1
|
Wu X, Wang K, Li Q, Zhang Y, Wei P, Shan Y, Zhao G. Combining Single-Cell RNA Sequencing and Mendelian Randomization to Explore Novel Drug Targets for Parkinson's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04700-3. [PMID: 39890696 DOI: 10.1007/s12035-025-04700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/11/2025] [Indexed: 02/03/2025]
Abstract
Neuroinflammation is a key pathological factor of PD, and T cells play a central role in neuroinflammatory progression. However, the causal effect of T cell-related genes on the risk of PD is still unclear. We explored single-cell RNA sequencing (scRNA-Seq) datasets of the peripheral blood T cells of PD patients and healthy controls, and screened the differentially expressed genes (DEGs) in the cytotoxic CD4 + T cells relative to the other T cell subsets. Pseudo-time series analysis, cell-cell communication analysis, and metabolic pathway analysis was performed for the cytotoxic CD4 + T cells. The DEGs were also functionally annotated through GO and KEGG pathway enrichment analyses. The MR approach was used to establish causal effects of the DEGs (exposure) on PD risk (outcome), and explore new drug targets for PD. The findings of MR analysis were further validated by Steiger filtering, bidirectional MR, Bayesian colocalization analysis, and phenotype scanning, and the GWAS data from an independent PD case-control cohort was used for external validation of the results. Finally, differences in gene expression between PD patients and healthy controls were further validated in scRNA-Seq and bulk transcriptome sequencing data. We found that increased expression of IL-32, GNLY, MT2A, and ARPC2 was significantly associated with a higher risk of PD. In contrast, the increase in ARRB2 was closely related to a lower risk of PD. IL32, GNLY, MT2A, ARRB2, and ARPC2 are the causal genes and potential drug targets of PD. Cytotoxic CD4 + T cells are likely the key effectors of PD-related neuroinflammation. These findings provide new insights into the pathogenesis and treatment options for PD, and further research and clinical trials based on the five potential drug targets and neuroinflammation are necessary.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Kailiang Wang
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, 100053, China.
| | - Qinghua Li
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yuqing Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
| |
Collapse
|
2
|
Huang C, Huang X, Qiu X, Kong X, Wu C, Jiang X, Yao M, Wang M, Su L, Lv C, Wong P. Pericytes Modulate Third-Generation Tyrosine Kinase Inhibitor Sensitivity in EGFR-Mutated Lung Cancer Cells Through IL32-β5-Integrin Paracrine Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405130. [PMID: 39435643 PMCID: PMC11633494 DOI: 10.1002/advs.202405130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Indexed: 10/23/2024]
Abstract
EGFR-mutated lung cancer patients sometimes display restricted responses to third-generation tyrosine kinase inhibitors (TKIs), potentially attributable to undervalued input from stromal cells, notably pericytes (PCs). The study shows that PCs isolated from EGFR-mutated patients have a unique secretome profile, notably secreting IL32 and affecting signaling pathways and biological processes linked to TKI sensitivity. Clinical evidence, supported by single-cell RNA sequencing and multiplex immunostaining of tumor tissues, confirms the presence of IL32-expressing pericytes closely interacting with β5-integrin-expressing cancer cells in EGFR-mutated patients, impacting therapeutic response and prognosis. Co-culture and conditioned medium experiments demonstrate that PCs reduce TKI effectiveness in EGFR-mutated cancer cells, a reversible phenomenon through silencing IL32 expression in PCs or depleting the IL32 receptor β5-integrin on cancer cells, thereby restoring cancer cell sensitivity. Mechanistically, it is shown that YY1 signaling upregulates IL32 secretion in PCs, subsequently activating the β5-integrin-Src-Akt pathway in EGFR-mutated cancer cells, contributing to their TKI sensitivity. In animal studies, co-injection of cancer cells with PCs compromises TKI effectiveness, independently of blood vessel functions, while inhibition of β5-integrin restores tumor cell sensitivity. Overall, the findings highlight direct crosstalk between cancer cells and pericytes, impacting TKI sensitivity via IL32-β5-integrin paracrine signaling, proposing an enhanced therapeutic approach for EGFR-mutated patients.
Collapse
Affiliation(s)
- Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract CancerDepartment of Biliary‐Pancreatic SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Chunmiao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of Respiratory MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of Thoracic SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Urological DiseasesGuangzhou Medical UniversityGuangzhou510120China
| | - Cui Lv
- Clinical Biobank CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Ping‐Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract CancerDepartment of Biliary‐Pancreatic SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
3
|
Fieni C, Ciummo SL, Sorrentino C, Marchetti S, Vespa S, Lanuti P, Lotti LV, Di Carlo E. Prevention of prostate cancer metastasis by a CRISPR-delivering nanoplatform for interleukin-30 genome editing. Mol Ther 2024; 32:3932-3954. [PMID: 39244641 PMCID: PMC11573607 DOI: 10.1016/j.ymthe.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Prostate cancer (PC) is a leading cause of cancer-related deaths in men worldwide. Interleukin-30 (IL-30) is a PC progression driver, and its suppression would be strategic for fighting metastatic disease. Biocompatible lipid nanoparticles (NPs) were loaded with CRISPR-Cas9gRNA to delete the human IL30 (hIL30) gene and functionalized with anti-PSCA-Abs (Cas9hIL30-PSCA NPs). Efficiency of the NPs in targeting IL-30 and the metastatic potential of PC cells was examined in vivo in xenograft models of lung metastasis, and in vitro by using two organ-on-chip (2-OC)-containing 3D spheroids of IL30+ PC-endothelial cell co-cultures in circuit with either lung-mimicking spheroids or bone marrow (BM)-niche-mimicking scaffolds. Cas9hIL30-PSCA NPs demonstrated circulation stability, genome editing efficiency, without off-target effects and organ toxicity. Intravenous injection of three doses/13 days, or five doses/20 days, of NPs in mice bearing circulating PC cells and tumor microemboli substantially hindered lung metastasization. Cas9hIL30-PSCA NPs inhibited PC cell proliferation and expression of IL-30 and metastasis drivers, such as CXCR2, CXCR4, IGF1, L1CAM, METAP2, MMP2, and TNFSF10, whereas CDH1 was upregulated. PC-Lung and PC-BM 2-OCs revealed that Cas9hIL30-PSCA NPs suppressed PC cell release of CXCL2/GROβ, which was associated with intra-metastatic myeloid cell infiltrates, and of DKK1, OPG, and IL-6, which boosted endothelial network formation and cancer cell migration. Development of a patient-tailored nanoplatform for selective CRISPR-mediated IL-30 gene deletion is a clinically valuable tool against PC progression.
Collapse
Affiliation(s)
- Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simona Marchetti
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lavinia Vittoria Lotti
- Department of Experimental Medicine, "La Sapienza" University of Rome, 00161 Rome, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
4
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Zhao S, Li L, Komohara Y, Matsubara E, Shinchi Y, Adawy A, Yano H, Pan C, Fujiwara Y, Ikeda K, Suzu S, Hibi T, Suzuki M. IL-32 production from lung adenocarcinoma cells is potentially involved in immunosuppressive microenvironment. Med Mol Morphol 2024; 57:91-100. [PMID: 38316697 DOI: 10.1007/s00795-023-00378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/23/2023] [Indexed: 02/07/2024]
Abstract
Interleukin 32 (IL-32) is a proinflammatory cytokine secreted from several kinds of cancer cells. In the present study, we investigated the significance of IL-32 in lung adenocarcinoma by immunohistochemistry and bioinformatics analysis. IL-32 was positive in cancer cells of 21 cases (9.2%) of total 228 cases. Increased IL-32 gene expression was linked to worse clinical course in TCGA analysis, however, IL-32 expression in immunohistochemistry was not associated to clinical course in our cohort. It was also found that high IL-32 expression was seen in cases with increased lymphocyte infiltration. In vitro studies indicated that IFN-γ induced gene expression of IL-32 and PD1-ligands in lung adenocarcinoma cell lines. IL-32, especially IL-32β, also induced overexpression of PD1-ligands in human monocyte-derived macrophages. Additionally, Cancer-cell-derived IL-32 was elevated by stimulation with anticancer agents. In conclusion, IL-32 potentially induced by inflammatory conditions and anticancer therapy and contribute to immune escape of cancer cells via development the immunosuppressive microenvironment. IL-32 might be a target molecule for anti-cancer therapy.
Collapse
Affiliation(s)
- Shukang Zhao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lianbo Li
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| | - Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Shinchi
- Department of Thoracic Surgery and Breast Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ahmad Adawy
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
| | - Koei Ikeda
- Department of Thoracic Surgery and Breast Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery and Breast Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Jo H, Shin S, Agura T, Jeong S, Ahn H, Lee J, Kim Y, Kang JS. The Role of α-Enolase on the Production of Interleukin (IL)-32 in Con A-Mediated Inflammation and Rheumatoid Arthritis (RA). Pharmaceuticals (Basel) 2024; 17:531. [PMID: 38675491 PMCID: PMC11054489 DOI: 10.3390/ph17040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin (IL)-32 is produced by T lymphocytes, natural killer cells, monocytes, and epithelial cells. IL-32 induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8, and IL-32 expression is highly increased in rheumatoid arthritis (RA) patients. Enolase-1 (ENO1) is a glycolytic enzyme and the stimulation of ENO1 induces high levels of pro-inflammatory cytokines in concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and macrophages in RA patients. In addition, there are many reports that anti-ENO1 antibody is correlated with the disease progression of RA. It implies that ENO1 could regulate IL-32 production during inflammation related to the pathogenesis of RA. Therefore, we investigated the role of ENO1 in IL-32 production using Con A-activated PBMCs and RA PBMCs. IL-32 expression is increased by ENO1 stimulation using real-time PCR and ELISA. In addition, we confirmed that IL-32 production was decreased in Con A-activated PBMCs and RA PBMCs pre-treated with NF-κB or p38 MAPK pathway inhibitors. Taken together, these results suggest that ENO1 plays an important role in inflammation through the induction of IL-32 production by the activation of the NF-κB and p38 MAPK pathways.
