1
|
Nguyen-Alley K, Daniel S, Phillippi DT, Armstrong TD, Johnson B, Ihemeremadu W, Lund AK. Diesel exhaust particle inhalation in conjunction with high-fat diet consumption alters the expression of pulmonary SARS-COV-2 infection pathways, which is mitigated by probiotic treatment in C57BL/6 male mice. Part Fibre Toxicol 2024; 21:40. [PMID: 39343929 PMCID: PMC11439268 DOI: 10.1186/s12989-024-00601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Both exposure to air pollutants and obesity are associated with increased incidence and severity of COVID-19 infection; however, the mechanistic pathways involved are not well-characterized. After being primed by the transmembrane protease serine 2 (TMPRSS2) or furin protease, SARS-CoV-2 uses the angiotensin-converting enzyme (ACE)-2 receptor to enter respiratory epithelial cells. The androgen receptor (AR) is known to regulate both TMPRSS2 and ACE2 expression, and neuropilin-1 (NRP1) is a proposed coreceptor for SARS-CoV-2; thus, altered expression of these factors may promote susceptibility to infection. As such, this study investigated the hypothesis that inhalational exposure to traffic-generated particulate matter (diesel exhaust particulate; DEP) increases the expression of those pathways that mediate SARS-CoV-2 infection and susceptibility, which is exacerbated by the consumption of a high-fat (HF) diet. METHODS Four- to six-week-old male C57BL/6 mice fed either regular chow or a HF diet (HF, 45% kcal from fat) were randomly assigned to be exposed via oropharyngeal aspiration to 35 µg DEP suspended in 35 µl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. Furthermore, as previous studies have shown that probiotic treatment can protect against exposure-related inflammatory outcomes in the lungs, a subset of study animals fed a HF diet were concurrently treated with 0.3 g/day Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS Our results revealed that the expression of ACE2 protein increased with DEP exposure and that TMPRSS2, AR, NRP1, and furin protein expression increased with DEP exposure in conjunction with a HF diet. These DEP ± HF diet-mediated increases in expression were mitigated with probiotic treatment. CONCLUSION These findings suggest that inhalational exposure to air pollutants in conjunction with the consumption of a HF diet contributes to a more susceptible lung environment to SARS-CoV-2 infection and that probiotic treatment could be beneficial as a preventative measure.
Collapse
Affiliation(s)
- Kayla Nguyen-Alley
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Sarah Daniel
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Danielle T Phillippi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Tyler D Armstrong
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Bailee Johnson
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Winston Ihemeremadu
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA.
| |
Collapse
|
2
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
3
|
Shen W, Chen H, Shih C, Samet J, Tong H. Modulatory effects of dietary saturated fatty acids on platelet mitochondrial function following short-term exposure to ambient Particulate Matter (PM 2.5). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:215-226. [PMID: 38111233 DOI: 10.1080/15287394.2023.2292709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) was found to produce vascular injury, possibly by activating platelets within days after exposure. The aim of this study was to investigate the modulatory effects of dietary saturated fatty acids on platelet mitochondrial respiratory parameters following short-term inhalational exposure to PM2.5. A total of 22 healthy male volunteers were recruited from the Research Triangle area of North Carolina. Platelets were isolated from fresh whole blood samples and mitochondrial respiratory parameters were measured using an extracellular flux analyzer. Intake of saturated fat was averaged from multiple 24-hr dietary recalls. Daily ambient PM2.5 concentrations were obtained from ambient air quality monitoring stations. Correlation and ANOVA were used in data analyses, along with the pick-a-point method and the Johnson-Neyman technique for probing moderation. After controlling for age and omega-3 index, the intake of dietary saturated fatty acids after reaching 9.3% or higher of the total caloric intake significantly moderated the associations between PM2.5 exposure and several platelet mitochondrial respiratory parameters. In conclusion, dietary saturated fatty acids above 9.3% of total caloric intake influenced the relationship between short-term PM2.5 exposure and platelet mitochondrial respiration. Further research is needed to understand these associations and their implications for cardiovascular health.
Collapse
Affiliation(s)
- Wan Shen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Food and Nutrition Program, Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH USA
| | - Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Chiahao Shih
- Department of Emergency Medicine, University of Toledo, Toledo, OH, USA
| | - James Samet
- Public Health and Integrated Toxicology Division, US Environmental Protection Agency, Chapel Hill, WA, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, US Environmental Protection Agency, Chapel Hill, WA, USA
| |
Collapse
|
4
|
Kuntic M, Kuntic I, Hahad O, Lelieveld J, Münzel T, Daiber A. Impact of air pollution on cardiovascular aging. Mech Ageing Dev 2023; 214:111857. [PMID: 37611809 DOI: 10.1016/j.mad.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
5
|
Schneider LJ, Santiago I, Johnson B, Stanley AH, Penaredondo B, Lund AK. Histological features of non-alcoholic fatty liver disease revealed in response to mixed vehicle emission exposure and consumption of a high-fat diet in wildtype C57Bl/6 male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115094. [PMID: 37285676 DOI: 10.1016/j.ecoenv.2023.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently plaguing the population at pandemic proportions and is expected to become more prevalent over the next decade. Recent epidemiological studies have demonstrated a correlation between the manifestation of NAFLD and ambient air pollution levels, which is exacerbated by other risk factors, such as diabetes, dyslipidemia, obesity, and hypertension. Exposure to airborne particulate matter has also been associated with inflammation, hepatic lipid accumulation, oxidative stress, fibrosis, and hepatocyte injury. While prolonged consumption of a high-fat (HF) diet is associated with NAFLD, little is known regarding the effects of inhaled traffic-generated air pollution, a ubiquitous environmental pollutant, on the pathogenesis of NAFLD. Therefore, we investigated the hypothesis that exposure to a mixture of gasoline and diesel engine emissions (MVE), coupled with the concurrent consumption of a HF diet, promotes the development of a NAFLD phenotype within the liver. Three-month-old male C57Bl/6 mice were placed on either a low-fat or HF diet and exposed via whole-body inhalation to either filtered (FA) air or MVE (30 µg PM/m3 gasoline engine emissions + 70 µg PM/m3 diesel engine emissions) 6 hr/day for 30 days. Histology revealed mild microvesicular steatosis and hepatocyte hypertrophy in response to MVE exposure alone, compared to FA controls, yielding a classification of "borderline NASH" under the criteria of the modified NAFLD active score (NAS) system. As anticipated, animals on a HF diet exhibited moderate steatosis; however, we also observed inflammatory infiltrates, hepatocyte hypertrophy, and increased lipid accumulation, with the combined effect of HF diet and MVE exposure. Our results indicate that inhalation exposure to traffic-generated air pollution initiates hepatocyte injury and further exacerbates lipid accumulation and hepatocyte injury induced by the consumption of a HF diet, thereby contributing to the progression of NAFLD-related pathologies.
Collapse
Affiliation(s)
- Leah J Schneider
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Isabella Santiago
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Bailee Johnson
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Analana Hays Stanley
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Bea Penaredondo
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
6
|
Xu J, Li S, Yang X, Wang H, Ma L, Shen Y, Yu J. Mechanism of nonylphenol induced gastric inflammation through NF-κB/NLRP3 signaling pathway. Toxicology 2022; 479:153294. [PMID: 35998786 DOI: 10.1016/j.tox.2022.153294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Studies have found that the intake of environmental endocrine disruptors was positively correlated with the occurrence of gastric diseases. The aim of this study was to determine whether nonylphenol (NP) exposure can induce gastric inflammation and whether its mechanism was related to NF-κB/NLRP3 signaling pathway. In vivo, male SD rats were randomly divided into 4 groups (12 rats/group): control group (corn oil), NP low (0.4mg/kg), medium (4mg/kg), and high (40mg/kg) dose groups. After 33 weeks of NP chronic exposure, it was found pathological changes in gastric tissues, increase the release of inflammatory factors, and effects expressions of genes related to the NF-κB/NLRP3 signaling pathway. In vitro, the GES-1 cell experiments, which included four groups: control (0 µmol/L NP), L (2.5 µmol/L NP), M (40 µmol/L NP), and H (60 µmol/L NP), confirmed that NP increased the release of inflammatory factors in the cells, and up-regulated the expression of proteins related to NF-κB/NLRP3 signaling pathway. Furthermore, when pyrrolidinedithiocarbamate ammonium (PDTC) blocked the NF-κB signaling pathway, it was found that the expression of related proteins in the NF-κB/NLRP3 signaling pathway was decreased, and the release of inflammatory factors in GES-1 cells caused by NP was also attenuated. The results of this study indicated that NP can induce inflammation in the stomach in vivo and in vitro, and its mechanism was related to the NF-κB/NLRP3 signaling pathway. These findings provided a new perspective on the mechanism of inflammatory response induced by exposure to environmental endocrine disruptors. Also, these findings indicated that therapeutic strategies for the NF-κB/NLRP3 signaling pathway may be new methods to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Shixu Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Haibo Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Lina Ma
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Yuan Shen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China.
| |
Collapse
|
7
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
8
|
Hu J, Li W, Gao Y, Zhao G, Jiang Y, Wang W, Cao M, Zhu Y, Niu Y, Ge J, Chen R. Fine particulate matter air pollution and subclinical cardiovascular outcomes: A longitudinal study in 15 Chinese cities. ENVIRONMENT INTERNATIONAL 2022; 163:107218. [PMID: 35378443 DOI: 10.1016/j.envint.2022.107218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
AIMS Although previous studies have linked short-term exposure to fine particulate matter (PM2.5) air pollution with various molecular biomarkers of cardiovascular system, limited evidence is available for indicators at clinical or subclinical levels. We examined the associations between short-term PM2.5 exposure and a range of clinical or subclinical indicators of cardiovascular health in general population. METHODS AND RESULTS A longitudinal repeated-measure study was conducted among 247,640 participants who repeatedly visited health examination centers in 15 typical cities across China from 2013 to 2020. A total of 19 well-established indicators of cardiovascular risk or injury were evaluated and air quality data at nearest fixed-site monitors were collected. Linear mixed-effects models with distributed lag models were used to analyze the potentially lagged effects of PM2.5. The average daily PM2.5 concentration was 48 μg/m3 during the study period. PM2.5 exposure was associated with significant changes of 16 indicators with the effects generally peaked on lag 0 to 3 day. For an interquartile range (IQR) elevation (37 μg/m3) in PM2.5 concentrations over lag 0-7 day, the cumulative percentage changes were 0.50% to 1.27% in heart rates and blood pressure, 0.10% to 5.04% in inflammatory markers, -0.29% to 1.39% in blood viscosity parameters, -0.67% to 3.45% in blood lipids, 0.89% in blood homocysteine, 0.13% to 0.78% in myocardial enzymes, and 3.03% in pulse wave velocity. These associations were not substantially changed after adjusting concomitant exposures to gaseous pollutants. CONCLUSION Short-term exposure to PM2.5 may induce early cardiovascular effects in general population, including acute inflammation, myocardial injury, increased blood viscosity, vascular stiffness and hyperlipidemia.
