1
|
Liang J, Zhao J, Yang L, Wang Q, Liao J, Li J, Zhuang W, Li F, He J, Tang Y, Chen H, Huang C. MSC-exosomes pretreated by Danshensu extracts pretreating to target the hsa-miR-27a-5p and STAT3-SHANK2 to enhanced antifibrotic therapy. Stem Cell Res Ther 2025; 16:40. [PMID: 39901236 PMCID: PMC11792327 DOI: 10.1186/s13287-025-04181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a serious complication commonly associated with prolonged peritoneal dialysis. Mesenchymal stem cells (MSCs) and their exosomes (Exo) have shown significant therapeutic promise in treating fibrotic conditions. Danshensu (DSS), a bioactive compound from the traditional Chinese herb Danshen reverses fibrosis. This study aims to investigate a novel strategy to enhance the therapeutic efficacy against PF by DSS preconditioning MSCs-derived exosomes (DSS-Exo). METHODS The in vitro studies included the effects of DSS duration on MSCs, and the characterization of DSS-Exo and Exo, followed by the assessment of RNA and protein expression levels of peritoneal fibrosis markers and inflammatory cytokines levels after treating human peritoneal mesothelial (HMrSV5) cells. In vivo experiments were conducted on a PF mouse model to observe cell morphology, collagen deposition, fibrosis localization, and to evaluate peritoneal functions such as filtration rate, urea nitrogen clearance, peritoneal thickness, and protein leakage. Mechanistic insights were gained through the analysis of the STAT3/HIF-1α/VEGF signaling pathway, tissue dual-fluorescence localization,chromatin immunoprecipitation sequencing (ChIP-seq), and dual-luciferase reporter (DLR) assays. Additionally, the differential expression of miRNAs between DSS-Exo and Exo was explored and validation of key miRNA. RESULTS DSS-Exo significantly upregulated E-cadherin, downregulated VEGFA, α-SMA, CTGF and Fibronectin expression in HMrSV5 cells compared to untreated Exo. In vivo studies revealed that DSS-Exo enhanced the ability of Exo to improve peritoneal function,such as the peritoneal filtration rate and urea nitrogen, glucose clearance, while reducing peritoneal thickness and protein leakage, and cell morphology, reduce collagen deposition, and decrease the degree of fibrosis. Mechanistically, these exosomes inhibited the STAT3/HIF-1α/VEGF signaling pathway within peritoneal mesothelial tissues. Furthermore, ChIP-seq and DLR demonstrated that DSS-Exo affected STAT3 directly binds to SHANK2 promoter regions, forming hydrogen bonds between 5 key amino acids such as GLN-344, HIS-332 and 6 key bases such as DG-258, DG-261. miRNA profiling identified DSS-Exo increased hsa-miR-27a-5p_R-1 to regulated STAT3-SHANK2 and modulating the EMT. CONCLUSION This study highlighted the innovative use of Danshensu in enhancing MSC-derived exosome therapy for PF. The identification of the hsa-miR-27a-5p_R-1-STAT3-SHANK2 axis may reveal new molecular mechanisms underlying fibrosis, further research is needed to fully elucidate its impact on PF. The integration of Danshensu from traditional Chinese medicine into modern MSC exosome therapy represents a promising frontier in the development of novel treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Jiabin Liang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxiu Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Laboratory Science, ShunDe Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Liao
- Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jianhao Li
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weizhao Zhuang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fanghong Li
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxian He
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yukuan Tang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanwei Chen
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
- Panyu Health Management Center, Guangzhou, 511400, China.
| | - Chen Huang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
- Medical Imaging Institute of Panyu, Guangzhou, 511400, China.
| |
Collapse
|
2
|
Chen Z, Tang M, Wang N, Liu J, Tan X, Ma H, Luo J, Xie K. Genetic variation reveals the therapeutic potential of BRSK2 in idiopathic pulmonary fibrosis. BMC Med 2025; 23:22. [PMID: 39838395 PMCID: PMC11752817 DOI: 10.1186/s12916-025-03848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Current research underscores the need to better understand the pathogenic mechanisms and treatment strategies for idiopathic pulmonary fibrosis (IPF). This study aimed to identify key targets involved in the progression of IPF. METHODS We employed Mendelian randomization (MR) with three genome-wide association studies and four quantitative trait loci datasets to identify key driver genes for IPF. Prioritized targets were evaluated for respiratory insufficiency and transplant-free survival. The therapeutic efficacy of the core gene was validated in cellular and animal models. Additionally, we conducted a comprehensive evaluation of therapeutic value, pathogenic mechanisms, and safety through phenome-wide association study (PheWAS), mediation analysis, transcriptomic analyses, shared causal variant exploration, DNA methylation MR, and protein interactions. RESULTS Multiple MR results revealed that BRSK2 has a significant pathogenic impact on IPF at both transcriptional and translational levels, with a lung tissue-specific association (OR = 1.596; CI, 1.300-1.961; Pval = 8.290 × 10 - 6). BRSK2 was associated with IPF progression driven by high-risk factors, with mediation effects ranging from 34.452 to 69.665%. Elevated BRSK2 expression in peripheral blood mononuclear cells correlated with reduced pulmonary function, while increased circulating BRSK2 levels suggested respiratory failure and shorter transplant-free survival in IPF patients. BRSK2 silencing attenuated lung fibrosis progression in cellular and animal models. Transcriptomic integration identified PSMB1, CTSD, and CTSH as significant downstream effectors of BRSK2, with PSMB1 showing robust shared causal variant support (PPH4 = 0.800). Colocalization analysis and phenotype scan deepened the pathogenic association of BRSK2 with IPF, while methylation MR analysis highlighted the critical role of epigenetic regulation in BRSK2-driven IPF pathogenesis. PheWAS revealed no significant drug-related toxicities for BRSK2, and its therapeutic potential was further underscored by protein interaction analyses. CONCLUSIONS BRSK2 is identified as a critical pathogenic factor in IPF, with strong potential as a therapeutic target. Future studies should focus on its translational implications and the development of targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mingyang Tang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Nan Wang
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jiangjiang Liu
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xiaoyan Tan
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Ma
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Kai Xie
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
3
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
4
|
Chen H, Xia Z, Qing B, Gu L, Chen Y, Wang J, Yuan Y. Molecular characterization of PANoptosis-related genes associated with immune infiltration and prognosis in idiopathic pulmonary fibrosis. Int Immunopharmacol 2024; 143:113572. [PMID: 39515041 DOI: 10.1016/j.intimp.2024.113572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disease with unknown pathogenesis and poor prognosis. PANoptosis, a newly identified form of inflammatory programmed cell death, has been implicated in various inflammatory lung diseases. This study aimed to identify differentially expressed PANoptosis-related genes (PRDEGs) associated with immune infiltration and prognosis in IPF, while also establishing a novel prognostic prediction model. A total of 63 PRDEGs were identified from GSE110147 dataset, with 31 exhibiting consistent expression trends in GSE213001. Enrichment analysis indicated that the majority of these PRDEGs were enriched in inflammatory and immune-related pathways. Three key PRDEGs-NLRP3, ATM, and VEGFA-were selected through univariate and multivariable Cox regression analyses. The prognostic prediction model developed from these key PRDEGs demonstrated robust predictive performance. Furthermore, the expression of most PRDEGs was positively correlated with pro-inflammatory immune cells, including macrophages, neutrophils, and CD4+ T cells. Validation of the expression levels of these key PRDEGs was conducted in fibrotic mouse lung tissue. This study suggests that PANoptosis plays a role in IPF, potentially linked to the infiltration of pro-inflammatory immune cells, and may influence disease progression through the regulation of inflammatory immune signaling pathway. A new prognostic prediction model for IPF based on PRDEGs was successfully developed.
Collapse
Affiliation(s)
- Hongzuo Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410000, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410000, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410000, China
| | - Linguo Gu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410000, China
| | - Ying Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410000, China
| | - Juan Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410000, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410000, China.
| |
Collapse
|
5
|
Wang X, Yang CR, Zhao ZD, Liu DG, Li CZ. Gelatin/polycaprolactone membranes promote endometrial regeneration and restore fertility. Gynecol Endocrinol 2024; 40:2442728. [PMID: 39708335 DOI: 10.1080/09513590.2024.2442728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVE To investigate the effectiveness of gelatin/polycaprolactone (GT/PCL) membranes for restoring endometrial structure and function and fertility in a rat model of endometrial injury. METHODS We randomized 125 female Sprague-Dawley (SD) rats to the sham, natural repair (NR), estrogen (E), GT/PCL, and E-GT/PCL groups. Except for the sham group, all rats underwent uterine curettage. After 1, 2, 3, and 4 weeks, 12 rats from each group were sacrificed; their uterine tissue was collected for histological, immunohistochemical, and reverse transcription quantitative-polymerase chain reaction analyses. Eight rats from each group underwent radiography of the uterine cavity. The remaining 25 females were mated with males to assess fertility 60 d postoperatively. RESULTS The GT/PCL and E-GT/PCL groups had higher endometrial thickness, collagen degradation, cytokeratin 19, vimentin (VIM) expression, and microvessel densities and had higher levels of estrogen receptors (ERα) but lower levels of tumor necrosis factor (TNF) than the NR and E groups. They also showed better hysterographic patency, with the shape of the uterine cavity similar to that of the sham group, and higher embryo implantation rates than the NR and E groups. CONCLUSIONS GT/PCL membranes promote endometrial regeneration and improve fertility in rats. They may help prevent intrauterine adhesions (IUAs) postoperatively and warrant further investigation.