Collapse
Affiliation(s)
- Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Seulgi Shin
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
| | - Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Junmyung Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
- Artificial Intelligence Institute, Seoul National University, Seoul 08826, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Adawy A, Li L, Hirao H, Irie T, Yoshii D, Yano H, Fujiwara Y, Esumi S, Honda M, Suzu S, Komohara Y, Hibi T. Potential involvement of IL-32 in cell-to-cell communication between macrophages and hepatoblastoma. Pediatr Surg Int 2023; 39:275. [PMID: 37751001 DOI: 10.1007/s00383-023-05557-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE This study investigated the expression of interleukin 32 (IL-32) in hepatoblastoma, the most common primary pediatric liver tumor, and its possible roles in tumorigenesis. METHODS IL-32 expression was investigated in two hepatoblastoma cell lines (Hep G2 and HuH 6) in the steady state and after co-culture with macrophages by RNA-seq analysis and RT-qPCR, and after stimulation with chemotherapy. Cultured macrophages were stimulated by IL-32 isoforms followed by RT-qPCR and western blot analysis. IL-32 immunohistochemical staining (IHC) was performed using specimens from 21 hepatoblastoma patients. Clustering analysis was also performed using scRNA-seq data downloaded from Gene Expression Omnibus. RESULTS The IL-32 gene is expressed by hepatoblastoma cell lines; expression is upregulated by paracrine cell-cell communication with macrophages, also by carboplatin and etoposide. IL-32 causes protumor activation of macrophages with upregulation of PD-L1, IDO-1, IL-6, and IL-10. In the patient pool, IHC was positive only in 48% of cases. However, in the downloaded dataset, IL-32 gene expression was negative. CONCLUSION IL-32 was detected in hepatoblastoma cell lines, but not in all hepatoblastoma patients. We hypothesized that stimulation such as chemotherapy might induce expression of IL-32, which might be a critical mediator of chemoresistance in hepatoblastoma through inducing protumor activation in macrophages.
Collapse
Affiliation(s)
- Ahmad Adawy
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Pediatric Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lianbo Li
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hiroki Hirao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomoaki Irie
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Daiki Yoshii
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Honda
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
8
|
Park JY, Park HM, Kim S, Jeon KB, Lim CM, Hong JT, Yoon DY. Human IL-32θA94V mutant attenuates monocyte-endothelial adhesion by suppressing the expression of ICAM-1 and VCAM-1 via binding to cell surface receptor integrin αVβ3 and αVβ6 in TNF-α-stimulated HUVECs. Front Immunol 2023; 14:1160301. [PMID: 37228610 PMCID: PMC10203490 DOI: 10.3389/fimmu.2023.1160301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Interleukin-32 (IL-32), first reported in 2005, and its isoforms have been the subject of numerous studies investigating their functions in virus infection, cancer, and inflammation. IL-32θ, one of the IL-32 isoforms, has been shown to modulate cancer development and inflammatory responses. A recent study identified an IL-32θ mutant with a cytosine to thymine replacement at position 281 in breast cancer tissues. It means that alanine was also replaced to valine at position 94 in amino acid sequence (A94V). In this study, we investigated the cell surface receptors of IL-32θA94V and evaluated their effect on human umbilical vein endothelial cells (HUVECs). Recombinant human IL-32θA94V was expressed, isolated, and purified using Ni-NTA and IL-32 mAb (KU32-52)-coupled agarose columns. We observed that IL-32θA94V could bind to the integrins αVβ3 and αVβ6, suggesting that integrins act as cell surface receptors for IL-32θA94V. IL-32θA94V significantly attenuated monocyte-endothelial adhesion by inhibiting the expression of Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor (TNF)-α-stimulated HUVECs. IL-32θA94V also reduced the TNF-α-induced phosphorylation of protein kinase B (AKT) and c-jun N-terminal kinases (JNK) by inhibiting phosphorylation of focal adhesion kinase (FAK). Additionally, IL-32θA94V regulated the nuclear translocation of nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which are involved in ICAM-1 and VCAM-1 expression. Monocyte-endothelial adhesion mediated by ICAM-1 and VCAM-1 is an important early step in atherosclerosis, which is a major cause of cardiovascular disease. Our findings suggest that IL-32θA94V binds to the cell surface receptors, integrins αVβ3 and αVβ6, and attenuates monocyte-endothelial adhesion by suppressing the expression of ICAM-1 and VCAM-1 in TNF-α-stimulated HUVECs. These results demonstrate that IL-32θA94V can act as an anti-inflammatory cytokine in a chronic inflammatory disease such as atherosclerosis.
Collapse
Affiliation(s)
- Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Numasaki M, Ito K, Takagi K, Nagashima K, Notsuda H, Ogino H, Ando R, Tomioka Y, Suzuki T, Okada Y, Nishioka Y, Unno M. Diverse and divergent functions of IL-32β and IL-32γ isoforms in the regulation of malignant pleural mesothelioma cell growth and the production of VEGF-A and CXCL8. Cell Immunol 2023; 383:104652. [PMID: 36516653 DOI: 10.1016/j.cellimm.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
In this study, we sought to elucidate the roles of the interleukin (IL)-32β and IL-32γ in mesothelioma cell growth, and vascular endothelial growth factor (VEGF)-A and C-X-C motif chemokine ligand 8 (CXCL8) expression. IL-32 elicited a growth-promoting effect against one of the six mesotheliomas lines and exerted diverse regulatory functions in VEGF-A and CXCL8 secretion from mesotheliomas stimulated with or without IL-17A. Retroviral-mediated transduction of mesothelioma lines with IL-32γ resulted in enhanced IL-32β expression, which facilitated or suppressed the in vitro growth, and VEGF-A and CXCL8 expression. Overexpressed IL-32β-augmented growth and VEGF-A and CXCL8 production were mainly mediated through the phosphatidylinositol-3 kinase (PI3K) signaling pathway. On the other hand, overexpressed IL-32β-deceased growth was mediated through mitogen-activated protein kinase (MAPK) pathway. NCI-H2373IL-32γ tumors grew faster than NCI-H2373Neo tumors in a xenograft model, which was associated with increased vascularity. These findings indicate that IL-32 are involved in the regulation of growth and angiogenic factor production in mesotheliomas.
Collapse
Affiliation(s)
- Muneo Numasaki
- Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan; Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan; Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Koyu Ito
- Department of Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Tokyo, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Rika Ando
- Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Shim S, Lee S, Hisham Y, Kim S, Nguyen TT, Taitt AS, Hwang J, Jhun H, Park HY, Lee Y, Yeom SC, Kim SY, Kim YG, Kim S. A Paradoxical Effect of Interleukin-32 Isoforms on Cancer. Front Immunol 2022; 13:837590. [PMID: 35281008 PMCID: PMC8913503 DOI: 10.3389/fimmu.2022.837590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
IL-32 plays a contradictory role such as tumor proliferation or suppressor in cancer development depending on the cancer type. In most cancers, it was found that the high expression of IL-32 was associated with more proliferative and progression of cancer. However, studying the isoforms of IL-32 cytokine has placed its paradoxical role into a wide range of functions based on its dominant isoform and surrounding environment. IL-32β, for example, was found mostly in different types of cancer and associated with cancer expansion. This observation is legitimate since cancer exhibits some hypoxic environment and IL-32β was known to be induced under hypoxic conditions. However, IL-32θ interacts directly with protein kinase C-δ reducing NF-κB and STAT3 levels to inhibit epithelial-mesenchymal transition (EMT). This effect could explain the different functions of IL-32 isoforms in cancer. However, pro- or antitumor activity which is dependant on obesity, gender, and age as it relates to IL-32 has yet to be studied. Obesity-related IL-32 regulation indicated the role of IL-32 in cancer metabolism and inflammation. IL-32-specific direction in cancer therapy is difficult to conclude. In this review, we address that the paradoxical effect of IL-32 on cancer is attributed to the dominant isoform, cancer type, tumor microenvironment, and genetic background. IL-32 seems to have a contradictory role in cancer. However, investigating multiple IL-32 isoforms could explain this doubt and bring us closer to using them in therapy.
Collapse
Affiliation(s)
- Saerok Shim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Yasmin Hisham
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Tam T Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Afeisha S Taitt
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Jihyeong Hwang
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Wanju, South Korea
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, South Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, Collage of Medicine, Inje University, Busan, South Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
11
|
Extracellular vesicle IL-32 promotes the M2 macrophage polarization and metastasis of esophageal squamous cell carcinoma via FAK/STAT3 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:145. [PMID: 35428295 PMCID: PMC9013041 DOI: 10.1186/s13046-022-02348-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/26/2022] [Indexed: 01/02/2023]
Abstract
Background Metastasis is the leading cause of mortality in human cancers, including esophageal squamous cell carcinoma (ESCC). As a pro-inflammatory cytokine, IL-32 was reported to be a poor prognostic factor in many cancers. However, the role of IL-32 in ESCC metastasis remains unknown. Methods ESCC cells with ectopic expression or knockdown of IL-32 were established and their effects on cell motility were detected. Ultracentrifugation, Transmission electron microscopy and Western blot were used to verify the existence of extracellular vesicle IL-32 (EV-IL-32). Coculture assay, immunofluorescence, flow cytometry, and in vivo lung metastasis model were performed to identify how EV-IL-32 regulated the crosstalk between ESCC cells and macrophages. Results Here, we found that IL-32 was overexpressed and positively correlated to lymph node metastasis of ESCC. IL-32 was significantly higher in the tumor nest compared with the non-cancerous tissue. We found that IL-32β was the main isoform and loaded in EV derived from ESCC cells. The shuttling of EV-IL-32 derived from ESCC cells into macrophages could promote the polarization of M2 macrophages via FAK-STAT3 pathway. IL-32 overexpression facilitated lung metastasis and was positively correlated with the proportion of M2 macrophages in tumor microenvironment. Conclusions Taken together, our results indicated that EV-IL-32 derived from ESCC cell line could be internalized by macrophages and lead to M2 macrophage polarization via FAK-STAT3 pathway, thus promoting the metastasis of ESCC. These findings indicated that IL-32 could serve as a potential therapeutic target in patients with ESCC. Supplementary information The online version contains supplementary material available at 10.1186/s13046-022-02348-8.
Collapse
|
12
|
Xia F, Yu Z, Deng A, Gao G. Identification of molecular subtyping system and four-gene prognostic signature with immune-related genes for uveal melanoma. Exp Biol Med (Maywood) 2021; 247:246-262. [PMID: 34743576 DOI: 10.1177/15353702211053801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immunotherapy is the most promising treatment for uveal melanoma patients with metastasis. Tumor microenvironment plays an essential role in tumor progression and greatly affects the efficacy of immunotherapy. This research constructed an immune-related subtyping system and discovered immune prognostic genes to further understand the immune mechanism in uveal melanoma. Immune-related genes were determined from literature. Gene expression profiles of uveal melanoma were clustered using consensus clustering based on immune-related genes. Subtypes were further divided by applying immune landscape, and weighted correlation network analysis was performed to construct immune gene modules. Univariate Cox regression analysis was conducted to generate a prognostic model. Enriched immune cells were determined after gene set enrichment analysis. Three major immune subtypes (IS1, IS2, and IS3) were identified, and IS2 could be further divided into IS2A and IS2B. The subtypes were closely associated with uveal melanoma prognosis. IS3 group had the most favorable prognosis and was sensitive to PD-1 inhibitor. Immune genes in IS1 group showed an overall higher expression than IS3 group. Six immune gene modules were identified, and the enrichment score of immune genes varied within immune subtypes. Four immune prognostic genes (IL32, IRF1, SNX20, and VAV1) were found to be closely related to survival. This novel immune subtyping system and immune landscape provide a new understanding of immunotherapy in uveal melanoma. The four prognostic genes can predict prognosis of uveal melanoma patients and contribute to new development of targeted drugs.