Collapse
Affiliation(s)
- Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenshu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Gang Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Liu J, Sun Q, Sun M, Lin L, Ren X, Li T, Xu Q, Sun Z, Duan J. Melatonin alleviates PM 2.5-triggered macrophage M1 polarization and atherosclerosis via regulating NOX2-mediated oxidative stress homeostasis. Free Radic Biol Med 2022; 181:166-179. [PMID: 35149217 DOI: 10.1016/j.freeradbiomed.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
It is reported that oxidative stress homeostasis was involved in PM2.5-induced foam cell formation and progression of atherosclerosis, but the exact molecular mechanism is still unclear. Melatonin is an effective antioxidant that could reverse the cardiopulmonary injury. The main purpose of this study is to investigate the latent mechanism of PM2.5-triggered atherosclerosis development and the protective role of melatonin administration. Vascular Doppler ultrasound showed that PM2.5 exposure reduced aortic elasticity in ApoE-/- mice. Meanwhile, blood biochemical and pathological analysis demonstrated that PM2.5 exposure caused dyslipidemia, elicited oxidative damage of aorta and was accompanied by an increase in atherosclerotic plaque area; while the melatonin administration could effectively alleviate PM2.5-induced macrophage M1 polarization and atherosclerosis in mice. Further investigation verified that NADPH oxidase 2 (NOX2) and mitochondria are two prominent sources of PM2.5-induced ROS production in vascular macrophages. Whereas, the combined use of two ROS-specific inhibitors and adopted with melatonin markedly rescued PM2.5-triggered macrophage M1 polarization and foam cell formation by inhibiting NOX2-mediated crosstalk of Keap1/Nrf2/NF-κB and TLR4/TRAF6/NF-κB signaling pathways. Our results demonstrated that NOX2-mediated oxidative stress homeostasis is critical for PM2.5-induced atherosclerosis and melatonin might be a potential treatment for air pollution-related cardiovascular diseases.
Collapse
Affiliation(s)
- Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
10
|
Nayek S, Lund AK, Verbeck GF. Inhalation exposure to silver nanoparticles induces hepatic inflammation and oxidative stress, associated with altered renin-angiotensin system signaling, in Wistar rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:457-467. [PMID: 34792841 PMCID: PMC8810614 DOI: 10.1002/tox.23412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/07/2021] [Indexed: 05/04/2023]
Abstract
Silver nanoparticles (AgNPs) have become increasingly popular in the biomedical field over the last few decades due to its proven antibacterial property. Previous scientific studies have reported that one of the major organs responsible for detoxification of AgNPs is the liver. The liver is also the primary organ responsible for secretion of angiotensinogen (AGT), a key signaling molecule involved in the renin-angiotensin system (RAS), which plays an important role in maintaining cardiac output and vascular pressure. The aim of this study was to assess any potential changes in the RAS-associated gene signaling, inflammatory response, and hepatocellular toxicity resulting from AgNP exposure. To do this, 6-week-old, male Wistar rats were exposed to a subacute inhalation exposure of AgNP (200 ppb/days over 4 h/days exposure, for 5 d) and their livers were analyzed for alterations in RAS components, inflammation, and oxidative stress. Real time qPCR analysis showed that AgNP-exposure resulted in a significant increase in hepatic AGT, angiotensin converting enzyme (ACE)-1, and ACE-2 mRNA expression. Expression of inflammatory markers interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were also upregulated with AgNP-exposure, compared to controls. Furthermore AgNP-exposure mediated a significant increase in hepatic expression of catalase, and superoxide dismutase, and oxidative stress, as assessed via 8-Oxo-2'-deoxyguanosine staining. Increased oxidative stress was associated with increased monocyte/macrophage-2 staining in the liver of AgNP-exposed rats. Such findings indicate that subacute inhalation exposure to AgNPs mediate increased hepatic RAS signaling, associated with inflammation, macrophage infiltration, and oxidative stress.
Collapse
Affiliation(s)
- Subhayu Nayek
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Amie K. Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Guido F. Verbeck
- Department of Chemistry, University of North Texas, Denton, TX, USA
- Corresponding Author: Dr. Guido F. Verbeck, Department of Chemistry, University of North Texas, 1508 W. Mulberry St., Denton, TX, 76201,
| |
Collapse
|
11
|
Long E, Schwartz C, Carlsten C. Controlled human exposure to diesel exhaust: a method for understanding health effects of traffic-related air pollution. Part Fibre Toxicol 2022; 19:15. [PMID: 35216599 PMCID: PMC8876178 DOI: 10.1186/s12989-022-00454-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Diesel exhaust (DE) is a major component of air pollution in urban centers. Controlled human exposure (CHE) experiments are commonly used to investigate the acute effects of DE inhalation specifically and also as a paradigm for investigating responses to traffic-related air pollution (TRAP) more generally. Given the critical role this model plays in our understanding of TRAP's health effects mechanistically and in support of associated policy and regulation, we review the methodology of CHE to DE (CHE-DE) in detail to distill critical elements so that the results of these studies can be understood in context. From 104 eligible publications, we identified 79 CHE-DE studies and extracted information on DE generation, exposure session characteristics, pollutant and particulate composition of exposures, and participant demographics. Virtually all studies had a crossover design, and most studies involved a single DE exposure per participant. Exposure sessions were typically 1 or 2 h in duration, with participants alternating between exercise and rest. Most CHE-DE targeted a PM concentration of 300 μg/m3. There was a wide range in commonly measured co-pollutants including nitrogen oxides, carbon monoxide, and total organic compounds. Reporting of detailed parameters of aerosol composition, including particle diameter, was inconsistent between studies, and older studies from a given lab were often cited in lieu of repeating measurements for new experiments. There was a male predominance in participants, and over half of studies involved healthy participants only. Other populations studied include those with asthma, atopy, or metabolic syndrome. Standardization in reporting exposure conditions, potentially using current versions of engines with modern emissions control technology, will allow for more valid comparisons between studies of CHE-DE, while recognizing that diesel engines in much of the world remain old and heterogeneous. Inclusion of female participants as well as populations more susceptible to TRAP will broaden the applicability of results from CHE-DE studies.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
12
|
Long E, Carlsten C. Controlled human exposure to diesel exhaust: results illuminate health effects of traffic-related air pollution and inform future directions. Part Fibre Toxicol 2022; 19:11. [PMID: 35139881 PMCID: PMC8827176 DOI: 10.1186/s12989-022-00450-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Air pollution is an issue of increasing interest due to its globally relevant impacts on morbidity and mortality. Controlled human exposure (CHE) studies are often employed to investigate the impacts of pollution on human health, with diesel exhaust (DE) commonly used as a surrogate of traffic related air pollution (TRAP). This paper will review the results derived from 104 publications of CHE to DE (CHE-DE) with respect to health outcomes. CHE-DE studies have provided mechanistic evidence supporting TRAP’s detrimental effects on related to the cardiovascular system (e.g., vasomotor dysfunction, inhibition of fibrinolysis, and impaired cardiac function) and respiratory system (e.g., airway inflammation, increased airway responsiveness, and clinical symptoms of asthma). Oxidative stress is thought to be the primary mechanism of TRAP-induced effects and has been supported by several CHE-DE studies. A historical limitation of some air pollution research is consideration of TRAP (or its components) in isolation, limiting insight into the interactions between TRAP and other environmental factors often encountered in tandem. CHE-DE studies can help to shed light on complex conditions, and several have included co-exposure to common elements such as allergens, ozone, and activity level. The ability of filters to mitigate the adverse effects of DE, by limiting exposure to the particulate fraction of polluted aerosols, has also been examined. While various biomarkers of DE exposure have been evaluated in CHE-DE studies, a definitive such endpoint has yet to be identified. In spite of the above advantages, this paradigm for TRAP is constrained to acute exposures and can only be indirectly applied to chronic exposures, despite the critical real-world impact of living long-term with TRAP. Those with significant medical conditions are often excluded from CHE-DE studies and so results derived from healthy individuals may not apply to more susceptible populations whose further study is needed to avoid potentially misleading conclusions. In spite of limitations, the contributions of CHE-DE studies have greatly advanced current understanding of the health impacts associated with TRAP exposure, especially regarding mechanisms therein, with important implications for regulation and policy.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
13
|
Adivi A, JoAnn L, Simpson N, McDonald JD, Lund AK. Traffic-generated air pollution - Exposure mediated expression of factors associated with demyelination in a female apolipoprotein E -/- mouse model. Neurotoxicol Teratol 2022; 90:107071. [PMID: 35016995 PMCID: PMC8904307 DOI: 10.1016/j.ntt.2022.107071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
Epidemiology studies suggest that exposure to ambient air pollution is associated with demyelinating diseases in the central nervous system (CNS), including multiple sclerosis (MS). The pathophysiology of MS results from an autoimmune response involving increased inflammation and demyelination in the CNS, which is higher in young (adult) females. Exposure to traffic-generated air pollution is associated with neuroinflammation and other detrimental outcomes in the CNS; however, its role in the progression of pathologies associated with demyelinating diseases has not yet been fully characterized in a female model. Thus, we investigated the effects of inhalation exposure to mixed vehicle emissions (MVE) in the brains of both ovary-intact (ov+) and ovariectomized (ov-) female Apolipoprotein (ApoE-/-) mice. Ov + and ov- ApoE-/- mice were exposed via whole-body inhalation to either filtered air (FA, controls) or mixed gasoline and diesel vehicle emissions (MVE: 200 PM μg/m3) for 6 h/d, 7 d/wk., for 30 d. We then analyzed MVE-exposure mediated alterations in myelination, the presence of CD4+ and CD8+ T cells, reactive oxygen species (ROS), myelin oligodendrocyte protein (MOG), and expression of estrogen (ERα and ERβ) and progesterone (PROA/B) receptors in the CNS. MVE-exposure mediated significant alterations in myelination across multiple regions in the cerebrum, as well as increased CD4+ and CD8+ staining. There was also an increase in ROS production in the CNS of MVE-exposed ov- and ov + ApoE-/- mice. Ov- mice displayed a reduction in cerebral ERα mRNA expression, compared to ov + mice; however, MVE exposure resulted in an even further decrease in ERα expression, while ERβ and PRO A/B were unchanged across groups. These findings collectively suggest that inhaled MVE-exposure may mediate estrogen receptor expression alterations associated with increased CD4+/CD8+ infiltration, regional demyelination, and ROS production in the CNS of female ApoE-/- mice.