Collapse
Affiliation(s)
- Xin Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Chun-Run Yang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhen-Dan Zhao
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - De-Gao Liu
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, Guangdong, China
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chang-Zhong Li
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, Guangdong, China
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Santos-Álvarez JC, Velázquez-Enríquez JM, Reyes-Jiménez E, Ramírez-Hernández AA, Iñiguez-Palomares R, Rodríguez-Beas C, Canseco SP, Aguilar-Ruiz SR, Castro-Sánchez L, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Allium sativum nanovesicles exhibit anti-inflammatory and antifibrotic activity in a bleomycin-induced lung fibrosis model. Mol Biol Rep 2024; 51:1166. [PMID: 39560703 DOI: 10.1007/s11033-024-10104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and highly fatal disease characterized by excessive accumulation of extracellular matrix (ECM), foci of myofibroblasts, and a usual pattern of interstitial pneumonia. As suggested by international guidelines, the treatment for this disease involves supportive therapies, as there is currently no effective treatment. Plant-derived nanovesicles have emerged as a new treatment for various diseases and have been tested in cellular and murine models. METHODS AND RESULTS This research aimed to test the use of Allium sativum nanovesicles (AS-NV) in a murine model of IPF induced by bleomycin. AS-NV reduced the amount of collagen and restored lung architecture in the mouse model. AS-NV was tested on human lung fibroblasts, which do not affect the viability of healthy cells. AS-NV treatment decreases the mRNA levels of genes related to fibrosis, inflammation, and ECM deposition (Mmp2,Timp-2,Vegf,Pcna,Col1a1,Tgf-β,α-Sma,IL-1β,and Hif1a) in bleomycin-induced idiopathic pulmonary fibrosis. CONCLUSIONS This research highlights the anti-inflammatory and antifibrotic activity of AS-NV, which contributes to plant nanovesicle mechanisms in IPF; however, more AS-NV studies are needed to identify alternative treatments for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Ramon Iñiguez-Palomares
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, 83000, Mexico
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, 83000, Mexico
| | - Socorro Pina Canseco
- Centro de Investigación Facultad de Medicina, UNAM-UABJO, Oaxaca de Juárez, 68120, Mexico
| | - Sergio Roberto Aguilar-Ruiz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico
| | - Luis Castro-Sánchez
- CONAHCYT-Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, 28045, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico.
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico.
| |
Collapse
|
7
|
Fließer E, Jandl K, Lins T, Birnhuber A, Valzano F, Kolb D, Foris V, Heinemann A, Olschewski H, Evermann M, Hoetzenecker K, Kreuter M, Voelkel NF, Marsh LM, Wygrecka M, Kwapiszewska G. Lung Fibrosis Is Linked to Increased Endothelial Cell Activation and Dysfunctional Vascular Barrier Integrity. Am J Respir Cell Mol Biol 2024; 71:318-331. [PMID: 38843440 DOI: 10.1165/rcmb.2024-0046oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 08/31/2024] Open
Abstract
Pulmonary fibrosis (PF) can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analyzed using transmission electron microscopy, immunohistochemistry, and single-cell RNA sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells (ECs) in fibrotic lungs compared with donors. A more intense CD31 and von Willebrand Factor (vWF) and patchy vascular endothelial (VE)-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin, and VEGFR-2 (vascular endothelial growth factor receptor-2) and activation marker vWF gene expression was increased in different endothelial subpopulations (e.g., arterial, venous, general capillary, aerocytes) in PF. This was associated with a heightened sensitivity of fibrotic ECs to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in ECs from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, whereas VE-Cadherin, Thrombomodulin, and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of patients with PF 6 months after the initial diagnosis. Our data demonstrate highly abnormal ECs in PF. The vascular compartment is characterized by hyperactivation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Reestablishing EC homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology and
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis
- Gottfried Schatz Research Center, Cell Biology, Histology, and Embryology, and
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Matthias Evermann
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center, Mainz, Germany
- Department of Pulmonary, Critical Care, and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Norbert F Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, the Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany; and
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
8
|
Gu M, Wang Y, Yu Y. Ovarian fibrosis: molecular mechanisms and potential therapeutic targets. J Ovarian Res 2024; 17:139. [PMID: 38970048 PMCID: PMC11225137 DOI: 10.1186/s13048-024-01448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024] Open
Abstract
Ovarian fibrosis, characterized by the excessive proliferation of ovarian fibroblasts and the accumulation of extracellular matrix (ECM), serves as one of the primary causes of ovarian dysfunction. Despite the critical role of ovarian fibrosis in maintaining the normal physiological function of the mammalian ovaries, research on this condition has been greatly underestimated, which leads to a lack of clinical treatment options for ovarian dysfunction caused by fibrosis. This review synthesizes recent research on the molecular mechanisms of ovarian fibrosis, encompassing TGF-β, extracellular matrix, inflammation, and other profibrotic factors contributing to abnormal ovarian fibrosis. Additionally, we summarize current treatment approaches for ovarian dysfunction targeting ovarian fibrosis, including antifibrotic drugs, stem cell transplantation, and exosomal therapies. The purpose of this review is to summarize the research progress on ovarian fibrosis and to propose potential therapeutic strategies targeting ovarian fibrosis for the treatment of ovarian dysfunction.
Collapse
Affiliation(s)
- Mengqing Gu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yibo Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
9
|
Kadam AH, Schnitzer JE. Insights into Disease Progression of Translational Preclinical Rat Model of Interstitial Pulmonary Fibrosis through Endpoint Analysis. Cells 2024; 13:515. [PMID: 38534359 PMCID: PMC10969066 DOI: 10.3390/cells13060515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the relentless deposition of extracellular matrix (ECM), causing lung distortions and dysfunction. Animal models of human IPF can provide great insight into the mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches. In this study, we describe the effect of bleomycin concentration on disease progression in the classical rat bleomycin model. In a dose-response study (1.5, 2, 2.5 U/kg i.t), we characterized lung fibrosis at day 14 after bleomycin challenge using endpoints including clinical signs, inflammatory cell infiltration, collagen content, and bronchoalveolar lavage fluid-soluble profibrotic mediators. Furthermore, we investigated fibrotic disease progression after 2 U/kg i.t. bleomycin administration at days 3, 7, and 14 by quantifying the expression of clinically relevant signaling molecules and pathways, epithelial mesenchymal transition (EMT) biomarkers, ECM components, and histopathology of the lung. A single bleomycin challenge resulted in a progressive fibrotic response in rat lung tissue over 14 days based on lung collagen content, histopathological changes, and modified Ashcroft score. The early fibrogenesis phase (days 3 to 7) is associated with an increase in profibrotic mediators including TGFβ1, IL6, TNFα, IL1β, CINC1, WISP1, VEGF, and TIMP1. In the mid and late fibrotic stages, the TGFβ/Smad and PDGF/AKT signaling pathways are involved, and clinically relevant proteins targeting galectin-3, LPA1, transglutaminase-2, and lysyl oxidase 2 are upregulated on days 7 and 14. Between days 7 and 14, the expressions of vimentin and α-SMA proteins increase, which is a sign of EMT activation. We confirmed ECM formation by increased expressions of procollagen-1Aα, procollagen-3Aα, fibronectin, and CTGF in the lung on days 7 and 14. Our data provide insights on a complex network of several soluble mediators, clinically relevant signaling pathways, and target proteins that contribute to drive the progressive fibrotic phenotype from the early to late phase (active) in the rat bleomycin model. The framework of endpoints of our study highlights the translational value for pharmacological interventions and mechanistic studies using this model.