Collapse
Affiliation(s)
- Fei Xia
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang 261000, China
| | - Zhilong Yu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang 261000, China
| | - Aijun Deng
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang 261000, China
| | - Guohong Gao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang 261000, China
| |
Collapse
|
13
|
Han L, Chen S, Chen Z, Zhou B, Zheng Y, Shen L. Interleukin 32 Promotes Foxp3 + Treg Cell Development and CD8 + T Cell Function in Human Esophageal Squamous Cell Carcinoma Microenvironment. Front Cell Dev Biol 2021; 9:704853. [PMID: 34414188 PMCID: PMC8369465 DOI: 10.3389/fcell.2021.704853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Proinflammatory cytokine interleukin 32 (IL-32) is involved in infectious diseases and cancer, but what subtypes of immune cells express IL-32 and its roles in tumor microenvironment (TME) have not been well discussed. In this study, we applied bioinformatics to analyze single-cell RNA sequencing data about tumor-infiltrating immune cells from esophageal squamous cell carcinoma (ESCC) TME and analyzed IL-32 expression in different immune cell types. We found CD4+ regulatory T cells (Treg cells) express the highest level of IL-32, while proliferating T and natural killer cells expressed relatively lower levels. Knocking down of IL-32 reduced Foxp3 and interferon gamma (IFNγ) expressions in CD4+ and CD8+ T cells, respectively. IL-32 was positively correlated with Foxp3, IFNG, and GZMB expression but was negatively correlated with proliferation score. IL-32 may have a contradictory role in the TME such as it promotes IFNγ expression in CD8+ T cells, which enhances the antitumor activity, but at the same time induces Foxp3 expression in CD4+ T cells, which suppresses the tumor immune response. Our results demonstrate different roles of IL-32 in Treg cells and CD8+ T cells and suggest that it can potentially be a target for ESCC cancer immunosuppressive therapy.
Collapse
Affiliation(s)
- Li Han
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Impact of interleukin-32 germ-line rs28372698 and intronic rs12934561 polymorphisms on cancer development: A systematic review and meta-analysis. Int Immunopharmacol 2021; 99:107964. [PMID: 34271417 DOI: 10.1016/j.intimp.2021.107964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The pro-inflammatory cytokine IL-32 has high susceptibility to develop cancer. But no previous meta-analysis was done to provide firm evidence. This systematic review and meta-analysis was designed to evaluate the association of IL-32 gene polymorphisms (rs28372698 and rs12934561) with cancer. METHOD Eligible studies were selected using authentic databases searching from January 2013 to January 2021. Demographic data and genotypic information were extracted and organized from the selected studies. Review Manager (RevMan) version 5.4 was used to perform data analysis and data arrangement for meta-analysis. RESULTS A total of seven studies with 3395 patients and 3781 controls were included in this study. IL-32 rs28372698 polymorphism implied that mutant allele (TT) carriers had a significantly higher risk of cancer (OR = 1.43, p = 0.032). Codominant 3, recessive and allele models also showed 1.36-, 1.38- and 1.11-fold increased risk, respectively (p < 0.05). Besides, the Asian population showed a significantly increased risk in codominant 2 (OR = 1.74), codominant 3 (OR = 1.78), recessive (OR = 1.76) and allele model (OR = 1.16). IL-32 rs12934561 showed significantly reduced cancer risk in codominant 1 (OR = 0.66. p = 0.035), codominant 2 (OR = 0.76, p = 0.007), and dominant model (OR = 0.72, p = 0.012). After subgroup analysis, an association of rs12934561 was found in Asians (codominant 1: OR = 0.54, p = 7.28 × 10-8; codominant 2: OR = 1.40, p = 0.019; codominant 3: OR = 0.76, p = 0.0006; dominant model: OR = 0.64, p = 1.12 × 10-5; overdominant model: OR = 0.64, p = 3.92 × 10-7) but not in Caucasians. After stratifying with the control source, a significant (p < 0.05) association of rs28372698 and rs12934561 was found with cancer in population-based controls. No publication bias was found, and the outcome of this meta-analysis was not influenced by any individual study confirmed from sensitivity analysis. Moreover, trial sequential analysis (TSA) established a link between rs28372698 and rs12934561 polymorphisms and cancer. CONCLUSION The outcome of this meta-analysis revealed that IL-32 rs28372698 and rs12934561 polymorphisms are associated with cancer. Moreover, the Asian dynasty had a significant association compared to Caucasians.
Collapse
|
15
|
Wu K, Zeng J, Shi X, Xie J, Li Y, Zheng H, Peng G, Zhu G, Tang D, Wu S. Targeting TIGIT Inhibits Bladder Cancer Metastasis Through Suppressing IL-32. Front Pharmacol 2021; 12:801493. [PMID: 35069212 PMCID: PMC8766971 DOI: 10.3389/fphar.2021.801493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Bladder cancer is a highly metastatic tumor and one of the most common malignancies originating in the urinary tract. Despite the efficacy of immune checkpoints, including programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), the effect of immunotherapy for bladder cancer remains unsatisfactory. Therefore, it is urgent to develop new targets to expand immunotherapeutic options. In this study, we utilized single-cell sequencing to explore the cell composition of tumors and detected a subset of Treg cells with high expression of T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and interleukin (IL)-32. The antitumor immune response was suppressed by this subset of Treg cells, while IL-32 promoted bladder cancer metastasis. Nevertheless, targeting TIGIT not only reversed immunosuppression by restoring the antitumor immune response mediated by T cells but also suppressed the secretion of IL-32 and inhibited the metastasis of bladder cancer cells. Thus, our study provided novel insights into immunosuppression in bladder cancer and highlighted TIGIT as a novel target for immunotherapy of bladder cancer. We also illustrated the mechanism of the dual effect of targeting TIGIT and revealed the metastasis-promoting effect of IL-32 in bladder cancer. Collectively, these findings raise the possibility of utilizing TIGIT as a target against bladder cancer from the bench to the bedside.
Collapse
Affiliation(s)
- Kang Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xulian Shi
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Jiajia Xie
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Yuqing Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Haoxiang Zheng
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Guoyu Peng
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Guanghui Zhu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Dongdong Tang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, China
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Song Wu,
| |
Collapse
|
16
|
Associations between Interleukin-32 Gene Polymorphisms rs12934561 and rs28372698 and Susceptibilities to Bladder Cancer and the Prognosis in Chinese Han Population. DISEASE MARKERS 2020; 2020:8860445. [PMID: 33204366 PMCID: PMC7661138 DOI: 10.1155/2020/8860445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 10/24/2020] [Indexed: 02/05/2023]
Abstract
The proinflammatory chemokine interleukin-32 is related to various diseases, including cancer. However, it has never been associated with bladder cancer (BC). To detect whether there is a relationship between the IL-32 gene polymorphisms (rs12934561 C/T and rs28372698 T/A) and BC, the study enrolled 170 non-muscle-invasive bladder cancer (NMIBC) patients, 151 muscle-invasive bladder cancer (MIBC) patients, and 437 healthy controls. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for the IL-32 single-nucleotide polymorphism (SNP) genotyping. Statistical analysis was performed using SNPstats online analysis software and SPSS software. Our data revealed that the CC homozygous genotype of rs12934561 in BC patients was significantly higher than that in controls (P = 0.03, OR = 1.47, 95%CI = 1.04‐2.08), and the percentage of TC genotype carriers was relatively less than that of controls (P = 0.001, OR = 0.61, 95%CI = 0.45‐0.82). Furthermore, the TT homozygous genotype of rs28372698 was associated with a significantly lower overall survival rate in MIBC patients (P = 0.028, OR = 2.77, 95%CI = 1.11‐6.90). The IL-32 gene polymorphism rs12934561 might be associated with increased BC risk, and the rs28372698 might participate in the prognosis of BC patients. Therefore, they could be potential forecasting factors for the prognosis of MIBC patients.
Collapse
|
17
|
Goswami C, Chawla S, Thakral D, Pant H, Verma P, Malik PS, ▮ J, Gupta R, Ahuja G, Sengupta D. Molecular signature comprising 11 platelet-genes enables accurate blood-based diagnosis of NSCLC. BMC Genomics 2020; 21:744. [PMID: 33287695 PMCID: PMC7590669 DOI: 10.1186/s12864-020-07147-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Early diagnosis is crucial for effective medical management of cancer patients. Tissue biopsy has been widely used for cancer diagnosis, but its invasive nature limits its application, especially when repeated biopsies are needed. Over the past few years, genomic explorations have led to the discovery of various blood-based biomarkers. Tumor Educated Platelets (TEPs) have, of late, generated considerable interest due to their ability to infer tumor existence and subtype accurately. So far, a majority of the studies involving TEPs have offered marker-panels consisting of several hundreds of genes. Profiling large numbers of genes incur a significant cost, impeding its diagnostic adoption. As such, it is important to construct minimalistic molecular signatures comprising a small number of genes. RESULTS To address the aforesaid challenges, we analyzed publicly available TEP expression profiles and identified a panel of 11 platelet-genes that reliably discriminates between cancer and healthy samples. To validate its efficacy, we chose non-small cell lung cancer (NSCLC), the most prevalent type of lung malignancy. When applied to platelet-gene expression data from a published study, our machine learning model could accurately discriminate between non-metastatic NSCLC cases and healthy samples. We further experimentally validated the panel on an in-house cohort of metastatic NSCLC patients and healthy controls via real-time quantitative Polymerase Chain Reaction (RT-qPCR) (AUC = 0.97). Model performance was boosted significantly after artificial data-augmentation using the EigenSample method (AUC = 0.99). Lastly, we demonstrated the cancer-specificity of the proposed gene-panel by benchmarking it on platelet transcriptomes from patients with Myocardial Infarction (MI). CONCLUSION We demonstrated an end-to-end bioinformatic plus experimental workflow for identifying a minimal set of TEP associated marker-genes that are predictive of the existence of cancers. We also discussed a strategy for boosting the predictive model performance by artificial augmentation of gene expression data.
