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Manjari Kundu
- the Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| | - Kaushik Biswas
- the Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| | - Ashish Bhattacharjee
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India,
| |
Collapse
|
42
|
Tsai YH, Parker JS, Yang IV, Kelada SNP. Meta-analysis of airway epithelium gene expression in asthma. Eur Respir J 2018; 51:13993003.01962-2017. [PMID: 29650561 DOI: 10.1183/13993003.01962-2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/30/2018] [Indexed: 01/15/2023]
Abstract
Differential gene expression in the airway epithelium of patients with asthma versus controls has been reported in several studies. However, there is no consensus on which genes are reproducibly affected in asthma. We sought to identify a consensus list of differentially expressed genes (DEGs) using a meta-analysis approach.We identified eight studies with data that met defined inclusion criteria. These studies comprised 355 cases and 193 controls and involved sampling either bronchial or nasal epithelium. We conducted study-level analyses, followed by a meta-analysis. Likewise, we applied a meta-analysis framework to the results of study-level pathway enrichment.We identified 1273 DEGs, 431 of which had not been identified in previous studies. 450 DEGs exhibited large effect sizes and were robust to study population differences in age, sex, race/ethnicity, medication use, smoking status and exacerbations. The magnitude of differential expression of these 450 genes was highly similar in bronchial and nasal airway epithelia. Meta-analysis of pathway enrichment revealed a number of consistently dysregulated biological pathways, including putative transcriptional and post-transcriptional regulators.In total, we identified a set of genes that is consistently dysregulated in asthma, that links to known and novel biological pathways, and that will inform asthma subtype identification.
Collapse
Affiliation(s)
- Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Dept of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Ivana V Yang
- Dept of Medicine, University of Colorado, Aurora, CO, USA
| | - Samir N P Kelada
- Dept of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Randell SH, Zeldin DC. A Slippery Cause of a Slimy Problem: Mucin Induction by an Esterified Lipid. Am J Respir Cell Mol Biol 2018; 57:633-634. [PMID: 29192828 DOI: 10.1165/rcmb.2017-0275ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Scott H Randell
- 1 Department of Cell Biology and Physiology.,2 Marsico Lung Institute University of North Carolina at Chapel Hill Chapel Hill, North Carolina and
| | - Darryl C Zeldin
- 3 National Institute of Environmental Health Sciences National Institutes of Health Research Triangle Park, North Carolina
| |
Collapse
|
44
|
Zhao J, Minami Y, Etling E, Coleman JM, Lauder SN, Tyrrell V, Aldrovandi M, O'Donnell V, Claesson HE, Kagan V, Wenzel S. Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2017; 57:692-701. [PMID: 28723225 DOI: 10.1165/rcmb.2017-0031oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 μM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.
Collapse
Affiliation(s)
- Jinming Zhao
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoshinori Minami
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emily Etling
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John M Coleman
- 2 Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sarah N Lauder
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Victoria Tyrrell
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Maceler Aldrovandi
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Valerie O'Donnell
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Valerian Kagan
- 5 Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally Wenzel
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Chen X, Ji N, Qin N, Tang SA, Wang R, Qiu Y, Duan H, Kong D, Jin M. 1,6-O,O-Diacetylbritannilactone Inhibits Eotaxin-1 and ALOX15 Expression Through Inactivation of STAT6 in A549 Cells. Inflammation 2017; 40:1967-1974. [DOI: 10.1007/s10753-017-0637-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Watanabe T, Chibana K, Shiobara T, Tei R, Koike R, Nakamura Y, Arai R, Horigane Y, Shimizu Y, Takemasa A, Fukuda T, Wenzel SE, Ishii Y. Expression of intelectin-1 in bronchial epithelial cells of asthma is correlated with T-helper 2 (Type-2) related parameters and its function. Allergy Asthma Clin Immunol 2017; 13:35. [PMID: 28775743 PMCID: PMC5540302 DOI: 10.1186/s13223-017-0207-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/19/2017] [Indexed: 05/22/2024] Open
Abstract
Background Intelectin-1 (ITLN-1) is secreted by intestinal goblet cells and detectable in blood. Its expression is increased in IL-13-overexpressing mouse airways. However, its expression and function in human airways is poorly understood. Methods Distal and proximal bronchial epithelial cells (BECs) were isolated from bronchoscopic brushings of disease control (D-CON), COPD, inhaled corticosteroid-treated asthma (ST-Asthma) and inhaled corticosteroid-naïve asthma (SN-Asthma) patients. ITLN-1 mRNA expression in freshly isolated BECs, primary cultured BECs with or without IL-13 and inhibition effects of mometasone furoate (MF) were investigated by quantitative real-time PCR (qPCR). Correlations between ITLN-1 mRNA and Type-2 related parameters (e.g. FeNO, IgE, iNOS, CCL26, periostin and DPP4 mRNA) were analyzed. ITLN-1 protein distribution in asthmatic airway tissue was assessed by immunohistochemistry. Bronchial alveolar lavage (BAL) and serum ITLN-1 protein were measured by ELISA. The effect of recombinant human (rh) ITLN-1 on stimulated production of CXCL10 and phospho(p)-STAT1 expression examined in lung fibroblasts. Results ITLN-1 mRNA was expressed in freshly isolated BECs and was correlated with Type-2 related parameters. ITLN-1 protein was increased in goblet cells in SN-Asthmatics and increased in SN-Asthmatic BAL fluid. There were no any differences in serum ITLN-1 concentration between ST and SN-Asthma. IL-13 enhanced ITLN-1 expression and inhibited by MF from BECs in vitro, while rhITLN-1 inhibited CXCL10 production and p-STAT1 expression in HFL-1 cells. Conclusion ITLN-1 is induced by IL-13 and expressed mainly in goblet cells in untreated asthma where its levels correlate with known Type-2 related parameters. Further, ITLN-1 inhibits Type-1 chemokine expression. Electronic supplementary material The online version of this article (doi:10.1186/s13223-017-0207-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Rinna Tei