Collapse
Affiliation(s)
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), 505 Coast Blvd. South, La Jolla, CA 92037, USA;
| |
Collapse
|
10
|
Huang C, Liang C, Tong J, Zhong X, Luo L, Liang L, Wen Y, Zhong L, Deng J, Peng M, Wu W, Huang W, Xie A, Huang Y, Chen J. Soluble E-cadherin participates in BLM-induced pulmonary fibrosis by promoting EMT and lung fibroblast migration. ENVIRONMENTAL TOXICOLOGY 2024; 39:435-443. [PMID: 37792543 DOI: 10.1002/tox.23986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Soluble E-cadherin (sE-cad) is an 80 kDa fragment derived from E-cadherin that is shed from the cell surface through proteolytic cleavage and is a biomarker in various cancers that promotes invasion and migration. Alveolar epithelial destruction, aberrant lung fibroblast migration and inflammation contribute to pulmonary fibrosis. Here, we hypothesized that E-cadherin plays an important role in lung fibrosis. In this study, we found that E-cadherin was markedly increased in the bronchoalveolar lavage fluid (BALF) and serum of mice with pulmonary fibrosis and that blocking sE-cad with HECD-1, a neutralizing antibody targeting the ectodomain of E-cadherin, effectively inhibited myofibroblast accumulation and collagen deposition in the lungs after bleomycin (BLM) exposure. Moreover, transforming growth factor-β (TGF-β1) induced the shedding of sE-cad from A549 cells, and treatment with HECD-1 inhibited epithelial-mesenchymal transition (EMT) stimulated by TGF-β1. Fc-E-cadherin (Fc-Ecad), which is an exogenous form of sE-cad, robustly promoted lung fibroblast migration. E-cadherin participates in bleomycin (BLM)-induced lung fibrosis by promoting EMT in the alveolar epithelium and fibroblast activation. E-cadherin may be a novel therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Congmin Liang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jinzhai Tong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Xueying Zhong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Lishan Luo
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Liping Liang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Yuting Wen
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Liandi Zhong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jiongrui Deng
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Ming Peng
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Weiliang Wu
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Weijian Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Anlun Xie
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jialong Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
11
|
Di X, Chen J, Li Y, Wang M, Wei J, Li T, Liao B, Luo D. Crosstalk between fibroblasts and immunocytes in fibrosis: From molecular mechanisms to clinical trials. Clin Transl Med 2024; 14:e1545. [PMID: 38264932 PMCID: PMC10807359 DOI: 10.1002/ctm2.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The impact of fibroblasts on the immune system provides insight into the function of fibroblasts. In various tissue microenvironments, multiple fibroblast subtypes interact with immunocytes by secreting growth factors, cytokines, and chemokines, leading to wound healing, fibrosis, and escape of cancer immune surveillance. However, the specific mechanisms involved in the fibroblast-immunocyte interaction network have not yet been fully elucidated. MAIN BODY AND CONCLUSION Therefore, we systematically reviewed the molecular mechanisms of fibroblast-immunocyte interactions in fibrosis, from the history of cellular evolution and cell subtype divisions to the regulatory networks between fibroblasts and immunocytes. We also discuss how these communications function in different tissue and organ statuses, as well as potential therapies targeting the reciprocal fibroblast-immunocyte interplay in fibrosis. A comprehensive understanding of these functional cells under pathophysiological conditions and the mechanisms by which they communicate may lead to the development of effective and specific therapies targeting fibrosis.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jiawei Chen
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Menghua Wang
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Deyi Luo
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
12
|
Russo RC, Quesniaux VFJ, Ryffel B. Homeostatic chemokines as putative therapeutic targets in idiopathic pulmonary fibrosis. Trends Immunol 2023; 44:1014-1030. [PMID: 37951789 DOI: 10.1016/j.it.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease (ILD) that affects lung mechanical functions and gas exchange. IPF is caused by increased fibroblast activity and collagen deposition that compromise the alveolar-capillary barrier. Identifying an effective therapy for IPF remains a clinical challenge. Chemokines are key proteins in cell communication that have functions in immunity as well as in tissue homeostasis, damage, and repair. Chemokine receptor signaling induces the activation and proliferation of lung-resident cells, including alveolar macrophages (AMs) and fibroblasts. AMs are an important source of chemokines and cytokines during IPF. We highlight the complexity of this system and, based on insights from genetic and transcriptomic studies, propose a new role for homeostatic chemokine imbalance in IPF, with implications for putative therapeutic targets.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Valerie F J Quesniaux
- Experimental and Molecular Immunology and Neurogenetics (INEM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7355, University of Orleans, Orleans 45071, France.
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics (INEM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7355, University of Orleans, Orleans 45071, France.
| |
Collapse
|
13
|
Zhang Z, Guan Q, Tian Y, Shao X, Zhao P, Huang L, Li J. Integrated bioinformatics analysis for the identification of idiopathic pulmonary fibrosis-related genes and potential therapeutic drugs. BMC Pulm Med 2023; 23:373. [PMID: 37794454 PMCID: PMC10552267 DOI: 10.1186/s12890-023-02678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
OBJECTIVE The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unclear. We sought to identify IPF-related genes that may participate in the pathogenesis and predict potential targeted traditional Chinese medicines (TCMs). METHODS Using IPF gene-expression data, Wilcoxon rank-sum tests were performed to identify differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks, hub genes, and competitive endogenous RNA (ceRNA) networks were constructed or identified by Cytoscape. Quantitative polymerase chain reaction (qPCR) experiments in TGF-β1-induced human fetal lung (HFL) fibroblast cells and a pulmonary fibrosis mouse model verified gene reliability. The SymMap database predicted potential TCMs targeting IPF. The reliability of TCMs was verified in TGF-β1-induced MRC-5 cells. MATERIALS Multiple gene-expression profile data of normal lung and IPF tissues were downloaded from the Gene Expression Omnibus database. HFL fibroblast cells and MRC-5 cells were purchased from Wuhan Procell Life Science and Technology Co., Ltd. (Wuhan, China). C57BL/12 mice were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China). RESULTS In datasets GSE134692 and GSE15197, DEGs were identified using Wilcoxon rank-sum tests (both p < 0.05). Among them, 1885 DEGs were commonly identified, and 87% (1640 genes) had identical dysregulation directions (binomial test, p < 1.00E-16). A PPI network with 1623 nodes and 8159 edges was constructed, and 18 hub genes were identified using the Analyze Network plugin in Cytoscape. Of 18 genes, CAV1, PECAM1, BMP4, VEGFA, FYN, SPP1, and COL1A1 were further validated in the GeneCards database and independent dataset GSE24206. ceRNA networks of VEGFA, SPP1, and COL1A1 were constructed. The genes were verified by qPCR in samples of TGF-β1-induced HFL fibroblast cells and pulmonary fibrosis mice. Finally, Sea Buckthorn and Gnaphalium Affine were predicted as potential TCMs for IPF. The TCMs were verified by qPCR in TGF-β1-induced MRC-5 cells. CONCLUSION This analysis strategy may be useful for elucidating novel mechanisms underlying IPF at the transcriptome level. The identified hub genes may play key roles in IPF pathogenesis and therapy.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xuejie Shao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lidong Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
14
|
Perrot CY, Karampitsakos T, Herazo-Maya JD. Monocytes and macrophages: emerging mechanisms and novel therapeutic targets in pulmonary fibrosis. Am J Physiol Cell Physiol 2023; 325:C1046-C1057. [PMID: 37694283 PMCID: PMC10635664 DOI: 10.1152/ajpcell.00302.2023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Pulmonary fibrosis results from a plethora of abnormal pathogenetic events. In idiopathic pulmonary fibrosis (IPF), inhalational, environmental, or occupational exposures in genetically and epigenetically predisposed individuals trigger recurrent cycles of alveolar epithelial cell injury, activation of coagulation pathways, chemoattraction, and differentiation of monocytes into monocyte-derived alveolar macrophages (Mo-AMs). When these events happen intermittently and repeatedly throughout the individual's life cycle, the wound repair process becomes aberrant leading to bronchiolization of distal air spaces, fibroblast accumulation, extracellular matrix deposition, and loss of the alveolar-capillary architecture. The role of immune dysregulation in IPF pathogenesis and progression has been underscored in the past mainly after the disappointing results of immunosuppressant use in IPF patients; however, recent reports highlighting the prognostic and mechanistic roles of monocytes and Mo-AMs revived the interest in immune dysregulation in IPF. In this review, we will discuss the role of these cells in the onset and progression of IPF, as well as potential targeted therapies.
Collapse
Affiliation(s)
- Carole Y Perrot
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Theodoros Karampitsakos
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jose D Herazo-Maya
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
15
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
16
|
Luo YL, Li Y, Zhou W, Wang SY, Liu YQ. Inhibition of LPA-LPAR1 and VEGF-VEGFR2 Signaling in IPF Treatment. Drug Des Devel Ther 2023; 17:2679-2690. [PMID: 37680863 PMCID: PMC10482219 DOI: 10.2147/dddt.s415453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Due to the complex mechanism and limited treatments available for pulmonary fibrosis, the development of targeted drugs or inhibitors based on their molecular mechanisms remains an important strategy for prevention and treatment. In this paper, the downstream signaling pathways mediated by VEGFR and LPAR1 in pulmonary cells and the role of these pathways in pulmonary fibrosis, as well as the current status of drug research on the targets of LPAR1 and VEGFR2, are described. The mechanism by which these two pathways regulate vascular leakage and collagen deposition leading to the development of pulmonary fibrosis are analyzed, and the mutual promotion of the two pathways is discussed. Here we propose the development of drugs that simultaneously target LPAR1 and VEGFR2, and discuss the important considerations in targeting and safety.
Collapse
Affiliation(s)
- Ya-Li Luo
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yan Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Wen Zhou
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Si-Yu Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong-Qi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
17
|
Wang X, Zhang J, Wu Y, Xu Y, Zheng J. SIgA in various pulmonary diseases. Eur J Med Res 2023; 28:299. [PMID: 37635240 PMCID: PMC10464380 DOI: 10.1186/s40001-023-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/12/2023] [Indexed: 08/29/2023] Open
Abstract
Secretory immunoglobulin A (SIgA) is one of the most abundant immunoglobulin subtypes among mucosa, which plays an indispensable role in the first-line protection against invading pathogens and antigens. Therefore, the role of respiratory SIgA in respiratory mucosal immune diseases has attracted more and more attention. Although the role of SIgA in intestinal mucosal immunity has been widely studied, the cell types responsible for SIgA and the interactions between cells are still unclear. Here, we conducted a wide search of relevant studies and sorted out the relationship between SIgA and some pulmonary diseases (COPD, asthma, tuberculosis, idiopathic pulmonary fibrosis, COVID-19, lung cancer), which found SIgA is involved in the pathogenesis and progression of various lung diseases, intending to provide new ideas for the prevention, diagnosis, and treatment of related lung diseases.