Collapse
Affiliation(s)
- Chitrita Goswami
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India
| | - Smriti Chawla
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Deepshi Thakral
- Laboratory Oncology Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshu Pant
- Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India
| | - Pramod Verma
- Laboratory Oncology Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Jayadeva ▮
- Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Debarka Sengupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
18
|
Wu P, Zheng Y, Wang Y, Wang Y, Liang N. Development and validation of a robust immune-related prognostic signature in early-stage lung adenocarcinoma. J Transl Med 2020; 18:380. [PMID: 33028329 PMCID: PMC7542703 DOI: 10.1186/s12967-020-02545-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background The incidence of stage I and stage II lung adenocarcinoma (LUAD) is likely to increase with the introduction of annual screening programs for high-risk individuals. We aimed to identify a reliable prognostic signature with immune-related genes that can predict prognosis and help making individualized management for patients with early-stage LUAD. Methods The public LUAD cohorts were obtained from the large-scale databases including 4 microarray data sets from the Gene Expression Omnibus (GEO) and 1 RNA-seq data set from The Cancer Genome Atlas (TCGA) LUAD cohort. Only early-stage patients with clinical information were included. Cox proportional hazards regression model was performed to identify the candidate prognostic genes in GSE30219, GSE31210 and GSE50081 (training set). The prognostic signature was developed using the overlapped prognostic genes based on a risk score method. Kaplan–Meier curve with log-rank test and time-dependent receiver operating characteristic (ROC) curve were used to evaluate the prognostic value and performance of this signature, respectively. Furthermore, the robustness of this prognostic signature was further validated in TCGA-LUAD and GSE72094 cohorts. Results A prognostic immune signature consisting of 21 immune-related genes was constructed using the training set. The prognostic signature significantly stratified patients into high- and low-risk groups in terms of overall survival (OS) in training data set, including GSE30219 (HR = 4.31, 95% CI 2.29–8.11; P = 6.16E−06), GSE31210 (HR = 11.91, 95% CI 4.15–34.19; P = 4.10E−06), GSE50081 (HR = 3.63, 95% CI 1.90–6.95; P = 9.95E−05), the combined data set (HR = 3.15, 95% CI 1.98–5.02; P = 1.26E−06) and the validation data set, including TCGA-LUAD (HR = 2.16, 95% CI 1.49–3.13; P = 4.54E−05) and GSE72094 (HR = 2.95, 95% CI 1.86–4.70; P = 4.79E−06). Multivariate cox regression analysis demonstrated that the 21-gene signature could serve as an independent prognostic factor for OS after adjusting for other clinical factors. ROC curves revealed that the immune signature achieved good performance in predicting OS for early-stage LUAD. Several biological processes, including regulation of immune effector process, were enriched in the immune signature. Moreover, the combination of the signature with tumor stage showed more precise classification for prognosis prediction and treatment design. Conclusions Our study proposed a robust immune-related prognostic signature for estimating overall survival in early-stage LUAD, which may be contributed to make more accurate survival risk stratification and individualized clinical management for patients with early-stage LUAD.
Collapse
Affiliation(s)
- Pancheng Wu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yanyu Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
19
|
Siddiqui MA, Gollavilli PN, Ramesh V, Parma B, Schwab A, Vazakidou ME, Natesan R, Saatci O, Rapa I, Bironzo P, Schuhwerk H, Asangani IA, Sahin O, Volante M, Ceppi P. Thymidylate synthase drives the phenotypes of epithelial-to-mesenchymal transition in non-small cell lung cancer. Br J Cancer 2020; 124:281-289. [PMID: 33024270 PMCID: PMC7782507 DOI: 10.1038/s41416-020-01095-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) enhances motility, stemness, chemoresistance and metastasis. Little is known about how various pathways coordinate to elicit EMT’s different functional aspects in non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) has been previously correlated with EMT transcription factor ZEB1 in NSCLC and imparts resistance against anti-folate chemotherapy. In this study, we establish a functional correlation between TS, EMT, chemotherapy and metastasis and propose a network for TS mediated EMT. Methods Published datasets were analysed to evaluate the significance of TS in NSCLC fitness and prognosis. Promoter reporter assay was used to sort NSCLC cell lines in TSHIGH and TSLOW. Metastasis was assayed in a syngeneic mouse model. Results TS levels were prognostic and predicted chemotherapy response. Cell lines with higher TS promoter activity were more mesenchymal-like. RNA-seq identified EMT as one of the most differentially regulated pathways in connection to TS expression. EMT transcription factors HOXC6 and HMGA2 were identified as upstream regulator of TS, and AXL, SPARC and FOSL1 as downstream effectors. TS knock-down reduced the metastatic colonisation in vivo. Conclusion These results establish TS as a theranostic NSCLC marker integrating survival, chemo-resistance and EMT, and identifies a regulatory network that could be targeted in EMT-driven NSCLC. ![]()
Collapse
Affiliation(s)
- Mohammad Aarif Siddiqui
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paradesi Naidu Gollavilli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vignesh Ramesh
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Annemarie Schwab
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maria Eleni Vazakidou
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Ida Rapa
- Department of Oncology at San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Paolo Bironzo
- Department of Oncology at San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Harald Schuhwerk
- Department of Experimental Medicine-I, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Marco Volante
- Department of Oncology at San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Paolo Ceppi
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. .,Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
20
|
Diakowska D, Krzystek-Korpacka M. Local and Systemic Interleukin-32 in Esophageal, Gastric, and Colorectal Cancers: Clinical and Diagnostic Significance. Diagnostics (Basel) 2020; 10:E785. [PMID: 33020452 PMCID: PMC7600995 DOI: 10.3390/diagnostics10100785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Little is known on clinical and diagnostic relevance of interleukin-32 in gastrointestinal tract (GIT) cancers. We determined its mRNA (n = 52) and protein (n = 63) expression in paired (tumor-normal) samples from esophageal squamous cell carcinoma (ESCC) and gastric (GC) and colorectal cancer (CRC) patients, with reference to cancer-associated genes, and quantified circulating interleukin-32 in 70 cancer patients and 28 controls. IL32 expression was significantly upregulated solely in ESCC, reflecting T stage in non-transformed tumor-adjacent tissue. Fold-change in IL32 and IL-32 was higher in left-sided CRC, owing to high interleukin expression in non-transformed right-sided colonic mucosa. IL32 was independently and positively associated with Ki67, HIF1A, and ACTA2 and negatively with TJP1 in tumors and with IL10Ra and BCLxL in non-transformed tumor-adjacent tissue. IL-32 protein was significantly upregulated in colorectal tumors. In ESCC, advanced stage and lymph node metastasis were associated with significant IL-32 upregulation. Circulating interleukin was significantly elevated in cancer patients, more so in ESCC and GC than CRC. As biomarker, IL-32 detected gastroesophageal cancers with 99.5% accuracy. In conclusion, IL-32 is upregulated in GIT cancers at local and systemic level, reflecting hypoxia and proliferative and invasive/metastatic capacity in tumors and immunosuppressive and antiapoptotic potential in non-transformed mucosa, while being an accurate biomarker of gastroesophageal cancers.
Collapse
Affiliation(s)
- Dorota Diakowska
- Department of Gastrointestinal and General Surgery, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Department of Nervous System Diseases, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | | |
Collapse
|
21
|
Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of IL-32. J Leukoc Biol 2020; 109:143-159. [PMID: 32869391 DOI: 10.1002/jlb.3mr0620-550r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a multifaceted cytokine associated with several diseases and inflammatory conditions. Its expression is induced in response to cellular stress such as hypoxia, infections, and pro-inflammatory cytokines. IL-32 can be secreted from cells and can induce the production of pro-inflammatory cytokines from several cell types but are also described to have anti-inflammatory functions. The intracellular form of IL-32 is shown to play an important role in various cellular processes, including the defense against intracellular bacteria and viruses and in modulation of cell metabolism. In this review, we discuss current literature on molecular interactions of IL-32 with other proteins. We also review data on the role of intracellular IL-32 as a metabolic regulator and its role in antimicrobial host defense.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Martin H Kastnes
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
22
|
Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai R. Macrophage and Tumor Cell Cross-Talk Is Fundamental for Lung Tumor Progression: We Need to Talk. Front Oncol 2020; 10:324. [PMID: 32219066 PMCID: PMC7078651 DOI: 10.3389/fonc.2020.00324] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Regardless of the promising results of certain immune checkpoint blockers, current immunotherapeutics have met a bottleneck concerning response rate, toxicity, and resistance in lung cancer patients. Accumulating evidence forecasts that the crosstalk between tumor and immune cells takes center stage in cancer development by modulating tumor malignancy, immune cell infiltration, and immune evasion in the tumor microenvironment (TME). Cytokines and chemokines secreted by this crosstalk play a major role in cancer development, progression, and therapeutic management. An increased infiltration of Tumor-associated macrophages (TAMs) was observed in most of the human cancers, including lung cancer. In this review, we emphasize the role of cytokines and chemokines in TAM-tumor cell crosstalk in the lung TME. Given the role of cytokines and chemokines in immunomodulation, we propose that TAM-derived cytokines and chemokines govern the cancer-promoting immune responses in the TME and offer a new immunotherapeutic option for lung cancer treatment.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Abstract
Interleukin-32 (IL-32) was originally identified in natural killer (NK) cells activated by IL-2 in 1992. Thus, it was named NK cell transcript 4 (NK4) because of its unknown function at that time. The function of IL-32 has been elucidated over the last decade. IL-32 is primarily considered to be a booster of inflammatory reactions because it is induced by pro-inflammatory cytokines and stimulates the production of those cytokines and vice versa. Therefore, many studies have been devoted to studying the roles of IL-32 in inflammation-associated cancers, including gastric, colon cancer, and hepatocellular carcinoma. At the same time, roles of IL-32 have also been discovered in other cancers. Collectively, IL-32 fosters the tumor progression by nuclear factor-κB (NF-κB)-mediated cytokines and metalloproteinase production, as well as stimulation of differentiation into immunosuppressive cell types in some cancer types. However, it is also able to induce tumor cell apoptosis and enhance NK and cytotoxic T cell sensitivity in other cancer types. In this review, we will address the function of each IL-32 isoform in different cancer types studied to date, and suggest further strategies to comprehensively elucidate the roles of IL-32 in a context-dependent manner.