Collapse
Affiliation(s)
- Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Lucero JoAnn
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Nicholas Simpson
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA, 87108
| | - Amie K. Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201.,Corresponding author at: University of North Texas, EESAT – 215, 1704 W. Mulberry, Denton, TX 76201,
| |
Collapse
|
14
|
Lung Function and Short-Term Ambient Air Pollution Exposure: Differential Impacts of Omega-3 and Omega-6 Fatty Acids. Ann Am Thorac Soc 2021; 19:583-593. [PMID: 34797737 DOI: 10.1513/annalsats.202107-767oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Exposure to air pollution is associated with adverse respiratory effects. Omega-3 polyunsaturated fatty acids (n-3 FA) appear to attenuate the health effects to air pollution. OBJECTIVE This panel study evaluated whether n-3 FA intake and blood levels of omega-6 polyunsaturated fatty acids (n-6 FA) can modulate the associations between respiratory effects and short-term exposure to ambient air pollution in healthy adults. METHODS Sixty-two healthy adults were enrolled into either high or low n-3 groups based on n-3 FA intake and erythrocytes n-3 FA concentrations. Low and high n-6 groups were dichotomized on blood n-6 FA levels. Participants underwent 3-5 testing sessions separated by at least seven days. At each session, FVC, FEV1, plasma markers of inflammation (IL-6) and oxidative stress (ox-LDL) were measured. Associations between ambient ozone and fine particulate matter (PM2.5) levels and lung function and blood markers were assessed using mixed-effects models stratified by fatty acids levels. RESULTS Average concentrations of ozone (40.8±11.1 ppb) and PM2.5 (10.2±4.1 µg/m3) were below national ambient air quality standards during the study period. FVC was positively associated with ozone at lag0 in the high n-3 group while the association was null in the low n-3 group [for an IQR increase in ozone, 1.8%(95% CI:0.5-3.2) vs. 0.0%(95% CI:-1.4-1.5)]; however, the association shifted to negative at lag4 [-1.9%(95% CI:-3.2- -0.5) vs. 0.2%(95% CI:-1.2-1.5)] and lag5 [-1.2%(95% CI:-2.4-0.0) vs. 0.9%(-0.4-2.3)]. A similar pattern was observed in the low n-6 group compared to the high n-6 group [lag0:1.7%(95% CI:0.3-3.0) vs. 0.5%(95% CI:-0.9-2.0) and lag4:-1.4%(95% CI:-2.8-0.0) vs. -0.5%(95% CI:-1.8-0.9)]. The associations between FEV1 and ozone and between FVC and PM2.5 also followed a similar pattern. Elevated ozone levels were associated with an immediate decrease in ox-LDL in the high n-3 group atlag0 [-12.3%(95% CI:-24.8-0.1)] while no change in the low n-3 group [-7.5%(95% CI: -21.4-6.5)], and a delayed increase in IL-6 in the high n-3 group compared with the low n-3 group [lag4: 66.9%(95% CI:27.9-106.0) vs. 8.9%(95% CI:-31.8-49.6), lag5: 58.2%(95% CI:22.4-94.1) vs. -7.4%(95% CI:-48.8-34.0), and lag6: 45.8%(95% CI:8.7-82.9) vs. -8.5%(95% CI:-49.7-32.6)]. CONCLUSIONS We observed lag-dependent associations between short-term ambient air pollutants and lung function that were differentially modulated by n-3 and n-6 FAs, suggesting that n-3 and n-6 FAs counteract the respiratory response to low levels of ambient air pollution in healthy adults. Clinical trial registered with ClinicalTrials.gov (NCT02921048).
Collapse
|
15
|
Münzel T, Hahad O, Sørensen M, Lelieveld J, Duerr GD, Nieuwenhuijsen M, Daiber A. Environmental risk factors and cardiovascular diseases: a comprehensive review. Cardiovasc Res 2021; 118:2880-2902. [PMID: 34609502 PMCID: PMC9648835 DOI: 10.1093/cvr/cvab316] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Noncommunicable diseases (NCDs) are fatal for more than 38 million people each year and are thus the main contributors to the global burden of disease accounting for 70% of mortality. The majority of these deaths are caused by cardiovascular disease. The risk of NCDs is strongly associated with exposure to environmental stressors such as pollutants in the air, noise exposure, artificial light at night and climate change, including heat extremes, desert storms and wildfires. In addition to the traditional risk factors for cardiovascular disease such as diabetes, arterial hypertension, smoking, hypercholesterolemia and genetic predisposition, there is a growing body of evidence showing that physicochemical factors in the environment contribute significantly to the high NCD numbers. Furthermore, urbanization is associated with accumulation and intensification of these stressors. This comprehensive expert review will summarize the epidemiology and pathophysiology of environmental stressors with a focus on cardiovascular NCDs. We will also discuss solutions and mitigation measures to lower the impact of environmental risk factors with focus on cardiovascular disease.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiac Surgery, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| |
Collapse
|
16
|
Ni Y, Tracy RP, Cornell E, Kaufman JD, Szpiro AA, Campen MJ, Vedal S. Short-term exposure to air pollution and biomarkers of cardiovascular effect: A repeated measures study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116893. [PMID: 33765506 PMCID: PMC8087633 DOI: 10.1016/j.envpol.2021.116893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 05/12/2023]
Abstract
To help understand the pathophysiologic mechanisms linking air pollutants and cardiovascular disease (CVD), we employed a repeated measures design to investigate the associations of four short-term air pollution exposures - particulate matter less than 2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2), ozone (O3) and sulfur dioxide (SO2), with two blood markers involved in vascular effects of oxidative stress, soluble lectin-like oxidized LDL receptor-1 (sLOX-1) and nitrite, using data from the Multi-Ethnic Study of Atherosclerosis (MESA). Seven hundred and forty participants with plasma sLOX-1 and nitrite measurements at three exams between 2002 and 2007 were included. Daily PM2.5, NO2, O3 and SO2 zero to seven days prior to blood draw were estimated from central monitors in six MESA regions, pre-adjusted using site-specific splines of meteorology and temporal trends, and an indicator for day of the week. Unconstrained distributed lag generalized estimating equations were used to estimate net effects over eight days with adjustment for sociodemographic and behavioral factors. The results showed that higher short-term concentrations of PM2.5, but not other pollutants, were associated with increased sLOX-1 analyzed both as a continuous outcome (percent change per interquartile increase: 16.36%, 95%CI: 0.1-35.26%) and dichotomized at the median (odds ratio per interquartile increase: 1.21, 95%CI: 1.01-1.44). The findings were not meaningfully changed after adjustment for additional covariates or in several sensitivity analyses. Pollutant concentrations were not associated with nitrite levels. This study extends earlier experimental findings of increased sLOX-1 levels following PM inhalation to a much larger population and at ambient concentrations. In light of its known mechanistic role in promoting vascular disease, sLOX-1 may be a suitable translational biomarker linking air pollutant exposures and cardiovascular outcomes.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA; Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA.
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Department of Biochemistry, Larner College of Medicine, University of Vermont, 360 S. Park Drive, Colchester, VT, 05446, USA.
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, Department of Biochemistry, Larner College of Medicine, University of Vermont, 360 S. Park Drive, Colchester, VT, 05446, USA.
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA; Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA; Department of Medicine, School of Medicine, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA.
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, 1705 NE Pacific St, Seattle, WA, 98195, USA.
| | - Matthew J Campen
- College of Pharmacy, University of New Mexico, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA.
| |
Collapse
|
17
|
Vehicle emissions-exposure alters expression of systemic and tissue-specific components of the renin-angiotensin system and promotes outcomes associated with cardiovascular disease and obesity in wild-type C57BL/6 male mice. Toxicol Rep 2021; 8:846-862. [PMID: 33948438 PMCID: PMC8080412 DOI: 10.1016/j.toxrep.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Vehicle emission-exposure increases systemic and adipose renin-angiotensin signaling. Emission-exposure promotes renal, vascular, and adipocyte AT1 receptor expression. Diet and emission-exposure are associated with adipocyte hypertrophy and weight gain. Emission-exposure promotes expression of adipokines and adipose inflammatory factors. High-fat diet promotes an obese adipose phenotype, exacerbated by emission-exposure.
Exposure to air pollution from traffic-generated sources is known to contribute to the etiology of inflammatory diseases, including cardiovascular disease (CVD) and obesity; however, the signaling pathways involved are still under investigation. Dysregulation of the renin-angiotensin system (RAS) can contribute to CVD and alter lipid storage and inflammation in adipose tissue. Our previous exposure studies revealed that traffic-generated emissions increase RAS signaling, further exacerbated by a high-fat diet. Thus, we investigated the hypothesis that exposure to engine emissions increases systemic and local adipocyte RAS signaling, promoting the expression of factors involved in CVD and obesity. Male C57BL/6 mice (6–8 wk old) were fed either a high-fat (HF, n = 16) or low-fat (LF, n = 16) diet, beginning 30d prior to exposures, and then exposed via inhalation to either filtered air (FA, controls) or a mixture of diesel engine + gasoline engine vehicle emissions (MVE: 100 μg PM/m3) via whole-body inhalation for 6 h/d, 7 d/wk, 30d. Endpoints were assessed via immunofluorescence and RT-qPCR. MVE-exposure promoted vascular adhesion factors (VCAM-1, ICAM-1) expression, monocyte/macrophage sequestration, and oxidative stress in the vasculature, associated with increased angiotensin II receptor type 1 (AT1) expression. In the kidney, MVE-exposure promoted the expression of renin, AT1, and AT2 receptors. In adipose tissue, both HF-diet and MVE-exposure mediated increased epididymal fat pad weight and adipocyte hypertrophy, associated with increased angiotensinogen and AT1 receptor expression; however, these outcomes were further exacerbated in the MVE + HF group. MVE-exposure also induced inflammation, monocyte chemoattractant protein (MCP)-1, and leptin, while reducing insulin receptor and glucose transporter, GLUT4, expression in adipose tissue. Our results indicate that MVE-exposure promotes systemic and local adipose RAS signaling, associated with increased expression of factors contributing to CVD and obesity, further exacerbated by HF diet consumption.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- AGT, angiotensinogen
- AT1, angiotensin II receptor subtype 1
- AT2, angiotensin II receptor subtype 2
- Adipose
- Air pollution
- Ang II, angiotensin II
- CVD
- CVD, cardiovascular disease
- DHE, dihydroethidium
- FA, filtered air (controls)
- GLUT-4, glucose transporter type 4
- HF, high-fat diet
- ICAM-1, intracellular adhesion molecule-1
- IL-6, interleukin-6
- IL-β, interleukin beta
- IR, insulin receptor
- LDL, low density lipoprotein
- LF, low-fat diet
- LOX-1, lectin-like oxidized low-density lipoprotein receptor
- MCP-1, monocyte chemoattractant protein-1
- MOMA-2, anti-monocyte + macrophage antibody
- MVE, mixed gasoline and diesel vehicle emissions
- Obesity
- PM, particulate matter
- RAS, renin-angiotensin system
- ROS, reactive oxygen species
- Renin-angiotensin system
- T2D, type 2 diabetes
- TNF-α, tumor necrosis factor alpha
- VCAM-1, vascular cell adhesion molecule-1
- vWF, Von Willebrand factor
Collapse
|
18
|
Daniel S, Pusadkar V, McDonald J, Mirpuri J, Azad RK, Goven A, Lund AK. Traffic generated emissions alter the lung microbiota by promoting the expansion of Proteobacteria in C57Bl/6 mice placed on a high-fat diet. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112035. [PMID: 33581487 PMCID: PMC7989785 DOI: 10.1016/j.ecoenv.2021.112035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 05/23/2023]
Abstract
Air pollution has been documented to contribute to severe respiratory diseases like asthma and chronic obstructive pulmonary disorder (COPD). Although these diseases demonstrate a shift in the lung microbiota towards Proteobacteria, the effects of traffic generated emissions on lung microbiota profiles have not been well-characterized. Thus, we investigated the hypothesis that exposure to traffic-generated emissions can alter lung microbiota and immune defenses. Since a large population of the Western world consumes a diet rich in fats, we sought to investigate the synergistic effects of mixed vehicle emissions and high-fat diet consumption. We exposed 3-month-old male C57Bl/6 mice placed either on regular chow (LF) or a high-fat (HF: 45% kcal fat) diet to mixed emissions (ME: 30 µg PM/m3 gasoline engine emissions+70 µg PM/m3 diesel engine emissions) or filtered air (FA) for 6 h/d, 7 d/wk for 30 days. Levels of pulmonary immunoglobulins IgA, IgG, and IgM were analyzed by ELISA, and lung microbial profiling was done using qPCR and Illumina 16 S sequencing. We observed a significant decrease in lung IgA in the ME-exposed animals, compared to the FA-exposed animals, both fed a HF diet. Our results also revealed a significant decrease in lung IgG in the ME-exposed animals both on the LF diet and HF diet, in comparison to the FA-exposed animals. We also observed an expansion of Enterobacteriaceae belonging to the Proteobacteria phylum in the ME-exposed groups on the HF diet. Collectively, we show that the combined effects of ME and HF diet result in decreased immune surveillance and lung bacterial dysbiosis, which is of significance in lung diseases.