Collapse
Affiliation(s)
- Xintian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Jun Zhang
- Department of Respiratory and Critical Care Medicine, Aoyang Hospital Affiliated to Jiangsu University, No. 279, Jingang Avenue, Zhangjiagang, Suzhou, Jiangsu China
| | - Yan Wu
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Yuncong Xu
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Jinxu Zheng
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| |
Collapse
|
18
|
Cucinotta L, Mannino D, Casili G, Repici A, Crupi L, Paterniti I, Esposito E, Campolo M. Prolyl oligopeptidase inhibition ameliorates experimental pulmonary fibrosis both in vivo and in vitro. Respir Res 2023; 24:211. [PMID: 37626373 PMCID: PMC10463606 DOI: 10.1186/s12931-023-02519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. Although the etiology remains unknown, aberrant angiogenesis and inflammation play an important role in the development of this pathology. In this context, recent scientific research has identified new molecules involved in angiogenesis and inflammation, such as the prolyl oligopeptidase (PREP), a proteolytic enzyme belonging to the serine protease family, linked to the pathology of many lung diseases such as pulmonary fibrosis. Therefore, the aim of this study was to investigate the effect of a selective inhibitor of PREP, known as KYP-2047, in an in vitro and in an in vivo model of pulmonary fibrosis. METHODS The in vitro model was performed using human alveolar A549 cells. Cells were exposed to lipopolysaccharide (LPS) 10 μg/ml and then, cells were treated with KYP-2047 at the concentrations of 1 μM, 10 μM and 50 μM. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide colorimetric assay, while inflammatory protein expression was assessed by western blots analysis. The in vivo model was induced in mice by intra-tracheal administration of bleomycin (1 mg/kg) and then treated intraperitoneally with KYP-2047 at doses of 1, 2.5 and 5 mg/kg once daily for 12 days and then mice were sacrificed, and lung tissues were collected for analyses. RESULTS The in vitro results demonstrated that KYP-2047 preserved cell viability, reduced inflammatory process by decreasing IL-18 and TNF-α, and modulated lipid peroxidation as well as nitrosative stress. The in vivo pulmonary fibrosis has demonstrated that KYP-2047 was able to restore histological alterations reducing lung injury. Our data demonstrated that KYP-2047 significantly reduced angiogenesis process and the fibrotic damage modulating the expression of fibrotic markers. Furthermore, KYP-2047 treatment modulated the IκBα/NF-κB pathway and reduced the expression of related pro-inflammatory enzymes and cytokines. Moreover, KYP-2047 was able to modulate the JAK2/STAT3 pathway, highly involved in pulmonary fibrosis. CONCLUSION In conclusion, this study demonstrated the involvement of PREP in the pathogenesis of pulmonary fibrosis and that its inhibition by KYP-2047 has a protective role in lung injury induced by BLM, suggesting PREP as a potential target therapy for pulmonary fibrosis. These results speculate the potential protective mechanism of KYP-2047 through the modulation of JAK2/STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy.
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| |
Collapse
|
19
|
Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, Choi A, García-Bernalt Diego J, Lin J, Wu TC, Marches F, Chaussabel D, Yu P, Salner A, Aucello G, Koff J, Hudson B, Church SE, Gorman K, Anguiano E, García-Sastre A, Williams A, Schotsaert M, Palucka K. Spatiotemporally organized immunomodulatory response to SARS-CoV-2 virus in primary human broncho-alveolar epithelia. iScience 2023; 26:107374. [PMID: 37520727 PMCID: PMC10374611 DOI: 10.1016/j.isci.2023.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression toward severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.
Collapse
Affiliation(s)
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Megan Callender
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew Coxe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter Yu
- Hartford HealthCare Cancer Institute, Hartford, CT 06102, USA
| | - Andrew Salner
- Hartford HealthCare Cancer Institute, Hartford, CT 06102, USA
| | - Gabrielle Aucello
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jonathan Koff
- Adult Cystic Fibrosis Program, Yale University, New Haven, CT 06519, USA
| | - Briana Hudson
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | - Sarah E. Church
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | - Kara Gorman
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
20
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
21
|
He J, Wang L, Wang Y, Li Z, Chen F, Liu Z. Metabolomics Combined with Network Pharmacology Uncovers Effective Targets of Tao-Hong-Si-Wu Decoction for Its Protection from Sepsis-Associated Acute Lung Injury. JOURNAL OF ANALYSIS AND TESTING 2023; 7:172-186. [DOI: 10.1007/s41664-023-00248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/18/2023] [Indexed: 07/14/2024]
|
22
|
Sisto M, Lisi S. Towards a Unified Approach in Autoimmune Fibrotic Signalling Pathways. Int J Mol Sci 2023; 24:ijms24109060. [PMID: 37240405 DOI: 10.3390/ijms24109060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmunity is a chronic process resulting in inflammation, tissue damage, and subsequent tissue remodelling and organ fibrosis. In contrast to acute inflammatory reactions, pathogenic fibrosis typically results from the chronic inflammatory reactions characterizing autoimmune diseases. Despite having obvious aetiological and clinical outcome distinctions, most chronic autoimmune fibrotic disorders have in common a persistent and sustained production of growth factors, proteolytic enzymes, angiogenic factors, and fibrogenic cytokines, which together stimulate the deposition of connective tissue elements or epithelial to mesenchymal transformation (EMT) that progressively remodels and destroys normal tissue architecture leading to organ failure. Despite its enormous impact on human health, there are currently no approved treatments that directly target the molecular mechanisms of fibrosis. The primary goal of this review is to discuss the most recent identified mechanisms of chronic autoimmune diseases characterized by a fibrotic evolution with the aim to identify possible common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| |
Collapse
|
23
|
Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, Choi A, Diego JGB, Lin J, Wu TC, Marches F, Chaussabel D, Yu P, Salner A, Aucello G, Koff J, Hudson B, Church SE, Gorman K, Anguiano E, García-Sastre A, Williams A, Schotsaert M, Palucka K. Spatiotemporally organized immunomodulatory response to SARS-CoV-2 virus in primary human broncho-alveolar epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534980. [PMID: 37034597 PMCID: PMC10081226 DOI: 10.1101/2023.03.30.534980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression towards severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.
Collapse
|
24
|
Cellular and Molecular Mechanisms in Idiopathic Pulmonary Fibrosis. Adv Respir Med 2023; 91:26-48. [PMID: 36825939 PMCID: PMC9952569 DOI: 10.3390/arm91010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The respiratory system is a well-organized multicellular organ, and disruption of cellular homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated cellular and molecular signals. Here, we review the advances in our understanding of the role of lung tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune cells, and endothelial cells. These advances summarize the role of various cell components and signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further study the pathological mechanism of the disease, provide new opportunities for disease prevention and treatment, and is expected to improve the survival rate and quality of life of patients.
Collapse
|
25
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
26
|
Zarina KZ, Pilmane M. Expression of Markers Ki-67, Nestin, VEGF, CD34 and Apoptosis in Relatively Healthy Lung Tissue with Non-Changed and Metaplastic Bronchial Epithelium. Med Sci (Basel) 2022; 11:medsci11010007. [PMID: 36649044 PMCID: PMC9844367 DOI: 10.3390/medsci11010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Knowledge about the occurrence of processes such as proliferation, apoptosis and angiogenesis in healthy lung tissues with different bronchial epitheliums is limited, and further exploration can contribute to a better understanding of the physiological renewal of lung tissues. The processes mentioned above occur with the help of important tissue factors; therefore, the aim of the study was to determine the expression of markers Ki-67, nestin, CD34 and vascular endothelial growth factor (VEFG) and detect apoptotic cells in relatively healthy lung tissue. METHODS Samples of relatively healthy lung tissue were obtained from 19 patients and divided into groups of patients with non-changed and patients with metaplastic bronchial epithelium. Tissue samples were examined by hematoxylin and eosin staining. Ki-67, nestin, VEGF and CD34-positive cells were detected by the immunohistochemistry method. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay was carried out to detect apoptotic cells. The number of positive structures was counted semi-quantitatively by microscopy. RESULTS Ki-67-positive cells were detected in only one case. An occasional to moderate number of nestin-positive structures was found in various tissues of relatively healthy lungs with different bronchial epitheliums. No apoptotic cells were seen in non-changed bronchial epithelium, compared with few apoptotic cells in metaplastic bronchial epithelium. Metaplastic bronchial epithelium contained more VEGF-positive cells than non-changed bronchial epithelium. Samples with non-changed, and metaplastic bronchial epithelium both contained a similar number of CD34-positive structures. CONCLUSIONS Proliferative activity and programmed cell death are not prominent events in normal lung tissue. A moderate number of nestin-positive cells in the alveolar epithelium and cartilage of bronchi with pseudostratified ciliated epithelium suggests a significant role of neuronal origin cells in these structures, to be intensified in metaplastic bronchial epithelium. A practically non-changed number of CD34-positive cells excludes any difference in stimulation of endothelial origin cells between lungs with different types of epithelium, while an increase in VEGF in structures with metaplastic epithelium suggests the presence/influence of tissue ischemia impact on possible development/maintenance of metaplasia.