Collapse
Affiliation(s)
- Sora Han
- Research Institute for Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
24
|
Interplay between thyroid cancer cells and macrophages: effects on IL-32 mediated cell death and thyroid cancer cell migration. Cell Oncol (Dordr) 2019; 42:691-703. [DOI: 10.1007/s13402-019-00457-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
|
25
|
Zhai JM, An YH, Wang W, Fan YG, Yao GL. IL-32 expression indicates unfavorable prognosis in patients with colon cancer. Oncol Lett 2019; 17:4655-4660. [PMID: 30988822 DOI: 10.3892/ol.2019.10136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/30/2018] [Indexed: 01/05/2023] Open
Abstract
Recently, interleukin (IL)-32 has been demonstrated to represent a novel biomarker for evaluating the prognosis of patients with gastric and lung cancer; however, its clinical significance in colon cancer remains unknown. In the present study, the IL-32 expression in 60 patients with colon cancer was examined with an immunohistochemistry assay. IL-32 expression was determined in 37 (61.67%) patients with colon cancer. Additionally, IL-32 was associated with tumor size and Dukes' stage. By using the Kaplan-Meier method, patients with positive IL-32 expression had shorter overall survival time, compared with those with negative IL-32 expression. Multivariate analysis indicated that IL-32 could be an independent prognostic factor in patients with colon cancer; therefore, IL-32 may be a novel prognostic biomarker and therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Jing-Ming Zhai
- Department of General Surgery, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yan-Hui An
- Department of General Surgery, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yong-Gang Fan
- Department of General Surgery, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Guo-Liang Yao
- Department of General Surgery, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
26
|
Yan H, Dong M, Liu X, Shen Q, He D, Huang X, Zhang E, Lin X, Chen Q, Guo X, Chen J, Zheng G, Wang G, He J, Yi Q, Cai Z. Multiple myeloma cell-derived IL-32γ increases the immunosuppressive function of macrophages by promoting indoleamine 2,3-dioxygenase (IDO) expression. Cancer Lett 2019; 446:38-48. [PMID: 30660652 DOI: 10.1016/j.canlet.2019.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022]
Abstract
The interaction of multiple myeloma (MM) cells with macrophages (MΦs) contributes to the pathophysiology of MM. We previously showed that IL-32 is overexpressed in MM patients. The present study was designed to explore the clinical significance of IL-32 in MM and to further elucidate the mechanisms underlying the IL-32-mediated immune function of MΦs. Our results showed that high IL-32 expression in MM patients was associated with more advanced clinical stage. RNA-sequencing revealed that IL-32γ significantly induced the production of the immunosuppressive molecule indoleamine 2,3-dioxygenase (IDO) in MΦs, and this effect was verified by qRT-PCR, western blotting, and immunofluorescence. Furthermore, MM cells with IL-32-knockdown showed a reduced ability to promote IDO expression. As a binding protein for IL-32, proteinase 3 (PR3) was universally expressed on the surfaces of MΦs, and knockdown of PR3 or inhibition of the STAT3 and NF-κB pathways hindered the IL-32γ-mediated stimulation of IDO expression. Finally, IDO-positive IL-32γ-educated MΦs inhibited CD4+ T cell proliferation and IL-2, IFN-γ, and TNF-α production. Taken together, our results indicate that IL-32γ derived from MM cells promotes the immunosuppressive function of MΦs and is a potential target for MM treatment.
Collapse
Affiliation(s)
- Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Dong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinling Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Shen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gang Wang
- Department of Hematology, People's Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Institute of Hematology, Zhejiang University, China.
| |
Collapse
|
27
|
Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling. Cancer Lett 2018; 442:320-332. [PMID: 30391782 DOI: 10.1016/j.canlet.2018.10.015] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022]
Abstract
Metastasis is the leading cause of breast cancer-related deaths. Cancer-associated fibroblasts (CAFs), the predominant stromal cell type in the breast tumour microenvironment, may contribute to cancer progression through interaction with tumour cells. Nonetheless, little is known about the details of the underlying mechanism. Here we found that interaction of interleukin 32 (IL32) with integrin β3 (encoded by ITGB3; a member of the integrin family) mediating the cross-talk between CAFs and breast cancer cells plays a crucial role in CAF-induced breast tumour invasiveness. IL32, an 'RGD' motif-containing cytokine, was found to be abundantly expressed in CAFs. Integrin β3 turned out to be up-regulated in breast cancer cells during epithelial-mesenchymal transition (EMT). CAF-derived IL32 specifically bound to integrin β3 through the RGD motif, thus activating intracellular downstream p38 MAPK signalling in breast cancer cells. This signalling increased the expression of EMT markers (fibronectin, N-cadherin, and vimentin) and promoted tumour cell invasion. Counteracting IL32 activity, a knockdown of IL32 or integrin β3 led to specific inactivation of p38 MAPK signalling in tumour cells. Blockage of the p38 MAPK pathway also diminished IL32-induced expression of EMT markers and breast cancer cell invasion and metastasis. Thus, our data indicate that CAF-secreted IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling.
Collapse
|
28
|
Damen MSMA, Schraa K, Tweehuysen L, den Broeder AA, Netea MG, Popa CD, Joosten LAB. Genetic variant in IL-32 is associated with the ex vivo cytokine production of anti-TNF treated PBMCs from rheumatoid arthritis patients. Sci Rep 2018; 8:14050. [PMID: 30232372 PMCID: PMC6145899 DOI: 10.1038/s41598-018-32485-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
About 60% of RA patients don't achieve good response with biological disease-modifying anti-rheumatic drugs bDMARD treatment (including TNF inhibitors, TNFi's). Previously, a link between TNFα and interleukin (IL)-32 was reported in RA. However, the exact mechanism linking IL-32 to response to treatment as not been studied yet. Therefore, we explored the influence of a promoter single nucleotide polymorphism (SNP) rs4786370 in IL-32 on clinical responsiveness to TNFi's in RA patients, potentially serving as new biomarker in RA. Expression of pro-inflammatory cytokines by peripheral mononuclear cells (PBMCs) from RA patients and healthy individuals were studied. Moreover, "ex vivo response" and clinical response to anti-TNFα therapy (etanercept, adalimumab) were measured and stratified for the IL-32 SNP. Higher IL-32 protein production was observed in RA patients. Additionally, patients bearing the CC genotype showed higher IL-32 protein and cytokine expression. DAS28 was independent of the promoter SNP, however, the "ex vivo" cytokine response was not. IL-32 mRNA and protein production was higher in RA patients, with a trend towards higher concentrations in patients bearing the CC genotype. Furthermore, genotype dependent IL-1 beta production might predict clinical response to etanercept/adalimumab. This indicates that IL-32 could play a role in predicting response to treatment in RA.
Collapse
Affiliation(s)
- Michelle S M A Damen
- Department of Internal Medicine, Radboud Centre for Infectious Diseases (RCI) and Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Division of Immunobiology, Cincinnati Childrens Hospital Medical Center, Cincinnati Ohio, United States of America
| | - Kiki Schraa
- Department of Internal Medicine, Radboud Centre for Infectious Diseases (RCI) and Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lieke Tweehuysen
- Department of Rheumatology, Sint Maartenskliniek, Nijmegen, The Netherlands
| | | | - Mihai G Netea
- Department of Internal Medicine, Radboud Centre for Infectious Diseases (RCI) and Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Calin D Popa
- Department of Rheumatology, Sint Maartenskliniek, Nijmegen, The Netherlands.,Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Centre for Infectious Diseases (RCI) and Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Yan H, He D, Huang X, Zhang E, Chen Q, Xu R, Liu X, Zi F, Cai Z. Role of interleukin-32 in cancer biology. Oncol Lett 2018; 16:41-47. [PMID: 29930712 DOI: 10.3892/ol.2018.8649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Interleukin-32 (IL-32), a novel proinflammatory cytokine, is highly expressed in various cancer tissues and in established cancer cell lines. IL-32 has been revealed to serve a crucial role in human cancer development, including tumour initiation, proliferation and maintenance. The expression of IL-32 is regulated by numerous factors, including genetic variations, hypoxia and acidosis in the tumour microenvironment. Understanding the underlying mechanisms of IL-32 expression and its function are critical for the discovery of novel therapeutic strategies that target IL-32. This is a review of the current literature on the regulation and function of IL-32 in cancer progression, focusing on the molecular pathways linking IL-32 and tumour development.
Collapse
Affiliation(s)
- Haimeng Yan
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Donghua He
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xi Huang
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Enfan Zhang
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qingxiao Chen
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ruyi Xu
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinling Liu
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Fuming Zi
- Department of Haematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Zhen Cai
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
30
|
Kwon OC, Kim S, Hong S, Lee CK, Yoo B, Chang EJ, Kim YG. Role of IL-32 Gamma on Bone Metabolism in Autoimmune Arthritis. Immune Netw 2018; 18:e20. [PMID: 29984038 PMCID: PMC6026691 DOI: 10.4110/in.2018.18.e20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
IL-32 acts as a pro-inflammatory cytokine by inducing the synthesis of inflammatory molecules as well as promoting the morphological changes involved in the transformation of monocytes into osteoclasts (OCs). Evaluation of the functions of IL-32 has mainly focused on its inflammatory properties, such as involvement in the pathogenesis of various autoimmune diseases. Recently, IL-32 was shown to be involved in bone metabolism, in which it promotes the differentiation and activation of OCs and plays a key role in bone resorption in inflammatory conditions. IL-32γ also regulates bone formation in conditions such as ankylosing spondylitis and osteoporosis. In this review, we summarize the results of recent studies on the role of IL-32γ in bone metabolism in inflammatory arthritis.
Collapse
Affiliation(s)
- Oh Chan Kwon
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soohyun Kim
- Department of Biomedical Science and Technology, Konkuk University, Seoul 05066, Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
31
|
Ternette N, Olde Nordkamp MJM, Müller J, Anderson AP, Nicastri A, Hill AVS, Kessler BM, Li D. Immunopeptidomic Profiling of HLA-A2-Positive Triple Negative Breast Cancer Identifies Potential Immunotherapy Target Antigens. Proteomics 2018; 18:e1700465. [PMID: 29786170 PMCID: PMC6032843 DOI: 10.1002/pmic.201700465] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/26/2018] [Indexed: 11/06/2022]
Abstract
The recent development in immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cells in the treatment of cancer has not only demonstrated the potency of utilizing T-cell reactivity for cancer therapy, but has also highlighted the need for developing new approaches to discover targets suitable for such novel therapeutics. Here we analyzed the immunopeptidomes of six HLA-A2-positive triple negative breast cancer (TNBC) samples by nano-ultra performance liquid chromatography tandem mass spectrometry (nUPLC-MS2 ). Immunopeptidomic profiling identified a total of 19 675 peptides from tumor and adjacent normal tissue and 130 of the peptides were found to have higher abundance in tumor than in normal tissues. To determine potential therapeutic target proteins, we calculated the average tumor-associated cohort coverage (aTaCC) that represents the percentage coverage of each protein in this cohort by peptides that had higher tumoral abundance. Cofilin-1 (CFL-1), interleukin-32 (IL-32), proliferating cell nuclear antigen (PCNA), syntenin-1 (SDCBP), and ribophorin-2 (RPN-2) were found to have the highest aTaCC scores. We propose that these antigens could be evaluated further for their potential as targets in breast cancer immunotherapy and the small cohort immunopeptidomics analysis technique could be used in a wide spectrum of target discovery. Data are available via ProteomeXchange with identifier PXD009738.