Collapse
Affiliation(s)
- Sarah Daniel
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Vaidehi Pusadkar
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Jacob McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Julie Mirpuri
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajeev K Azad
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| | - Art Goven
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA.
| |
Collapse
|
19
|
Daniel S, Phillippi D, Schneider LJ, Nguyen KN, Mirpuri J, Lund AK. Exposure to diesel exhaust particles results in altered lung microbial profiles, associated with increased reactive oxygen species/reactive nitrogen species and inflammation, in C57Bl/6 wildtype mice on a high-fat diet. Part Fibre Toxicol 2021; 18:3. [PMID: 33419468 PMCID: PMC7796587 DOI: 10.1186/s12989-020-00393-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exposure to traffic-generated emissions is associated with the development and exacerbation of inflammatory lung disorders such as chronic obstructive pulmonary disorder (COPD) and idiopathic pulmonary fibrosis (IPF). Although many lung diseases show an expansion of Proteobacteria, the role of traffic-generated particulate matter pollutants on the lung microbiota has not been well-characterized. Thus, we investigated the hypothesis that exposure to diesel exhaust particles (DEP) can alter commensal lung microbiota, thereby promoting alterations in the lung's immune and inflammatory responses. We aimed to understand whether diet might also contribute to the alteration of the commensal lung microbiome, either alone or related to exposure. To do this, we used male C57Bl/6 mice (4-6-week-old) on either regular chow (LF) or high-fat (HF) diet (45% kcal fat), randomly assigned to be exposed via oropharyngeal aspiration to 35 μg DEP, suspended in 35 μl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. A separate group of study animals on the HF diet was concurrently treated with 0.3 g/day of Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS Our results show that DEP-exposure increases lung tumor necrosis factor (TNF)-α, interleukin (IL)-10, Toll-like receptor (TLR)-2, TLR-4, and the nuclear factor kappa B (NF-κB) histologically and by RT-qPCR, as well as Immunoglobulin A (IgA) and Immunoglobulin G (IgG) in the bronchoalveolar lavage fluid (BALF), as quantified by ELISA. We also observed an increase in macrophage infiltration and peroxynitrite, a marker of reactive oxygen species (ROS) + reactive nitrogen species (RNS), immunofluorescence staining in the lungs of DEP-exposed and HF-diet animals, which was further exacerbated by concurrent DEP-exposure and HF-diet consumption. Histological examinations revealed enhanced inflammation and collagen deposition in the lungs DEP-exposed mice, regardless of diet. We observed an expansion of Proteobacteria, by qPCR of bacterial 16S rRNA, in the BALF of DEP-exposed mice on the HF diet, which was diminished with probiotic-treatment. CONCLUSIONS Our findings suggest that exposure to DEP causes persistent and sustained inflammation and bacterial alterations in a ROS-RNS mediated fashion, which is exacerbated by concurrent consumption of an HF diet.
Collapse
Affiliation(s)
- Sarah Daniel
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Danielle Phillippi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Leah J Schneider
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Kayla N Nguyen
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Julie Mirpuri
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA.
| |
Collapse
|
20
|
Begay J, Sanchez B, Wheeler A, Baldwin F, Lucas S, Herbert G, Ordonez Y, Shuey C, Klaver Z, Harkema JR, Wagner JG, Morishita M, Bleske B, Zychowski KE, Campen MJ. Assessment of particulate matter toxicity and physicochemistry at the Claim 28 uranium mine site in Blue Gap, AZ. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:31-48. [PMID: 33050837 PMCID: PMC7726040 DOI: 10.1080/15287394.2020.1830210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Thousands of abandoned uranium mines (AUMs) exist in the western United States. Due to improper remediation, windblown dusts generated from AUMs are of significant community concern. A mobile inhalation lab was sited near an AUM of high community concern ("Claim 28") with three primary objectives: to (1) determine the composition of the regional ambient particulate matter (PM), (2) assess meteorological characteristics (wind speed and direction), and (3) assess immunological and physiological responses of mice after exposures to concentrated ambient PM (or CAPs). C57BL/6 and apolipoprotein E-null (ApoE-/-) mice were exposed to CAPs in AirCARE1 located approximately 1 km to the SW of Claim 28, for 1 or 28 days for 4 hr/day at approximately 80 µg/m3 CAPs. Bronchoalveolar lavage fluid (BALF) analysis revealed a significant influx of neutrophils after a single-day exposure in C57BL/6 mice (average PM2.5 concentration = 68 µg/m3). Lungs from mice exposed for 1 day exhibited modest increases in Tnfa and Tgfb mRNA levels in the CAPs exposure group compared to filtered air (FA). Lungs from mice exposed for 28 days exhibited reduced Tgfb (C57BL/6) and Tnfa (ApoE-/-) mRNA levels. Wind direction was typically moving from SW to NE (away from the community) and, while detectable in all samples, uranium concentrations in the PM2.5 fraction were not markedly different from published-reported values. Overall, exposure to CAPs in the region of the Blue GAP Tachee's Claim-28 uranium mine demonstrated little evidence of overt pulmonary injury or inflammation or ambient air contamination attributed to uranium or vanadium.
Collapse
Affiliation(s)
- Jessica Begay
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bethany Sanchez
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Abigail Wheeler
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | | | - Selita Lucas
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Guy Herbert
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Yoselin Ordonez
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, NM, USA
| | | | | | | | | | - Barry Bleske
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | | | | |
Collapse
|
21
|
Adivi A, Lucero J, Simpson N, McDonald JD, Lund AK. Exposure to traffic-generated air pollution promotes alterations in the integrity of the brain microvasculature and inflammation in female ApoE -/- mice. Toxicol Lett 2020; 339:39-50. [PMID: 33373663 DOI: 10.1016/j.toxlet.2020.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023]
Abstract
Traffic-generated air pollutants have been correlated with alterations in blood-brain barrier (BBB) integrity, which is associated with pathologies in the central nervous system (CNS). Much of the existing literature investigating the effects of air pollution in the CNS has predominately been reported in males, with little known regarding the effects in females. As such, this study characterized the effects of inhalation exposure to mixed vehicle emissions (MVE), as well as the presence of female sex hormones, in the CNS of female ApoE-/- mice, which included cohorts of both ovariectomized (ov-) and ovary-intact (ov+) mice. Ov + and ov- were placed on a high-fat diet and randomly grouped to be exposed to either filtered-air (FA) or MVE (200 PM/m3: 50 μg PM/m3 gasoline engine + 150 μg PM/m3 from diesel engine emissions) for 6 h/d, 7d/wk, for 30d. MVE-exposure resulted in altered cerebral microvascular integrity and permeability, as determined by the decreased immunofluorescent expression of tight junction (TJ) proteins, occludin, and claudin-5, and increased IgG extravasation into the cerebral parenchyma, compared to FA controls, regardless of ovary status. Associated with the altered cerebral microvascular integrity, we also observed an increase in matrix metalloproteinases (MMPs) -2/9 activity in the MVE ov+, MVE ov-, and FA ov- groups, compared to FA ov+. There was also elevated expression of intracellular adhesion molecule (ICAM)-1, inflammatory interleukins (IL-1, IL-1β), and tumor necrosis factor (TNF-α) mRNA in the cerebrum of MVE ov + and MVE ov- animals. IκB kinase (IKK) subunits IKKα and IKKβ mRNA expressions were upregulated in the cerebrum of MVE ov- and FA ov- mice. Our findings indicate that MVE exposure mediates altered integrity of the cerebral microvasculature correlated with increased MMP-2/9 activity and inflammatory signaling, regardless of female hormones present.
Collapse
Affiliation(s)
- Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA
| | - JoAnn Lucero
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA
| | - Nicholas Simpson
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87108, USA
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87108, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| |
Collapse
|
22
|
Armstrong TD, Suwannasual U, Kennedy CL, Thasma A, Schneider LJ, Phillippi D, Lund AK. Exposure to Traffic-Generated Pollutants Exacerbates the Expression of Factors Associated with the Pathophysiology of Alzheimer’s Disease in Aged C57BL/6 Wild-Type Mice. J Alzheimers Dis 2020; 78:1453-1471. [DOI: 10.3233/jad-200929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Multiple studies report a strong correlation between traffic-generated air pollution-exposure and detrimental outcomes in the central nervous system (CNS), including Alzheimer’s disease (AD). Incidence of AD is rapidly increasing and, worldwide, many live in regions where pollutants exceed regulatory standards. Thus, it is imperative to identify environmental pollutants that contribute to AD, and the mechanisms involved. Objective: We investigated the effects of mixed gasoline and diesel engine emissions (MVE) on the expression of factors involved in progression of AD in the hippocampus and cerebrum in a young versus aged mouse model. Methods: Young (2 months old) and aged (18 months old) male C57BL/6 mice were exposed to either MVE (300μg/m3 PM) or filtered air (FA) for 6 h/d, 7 d/wk, for 50 d. Immunofluorescence and RT-qPCR were used to quantify oxidative stress (8-OHdG) and expression of amyloid-β protein precursor (AβPP), β secretase (BACE1), amyloid-β (Aβ), aryl hydrocarbon receptor (AhR), cytochrome P450 (CYP) 1B1, angiotensin-converting enzyme (ACE1), and angiotensin II type 1 (AT1) receptor in the cerebrum and hippocampus, in addition to cerebral microvascular tight junction (TJ) protein expression. Results: We observed age-related increases in oxidative stress, AhR, CYP1B1, Aβ, BACE1, and AT1 receptor in the CA1 region of the hippocampus, and elevation of cerebral AβPP, AhR, and CYP1B1 mRNA, associated with decreased cerebral microvascular TJ protein claudin-5. MVE-exposure resulted in further promotion of oxidative stress, and significant increases in AhR, CYP1B1, BACE1, ACE1, and Aβ, compared to the young and aged FA-exposed mice. Conclusion: Such findings suggest that MVE-exposure exacerbates the expression of factors in the CNS associated with AD pathogenesis in aged populations.