Collapse
|
27
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
28
|
Niinikoski I, Kouki S, Koho N, Aromaa M, Holopainen S, Laurila HP, Fastrès A, Clercx C, Lilja-Maula L, Rajamäki MM. Evaluation of VEGF-A and CCL2 in dogs with brachycephalic obstructive airway syndrome or canine idiopathic pulmonary fibrosis and in normocephalic dogs. Res Vet Sci 2022; 152:557-563. [PMID: 36183612 DOI: 10.1016/j.rvsc.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
Brachycephalic obstructive airway syndrome (BOAS) and canine idiopathic pulmonary fibrosis (CIPF) of West Highland White Terriers (WHWTs) often cause intermittent or chronic hypoxemia. Our objective was to evaluate serum and bronchoalveolar lavage fluid (BALF) concentrations of hypoxemia-related proinflammatory mediators vascular endothelial growth factor A (VEGF-A) and chemokine (CC motif) ligand 2 (CCL2) in brachycephalic dogs (BDs) and WHWTs with and without CIPF. Additionally, effects of BOAS severity and ageing on these mediators were assessed. 114 BDs (28 English Bulldogs (EBs), 37 French Bulldogs, 49 Pugs), 16 WHWTs with CIPF, 26 healthy WHWTs, and 39 normocephalic control dogs were included. Fifty-four BDs were re-examined after two to three years. Bead-based immunoassay was used for proinflammatory mediator measurements. Compared with controls, significantly higher serum concentrations of VEGF-A were seen in EBs (P = 0.009) and of CCL2 in CIPF and healthy WHWTs (P < 0.001; P = 0.002). BALF samples were available from controls, EBs, and WHWTs. VEGF-A was significantly lower in EBs (P < 0.001) and in CIPF and healthy WHWTs (P = 0.006; P = 0.007) and CCL2 was higher in CIPF WHWTs (P = 0.01) compared with controls. Between visits, only serum VEGF-A significantly decreased in BDs (P < 0.001), but breed, BOAS severity, or its change had no significant effect. In conclusion, in EBs with BOAS proinflammatory changes in VEGF-A were detected in both serum and BALF. Ageing reduced serum VEGF-A in BDs. In WHWTs, our results confirmed earlier findings of CCL2 as an important biomarker for CIPF.
Collapse
Affiliation(s)
- I Niinikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland.
| | - S Kouki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - N Koho
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - M Aromaa
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - S Holopainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - H P Laurila
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - A Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Bd de Colonster 1, 4000 Liège, Belgium
| | - C Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Bd de Colonster 1, 4000 Liège, Belgium
| | - L Lilja-Maula
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - M M Rajamäki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| |
Collapse
|
29
|
González-García K, López-Martínez A, Velázquez-Enríquez JM, Zertuche-Martínez C, Carrasco-Torres G, Sánchez-Navarro LM, Villa-Treviño S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. 3′5-Dimaleamylbenzoic Acid Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Int J Mol Sci 2022; 23:ijms23147943. [PMID: 35887292 PMCID: PMC9319702 DOI: 10.3390/ijms23147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by parenchymal scarring, leading progressively to alveolar architecture distortion, respiratory failure, and eventually death. Currently, there is no effective treatment for IPF. Previously, 3′5-dimaleamylbenzoic acid (3′5-DMBA), a maleimide, demonstrated pro-apoptotic, anti-inflammatory, and anti-cancer properties; however, its potential therapeutic effects on IPF have not been addressed. Bleomycin (BLM) 100 U/kg was administered to CD1 mice through an osmotic minipump. After fourteen days of BLM administration, 3′5-DMBA (6 mg/kg or 10 mg/kg) and its vehicle carboxymethylcellulose (CMC) were administered intragastrically every two days until day 26. On day 28, all mice were euthanized. The 3′5-DMBA effect was assessed by histological and immunohistochemical staining, as well as by RT-qPCR. The redox status on lung tissue was evaluated by determining the glutathione content and the GSH/GSSG ratio. 3′5-DMBA treatment re-established typical lung histological features and decreased the expression of BLM-induced fibrotic markers: collagen, α-SMA, and TGF-β1. Furthermore, 3′5-DMBA significantly reduced the expression of genes involved in fibrogenesis. In addition, it decreased reduced glutathione and increased oxidized glutathione content without promoting oxidative damage to lipids, as evidenced by the decrease in the lipid peroxidation marker 4-HNE. Therefore, 3′5-DMBA may be a promising candidate for IPF treatment.
Collapse
Affiliation(s)
- Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, Oaxaca C.P. 68020, Mexico; (K.G.-G.); (A.L.-M.); (J.M.V.-E.); (C.Z.-M.)
| | - Armando López-Martínez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, Oaxaca C.P. 68020, Mexico; (K.G.-G.); (A.L.-M.); (J.M.V.-E.); (C.Z.-M.)
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, Oaxaca C.P. 68020, Mexico; (K.G.-G.); (A.L.-M.); (J.M.V.-E.); (C.Z.-M.)
| | - Cecilia Zertuche-Martínez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, Oaxaca C.P. 68020, Mexico; (K.G.-G.); (A.L.-M.); (J.M.V.-E.); (C.Z.-M.)
| | - Gabriela Carrasco-Torres
- Departamento de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico;
| | - Luis Manuel Sánchez-Navarro
- Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, Oaxaca C.P. 68020, Mexico;
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico;
| | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, Oaxaca C.P. 68020, Mexico
- Correspondence: (R.B.-H.); (V.R.V.-G.); Tel./Fax: +55-01-(951)-513-9784 (R.B.-H. & V.R.V.-G.)
| | - Verónica Rocío Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, Oaxaca C.P. 68020, Mexico
- Correspondence: (R.B.-H.); (V.R.V.-G.); Tel./Fax: +55-01-(951)-513-9784 (R.B.-H. & V.R.V.-G.)
| |
Collapse
|
30
|
Ma H, Liu S, Li S, Xia Y. Targeting Growth Factor and Cytokine Pathways to Treat Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:918771. [PMID: 35721111 PMCID: PMC9204157 DOI: 10.3389/fphar.2022.918771] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin that usually results in death from secondary respiratory failure within 2–5 years of diagnosis. Recent studies have identified key roles of cytokine and growth factor pathways in the pathogenesis of IPF. Although there have been numerous clinical trials of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib have been approved by the FDA. However, they have some major limitations, such as insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give more insights into the discovery of potential targets for the treatment of IPF, this review provides an overview of cytokines, growth factors and their signaling pathways in IPF, which have important implications for fully exploiting the therapeutic potential of targeting cytokine and growth factor pathways. Advances in the field of cytokine and growth factor pathways will help slow disease progression, prolong life, and improve the quality of life for IPF patients in the future.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengming Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shanrui Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| |
Collapse
|
31
|
Nozawa K, Takatsuka D, Endo Y, Horisawa N, Ozaki Y, Kataoka A, Kotani H, Yoshimura A, Hattori M, Sawaki M, Iwata H. Association between bevacizumab with cancer drug therapies and drug-induced interstitial lung disease in patients with solid tumor: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol 2022; 174:103703. [PMID: 35533814 DOI: 10.1016/j.critrevonc.2022.103703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE This study aimed to determine interstitial lung disease (ILD) incidences in patients receiving cancer drug therapies with or without bevacizumab treatment. METHODS Systematic searches of PubMed, Embase, and Cochrane Library were conducted in January 2021. The main inclusion criteria were randomized clinical trials that compared bevacizumab with standard treatment in patients with solid tumors. Cochrane Collaboration's Tool was used for assessing risk-of-bias. RESULTS Thirteen records involving 7201 patients were included in the meta-analysis. There were 42 ILD events in bevacizumab groups and 72 in control groups. In bevacizumab groups, the odds ratio for ILD was 0.62 (95% CI 0.42 to 0.92; p = 0.02), which was a significantly lower incidence than the control. This tendency was shown in targeted therapy groups but not in the cytotoxic agent groups. CONCLUSION Our data suggest that bevacizumab may reduce the incidence of ILD.
Collapse
Affiliation(s)
- Kazuki Nozawa
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan.