Collapse
Affiliation(s)
- Nicola Ternette
- The Jenner InstituteUniversity of OxfordOxfordOX3 7FZUK
- Target Discovery InstituteNuffield Department of MedicineOxfordOX3 7FZUK
| | - Marloes J. M. Olde Nordkamp
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DUUK
| | - Julius Müller
- The Jenner InstituteUniversity of OxfordOxfordOX3 7FZUK
| | - Amanda P. Anderson
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DUUK
| | - Annalisa Nicastri
- Target Discovery InstituteNuffield Department of MedicineOxfordOX3 7FZUK
| | | | | | - Demin Li
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DUUK
| |
Collapse
|
32
|
Abstract
Interleukin 32 (IL-32) is a proinflammatory cytokine involved in the development of several diseases, including cancer. IL-32 is a rather peculiar cytokine because its protein structure does not show resemblance with any of the known cytokines, and an IL-32 receptor to facilitate extracellular signaling has not yet been identified. Thus far, 9 isoforms of IL-32 have been described, all of which show differences in terms of effects and in potency to elicit a specific effect. Since the first report of IL-32 in 2005, there is increasing evidence that IL-32 plays an important role in the pathophysiology of both hematologic malignancies and solid tumors. Some IL-32 isoforms have been linked to disease outcome and were shown to positively influence tumor development and progression in various different malignancies, including gastric, breast and lung cancers. However, there are other reports suggesting a tumor suppressive role for some of IL-32 as well. For example, IL-32γ and IL-32β expression is associated with increased cancer cell death in colon cancer and melanoma, whereas expression of these isoforms is associated with increased invasion and migration in breast cancer cells. Furthermore, IL-32 isoforms α, β and γ also play an important role in regulating the anti-tumor immune response, thus also influencing tumor progression. In this review, we provide an overview of the role of IL-32 and its different isoforms in carcinogenesis, invasion and metastasis, angiogenesis and regulation of the anti-tumor immune response.
Collapse
|
33
|
Lee J, Kim KE, Cheon S, Song JH, Houh Y, Kim TS, Gil M, Lee KJ, Kim S, Kim D, Hur DY, Yang Y, Bang SI, Park HJ, Cho D. Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin. Oncotarget 2018; 7:65825-65836. [PMID: 27589563 PMCID: PMC5323195 DOI: 10.18632/oncotarget.11669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/20/2016] [Indexed: 01/11/2023] Open
Abstract
Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma.
Collapse
Affiliation(s)
- Joohyun Lee
- Department of Life Systems, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Soyoung Cheon
- Department of Life Systems, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Ju Han Song
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Younkyung Houh
- Department of Life Systems, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minchan Gil
- Department of Cosmetic Sciences, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Seonghan Kim
- Department of Anatomy, Inje University College of Medicine, Busan, 614-735, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan, 614-735, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy, Inje University College of Medicine, Busan, 614-735, Republic of Korea
| | - Yoolhee Yang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Sa Ik Bang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Hyun Jeong Park
- Department of Dermatology, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul 150-713, Republic of Korea
| | - Daeho Cho
- Department of Life Systems, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea.,Department of Cosmetic Sciences, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea
| |
Collapse
|
34
|
Bhat S, Gardi N, Hake S, Kotian N, Sawant S, Kannan S, Parmar V, Desai S, Dutt A, Joshi NN. Impact of intra-tumoral IL17A and IL32 gene expression on T-cell responses and lymph node status in breast cancer patients. J Cancer Res Clin Oncol 2017; 143:1745-1756. [PMID: 28470472 PMCID: PMC5863950 DOI: 10.1007/s00432-017-2431-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Pro-inflammatory cytokines such as Interleukin-17A (IL17A) and Interleukin-32 (IL32), known to enhance natural killer and T cell responses, are also elevated in human malignancies and linked to poor clinical outcomes. To address this paradox, we evaluated relation between IL17A and IL32 expression and other inflammation- and T cell response-associated genes in breast tumors. METHODS TaqMan-based gene expression analysis was carried out in seventy-eight breast tumors. The association between IL17A and IL32 transcript levels and T cell response genes, ER status as well as lymph node status was also examined in breast tumors from TCGA dataset. RESULTS IL17A expression was detected in 32.7% ER-positive and 84.6% ER-negative tumors, with higher expression in the latter group (26.2 vs 7.1-fold, p < 0.01). ER-negative tumors also showed higher expression of IL32 as opposed to ER-positive tumors (8.7 vs 2.5-fold, p < 0.01). Expression of both IL17A and IL32 genes positively correlated with CCL5, GNLY, TBX21, IL21 and IL23 transcript levels (p < 0.01). Amongst ER-positive tumors, higher IL32 expression significantly correlated with lymph node metastases (p < 0.05). Conversely, in ER-negative subtype, high IL17A and IL32 expression was seen in patients with negative lymph node status (p < 0.05). Tumors with high IL32 and IL17A expression showed higher expression of TH1 response genes studied, an observation validated by similar analysis in the TCGA breast tumors (n=1041). Of note, these tumors were characterized by low expression of a potentially immunosuppressive isoform of IL32 (IL32γ). CONCLUSION These results suggest that high expression of both IL17A and IL32 leads to enhancement of T cell responses. Our study, thus, provides basis for the emergence of strong T cell responses in an inflammatory milieu that have been shown to be associated with better prognosis in ER-negative breast cancer.
Collapse
Affiliation(s)
- Shreyas Bhat
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Nilesh Gardi
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Sujata Hake
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Nirupama Kotian
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sharada Sawant
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sadhana Kannan
- Epidemiology and Clinical Trials Unit, Clinical Research Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Vani Parmar
- Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Sangeeta Desai
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Amit Dutt
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Narendra N Joshi
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.
| |
Collapse
|
35
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Ortega VA, Hernández-Lizoain JL, Baixauli J, Becerril S, Rotellar F, Valentí V, Moncada R, Silva C, Salvador J, Frühbeck G. IL-32α-induced inflammation constitutes a link between obesity and colon cancer. Oncoimmunology 2017; 6:e1328338. [PMID: 28811968 DOI: 10.1080/2162402x.2017.1328338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Growing evidence indicates that adipose tissue inflammation is an important mechanism whereby obesity promotes cancer risk and progression. Since IL-32 is an important inflammatory and remodeling factor in obesity and is also related to colon cancer (CC) development, the aim of this study was to explore whether IL-32 could function as an inflammatory factor in human obesity-associated CC promoting a microenvironment favorable for tumor growth. Samples obtained from 84 subjects [27 lean (LN) and 57 obese (OB)] were used in the study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (49 without CC and 35 with CC). We show, for the first time, that obesity (p = 0.009) and CC (p = 0.026) increase circulating concentrations of IL-32α. Consistently, we further showed that gene (p < 0.05) and protein (p < 0.01) expression levels of IL-32α were upregulated in VAT from obese patients with CC. Additionally, we revealed that IL32 expression levels are enhanced by hypoxia and inflammation-related factors in HT-29 CC cells as well as that IL-32α is involved in the upregulation of inflammation (IL8, TNF, and CCL2) and extracellular matrix (ECM) remodeling (SPP1 and MMP9) genes in HT-29 cancer cells. Additionally, we also demonstrate that the adipocyte-conditioned medium obtained from obese patients stimulates (p < 0.05) the expression of IL32 in human CC cells. These findings provide evidence of the potential involvement of IL-32 in the development of obesity-associated CC as a pro-inflammatory and ECM remodeling cytokine.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Victor A Ortega
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Fernando Rotellar
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain.,Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain.,Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
36
|
Xu DH, Zhu Z, Xiao H, Wakefield MR, Bai Q, Nicholl MB, Ding VA, Fang Y. Unveil the mysterious mask of cytokine-based immunotherapy for melanoma. Cancer Lett 2017; 394:43-51. [PMID: 28254411 DOI: 10.1016/j.canlet.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/04/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
Melanoma is the leading cause of death among all skin cancers and its incidence continues to rise rapidly worldwide in the past decades. The available treatment options for melanoma remain limited despite extensive clinical research. Melanoma is an immunogenic tumor and great advances in immunology in recent decades allow for the development of immunotherapeutic agents against melanoma. In recent years, immunotherapy utilizing cytokines has been particularly successful in certain cancers and holds promise for patients with advanced melanoma. In this review, an overview of the current status and emerging perspectives on cytokine immunotherapy for melanoma are discussed in details. Such a study will be helpful to unveil the mysterious mask of cytokine-based immunotherapy for melanoma.
Collapse
Affiliation(s)
- Dixon H Xu
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | - Vivi A Ding
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
37
|
Abstract
Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. IL-32 gene consists of eight small exons, and IL-32 mRNA has nine alternative spliced isoforms, and was thought to be secreted because it contains an internal signal sequence and lacks a transmembrane region. IL-32 is initially expressed selectively in activated T cells by mitogen and activated NK cells and their expression is strongly augmented by microbes, mitogens, and other cytokines. The IL-32 is induced mainly by pathogens and pro-inflammatory cytokines, but IL-32 is more prominent in immune cells than in non-immune tissues. The IL-32 transcript is expressed in various human tissues and organs such as the spleen, thymus, leukocyte, lung, small intestine, colon, prostate, heart, placenta, liver, muscle, kidney, pancreas, and brain. Cytokines are critical components of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and a variety of other physiological functions. Earlier studies have demonstrated that IL-32 regulates cell growth, metabolism and immune regulation and is therefore involved in the pathologic regulator or protectant of inflammatory diseases. Previous studies defined that IL-32 is upregulated in the patients with several inflammatory diseases, and is induced by inflammatory responses. However, several reports suggested that IL-32 is downregulated in several inflammatory diseases including asthma, HIV infection disease, neuronal diseases, metabolic disorders, experimental colitis and metabolic disorders. IL-32 is also involved in various cancer malignancies including renal cancer, esophageal cancer and hepatocellular carcinoma, lung cancer, gastric cancer, breast cancer, pancreatic cancer, lymphoma, osteosarcoma, breast cancer, colon cancer and thyroid carcinoma. Other studies suggested that IL-32 decreases tumor development including cervical cancer, colon cancer and prostate cancer, melanoma, pancreatic cancer, liver cancer and chronic myeloid leukemia. Nevertheless, review articles that discuss the roles and its mechanism of IL-32 isoforms focusing on the therapeutic approaches have not yet been reported. In this review article, we will discuss recent findings regarding IL-32 in the development of diseases and further discuss therapeutic approaches targeting IL-32. Moreover, we will suggest that IL-32 could be the target of several diseases and the therapeutic agents for targeting IL-32 may have potential beneficial effects for the treatment of inflammatory diseases and cancers. Future research should open new avenues for the design of novel therapeutic approaches targeting IL-32.