Collapse
Affiliation(s)
- Tyler D. Armstrong
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Usa Suwannasual
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Conner L. Kennedy
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Akshaykumar Thasma
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Leah J. Schneider
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Danielle Phillippi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Amie K. Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
23
|
Liang S, Zhang J, Ning R, Du Z, Liu J, Batibawa JW, Duan J, Sun Z. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part Fibre Toxicol 2020; 17:61. [PMID: 33276797 PMCID: PMC7716453 DOI: 10.1186/s12989-020-00391-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Ambient and indoor air pollution contributes annually to approximately seven million premature deaths. Air pollution is a complex mixture of gaseous and particulate materials. In particular, fine particulate matter (PM2.5) plays a major mortality risk factor particularly on cardiovascular diseases through mechanisms of atherosclerosis, thrombosis and inflammation. A review on the PM2.5-induced atherosclerosis is needed to better understand the involved mechanisms. In this review, we summarized epidemiology and animal studies of PM2.5-induced atherosclerosis. Vascular endothelial injury is a critical early predictor of atherosclerosis. The evidence of mechanisms of PM2.5-induced atherosclerosis supports effects on vascular function. Thus, we summarized the main mechanisms of PM2.5-triggered vascular endothelial injury, which mainly involved three aspects, including vascular endothelial permeability, vasomotor function and vascular reparative capacity. Then we reviewed the relationship between PM2.5-induced endothelial injury and atherosclerosis. PM2.5-induced endothelial injury associated with inflammation, pro-coagulation and lipid deposition. Although the evidence of PM2.5-induced atherosclerosis is undergoing continual refinement, the mechanisms of PM2.5-triggered atherosclerosis are still limited, especially indoor PM2.5. Subsequent efforts of researchers are needed to improve the understanding of PM2.5 and atherosclerosis. Preventing or avoiding PM2.5-induced endothelial damage may greatly reduce the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Joe Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
24
|
Shkirkova K, Lamorie-Foote K, Connor M, Patel A, Barisano G, Baertsch H, Liu Q, Morgan TE, Sioutas C, Mack WJ. Effects of ambient particulate matter on vascular tissue: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:319-350. [PMID: 32972334 PMCID: PMC7758078 DOI: 10.1080/10937404.2020.1822971] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fine and ultra-fine particulate matter (PM) are major constituents of urban air pollution and recognized risk factors for cardiovascular diseases. This review examined the effects of PM exposure on vascular tissue. Specific mechanisms by which PM affects the vasculature include inflammation, oxidative stress, actions on vascular tone and vasomotor responses, as well as atherosclerotic plaque formation. Further, there appears to be a greater PM exposure effect on susceptible individuals with pre-existing cardiovascular conditions.
Collapse
Affiliation(s)
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Michelle Connor
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Arati Patel
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | | | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California
- Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
25
|
Miller MR, Poland CA. Nanotoxicology: The Need for a Human Touch? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001516. [PMID: 32697439 DOI: 10.1002/smll.202001516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
With the ever-expanding number of manufactured nanomaterials (MNMs) under development there is a vital need for nanotoxicology studies that test the potential for MNMs to cause harm to health. An extensive body of work in cell cultures and animal models is vital to understanding the physicochemical characteristics of MNMs and the biological mechanisms that underlie any detrimental actions to cells and organs. In human subjects, exposure monitoring is combined with measurement of selected health parameters in small panel studies, especially in occupational settings. However, the availability of further in vivo human data would greatly assist the risk assessment of MNMs. Here, the potential for controlled inhalation exposures of MNMs in human subjects is discussed. Controlled exposures to carbon, gold, aluminum, and zinc nanoparticles in humans have already set a precedence to demonstrate the feasibility of this approach. These studies have provided considerable insight into the potential (or not) of nanoparticles to induce inflammation, alter lung function, affect the vasculature, reach the systemic circulation, and accumulate in other organs. The need for further controlled exposures of MNMs in human volunteers - to establish no-effect limits, biological mechanisms, and provide vital data for the risk assessment of MNMs - is advocated.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Craig A Poland
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Marchini T, Zirlik A, Wolf D. Pathogenic Role of Air Pollution Particulate Matter in Cardiometabolic Disease: Evidence from Mice and Humans. Antioxid Redox Signal 2020; 33:263-279. [PMID: 32403947 DOI: 10.1089/ars.2020.8096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Air pollution is a considerable global threat to human health that dramatically increases the risk for cardiovascular pathologies, such as atherosclerosis, myocardial infarction, and stroke. An estimated 4.2 million cases of premature deaths worldwide are attributable to outdoor air pollution. Among multiple other components, airborne particulate matter (PM) has been identified as the major bioactive constituent in polluted air. While PM-related illness was historically thought to be confined to diseases of the respiratory system, overwhelming clinical and experimental data have now established that acute and chronic exposure to PM causes a systemic inflammatory and oxidative stress response that promotes cardiovascular disease. Recent Advances: A large body of evidence has identified an impairment of redox metabolism and the generation of oxidatively modified lipids and proteins in the lung as initial tissue response to PM. In addition, the pathogenicity of PM is mediated by an inflammatory response that involves PM uptake by tissue-resident immune cells, the activation of proinflammatory pathways in various cell types and organs, and the release of proinflammatory cytokines as locally produced tissue response signals that have the ability to affect organ function in a remote manner. Critical Issues: In the present review, we summarize and discuss the functional participation of PM in cardiovascular pathologies and its risk factors with an emphasis on how oxidative stress, inflammation, and immunity interact and synergize as a response to PM. Future Directions: The impact of PM constituents, doses, and novel anti-inflammatory therapies against PM-related illness is also discussed.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology, University Heart Center Graz, Medical University Graz, Graz, Austria
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Suwannasual U, Lucero J, Davis G, McDonald JD, Lund AK. Mixed Vehicle Emissions Induces Angiotensin II and Cerebral Microvascular Angiotensin Receptor Expression in C57Bl/6 Mice and Promotes Alterations in Integrity in a Blood-Brain Barrier Coculture Model. Toxicol Sci 2020; 170:525-535. [PMID: 31132127 DOI: 10.1093/toxsci/kfz121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exposure to traffic-generated pollution is associated with alterations in blood-brain barrier (BBB) integrity and exacerbation of cerebrovascular disorders. Angiotensin (Ang) II signaling through the Ang II type 1 (AT1) receptor is known to promote BBB disruption. We have previously reported that exposure to a mixture of gasoline and diesel vehicle engine emissions (MVE) mediates alterations in cerebral microvasculature of C57Bl/6 mice, which is exacerbated through consumption of a high-fat (HF) diet. Thus, we investigated the hypothesis that inhalation exposure to MVE results in altered central nervous system microvascular integrity mediated by Ang II-AT1 signaling. Three-month-old male C57Bl/6 mice were placed on an HF or low-fat diet and exposed via inhalation to either filtered air (FA) or MVE (100 μg/m3 PM) 6 h/d for 30 days. Exposure to HF+MVE resulted in a significant increase in plasma Ang II and expression of AT1 in the cerebral microvasculature. Results from a BBB coculture study showed that transendothelial electrical resistance was decreased, associated with reduced expression of claudin-5 and occludin when treated with plasma from MVE+HF animals. These effects were attenuated through pretreatment with the AT1 antagonist, Losartan. Our BBB coculture showed increased levels of astrocyte AT1 and decreased expression of aryl hydrocarbon receptor and glutathione peroxidase-1, associated with increased interleukin-6 and transforming growth factor-β in the astrocyte media, when treated with plasma from MVE-exposed groups. Our results indicate that inhalation exposure to traffic-generated pollutants results in altered BBB integrity, mediated through Ang II-AT1 signaling and inflammation, which is exacerbated by an HF diet.
Collapse
Affiliation(s)
- Usa Suwannasual
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - JoAnn Lucero
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Griffith Davis
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico 87108
| | - Amie K Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| |
Collapse
|
28
|
Zychowski KE, Tyler CRS, Sanchez B, Harmon M, Liu J, Irshad H, McDonald JD, Bleske BE, Campen MJ. Vehicular Particulate Matter (PM) Characteristics Impact Vascular Outcomes Following Inhalation. Cardiovasc Toxicol 2020; 20:211-221. [PMID: 31410643 PMCID: PMC7015791 DOI: 10.1007/s12012-019-09546-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Roadside proximity and exposure to mixed vehicular emissions (MVE) have been linked to adverse pulmonary and vascular outcomes. However, because of the complex nature of the contribution of particulate matter (PM) versus gases, it is difficult to decipher the precise causative factors regarding PM and the copollutant gaseous fraction. To this end, C57BL/6 and apolipoprotein E knockout mice (ApoE-/-) were exposed to either filtered air (FA), fine particulate (FP), FP+gases (FP+G), ultrafine particulate (UFP), or UFP+gases (UFP+G). Two different timeframes were employed: 1-day (acute) or 30-day (subchronic) exposures. Examined biological endpoints included aortic vasoreactivity, aortic lesion quantification, and aortic mRNA expression. Impairments in vasorelaxation were observed following acute exposure to FP+G in C57BL/6 animals and FP, UFP, and UFP+G in ApoE-/- animals. These effects were completely abrogated or markedly reduced following subchronic exposure. Aortic lesion quantification in ApoE-/- animals indicated a significant increase in atheroma size in the UFP-, FP-, and FP+G-exposed groups. Additionally, ApoE-/- mice demonstrated a significant fold increase in TNFα expression following FP+G exposure and ET-1 following UFP exposure. Interestingly, C57BL/6 aortic gene expression varied widely across exposure groups. TNFα decreased significantly following FP exposure and CCL-5 decreased in the UFP-, FP-, and FP+G-exposed groups. Conversely, ET-1, CCL-2, and CXCL-1 were all significantly upregulated in the FP+G group. These findings suggest that gas-particle interactions may play a role in vascular toxicity, but the contribution of surface area is not clear.