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Ryosuke Koike
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Ryo Arai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yukiko Horigane
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Takeshi Fukuda
- Dokkyo Medical University School of Medicine, 880 Kitakobayashi Mibumachi, Shimotsugagun, Tochigi, 321-0293 Japan
| | - Sally E Wenzel
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, 3459 Fifth Ave., Pittsburgh, PA 15213 USA
| | - Yoshiki Ishii
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
47
|
O'Donnell VB, Murphy RC. Directing eicosanoid esterification into phospholipids. J Lipid Res 2017; 58:837-839. [PMID: 28242788 DOI: 10.1194/jlr.c075986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CV14 4XN, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO
| |
Collapse
|
48
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
49
|
Eleftheriadis N, Poelman H, Leus NGJ, Honrath B, Neochoritis CG, Dolga A, Dömling A, Dekker FJ. Design of a novel thiophene inhibitor of 15-lipoxygenase-1 with both anti-inflammatory and neuroprotective properties. Eur J Med Chem 2016; 122:786-801. [PMID: 27477687 DOI: 10.1016/j.ejmech.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/18/2023]
Abstract
The enzyme 15-lipoxygenase-1 (15-LOX-1) plays a dual role in diseases with an inflammatory component. On one hand 15-LOX-1 plays a role in pro-inflammatory gene expression and on the other hand it has been shown to be involved in central nervous system (CNS) disorders by its ability to mediate oxidative stress and damage of mitochondrial membranes under hypoxic conditions. In order to further explore applications in the CNS, novel 15-LOX-1 inhibitors with favorable physicochemical properties need to be developed. Here, we present Substitution Oriented Screening (SOS) in combination with Multi Component Chemistry (MCR) as an effective strategy to identify a diversely substituted small heterocyclic inhibitors for 15-LOX-1, denoted ThioLox, with physicochemical properties superior to previously identified inhibitors. Ex vivo biological evaluation in precision-cut lung slices (PCLS) showed inhibition of pro-inflammatory gene expression and in vitro studies on neuronal HT-22 cells showed a strong protection against glutamate toxicity for this 15-LOX-1 inhibitor. This provides a novel approach to identify novel small with favorable physicochemical properties for exploring 15-LOX-1 as a drug target in inflammatory diseases and neurodegeneration.
Collapse
Affiliation(s)
- Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Hessel Poelman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Niek G J Leus
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Constantinos G Neochoritis
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
50
|
Watanabe T, Fajt ML, Trudeau JB, Voraphani N, Hu H, Zhou X, Holguin F, Wenzel SE. Brain-Derived Neurotrophic Factor Expression in Asthma. Association with Severity and Type 2 Inflammatory Processes. Am J Respir Cell Mol Biol 2016; 53:844-52. [PMID: 25945802 DOI: 10.1165/rcmb.2015-0015oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, exists in several isoforms, which differentially impacts neuronal and immune cell survival and differentiation. The role of BDNF and its isoforms in asthma remains unclear. The objectives of this study were to compare the BDNF protein isoforms and specific splice variant expression in sputum and bronchoscopic samples from healthy control subjects and participants with asthma, and to relate these changes to findings in IL-13-stimulated human airway epithelial cells. Sputum and bronchoscopic samples from healthy control subjects and participants with asthma were evaluated for BDNF protein (ELISA and Western blot) and BDNF mRNA (gel and quantitative real-time PCR) in relation to asthma severity and type 2 inflammatory processes. BDNF mRNA was measured in cultured primary human airway epithelial cells after IL-13 stimulation. Total BDNF protein differed among the groups, and its mature isoform was significantly higher in sputum from subjects with severe asthma compared with healthy control subjects (overall P = 0.008, P = 0.027, respectively). Total BDNF was higher in those with elevated fractional exhaled nitric oxide and sputum eosinophilia. In vitro, IL-13 increased BDNF exon VIb splice variant and the ratio to BDNF common exon IX mRNA (P < 0.001, P = 0.003, respectively). Epithelial brushing exon VIb mRNA and total BDNF protein differed among the groups and were higher in subjects with severe asthma than in healthy control subjects (overall P = 0.01, P = 0.02, respectively). The mature BDNF isoform and the exon VIb splice variant are increased in human asthmatic airways. The in vitro increase in response to IL-13 suggests that type 2 cytokines regulate BDNF levels and activity in asthma.
Collapse
Affiliation(s)
- Tetsuya Watanabe
- Asthma Institute at University of Pittsburgh Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Merritt L Fajt
- Asthma Institute at University of Pittsburgh Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John B Trudeau
- Asthma Institute at University of Pittsburgh Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nipasiri Voraphani
- Asthma Institute at University of Pittsburgh Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haizhen Hu
- Asthma Institute at University of Pittsburgh Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiuxia Zhou
- Asthma Institute at University of Pittsburgh Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fernando Holguin
- Asthma Institute at University of Pittsburgh Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally E Wenzel
- Asthma Institute at University of Pittsburgh Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|