Collapse
Affiliation(s)
- Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Chong Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dong Hun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea; Department of Pediatrics, Children's Heart Research and Outcomes (HeRO) Center, Emory University School of Medicine, 2015 Uppergate Drive, Lab 260, Atlanta, GA, 30322, United States
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea.
| |
Collapse
|
38
|
Lee EJ, Choi B, Hwang ES, Chang EJ. Interleukin-32 Gamma as a New Face in Inflammatory Bone Diseases. JOURNAL OF RHEUMATIC DISEASES 2017. [DOI: 10.4078/jrd.2017.24.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eui-Seung Hwang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Clifford HW, Cassidy AP, Vaughn C, Tsai ES, Seres B, Patel N, O'Neill HL, Hewage E, Cassidy JW. Profiling lung adenocarcinoma by liquid biopsy: can one size fit all? Cancer Nanotechnol 2016; 7:10. [PMID: 27933110 PMCID: PMC5119837 DOI: 10.1186/s12645-016-0023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
Background Cancer is first and foremost a disease of the genome. Specific genetic signatures within a tumour are prognostic of disease outcome, reflect subclonal architecture and intratumour heterogeneity, inform treatment choices and predict the emergence of resistance to targeted therapies. Minimally invasive liquid biopsies can give temporal resolution to a tumour’s genetic profile and allow the monitoring of treatment response through levels of circulating tumour DNA (ctDNA). However, the detection of ctDNA in repeated liquid biopsies is currently limited by economic and time constraints associated with targeted sequencing. Methods Here we bioinformatically profile the mutational and copy number spectrum of The Cancer Genome Network’s lung adenocarcinoma dataset to uncover recurrently mutated genomic loci. Results We build a panel of 400 hotspot mutations and show that the coverage extends to more than 80% of the dataset at a median depth of 8 mutations per patient. Additionally, we uncover several novel single-nucleotide variants present in more than 5% of patients, often in genes not commonly associated with lung adenocarcinoma. Conclusion With further optimisation, this hotspot panel could allow molecular diagnostics laboratories to build curated primer banks for ‘off-the-shelf’ monitoring of ctDNA by droplet-based digital PCR or similar techniques, in a time- and cost-effective manner.
Collapse
Affiliation(s)
- Harry W Clifford
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,St. Edmund Hall, University of Oxford, Queen's Lane, Oxford, UK
| | - Amy P Cassidy
- NHS Greater Glasgow and Clyde, University of Glasgow, Glasgow, UK
| | - Courtney Vaughn
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Evaline S Tsai
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Peterhouse, University of Cambridge, Trumpington Street, Cambridge, UK
| | - Bianka Seres
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nirmesh Patel
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Division of Cancer Studies, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Emil Hewage
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK
| | - John W Cassidy
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Queens' College, University of Cambridge, Silver Street, Cambridge, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Jung YY, Katila N, Neupane S, Shadfar S, Ojha U, Bhurtel S, Srivastav S, Son DJ, Park PH, Yoon DY, Hong JT, Choi DY. Enhanced dopaminergic neurotoxicity mediated by MPTP in IL-32β transgenic mice. Neurochem Int 2016; 102:79-88. [PMID: 27956238 DOI: 10.1016/j.neuint.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by prominent loss of the nigral dopaminergic neurons and motor symptoms, such as resting tremor and bradykinesia. Evidence suggests that neuroinflammation may play a critical role in PD pathogenesis. Interleukin (IL)-32 is a newly-identified proinflammatory cytokine, which regulates innate and adaptive immune responses by activating p38 MAPK and NF-κB signaling pathways. The cytokine has been implicated in cancers and autoimmune, inflammatory, and infectious diseases. In this study, we attempted to identify the effects of IL-32β on dopaminergic neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), using IL-32β transgenic mice. Male wild type and IL-32β transgenic mice received intraperitoneal injections of vehicle or MPTP (15 mg/kg × 4). Immunohistochemistry showed that overexpression of IL-32β significantly increased MPTP-mediated loss of dopaminergic neurons in the substantia nigra and deletion of tyrosine hydroxylase-positive fibers in the striatum. Dopamine depletion in the striatum and deficit in locomotor activity were enhanced in IL-32β transgenic mice. These results were accompanied by higher neuroinflammatory responses in the brains of transgenic mice. Finally, we found that IL-32β exaggerated MPTP-mediated activation of p38 MAPK and JNK pathways, which have been shown to be involved in MPTP neurotoxicity. These results suggest that IL-32β exacerbates MPTP neurotoxicity through enhanced neuroinflammatory responses.
Collapse
Affiliation(s)
- Yu Yeon Jung
- Department of Dental Hygiene, Gwang Yang Health College, Gwangyang 57764, Republic of Korea.
| | - Nikita Katila
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sabita Neupane
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sina Shadfar
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Uttam Ojha
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sunil Bhurtel
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sunil Srivastav
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Dong Ju Son
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
41
|
Wang Y, Yang Y, Zhu Y, Li L, Chen F, Zhang L. Polymorphisms and expression of IL-32: impact on genetic susceptibility and clinical outcome of lung cancer. Biomarkers 2016; 22:165-170. [PMID: 27775437 DOI: 10.1080/1354750x.2016.1252956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yanwen Wang
- Laboratory of Pathology, Department of Pathology, West China Hospital Sichuan University, Chengdu, P.R. China
| | - Yongfeng Yang
- Laboratory of Pathology, Department of Pathology, West China Hospital Sichuan University, Chengdu, P.R. China
| | - Yihan Zhu
- Laboratory of Pathology, Department of Pathology, West China Hospital Sichuan University, Chengdu, P.R. China
| | - Li Li
- Laboratory of Pathology, Department of Pathology, West China Hospital Sichuan University, Chengdu, P.R. China
| | - Fei Chen
- Laboratory of Pathology, Department of Pathology, West China Hospital Sichuan University, Chengdu, P.R. China
| | - Li Zhang
- Laboratory of Pathology, Department of Pathology, West China Hospital Sichuan University, Chengdu, P.R. China
| |
Collapse
|
42
|
Chen J, Wang S, Su J, Chu G, You H, Chen Z, Sun H, Chen B, Zhou M. Interleukin-32α inactivates JAK2/STAT3 signaling and reverses interleukin-6-induced epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer cells. Onco Targets Ther 2016; 9:4225-37. [PMID: 27471397 PMCID: PMC4948719 DOI: 10.2147/ott.s103581] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-32 is a newly discovered cytokine that has multifaceted roles in inflammatory bowel disease, cancer, and autoimmune diseases and participates in cell apoptosis, cancer cell growth inhibition, accentuation of inflammation, and angiogenesis. Here, we investigated the potential effects of IL-32α on epithelial-mesenchymal transition, metastasis, and invasion, and the JAK2/STAT3 signaling pathway in pancreatic cancer cells. The human pancreatic cancer cell lines PANC-1 and SW1990 were used. Epithelial-mesenchymal transition-related markers, including E-cadherin, N-cadherin, Vimentin, Snail, and Zeb1, as well as extracellular matrix metalloproteinases (MMPs), including MMP2, MMP7, and MMP9, were detected by immunofluorescence, Western blotting, and real-time polymerase chain reaction. The activation of JAK2/STAT3 signaling proteins was detected by Western blotting. Wound healing assays, real-time polymerase chain reaction, and Western blotting were performed to assess cell migration and invasion. The effects of IL-32α on the IL-6-induced activation of JAK2/STAT3 were also evaluated. In vitro, we found that IL-32α inhibits the expressions of the related markers N-cadherin, Vimentin, Snail, and Zeb1, as well as JAK2/STAT3 proteins, in a dose-dependent manner in pancreatic cancer cell lines. Furthermore, E-cadherin expression was increased significantly after IL-32α treatment. IL-32α downregulated the expression of MMPs, including MMP2, MMP7, and MMP9, and decreased wound healing in pancreatic cancer cells. These consistent changes were also found in IL-6-induced pancreatic cancer cells following IL-32α treatment. This study showed that reversion of epithelial-mesenchymal transition, inhibition of invasiveness and metastasis, and activation of the JAK2/STAT3 signaling pathway could be achieved through the application of exogenous IL-32α.
Collapse
Affiliation(s)
- Jingfeng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou; Department of Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui
| | - Silu Wang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Jiadong Su
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Guanyu Chu
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Heyi You
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Zongjing Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Hongwei Sun
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou; Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| |
Collapse
|
43
|
Ohmatsu H, Humme D, Gonzalez J, Gulati N, Möbs M, Sterry W, Krueger JG. IL-32 induces indoleamine 2,3-dioxygenase +CD1c + dendritic cells and indoleamine 2,3-dioxygenase +CD163 + macrophages: Relevance to mycosis fungoides progression. Oncoimmunology 2016; 6:e1181237. [PMID: 28344860 PMCID: PMC5353917 DOI: 10.1080/2162402x.2016.1181237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022] Open
Abstract
Mycosis fungoides (MF) progresses from patch to tumor stage by expansion of malignant T-cells that fail to be controlled by protective immune mechanisms. In this study, we focused on IL-32, a cytokine, highly expressed in MF lesions. Depending on the other cytokines (IL-4, GM-CSF) present during in vitro culture of healthy volunteers' monocytes, IL-32 increased the maturation of CD11c+ myeloid dendritic cells (mDC) and/or CD163+ macrophages, but IL-32 alone showed a clear ability to promote dendritic cell (DC) differentiation from monocytes. DCs matured by IL-32 had the phenotype of skin-resident DCs (CD1c+), but more importantly, also had high expression of indoleamine 2,3-dioxygenase. The presence of DCs with these markers was demonstrated in MF skin lesions. At a molecular level, indoleamine 2,3-dioxygenase messenger RNA (mRNA) levels in MF lesions were higher than those in healthy volunteers, and there was a high correlation between indoleamine 2,3-dioxygenase and IL-32 expression. In contrast, Foxp3 mRNA levels decreased from patch to tumor stage. Increasing expression of IL-10 across MF lesions was highly correlated with IL-32 and indoleamine 2,3-dioxygenase, but not with Foxp3 expression. Thus, IL-32 could contribute to progressive immune dysregulation in MF by directly fostering development of immunosuppressive mDC or macrophages, possibly in association with IL-10.
Collapse
Affiliation(s)
- Hanako Ohmatsu
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| | - Daniel Humme
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - Juana Gonzalez
- Rockefeller University Center for Clinical and Translational Science , New York, NY, USA
| | - Nicholas Gulati
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| | - Markus Möbs
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| |
Collapse
|
44
|
Abstract
There have been few studies concerning the cytokine profiles in gastric mucosa of Helicobacter pylori-infected patients with normal mucosa, chronic gastritis, and gastric carcinoma (GAC).In the present study, we aimed to elucidate the genomic expression levels and immune pathological roles of cytokines-interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, transforming growth factor (TGF)-β, IL-17A, IL-32-in H pylori-infected patients with normal gastric mucosa (NGM; control), chronic active gastritis (CAG), and GAC. Genomic expression levels of these cytokines were assayed by real-time PCR analysis in gastric biopsy specimens obtained from 93 patients.We found that the genomic expression levels of IFN-γ, TNF-α, IL-6, IL-10, IL-17A mRNA were increased in the CAG group and those of TNF-α, IL-6, IL-10, IL-17A, TGF-β mRNA were increased in the GAC group with reference to H pylori-infected NGM group.This study is on the interest of cytokine profiles in gastric mucosa among individuals with normal, gastritis, or GAC. Our findings suggest that the immune response of gastric mucosa to infection of H pylori differs from patient to patient. For individual therapy, levels of genomic expression of IL-6 or other cytokines may be tracked in patients.