| | - Daiki Takatsuka
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Yuka Endo
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Nanae Horisawa
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Yuri Ozaki
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Ayumi Kataoka
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Haruru Kotani
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Akiyo Yoshimura
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Masaya Hattori
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Masataka Sawaki
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| |
Collapse
|
32
|
Kewalramani N, Machahua C, Poletti V, Cadranel J, Wells AU, Funke-Chambour M. Lung cancer in patients with fibrosing interstitial lung diseases – An overview of current knowledge and challenges. ERJ Open Res 2022; 8:00115-2022. [PMID: 35747227 PMCID: PMC9209850 DOI: 10.1183/23120541.00115-2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Patients with progressive fibrosing interstitial lung diseases (fILD) have increased morbidity and mortality. Lung fibrosis can be associated with lung cancer. The pathogenesis of both diseases shows similarities, although not all mechanisms are understood. The combination of the diseases is challenging, due to the amplified risk of mortality, and also because lung cancer treatment carries additional risks in patients with underlying lung fibrosis. Acute exacerbations in fILD patients are linked to increased mortality, and the risk of acute exacerbations is increased after lung cancer treatment with surgery, chemotherapy or radiotherapy. Careful selection of treatment modalities is crucial to improve survival while maintaining acceptable quality of life in patients with combined lung cancer and fILD. This overview of epidemiology, pathogenesis, treatment and a possible role for antifibrotic drugs in patients with lung cancer and fILD is the summary of a session presented during the virtual European Respiratory Society Congress in 2021. The review summarises current knowledge and identifies areas of uncertainty. Most current data relate to patients with combined idiopathic pulmonary fibrosis and lung cancer. There is a pressing need for additional prospective studies, required for the formulation of a consensus statement or guideline on the optimal care of patients with lung cancer and fILD. Lung fibrosis can be associated with lung cancer. More and better-designed studies are needed to determine the true incidence/prevalence of lung cancer in fILD. Optimal treatment strategies urgently need to be defined and evaluated.https://bit.ly/37CzTMu
Collapse
|
33
|
Xue M, Zhang T, Lin R, Zeng Y, Cheng ZJ, Li N, Zheng P, Huang H, Zhang XD, Wang H, Sun B. Clinical utility of heparin‐binding protein as an acute‐phase inflammatory marker in interstitial lung disease. J Leukoc Biol 2022; 112:861-873. [PMID: 35156235 DOI: 10.1002/jlb.3ma1221-489r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mingshan Xue
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Teng Zhang
- Faculty of Health Sciences University of Macau Taipa Macau China
| | - Runpei Lin
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Yifeng Zeng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Zhangkai Jason Cheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Ning Li
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Peiyan Zheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | - Huimin Huang
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| | | | - Hongman Wang
- Department of Respiratory and Critical Care Medicine The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai China
| | - Baoqing Sun
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease Guangzhou Institue of Respiratory Health Guangzhou 510120 China
| |
Collapse
|
34
|
Chen R, Lv C, Zhao X, Ma D, Lai D, Zhao Y, Zhang L, Tou J. Expression and possible role of Smad3 in postnecrotizing enterocolitis stricture. WORLD JOURNAL OF PEDIATRIC SURGERY 2022; 5:e000289. [DOI: 10.1136/wjps-2021-000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/08/2021] [Indexed: 11/03/2022] Open
Abstract
ObjectiveTo investigate the expression of Smad3 (mothers against decapentaplegic homolog 3) protein in postnecrotizing enterocolitis stricture and its possible mechanism of action.MethodsWe used immunohistochemistry to detect the expression characteristics of Smad3 and nuclear factor kappa B (NF-κB) proteins in human postnecrotizing enterocolitis stricture. We cultured IEC-6 (crypt epithelial cells of rat small intestine) in vitro and inhibited the expression of Smad3 using siRNA technique. Quantitative PCR, western blotting, and ELISA were used to detect the changes in transforming growth factor-β1 (TGF-β1), NF-κB, tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), and zonula occludens-1 (ZO-1) messenger RNA (mRNA) and protein expressions in IEC-6 cells. CCK8 kit and Transwell cellular migration were used to detect cell proliferation and migration. Changes in epithelial–mesenchymal transition (EMT) markers (E-cadherin and vimentin) in IEC-6 cells were detected by immunofluorescence technique.ResultsThe results showed that Smad3 protein and NF-κB protein were overexpressed in narrow intestinal tissues and that Smad3 protein expression was positively correlated with NF-κB protein expression. After inhibiting the expression of Smad3 in IEC-6 cells, the mRNA expressions of NF-κB, TGF-β1, ZO-1, and VEGF decreased, whereas the mRNA expression of TNF-α did not significantly change. TGF-β1, NF-κB, and TNF-α protein expressions in IEC-6 cells decreased, whereas ZO-1 and intracellular VEGF protein expressions increased. IEC-6 cell proliferation and migration capacity decreased. There was no significant change in protein expression levels of EMT markers E-cadherin and vimentin and also extracellular VEGF protein expression.ConclusionsWe suspect that the high expression of Smad3 protein in postnecrotizing enterocolitis stricture may promote the occurrence and development of secondary intestinal stenosis. The mechanism may be related to the regulation of TGF-β1, NF-κB, TNF-α, ZO-1, and VEGF mRNA and protein expression. This may also be related to the ability of Smad3 to promote epithelial cell proliferation and migration.
Collapse
|
35
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
36
|
Newton DA, Lottes RG, Ryan RM, Spyropoulos DD, Baatz JE. Dysfunctional lactate metabolism in human alveolar type II cells from idiopathic pulmonary fibrosis lung explant tissue. Respir Res 2021; 22:278. [PMID: 34711218 PMCID: PMC8554831 DOI: 10.1186/s12931-021-01866-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is the most common and progressive form of the interstitial lung diseases, leading most patients to require lung transplants to survive. Despite the relatively well-defined role of the fibroblast in the progression of IPF, it is the alveolar type II epithelial cell (AEC2) that is now considered the initiation site of damage, driver of disease, and the most efficacious therapeutic target for long-term resolution. Based on our previous studies, we hypothesize that altered lactate metabolism in AEC2 plays a pivotal role in IPF development and progression, affecting key cellular and molecular interactions within the pulmonary microenvironment. METHODS AEC2s isolated from human patient specimens of non-fibrotic and IPF lungs were used for metabolic measurements, lactate dehydrogenase (LDH) analyses and siRNA-mediated knockdown experiments. RESULTS AEC2s isolated from human IPF lung explant tissues had lower rates of oxidative metabolism and were more glycolytic lactate-producing cells than were AEC2 from control, non-fibrotic lung explant tissues. Consistent with this shift in metabolism, patient-derived IPF AEC2s exhibited LDH tetramers that have higher ratios of LDHA:LDHB (i.e., favoring pyruvate to lactate conversion) than control AEC2s. Experimental manipulation of LDHA subunit expression in IPF AEC2s restored the bioenergetic profile characteristic of AEC2 from non-fibrotic lungs. CONCLUSIONS These results are consistent with the concept that altered lactate metabolism may be an underlying feature of AEC2 dysfunction in IPF and may be a novel and important target for therapeutic treatment.
Collapse
Affiliation(s)
- Danforth A Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robyn G Lottes
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rita M Ryan
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Demetri D Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John E Baatz
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Pediatrics/Division of Neonatology, Medical University of South Carolina, 165 Ashley Avenue, MSC 917, Charleston, SC, 29425, USA.
| |
Collapse
|
37
|
Ali MF, Egan AM, Shaughnessy GF, Anderson DK, Kottom TJ, Dasari H, Van Keulen VP, Aubry MC, Yi ES, Limper AH, Peikert T, Carmona EM. Antifibrotics Modify B-Cell-induced Fibroblast Migration and Activation in Patients with Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 64:722-733. [PMID: 33689587 DOI: 10.1165/rcmb.2020-0387oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
B-cell activation is increasingly linked to numerous fibrotic lung diseases, and it is well known that aggregates of lymphocytes form in the lung of many of these patients. Activation of B-cells by pattern recognition receptors (PRRs) drives the release of inflammatory cytokines, chemokines, and metalloproteases important in the pathophysiology of pulmonary fibrosis. However, the specific mechanisms of B-cell activation in patients with idiopathic pulmonary fibrosis (IPF) are poorly understood. Herein, we have demonstrated that B-cell activation by microbial antigens contributes to the inflammatory and profibrotic milieu seen in patients with IPF. B-cell stimulation by CpG and β-glucan via PRRs resulted in activation of mTOR-dependent and independent pathways. Moreover, we showed that the B-cell-secreted inflammatory milieu is specific to the inducing antigen and causes differential fibroblast migration and activation. B-cell responses to infectious agents and subsequent B-cell-mediated fibroblast activation are modifiable by antifibrotics, but each seems to exert a specific and different effect. These results suggest that, upon PRR activation by microbial antigens, B-cells can contribute to the inflammatory and fibrotic changes seen in patients with IPF, and antifibrotics are able to at least partially reverse these responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eunhee S Yi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew H Limper
- Thoracic Diseases Research Unit.,Division of Pulmonary and Critical Care Medicine
| | - Tobias Peikert
- Thoracic Diseases Research Unit.,Division of Pulmonary and Critical Care Medicine.,Department of Immunology and
| | - Eva M Carmona
- Thoracic Diseases Research Unit.,Division of Pulmonary and Critical Care Medicine.,Department of Immunology and
| |
Collapse
|
38
|
Balberova OV, Bykov EV, Shnayder NA, Petrova MM, Gavrilyuk OA, Kaskaeva DS, Soloveva IA, Petrov KV, Mozheyko EY, Medvedev GV, Nasyrova RF. The "Angiogenic Switch" and Functional Resources in Cyclic Sports Athletes. Int J Mol Sci 2021; 22:ijms22126496. [PMID: 34204341 PMCID: PMC8234968 DOI: 10.3390/ijms22126496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Regular physical activity in cyclic sports can influence the so-called “angiogenic switch”, which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the “angiogenic switch” problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the “angiogenic switch” is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the “angiogenic switch” as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.