Collapse
Affiliation(s)
- Katherine E Zychowski
- Department of Pharmaceutical Sciences, The University of New Mexico, College of Pharmacy, Albuquerque, NM, USA.
| | | | - Bethany Sanchez
- Department of Pharmaceutical Sciences, The University of New Mexico, College of Pharmacy, Albuquerque, NM, USA
| | - Molly Harmon
- Department of Pharmaceutical Sciences, The University of New Mexico, College of Pharmacy, Albuquerque, NM, USA
| | - June Liu
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | - Barry E Bleske
- Department of Pharmacy Practice & Administrative Sciences, The University of New Mexico, College of Pharmacy, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, The University of New Mexico, College of Pharmacy, Albuquerque, NM, USA
| |
Collapse
|
29
|
Ramos Gómez TI, Toledo Alonso JR. LOX-1 en las afecciones cardiovasculares, perspectivas terapéuticas futuras. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El receptor de la lipoproteína de baja densidad oxidado tipo lectina 1 (LOX-1), también conocido como OLR-1, es un receptor scavenger (SR) clase E, que media la absorción del colesterol LDL en su forma oxidada, por las células vasculares. LOX-1 está involucrado en la disfunción endotelial, la adhesión de monocitos, la proliferación, migración y apoptosis de las células del músculo liso, la formación de células espumosas, la activación de plaquetas, así como la inestabilidad a nivel del endotelio vascular; todos eventos críticos en la patogénesis de la aterosclerosis. LOX-1 contribuyen a la inestabilidad de la placa ateroesclerótica y a las últimas secuelas clínicas de ruptura endotelial e isquemia tisular cardíaca potencialmente mortal. No existe en la actualidad ningún fármaco aprobado o en desarrollo clínico a partir de LOX-1, debido a sus complejos mecanismos biológicos no dilucidados completamente. Se han utilizado diversas terapias con el objetivo de inhibir la acción de LOX-1; medicamentos como: antioxidantes, estatinas, agentes antinflamatorios naturales, que actúen sobre su expresión, pero todos con eficacia moderada. También se ha evaluado la administración de anticuerpos anti-LOX-1 inhibe la aterosclerosis al disminuir eventos celulares. El diseño de fármacos enfocados en el conocimiento de las vías de señalización de LOX-1 y la aplicación de herramientas biotecnológicas permite el desarrollo de nuevas dianas terapéuticas basadas en la potencialidad que tienen los anticuerpos monoclonales. Con estos antecedentes el, receptor LOX-1, representa un objetivo terapéutico atractivo para el tratamiento de enfermedades ateroscleróticas humanas. La evidencia reciente indica que la acción sobre este SR es una posible estrategia para el tratamiento de la enfermedad vascular, explorando en esta revisión su papel y posibles futuras aplicaciones en el diagnóstico y la terapéutica.
Collapse
Affiliation(s)
- Thelvia I. Ramos Gómez
- Departamento Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, PO BOX 171-5-231B, Sangolquí, Ecuador
| | - Jorge Roberto Toledo Alonso
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| |
Collapse
|
30
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
31
|
Miller MR, Newby DE. Air pollution and cardiovascular disease: car sick. Cardiovasc Res 2020; 116:279-294. [PMID: 31583404 DOI: 10.1093/cvr/cvz228] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular effects of inhaled particle matter (PM) are responsible for a substantial morbidity and mortality attributed to air pollution. Ultrafine particles, like those in diesel exhaust emissions, are a major source of nanoparticles in urban environments, and it is these particles that have the capacity to induce the most significant health effects. Research has shown that diesel exhaust exposure can have many detrimental effects on the cardiovascular system both acutely and chronically. This review provides an overview of the cardiovascular effects on PM in air pollution, with an emphasis on ultrafine particles in vehicle exhaust. We consider the biological mechanisms underlying these cardiovascular effects of PM and postulate that cardiovascular dysfunction may be implicated in the effects of PM in other organ systems. The employment of multiple strategies to tackle air pollution, and especially ultrafine particles from vehicles, is likely to be accompanied by improvements in cardiovascular health.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| |
Collapse
|
32
|
Fitch MN, Phillippi D, Zhang Y, Lucero J, Pandey RS, Liu J, Brower J, Allen MS, Campen MJ, McDonald JD, Lund AK. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice. ENVIRONMENTAL RESEARCH 2020; 181:108913. [PMID: 31753468 PMCID: PMC6982581 DOI: 10.1016/j.envres.2019.108913] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Air pollution exposure is known to contribute to the progression of cardiovascular disease (CVD) and there is increasing evidence that dysbiosis of the gut microbiome may also play a role in the pathogenesis of CVD, including atherosclerosis. To date, the effects of inhaled air pollution mixtures on the intestinal epithelial barrier (IEB), and microbiota profiles are not well characterized, especially in susceptible individuals with comorbidity. Thus, we investigated the effects of inhaled ubiquitous air-pollutants, wood-smoke (WS) and mixed diesel and gasoline vehicle exhaust (MVE) on alterations in the expression of markers of integrity, inflammation, and microbiota profiles in the intestine of atherosclerotic Apolipoprotein E knockout (ApoE-/-) mice. To do this, male 8 wk-old ApoE-/- mice, on a high-fat diet, were exposed to either MVE (300 μg/m3 PM), WS; (∼450 μg/m3 PM), or filtered air (FA) for 6 h/d, 7 d/wk, for 50 d. Immunofluorescence and RT-PCR were used to quantify the expression of IEB components and inflammatory factors, including mucin (Muc)-2, tight junction (TJ) proteins, matrix metalloproteinase (MMP)-9, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, as well as Toll-like receptor (TLR)-4. Microbial profiling of the intestine was done using Illumina 16S sequencing of V4 16S rRNA PCR amplicons. We observed a decrease in intestinal Muc2 and TJ proteins in both MVE and WS exposures, compared to FA controls, associated with a significant increase in MMP-9, TLR-4, and inflammatory marker expression. Both WS and MVE-exposure resulted in decreased intestinal bacterial diversity, as well as alterations in microbiota profiles, including the Firmicutes: Bacteroidetes ratio at the phylum level. Our findings suggest inhalation exposure to either MVE or WS result in alterations in components involved in mucosal integrity, and also microbiota profiles and diversity, which are associated with increased markers of an inflammatory response.
Collapse
Affiliation(s)
- Megan N Fitch
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Danielle Phillippi
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Yan Zhang
- Center for Medical Genetics, Institute of Molecular Medicine, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
| | - JoAnn Lucero
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Ravi S Pandey
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - June Liu
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Jeremy Brower
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Michael S Allen
- Center for Medical Genetics, Institute of Molecular Medicine, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
| | - Matthew J Campen
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Amie K Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA.
| |
Collapse
|
33
|
A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Sci Rep 2020; 10:1143. [PMID: 31980673 PMCID: PMC6981120 DOI: 10.1038/s41598-020-57560-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are characterized by increased protein aggregation in the brain, progressive neuronal loss, increased inflammation, and neurogenesis impairment. We analyzed the effects of a new purine derivative drug, PDD005, in attenuating mechanisms involved in the pathogenesis of neurodegenerative diseases, using both in vivo and in vitro models. We show that PDD005 is distributed to the brain and can rescue cognitive deficits associated with aging in mice. Treatment with PDD005 prevents impairment of neurogenesis by increasing sex-determining region Y-box 2, nestin, and also enhances synaptic function through upregulation of synaptophysin and postsynaptic density protein 95. PDD005 treatment also reduced neuro-inflammation by decreasing interleukin-1β expression, activation of astrocytes, and microglia. We identified prohibitin as a potential target in mediating the therapeutic effects of PDD005 for the treatment of cognitive deficit in aging mice. Additionally, in the current study, glycogen synthase kinase appears to attenuate tau pathology.
Collapse
|
34
|
Fawaz YB, Matta JM, Moustafa ME. Effects of selenium supplementation on lung oxidative stress after exposure to exhaust emissions from pyrolysis oil, biodiesel and diesel. Toxicol Mech Methods 2019; 29:616-622. [PMID: 31237464 DOI: 10.1080/15376516.2019.1636441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exposure to exhaust emissions from fuels as diesel and pyrolysis oil may result in adverse effects on human lungs. This study investigated the effects of exposing mice to the exhaust emissions from diesel, biodiesel or pyrolysis oil, for 1 hour/day for 3 days, on lung oxidative stress and whether selenium administration into these mice affects the oxidative stress. The levels of lung malondialdehyde and nitric oxide were increased after exposure to pyrolysis oil exhaust. The intraperitoneal injection of 1.78 μg selenium/kg body weight 15 minutes before the exposure to the pyrolysis oil exhaust (pyrolysis oil + selenium group) restored the normal levels of malondialdehyde and nitric oxide. The catalase and SOD activities were decreased in the groups of the mice exposed to the exhaust emissions from pyrolysis oil, biodiesel or diesel. Selenium pretreatment of these groups showed no significant change in the activities of both enzymes. In conclusion, the increased lung levels of malondialdehyde and nitric oxide after the exposure to the exhaust emission from pyrolysis oil were restored to normal by selenium administration.
Collapse
Affiliation(s)
- Youssef B Fawaz
- Department of Biological Sciences, Faculty of Science, Beirut Arab University , Beirut , Lebanon
| | - Joseph M Matta
- Industrial Research Institute, Lebanese University Campus , Hadath , Lebanon.,Department of Nutrition, Faculty of Pharmacy, Saint Joseph University , Beirut , Lebanon
| | - Mohamed E Moustafa
- Department of Biochemistry, Faculty of Science, Alexandria University , Alexandria , Egypt
| |
Collapse
|
35
|
Young TL, Zychowski KE, Denson JL, Campen MJ. Blood-brain barrier at the interface of air pollution-associated neurotoxicity and neuroinflammation. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Olvera Alvarez HA, Kubzansky LD, Campen MJ, Slavich GM. Early life stress, air pollution, inflammation, and disease: An integrative review and immunologic model of social-environmental adversity and lifespan health. Neurosci Biobehav Rev 2018; 92:226-242. [PMID: 29874545 PMCID: PMC6082389 DOI: 10.1016/j.neubiorev.2018.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/21/2023]
Abstract
Socially disadvantaged individuals are at greater risk for simultaneously being exposed to adverse social and environmental conditions. Although the mechanisms underlying joint effects remain unclear, one hypothesis is that toxic social and environmental exposures have synergistic effects on inflammatory processes that underlie the development of chronic diseases, including cardiovascular disease, diabetes, depression, and certain types of cancer. In the present review, we examine how exposure to two risk factors that commonly occur with social disadvantage-early life stress and air pollution-affect health. Specifically, we identify neuroimmunologic pathways that could link early life stress, inflammation, air pollution, and poor health, and use this information to propose an integrated, multi-level model that describes how these factors may interact and cause health disparity across individuals based on social disadvantage. This model highlights the importance of interdisciplinary research considering multiple exposures across domains and the potential for synergistic, cross-domain effects on health, and may help identify factors that could potentially be targeted to reduce disease risk and improve lifespan health.
Collapse
Affiliation(s)
- Hector A Olvera Alvarez
- School of Nursing, University of Texas at El Paso, Health Science and Nursing Building, Room 359, 500 West University Avenue, El Paso, TX, USA.