Collapse
Affiliation(s)
- Derya Kivrak Salim
- From the Department of Medical Oncology (DKS), Faculty of Medicine, Akdeniz University, Antalya; Faculty of Health Sciences (MS), Kahramanmaras Sutcu Imam University, Kahramanmaras; Department of Microbiology (SK); and Department of Gastroenterology (HA, IS), Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | | | | | | |
Collapse
|
45
|
Nicholl MB, Chen X, Qin C, Bai Q, Zhu Z, Davis MR, Fang Y. IL-32α has differential effects on proliferation and apoptosis of human melanoma cell lines. J Surg Oncol 2016; 113:364-9. [DOI: 10.1002/jso.24142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael B. Nicholl
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
- South Texas Veterans Health Care System; San Antonio Texas
| | - Xuhui Chen
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
- Luohu Hospital; Shenzhen China
| | - Chenglu Qin
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
- Luohu Hospital; Shenzhen China
| | - Qian Bai
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
| | - Ziwen Zhu
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
| | - Matthew R. Davis
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
| | - Yujiang Fang
- Ellis Fischel Cancer Center; University of Missouri School of Medicine; Columbia Missouri
- Des Moines University; Des Moines Iowa
| |
Collapse
|
46
|
Erturk K, Tastekin D, Serilmez M, Bilgin E, Bozbey HU, Vatansever S. Clinical significance of serum interleukin-29, interleukin-32, and tumor necrosis factor alpha levels in patients with gastric cancer. Tumour Biol 2016; 37:405-12. [PMID: 26219901 DOI: 10.1007/s13277-015-3829-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/20/2015] [Indexed: 01/11/2023] Open
Abstract
Many studies suggested that cytokines interleukin (IL)-29, IL-32, and tumor necrosis factor alpha (TNF-α) are implicated in the pathogenesis of malignancies. The purpose of this study was to determine the clinical significance of the serum levels of IL-29, IL-32, and TNF-α in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. The median age at diagnosis was 59.5 years (range 32-82 years). Tumor localization of the majority of the patients was antrum (n = 42, 72.4 %), and tumor histopathology of the majority of the patients was diffuse (n = 43, 74.1 %). The majority of the patients had stage IV disease (n = 41, 70.7 %). Thirty-six (62.1 %) patients had lymph node involvement. The median follow-up time was 66 months (range 1 to 97.2 months). The baseline serum IL-29 concentrations were not different between patients and controls (p = 0.627). The baseline serum IL-32 and TNF-α concentrations of the GC patients were significantly higher (for IL-32, p = 0.014; for TNF-α, p = 0.001). Gender, localization, histopathology, tumor, and lymph node involvement were not found to be correlated with serum IL-29, IL-32, and TNF-α concentrations (p > 0.05). Patients without metastasis (p = 0.01) and patients who responded to chemotherapy (p = 0.04) had higher serum IL-29 concentrations. Patients older than 60 years had higher serum IL-32 (p = 0.002). Serum IL-29, IL-32, and TNF-α levels were not associated with outcome (p = 0.30, p = 0.51, and p = 0.41, respectively). In conclusion, serum levels of IL-32 and TNF-α may be diagnostic markers, and serum IL-29 levels may be associated with good prognosis in patients with GC.
Collapse
Affiliation(s)
- Kayhan Erturk
- Institute of Oncology, Istanbul University, Capa, 34093, Istanbul, Turkey.
| | - Didem Tastekin
- Institute of Oncology, Istanbul University, Capa, 34093, Istanbul, Turkey
| | - Murat Serilmez
- Institute of Oncology, Istanbul University, Capa, 34093, Istanbul, Turkey
| | - Elif Bilgin
- Institute of Oncology, Istanbul University, Capa, 34093, Istanbul, Turkey
| | - Hamza Ugur Bozbey
- Institute of Oncology, Istanbul University, Capa, 34093, Istanbul, Turkey
| | - Sezai Vatansever
- Institute of Oncology, Istanbul University, Capa, 34093, Istanbul, Turkey
| |
Collapse
|
47
|
Heinhuis B, Plantinga TS, Semango G, Küsters B, Netea MG, Dinarello CA, Smit JW, Netea-Maier RT, Joosten LA. Alternatively spliced isoforms of IL-32 differentially influence cell death pathways in cancer cell lines. Carcinogenesis 2015; 37:197-205. [DOI: 10.1093/carcin/bgv172] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/02/2015] [Indexed: 12/14/2022] Open
|
48
|
Piktel E, Niemirowicz K, Wnorowska U, Wątek M, Wollny T, Głuszek K, Góźdź S, Levental I, Bucki R. The Role of Cathelicidin LL-37 in Cancer Development. Arch Immunol Ther Exp (Warsz) 2015; 64:33-46. [PMID: 26395996 PMCID: PMC4713713 DOI: 10.1007/s00005-015-0359-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023]
Abstract
LL-37 is a C-terminal peptide proteolytically released from 18 kDa human cathelicidin protein (hCAP18). Chronic infections, inflammation, tissue injury and tissue regeneration are all linked with neoplastic growth, and involve LL-37 antibacterial and immunomodulatory functions. Such a link points to the possible involvement of LL-37 peptide in carcinogenesis. An increasing amount of evidence suggests that LL-37 can have two different and contradictory effects--promotion or inhibition of tumor growth. The mechanisms are tissue-specific, complex, and depend mostly on the ability of LL-37 to act as a ligand for different membrane receptors whose expression varies on different cancer cells. Overexpression of LL-37 was found to promote development and progression of ovarian, lung and breast cancers, and to suppress tumorigenesis in colon and gastric cancer. This review explores and summarizes the current views on how LL-37 contributes to immunity, pathophysiology and cell signaling involved in malignant tumor growth.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Marzena Wątek
- Holy Cross Oncology Center of Kielce, Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Kielce, Poland
| | | | - Stanisław Góźdź
- The Faculty of Health Sciences of The Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland.
- Department of Physiology, Pathophysiology and Microbiology of Infections, Faculty of Health Sciences of The Jan Kochanowski University in Kielce, Kielce, Poland.
| |
Collapse
|
49
|
Yang Y, Wang Z, Zhou Y, Wang X, Xiang J, Chen Z. Dysregulation of over-expressed IL-32 in colorectal cancer induces metastasis. World J Surg Oncol 2015; 13:146. [PMID: 25889282 PMCID: PMC4414001 DOI: 10.1186/s12957-015-0552-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/16/2015] [Indexed: 11/10/2022] Open
Abstract
Background Interleukin (IL)-32 is a described intracellular pluripotent pro-inflammatory mediator, characterized by the signaling of NF-κB and STAT3. Methods Our study investigated whether IL-32 expression has clinical significance in the metastases of colorectal cancer (CRC). A total of 70 CRC patients were enrolled, 47 cases of which were single CRC organic metastasis lesions while the rest of which were primary CRC lesions (T4NxM0). IL-32 expression was detected by immunohistochemistry, and the correlation between IL-32 expression and CRC metastases was analyzed. Results The positive rates of IL-32 in the CRC organic metastasis group were more severe than those in the primary CRC group (P < 0.05). The positive rate of IL-32 in primary CRC with lymph node metastasis was more severe than that of IL-32 in primary CRC without lymph node metastasis (P < 0.05). Conclusions The level of IL-32 expression could influence the N grade of CRC. Thus, IL-32 expression may stimulate the organic metastasis and the lymph node metastasis of CRC.
Collapse
Affiliation(s)
- Yi Yang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Floor 16, Building 2, 12 Wulumuqizhong Road, Shanghai, 200040, China.
| | - Zihao Wang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Floor 16, Building 2, 12 Wulumuqizhong Road, Shanghai, 200040, China.
| | - Yiming Zhou
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Floor 16, Building 2, 12 Wulumuqizhong Road, Shanghai, 200040, China.
| | - Xiaoxiao Wang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Floor 16, Building 2, 12 Wulumuqizhong Road, Shanghai, 200040, China.
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Floor 16, Building 2, 12 Wulumuqizhong Road, Shanghai, 200040, China.
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Floor 16, Building 2, 12 Wulumuqizhong Road, Shanghai, 200040, China.
| |
Collapse
|
50
|
Zhou Y, Hu Z, Li N, Jiang R. Interleukin-32 stimulates osteosarcoma cell invasion and motility via AKT pathway-mediated MMP-13 expression. Int J Mol Med 2015; 35:1729-33. [PMID: 25846944 DOI: 10.3892/ijmm.2015.2159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
As a pro-inflammatory cytokine, interleukin-32 (IL-32) is reported to play an important role in tumor development and progression. However, its effects on the invasion and motility of osteosarcoma cells remain elusive. The aim of the present study was to determine the molecular mechanisms of IL-32 in osteosarcoma cells using RT-PCR and western blot analysis. The results showed that IL-32 stimulation dose-dependently promoted the invasion and motility of osteosarcoma cells. Knockdown of endogenous IL-32 by siRNA inhibited osteosarcoma cell invasion and motility. Moreover, IL-32 induced the activation of AKT in a time-dependent manner. IL-32 stimulation was also capable of increasing the expression and secretion of matrix metalloproteinase (MMP)-13, which is involved in tumor invasion and metastasis. In addition, blockade of AKT activation suppressed IL-32-mediated invasion, motility and MMP-13 upregulation in osteosarcoma cells. Taken together, our results suggest that IL-32 stimulation promotes the invasion and motility of osteosarcoma cells, possibly via the activation of AKT and the upregulation of MMP-13 expression. Thus, IL-32 may serve as a marker for diagnosis, as well as for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yanhong Zhou
- Department of Clinical Laboratory, The People's Hospital of Liuzhou, Liuzhou 545006, P.R. China
| | - Zhaohui Hu
- Department of Spine Surgery, The People's Hospital of Liuzhou, Liuzhou 545006, P.R. China
| | - Ningning Li
- Department of Spine Surgery, The People's Hospital of Liuzhou, Liuzhou 545006, P.R. China
| | - Renjie Jiang
- Department of Spine Surgery, The People's Hospital of Liuzhou, Liuzhou 545006, P.R. China
| |
Collapse
|