Collapse
Affiliation(s)
- Olga V. Balberova
- Research Institute of Olympic Sports, Ural State University of Physical Culture, 454091 Chelyabinsk, Russia;
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| | - Evgeny V. Bykov
- Research Institute of Olympic Sports, Ural State University of Physical Culture, 454091 Chelyabinsk, Russia;
| | - Natalia A. Shnayder
- V.M. Bekhterev National Medical Research Center for Neurology and Psychiatry, Department of Personalized Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| | - Marina M. Petrova
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
| | - Oksana A. Gavrilyuk
- The Department of Polyclinic Therapy and Family Medicine and Healthy Lifesttyle with a Course of PE, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
| | - Daria S. Kaskaeva
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
| | - Irina A. Soloveva
- Department of Hospital Therapy and Immunology with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
| | - Kirill V. Petrov
- Department of Physical and Rehabilitation Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (K.V.P.); (E.Y.M.)
| | - Elena Y. Mozheyko
- Department of Physical and Rehabilitation Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (K.V.P.); (E.Y.M.)
| | - German V. Medvedev
- R. R. Vreden National Medical Research Center for Traumatology and Orthopedics, Department of Hand Surgery with Microsurgical Equipment, 195427 Saint-Petersburg, Russia;
| | - Regina F. Nasyrova
- V.M. Bekhterev National Medical Research Center for Neurology and Psychiatry, Department of Personalized Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| |
Collapse
|
39
|
Bowman WS, Echt GA, Oldham JM. Biomarkers in Progressive Fibrosing Interstitial Lung Disease: Optimizing Diagnosis, Prognosis, and Treatment Response. Front Med (Lausanne) 2021; 8:680997. [PMID: 34041256 PMCID: PMC8141562 DOI: 10.3389/fmed.2021.680997] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung disease (ILD) comprises a heterogenous group of diffuse lung disorders that commonly result in irreversible pulmonary fibrosis. While idiopathic pulmonary fibrosis (IPF) is the prototypical progressive fibrosing ILD (PF-ILD), a high proportion of patients with other ILD subtypes develop a PF-ILD phenotype. Evidence exists for shared pathobiology leading to progressive fibrosis, suggesting that biomarkers of disease activity may prove informative across the wide spectrum of ILDs. Biomarker investigation to date has identified a number of molecular markers that predict relevant ILD endpoints, including disease presence, prognosis, and/or treatment response. In this review, we provide an overview of potentially informative biomarkers in patients with ILD, including those suggestive of a PF-ILD phenotype. We highlight the recent genomic, transcriptomic, and proteomic investigations that identified these biomarkers and discuss the body compartments in which they are found, including the peripheral blood, airway, and lung parenchyma. Finally, we identify critical gaps in knowledge within the field of ILD biomarker research and propose steps to advance the field toward biomarker implementation.
Collapse
Affiliation(s)
- Willis S Bowman
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| | - Gabrielle A Echt
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| | - Justin M Oldham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
40
|
Mendoza FA, Piera-Velazquez S, Jimenez SA. Tyrosine kinases in the pathogenesis of tissue fibrosis in systemic sclerosis and potential therapeutic role of their inhibition. Transl Res 2021; 231:139-158. [PMID: 33422651 DOI: 10.1016/j.trsl.2021.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
Systemic sclerosis (SSc) is an idiopathic autoimmune disease with a heterogeneous clinical phenotype ranging from limited cutaneous involvement to rapidly progressive diffuse SSc. The most severe SSc clinical and pathologic manifestations result from an uncontrolled fibrotic process involving the skin and various internal organs. The molecular mechanisms responsible for the initiation and progression of the SSc fibrotic process have not been fully elucidated. Recently it has been suggested that tyrosine protein kinases play a role. The implicated kinases include receptor-activated tyrosine kinases and nonreceptor tyrosine kinases. The receptor kinases are activated following specific binding of growth factors (platelet-derived growth factor, fibroblast growth factor, or vascular endothelial growth factor). Other receptor kinases are the discoidin domain receptors activated by binding of various collagens, the ephrin receptors that are activated by ephrins and the angiopoetin-Tie-2s receptors. The nonreceptor tyrosine kinases c-Abl, Src, Janus, and STATs have also been shown to participate in SSc-associated tissue fibrosis. Currently, there are no effective disease-modifying therapies for SSc-associated tissue fibrosis. Therefore, extensive investigation has been conducted to examine whether tyrosine kinase inhibitors (TKIs) may exert antifibrotic effects. Here, we review the role of receptor and nonreceptor tyrosine kinases in the pathogenesis of the frequently progressive cutaneous and systemic fibrotic alterations in SSc, and the potential of TKIs as SSc disease-modifying antifibrotic therapeutic agents.
Collapse
Affiliation(s)
- Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
Adachi S, Kikuchi R, Shimokata S, Suzuki A, Yoshida M, Imai R, Nakano Y, Kondo T, Murohara T. Endostatin and Vascular Endothelial Growth Factor-A 165b May Contribute to Classification of Pulmonary Hypertension. Circ Rep 2021; 3:161-169. [PMID: 33738349 PMCID: PMC7956881 DOI: 10.1253/circrep.cr-20-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Pulmonary hypertension (PH) is characterized by dysregulation of small pulmonary arteries. In addition to endostatin (ES), placenta growth factor (PlGF), vascular endothelial growth factor-A (VEGF-A), and the anti-angiogenesis isoform of VEGF-A (VEGF-A165b) are associated with PH. However, the usefulness of these biomarkers in PH in unknown. We investigated whether these 4 biomarkers are related to PH classification. Methods and Results: Between July 2015 and August 2017, 33 control patients and 107 PH patients were enrolled in the study. Among the PH patients, 48 had pulmonary arterial hypertension (PAH), 5 had left heart disease-associated PH (LHD-PH), 4 had lung disease-associated PH (LD-PH), and 50 had chronic thromboembolic PH (CTEPH). Among the PAH patients, 16 had idiopathic PAH (IPAH) and 17 had connective tissue disease-associated PAH (CTD-PAH). PlGF, total VEGF-A, and VEGF-A165b levels were measured in the control and PH groups. ES was only measured in the PH group. VEGF-A165b levels were significantly higher in the LD-PH group than in the PAH, LHD-PH, and CTEPH groups (all P<0.001). PlGF levels were significantly higher in the CTD-PAH group than in the IPAH and control groups. ES levels were significantly correlated with the 6-min walk distance (P<0.001), B-type natriuretic peptide (P<0.001), and pulmonary vascular resistance (P=0.008). Conclusions: ES could detect CTD-PAH in PAH and may be an indicator of PH severity. VEGF-A165b was useful in detecting LD-PH.
Collapse
Affiliation(s)
- Shiro Adachi
- Department of Cardiology, Nagoya University Hospital Nagoya Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital Nagoya Japan
| | | | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital Nagoya Japan
| | - Masahiro Yoshida
- Department of Cardiology, Nagoya University Hospital Nagoya Japan
| | - Ryo Imai
- Department of Cardiology, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Yoshihisa Nakano
- Department of Advanced Medicine in Cardiopulmonary Disease, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Takahisa Kondo
- Department of Advanced Medicine in Cardiopulmonary Disease, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
42
|
Bagher M, Rosmark O, Elowsson Rendin L, Nybom A, Wasserstrom S, Müller C, Zhou XH, Dellgren G, Hallgren O, Bjermer L, Larsson-Callerfelt AK, Westergren-Thorsson G. Crosstalk between Mast Cells and Lung Fibroblasts Is Modified by Alveolar Extracellular Matrix and Influences Epithelial Migration. Int J Mol Sci 2021; 22:ijms22020506. [PMID: 33419174 PMCID: PMC7825515 DOI: 10.3390/ijms22020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mast cells play an important role in asthma, however, the interactions between mast cells, fibroblasts and epithelial cells in idiopathic pulmonary fibrosis (IPF) are less known. The objectives were to investigate the effect of mast cells on fibroblast activity and migration of epithelial cells. Lung fibroblasts from IPF patients and healthy individuals were co-cultured with LAD2 mast cells or stimulated with the proteases tryptase and chymase. Human lung fibroblasts and mast cells were cultured on cell culture plastic plates or decellularized human lung tissue (scaffolds) to create a more physiological milieu by providing an alveolar extracellular matrix. Released mediators were analyzed and evaluated for effects on epithelial cell migration. Tryptase increased vascular endothelial growth factor (VEGF) release from fibroblasts, whereas co-culture with mast cells increased IL-6 and hepatocyte growth factor (HGF). Culture in scaffolds increased the release of VEGF compared to culture on plastic. Migration of epithelial cells was reduced by IL-6, while HGF and conditioned media from scaffold cultures promoted migration. In conclusion, mast cells and tryptase increased fibroblast release of mediators that influenced epithelial migration. These data indicate a role of mast cells and tryptase in the interplay between fibroblasts, epithelial cells and the alveolar extracellular matrix in health and lung disease.
Collapse
Affiliation(s)
- Mariam Bagher
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Oskar Rosmark
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Linda Elowsson Rendin
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Annika Nybom
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | | | - Catharina Müller
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| | - Xiao-Hong Zhou
- Bioscience Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, 431 53 Mölndal, Sweden;
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Oskar Hallgren
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, 221 85 Lund, Sweden; (O.H.); (L.B.)
| | - Anna-Karin Larsson-Callerfelt
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
- Correspondence: ; Tel.: +46-46-222-8580 or +46-733-525420
| | - Gunilla Westergren-Thorsson
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (M.B.); (O.R.); (L.E.R.); (A.N.); (C.M.); (G.W.-T.)