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - George M Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Davis G, Lucero J, Fellers C, McDonald JD, Lund AK. The effects of subacute inhaled multi-walled carbon nanotube exposure on signaling pathways associated with cholesterol transport and inflammatory markers in the vasculature of wild-type mice. Toxicol Lett 2018; 296:48-62. [PMID: 30081225 DOI: 10.1016/j.toxlet.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Exposure to multi-walled carbon nanotubes (MWCNTs) has been associated with detrimental cardiovascular outcomes; however, underlying mechanisms have not yet been fully elucidated. Thus, we investigated alterations in proatherogenic and proinflammatory signaling pathways in C57Bl6/ mice exposed to MWCNTs (1 mg/m3) or filtered air (FA-Controls), via inhalation, for 6 h/day, 14d. Expression of mediators of cholesterol transport, namely the lectin-like oxidized low-density lipoprotein receptor (LOX)-1 and ATP-binding cassette transporter (ABCA)-1, inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1β/IL-6, nuclear-factor kappa-light-chain-enhancer of activated B cells (NF-κB), intracellular/vascular adhesion molecule(s) (VCAM-1, ICAM-1), and miRNAs (miR-221/-21/-1), associated with cardiovascular disease (CVD), were analyzed in cardiac tissue and coronary vasculature. Cardiac fibrotic deposition, matrix-metalloproteinases (MMP)-2/9, and reactive oxygen species (ROS) were also assessed. MWCNT-exposure resulted in increased coronary ROS production with concurrent increases in expression of LOX-1, VCAM-1, TNF-α, and MMP-2/9 activity; while ABCA-1 expression was downregulated, compared to FA-Controls. Additionally, trends in fibrotic deposition and induction of cardiac TNF-α, MMP-9, IκB Kinase (IKK)-α/β, and miR-221 mRNA expression were observed. Analysis using inhibitors for nitric oxide synthase or NADPH oxidase resulted in attenuated coronary ROS production. These findings suggest that subacute inhalation MWCNT-exposure alters expression of cholesterol transporter/receptors, and induces signaling pathways associated with inflammation, oxidative stress, and CVD in wild-type mice.
Collapse
Affiliation(s)
- Griffith Davis
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| | - JoAnn Lucero
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| | - Caitlin Fellers
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87108, USA.
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| |
Collapse
|
38
|
Wilson SJ, Miller MR, Newby DE. Effects of Diesel Exhaust on Cardiovascular Function and Oxidative Stress. Antioxid Redox Signal 2018; 28:819-836. [PMID: 28540736 DOI: 10.1089/ars.2017.7174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SIGNIFICANCE Air pollution is a major global health concern with particulate matter (PM) being especially associated with increases in cardiovascular morbidity and mortality. Diesel exhaust emissions are a particularly rich source of the smallest sizes of PM ("fine" and "ultrafine") in urban environments, and it is these particles that are believed to be the most detrimental to cardiovascular health. Recent Advances: Controlled exposure studies to diesel exhaust in animals and man demonstrate alterations in blood pressure, heart rate, vascular tone, endothelial function, myocardial perfusion, thrombosis, atherogenesis, and plaque stability. Oxidative stress has emerged as a highly plausible pathobiological mechanism by which inhalation of diesel exhaust PM leads to multiple facets of cardiovascular dysfunction. CRITICAL ISSUES Diesel exhaust inhalation promotes oxidative stress in several biological compartments that can be directly associated with adverse cardiovascular effects. FUTURE DIRECTIONS Further studies with more sensitive and specific in vivo human markers of oxidative stress are required to determine if targeting oxidative stress pathways involved in the actions of diesel exhaust PM could be of therapeutic value. Antioxid. Redox Signal. 28, 819-836.
Collapse
Affiliation(s)
- Simon J Wilson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - Mark R Miller
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
39
|
Münzel T, Sørensen M, Gori T, Schmidt FP, Rao X, Brook FR, Chen LC, Brook RD, Rajagopalan S. Environmental stressors and cardio-metabolic disease: part II-mechanistic insights. Eur Heart J 2018; 38:557-564. [PMID: 27460891 PMCID: PMC5381593 DOI: 10.1093/eurheartj/ehw294] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Environmental factors can act as facilitators of chronic non-communicable diseases. Ambient noise and air pollution collectively outrank all other environmental risk factors in importance, contributing to over 75% of the disease and disability burden associated with known environmental risk factors. In the first part of this review, we discussed the global burden and epidemiologic evidence supporting the importance of these novel risk factors as facilitators of cardiometabolic disease. In this part, we will discuss pathophysiological mechanisms responsible for noise and air pollution-mediated effects. Akin to traditional cardiovascular risk factors, a considerable body of evidence suggests that these environmental agents induce low-grade inflammation, oxidative stress, vascular dysfunction, and autonomic nervous system imbalance, thereby facilitating the development of diseases such as hypertension and diabetes. Through their impact on traditional risk factors and via additional novel mechanisms, environmental risk factors may have much larger impact on cardiovascular events than currently appreciated. In the second part of this review, we discuss deficiencies and gaps in knowledge and opportunities for new research.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center Mainz and Deutsches Zentrum für Herz und Kreislauf Forschung, Standort Rhein-Main, Germany
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Tommaso Gori
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center Mainz and Deutsches Zentrum für Herz und Kreislauf Forschung, Standort Rhein-Main, Germany
| | - Frank P Schmidt
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center Mainz and Deutsches Zentrum für Herz und Kreislauf Forschung, Standort Rhein-Main, Germany
| | - Xiaoquan Rao
- Division of Cardiovascular Medicine, University of Maryland Medical Center, 110 South Paca Street, Suite 7-100, Baltimore, MD 21201, USA
| | - Frank R Brook
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada.,Processes Research Section Environment and Climate Change Canada, Canada
| | - Lung Chi Chen
- Department of Environmental Medicine, New York University, New York, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland Medical Center, 110 South Paca Street, Suite 7-100, Baltimore, MD 21201, USA
| |
Collapse
|
40
|
Suwannasual U, Lucero J, McDonald JD, Lund AK. Exposure to traffic-generated air pollutants mediates alterations in brain microvascular integrity in wildtype mice on a high-fat diet. ENVIRONMENTAL RESEARCH 2018; 160:449-461. [PMID: 29073573 PMCID: PMC5705467 DOI: 10.1016/j.envres.2017.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
Air pollution-exposure is associated with detrimental outcomes in the central nervous system (CNS) such as cerebrovascular disorders, including stroke, and neurodegenerative diseases. While the mechanisms of these CNS-related outcomes involved have not been fully elucidated, exposure to traffic-generated air pollutants has been associated with altered blood brain barrier (BBB) integrity and permeability. The current study investigated whether inhalation exposure to mixed vehicle emissions (MVE) alters cerebral microvascular integrity in healthy 3 mo old C57BL/6 mice, as well as whether exposure-mediated effects were exacerbated by a high-fat (HF) vs. low-fat (LF) diet. Mice on each diet were randomly assigned to be exposed to either filtered air (FA) or MVE [100PM/m3 vehicle emissions mixture: 30µg PM/m3 gasoline engine + 70µg PM/m3 diesel engine emissions; median size ~ 60nm; particle mass size distribution median of ~ 1µm (range: < 0.5-20µm)] for 6h/d, 7d/wk, for 30d. Using sodium fluorescein as a tracer, we observed a significant increase in BBB permeability in both HF + MVE exposed and HF + FA animals, compared to LF + FA controls. Exposure to HF + MVE also led to a significant increase plasma ox-LDL and ox-LDL scavenger receptors (LOX-1 and CD-36) expression in the cerebral vasculature. Histological analysis revealed decreased expression of TJ protein, claudin-5, associated with increased matrix metalloproteinase (MMP)-9 activity and oxidative stress in the cerebral vasculature of HF + MVE mice, compared to LF + MVE. Such findings indicate that inhalation exposure to traffic-generated pollutants, coupled with a HF diet, results in altered BBB integrity and increased ox-LDL signaling in the cerebral vasculature in a wildtype animal model.
Collapse
Affiliation(s)
- Usa Suwannasual
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - JoAnn Lucero
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA.
| |
Collapse
|
41
|
Kelly FJ, Fussell JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 2017; 110:345-367. [PMID: 28669628 DOI: 10.1016/j.freeradbiomed.2017.06.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
42
|
Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol 2017; 70:230-251. [PMID: 28683970 DOI: 10.1016/j.jacc.2017.05.043] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Oxidative stress occurs whenever the release of reactive oxygen species (ROS) exceeds endogenous antioxidant capacity. In this paper, we review the specific role of several cardiovascular risk factors in promoting oxidative stress: diabetes, obesity, smoking, and excessive pollution. Specifically, the risk of developing heart failure is higher in patients with diabetes or obesity, even with optimal medical treatment, and the increased release of ROS from cardiac mitochondria and other sources likely contributes to the development of cardiac dysfunction in this setting. Here, we explore the role of different ROS sources arising in obesity and diabetes, and the effect of excessive ROS production on the development of cardiac lipotoxicity. In parallel, contaminants in the air that we breathe pose a significant threat to human health. This paper provides an overview of cigarette smoke and urban air pollution, considering how their composition and biological effects have detrimental effects on cardiovascular health.
Collapse
Affiliation(s)
- Bernd Niemann
- Department of Adult and Pediatric Cardiovascular Surgery, University Hospital Giessen, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany.
| | - Mark R Miller
- BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
43
|
Carpentier R, Platel A, Maiz-Gregores H, Nesslany F, Betbeder D. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants. PLoS One 2017; 12:e0183243. [PMID: 28813539 PMCID: PMC5557588 DOI: 10.1371/journal.pone.0183243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022] Open
Abstract
Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants’ toxicity.
Collapse
Affiliation(s)
- Rodolphe Carpentier
- Inserm, LIRIC - UMR 995, Lille, France
- Univ Lille, LIRIC - UMR 995, Lille, France
- CHRU de Lille, LIRIC - UMR 995, Lille, France
- * E-mail:
| | - Anne Platel
- Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, Lille, France
- Univ Lille, EA4483, Lille, France
| | | | - Fabrice Nesslany
- Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, Lille, France
- Univ Lille, EA4483, Lille, France
| | - Didier Betbeder
- Inserm, LIRIC - UMR 995, Lille, France
- Univ Lille, LIRIC - UMR 995, Lille, France
- CHRU de Lille, LIRIC - UMR 995, Lille, France
- Université d’Artois, Lens, France
| |
Collapse
|
44
|
Lucero J, Suwannasual U, Herbert LM, McDonald JD, Lund AK. The role of the lectin-like oxLDL receptor (LOX-1) in traffic-generated air pollution exposure-mediated alteration of the brain microvasculature in Apolipoprotein (Apo) E knockout mice. Inhal Toxicol 2017; 29:266-281. [PMID: 28816559 PMCID: PMC6732220 DOI: 10.1080/08958378.2017.1357774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022]
Abstract
Recent studies have shown a strong correlation between air pollution-exposure and detrimental outcomes in the central nervous system, including alterations in blood brain barrier (BBB) integrity, neuroinflammation, and neurodegeneration. However, the mechanisms mediating these pathologies have not yet been fully elucidated. We have previously reported that exposure to traffic-generated air pollution results in increased circulating oxidized low-density lipoprotein (oxLDL), associated with alterations in BBB integrity, in atherosclerotic Apolipoprotein E null (ApoE-/-) mice. Thus, we investigated the role of the lectin-like oxLDL receptor (LOX)-1 in mediating these deleterious effects in ApoE-/- mice exposed to a mixture of gasoline and diesel engine exhaust (MVE: 100 PM µg/m3) for 6 h/d, 7d/week, for 30 d by inhalation. Concurrent with exposures, a subset of mice were treated with neutralizing antibodies to LOX-1 (LOX-1 Ab) i.p., or IgG (control) i.p., every other day during exposures. Resulting brain microvascular integrity, tight junction (TJ) protein expression, matrix metalloproteinase (MMP)-9/-2 activity, ROS, and markers of cellular adhesion and monocyte/macrophage sequestration were assessed. MVE-exposure resulted in decreased BBB integrity and alterations in microvascular TJ protein expression, associated with increased LOX-1 expression, MMP-9/-2 activities, and lipid peroxidation, each of which was attenuated with LOX-1 Ab treatment. Furthermore, MVE-exposure induced cerebral microvascular ROS and adhesion molecules, expression of which was not normalized through LOX-1 Ab-treatment. Such findings suggest that alterations in brain microvascular structure and integrity observed with MVE-exposure may be mediated, at least in part, via LOX-1 signaling.
Collapse
Affiliation(s)
- JoAnn Lucero
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Usa Suwannasual
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Lindsay M. Herbert
- Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Jacob D. McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Amie K. Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
45
|
LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies. Int J Mol Sci 2017; 18:ijms18020290. [PMID: 28146073 PMCID: PMC5343826 DOI: 10.3390/ijms18020290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is a process in which precursor messenger RNA (pre-mRNA) splicing sites are differentially selected to diversify the protein isoform population. Changes in AS patterns have an essential role in normal development, differentiation and response to physiological stimuli. It is documented that AS can generate both “risk” and “protective” splice variants that can contribute to the pathogenesis of several diseases including atherosclerosis. The main endothelial receptor for oxidized low-density lipoprotein (ox-LDLs) is LOX-1 receptor protein encoded by the OLR1 gene. When OLR1 undergoes AS events, it generates three variants: OLR1, OLR1D4 and LOXIN. The latter lacks exon 5 and two-thirds of the functional domain. Literature data demonstrate a protective role of LOXIN in pathologies correlated with LOX-1 overexpression such as atherosclerosis and tumors. In this review, we summarize recent developments in understanding of OLR1 AS while also highlighting data warranting further investigation of this process as a novel therapeutic target.
Collapse
|
46
|
Tyler CR, Zychowski KE, Sanchez BN, Rivero V, Lucas S, Herbert G, Liu J, Irshad H, McDonald JD, Bleske BE, Campen MJ. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes. Part Fibre Toxicol 2016; 13:64. [PMID: 27906023 PMCID: PMC5131556 DOI: 10.1186/s12989-016-0177-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022] Open
Abstract
Background Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE−/−) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. Results The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE−/− animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE−/− mice including Il-1β, IL-6, Tgf-β and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1β, and Tnf-α. Interestingly, Il-6 and Tgf-β expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-β in the ApoE−/− hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. Conclusions Inflammatory responses the lung and brain were most substantial in ApoE−/− animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and particles is an important determinant of toxic responses. As such, freshly generated UFP, in the presence of combustion-derived gas phase pollutants, may be a greater health hazard than would be predicted from PM concentration, alone, lending support for epidemiological findings of adverse neurological outcomes associated with roadway proximity. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0177-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Katherine E Zychowski
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bethany N Sanchez
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Valeria Rivero
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - June Liu
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | - Barry E Bleske
- Department of Pharmacy Practice & Administrative Sciences, The University of New Mexico, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|
47
|
Mumaw CL, Levesque S, McGraw C, Robertson S, Lucas S, Stafflinger JE, Campen MJ, Hall P, Norenberg JP, Anderson T, Lund AK, McDonald JD, Ottens AK, Block ML. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. FASEB J 2016; 30:1880-91. [PMID: 26864854 PMCID: PMC4836369 DOI: 10.1096/fj.201500047] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/16/2016] [Indexed: 12/26/2022]
Abstract
Air pollution is implicated in neurodegenerative disease risk and progression and in microglial activation, but the mechanisms are unknown. In this study, microglia remained activated 24 h after ozone (O3) exposure in rats, suggesting a persistent signal from lung to brain. Ex vivo analysis of serum from O3-treated rats revealed an augmented microglial proinflammatory response and β-amyloid 42 (Aβ42) neurotoxicity independent of traditional circulating cytokines, where macrophage-1 antigen-mediated microglia proinflammatory priming. Aged mice exhibited reduced pulmonary immune profiles and the most pronounced neuroinflammation and microglial activation in response to mixed vehicle emissions. Consistent with this premise, cluster of differentiation 36 (CD36)(-/-) mice exhibited impaired pulmonary immune responses concurrent with augmented neuroinflammation and microglial activation in response to O3 Further, aging glia were more sensitive to the proinflammatory effects of O3 serum. Together, these findings outline the lung-brain axis, where air pollutant exposures result in circulating, cytokine-independent signals present in serum that elevate the brain proinflammatory milieu, which is linked to the pulmonary response and is further augmented with age.-Mumaw, C. L., Levesque, S., McGraw, C., Robertson, S., Lucas, S., Stafflinger, J. E., Campen, M. J., Hall, P., Norenberg, J. P., Anderson, T., Lund, A. K., McDonald, J. D., Ottens, A. K., Block, M. L. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors.
Collapse
Affiliation(s)
- Christen L Mumaw
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon Levesque
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia, USA
| | - Constance McGraw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia, USA
| | | | | | - Jillian E Stafflinger
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia, USA
| | | | | | - Jeffrey P Norenberg
- Radiopharmaceutical Sciences, Keck-University of New Mexico Small-Animal Imaging Resource, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, USA
| | - Tamara Anderson
- Radiopharmaceutical Sciences, Keck-University of New Mexico Small-Animal Imaging Resource, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, USA
| | - Amie K Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA; and
| | - Jacob D McDonald
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia, USA
| | - Michelle L Block
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA;
| |
Collapse
|
48
|
Aragon M, Erdely A, Bishop L, Salmen R, Weaver J, Liu J, Hall P, Eye T, Kodali V, Zeidler-Erdely P, Stafflinger JE, Ottens AK, Campen MJ. MMP-9-Dependent Serum-Borne Bioactivity Caused by Multiwalled Carbon Nanotube Exposure Induces Vascular Dysfunction via the CD36 Scavenger Receptor. Toxicol Sci 2016; 150:488-98. [PMID: 26801584 PMCID: PMC4966280 DOI: 10.1093/toxsci/kfw015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhalation of multiwalled carbon nanotubes (MWCNT) causes systemic effects including vascular inflammation, endothelial dysfunction, and acute phase protein expression. MWCNTs translocate only minimally beyond the lungs, thus cardiovascular effects thereof may be caused by generation of secondary biomolecular factors from MWCNT-pulmonary interactions that spill over into the systemic circulation. Therefore, we hypothesized that induced matrix metalloproteinase-9 (MMP-9) is a generator of factors that, in turn, drive vascular effects through ligand-receptor interactions with the multiligand pattern recognition receptor, CD36. To test this, wildtype (WT; C57BL/6) and MMP-9(-/-)mice were exposed to varying doses (10 or 40 µg) of MWCNTs via oropharyngeal aspiration and serum was collected at 4 and 24 h postexposure. Endothelial cells treated with serum from MWCNT-exposed WT mice exhibited significantly reduced nitric oxide (NO) generation, as measured by electron paramagnetic resonance, an effect that was independent of NO scavenging. Serum from MWCNT-exposed WT mice inhibited acetylcholine (ACh)-mediated relaxation of aortic rings at both time points. Absence of CD36 on the aortic rings (obtained from CD36-deficient mice) abolished the serum-induced impairment of vasorelaxation. MWCNT exposure induced MMP-9 protein levels in both bronchoalveolar lavage and whole lung lysates. Serum from MMP-9(-/-)mice exposed to MWCNT did not diminish the magnitude of vasorelaxation in naïve WT aortic rings, although a modest right shift of the ACh dose-response curve was observed in both MWCNT dose groups relative to controls. In conclusion, pulmonary exposure to MWCNT leads to elevated MMP-9 levels and MMP-9-dependent generation of circulating bioactive factors that promote endothelial dysfunction and decreased NO bioavailability via interaction with vascular CD36.
Collapse
Affiliation(s)
- Mario Aragon
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Aaron Erdely
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Lindsey Bishop
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Rebecca Salmen
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - John Weaver
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Jim Liu
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Pamela Hall
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Tracy Eye
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Vamsi Kodali
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Patti Zeidler-Erdely
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Jillian E Stafflinger
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Matthew J Campen
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| |
Collapse
|
49
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Brower JB, Doyle-Eisele M, Moeller B, Stirdivant S, McDonald JD, Campen MJ. Metabolomic changes in murine serum following inhalation exposure to gasoline and diesel engine emissions. Inhal Toxicol 2016; 28:241-50. [PMID: 27017952 DOI: 10.3109/08958378.2016.1155003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The adverse health effects of environmental exposure to gaseous and particulate components of vehicular emissions are a major concern among urban populations. A link has been established between respiratory exposure to vehicular emissions and the development of cardiovascular disease (CVD), but the mechanisms driving this interaction remain unknown. Chronic inhalation exposure to mixed vehicle emissions has been linked to CVD in animal models. This study evaluated the temporal effects of acute exposure to mixed vehicle emissions (MVE; mixed gasoline and diesel emissions) on potentially active metabolites in the serum of exposed mice. C57Bl/6 mice were exposed to a single 6-hour exposure to filtered air (FA) or MVE (100 or 300 μg/m(3)) by whole body inhalation. Immediately after and 18 hours after the end of the exposure period, animals were sacrificed for serum and tissue collection. Serum was analyzed for metabolites that were differentially present between treatment groups and time points. Changes in metabolite levels suggestive of increased oxidative stress (oxidized glutathione, cysteine disulfide, taurine), lipid peroxidation (13-HODE, 9-HODE), energy metabolism (lactate, glycerate, branched chain amino acid catabolites, butrylcarnitine, fatty acids), and inflammation (DiHOME, palmitoyl ethanolamide) were observed immediately after the end of exposure in the serum of animals exposed to MVE relative to those exposed to FA. By 18 hours post exposure, serum metabolite differences between animals exposed to MVE versus those exposed to FA were less pronounced. These findings highlight complex metabolomics alterations in the circulation following inhalation exposure to a common source of combustion emissions.
Collapse
Affiliation(s)
- Jeremy B Brower
- a Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | | | - Benjamin Moeller
- a Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | | | - Jacob D McDonald
- a Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Matthew J Campen
- c College of Pharmacy, University of New Mexico , Albuquerque , NM , USA
| |
Collapse
|