| |
Collapse
|
43
|
Shentu Y, Jiang H, Liu X, Chen H, Yang D, Zhang J, Cheng C, Zheng Y, Zhang Y, Chen C, Zheng C, Zhou Y. Nestin Promotes Peritoneal Fibrosis by Protecting HIF1-α From Proteasomal Degradation. Front Physiol 2020; 11:517912. [PMID: 33391003 PMCID: PMC7772359 DOI: 10.3389/fphys.2020.517912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background Peritoneal dialysis (PD) is a treatment for end stage renal disease patients, but it can also cause peritoneal fibrosis. Nestin is known as a neural stem cell marker and it has many functions. The hypoxia induced factor (HIF) signaling pathway can be activated under hypoxia conditions, leading to the overexpression of some angiogenesis related genes. The aim of our study is to demonstrate Nestin’s role in the development of peritoneal fibrosis (PF), and to provide a new target (Nestin) to treat PF. Methods PD mice models were constructed by an intraperitoneal administration of PDS at 10 ml/100g/d for 4 weeks. Nestin-positive cells were isolated from peritonea of Nestin-GFP mice by flow cytometry. The relationship of Nestin and HIF1-α-VEGFA pathway was detected by Nestin knockdown, Co-immunoprecipitation and immunofluorescence. Also, proteasomal activity was demonstrated by CHX and MG132 application, followed by Western blotting and Co-immunoprecipitation. Results In our experiments, we found that Nestin expression resulted in PF. Also, HIF1-α/VEGFA pathway was activated in PF. Nestin knockdown reduced the level of HIF1-α. Nestin directly bound to HIF1-α and protected HIF1-α from proteasomal degradation. Overexpression of HIF1-α reverts the fibrosis levels in Nestin-knockdown cells. In brief, Nestin inhibited the degradation of HIF1-α by mitigating its ubiquitination level, leading to the activation of HIF1-α signaling pathway, and eventually promoted PF. Conclusion We found a novel mechanism of PF that Nestin promotes by protecting HIF1-α from proteasomal degradation. Taken together, our key findings highlight a novel mechanism by which the silencing of Nestin hinders HIF1- α -induced PF.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huanchang Jiang
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyuan Liu
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Chen
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dicheng Yang
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinqi Zhang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chen Cheng
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulin Zheng
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang Zhang
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Khedoe P, Marges E, Hiemstra P, Ninaber M, Geelhoed M. Interstitial Lung Disease in Patients With Systemic Sclerosis: Toward Personalized-Medicine-Based Prediction and Drug Screening Models of Systemic Sclerosis-Related Interstitial Lung Disease (SSc-ILD). Front Immunol 2020; 11:1990. [PMID: 33013852 PMCID: PMC7500178 DOI: 10.3389/fimmu.2020.01990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease, characterized by immune dysregulation and progressive fibrosis. Interstitial lung disease (ILD) is the most common cause of death among SSc patients and there are currently very limited approved disease-modifying treatment options for systemic sclerosis-related interstitial lung disease (SSc-ILD). The mechanisms underlying pulmonary fibrosis in SSc-ILD are not completely unraveled, and knowledge on fibrotic processes has been acquired mostly from studies in idiopathic pulmonary fibrosis (IPF). The incomplete knowledge of SSc-ILD pathogenesis partly explains the limited options for disease-modifying therapy for SSc-ILD. Fibrosis in IPF appears to be related to aberrant repair following injury, but whether this also holds for SSc-ILD is less evident. Furthermore, immune dysregulation appears to contribute to pro-fibrotic responses in SSc-ILD, perhaps more than in IPF. In addition, SSc-ILD patient heterogeneity complicates the understanding of the underlying mechanisms of disease development, and more importantly, limits correct clinical diagnosis and treatment effectivity. Therefore, there is an unmet need for patient-relevant (in vitro) models to examine patient-specific disease pathogenesis, predict disease progression, screen appropriate treatment regimens and identify new targets for treatment. Technological advances in in vitro patient-relevant disease modeling, including (human induced pluripotent stem cell (hiPSC)-derived) lung epithelial cells, organoids and organ-on-chip technology offer a platform that has the potential to contribute to unravel the underlying mechanisms of SSc-ILD development. Combining these models with state-of-the-art analysis platforms, including (single cell) RNA sequencing and (imaging) mass cytometry, may help to delineate pathogenic mechanisms and define new treatment targets of SSc-ILD.
Collapse
Affiliation(s)
- Padmini Khedoe
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Emiel Marges
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Pieter Hiemstra
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maarten Ninaber
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Miranda Geelhoed
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
45
|
Exhaled Biomarkers in Idiopathic Pulmonary Fibrosis-A Six-Month Follow-Up Study in Patients Treated with Pirfenidone. J Clin Med 2020; 9:jcm9082523. [PMID: 32764328 PMCID: PMC7465603 DOI: 10.3390/jcm9082523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanism of action of pirfenidone in idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. To offer additional insight, we evaluated the change in the cytokine profile in exhaled breath condensate (EBC) following a six-month treatment with pirfenidone in patients with IPF. EBC concentrations of interleukin (IL)-6, IL-8, IL-15, TNF-α and VEGF-A were assessed with ELISA and compared at baseline and after six months of pirfenidone treatment. Twenty-nine patients with IPF and 13 controls were evaluated at baseline. With the exception of IL-8 concentration, which was lower in patients with IPF when compared to controls (p = 0.005), the cytokine levels did not differ between the groups. Despite the use of a high sensitivity assay, IL-8 reached detectable values only in 24% of IPF patients. EBC analysis after six months of treatment with pirfenidone did not reveal any differences in the cytokine levels. The change in EBC vascular endothelial growth factor A (VEGF-A) correlated with the change in the 6 min walk distance (r = 0.54, p = 0.045). We conclude that a six-month treatment with pirfenidone did not significantly change the EBC cytokine profile. Our findings support the potential usefulness of VEGF-A as a marker in IPF. The low EBC IL-8 level in patients with IPF is a novel finding which needs confirmation in larger studies.
Collapse
|
46
|
DROSHA-Dependent miRNA and AIM2 Inflammasome Activation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21051668. [PMID: 32121297 PMCID: PMC7084700 DOI: 10.3390/ijms21051668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease. Chronic lung inflammation is linked to the pathogenesis of IPF. DROSHA, a class 2 ribonuclease III enzyme, has an important role in the biogenesis of microRNA (miRNA). The function of miRNAs has been identified in the regulation of the target gene or protein related to inflammatory responses via degradation of mRNA or inhibition of translation. The absent-in-melanoma-2 (AIM2) inflammasome is critical for inflammatory responses against cytosolic double stranded DNA (dsDNA) from pathogen-associated molecular patterns (PAMPs) and self-DNA from danger-associated molecular patterns (DAMPs). The AIM2 inflammasome senses double strand DNA (dsDNA) and interacts with the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which recruits pro-caspase-1 and regulates the maturation and secretion of interleukin (IL)-1β and IL-18. A recent study showed that inflammasome activation contributes to lung inflammation and fibrogenesis during IPF. In the current review, we discuss recent advances in our understanding of the DROSHA-miRNA-AIM2 inflammasome axis in the pathogenesis of IPF.
Collapse
|
47
|
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19:8. [PMID: 31937318 PMCID: PMC6958568 DOI: 10.1186/s12943-019-1113-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs (ncRNAs) widely expressed in eukaryotic cells. Mounting evidence has highlighted circRNAs as critical regulators of various tumours. More importantly, circRNAs have been revealed to recruit and reprogram key components involved in the tumour microenvironment (TME), and mediate various signaling pathways, thus affecting tumourigenesis, angiogenesis, immune response, and metastatic progression. In this review, we briefly introduce the biogenesis, characteristics and classification of circRNAs, and describe various mechanistic models of circRNAs. Further, we provide the first systematic overview of the interplay between circRNAs and cellular/non-cellular counterparts of the TME and highlight the potential of circRNAs as prospective biomarkers or targets in cancer clinics. Finally, we discuss the biological mechanisms through which the circRNAs drive development of resistance, revealing the mystery of circRNAs in drug resistance of tumours. SHORT CONCLUSION Deep understanding the emerging role of circRNAs and their involvements in the TME may provide potential biomarkers and therapeutic targets for cancer patients. The combined targeting of circRNAs and co-activated components in the TME may achieve higher therapeutic efficiency and become a new mode of tumour therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China.
| |
Collapse
|
48
|
Koyama K, Goto H, Morizumi S, Kagawa K, Nishimura H, Sato S, Kawano H, Toyoda Y, Ogawa H, Homma S, Nishioka Y. The Tyrosine Kinase Inhibitor TAS-115 Attenuates Bleomycin-induced Lung Fibrosis in Mice. Am J Respir Cell Mol Biol 2019; 60:478-487. [PMID: 30540913 DOI: 10.1165/rcmb.2018-0098oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The signaling pathways of growth factors, including platelet-derived growth factor, can be considered specific targets for overcoming the poor prognosis of idiopathic pulmonary fibrosis. Nintedanib, the recently approved multiple kinase inhibitor, has shown promising antifibrotic effects in patients with idiopathic pulmonary fibrosis; however, its efficacy is still limited, and in some cases, treatment discontinuation is necessary owing to toxicities such as gastrointestinal disorders. Therefore, more effective agents with less toxicity are still needed. TAS-115 is a novel multiple tyrosine kinase inhibitor that preferably targets platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor receptor, and c-FMS in addition to other molecules. In this study, we evaluated the antifibrotic effect of TAS-115 on pulmonary fibrosis in vitro and in vivo. TAS-115 inhibited the phosphorylation of PDGFR on human lung fibroblast cell line MRC-5 cells and suppressed their platelet-derived growth factor-induced proliferation and migration. Furthermore, TAS-115 inhibited the phosphorylation of c-FMS, a receptor of macrophage colony-stimulating factor, in murine bone marrow-derived macrophages and decreased the production of CCL2, another key molecule for inducing pulmonary fibrosis, under the stimulation of macrophage colony-stimulating factor. Importantly, the inhibitory effects of TAS-115 on both PDGFR and c-FMS were 3- to 10-fold higher than those of nintedanib. In a mouse model of bleomycin-induced pulmonary fibrosis, TAS-115 significantly inhibited the development of pulmonary fibrosis and the collagen deposition in bleomycin-treated lungs. These data suggest that strong inhibition of PDGFR and c-FMS by TAS-115 may be a promising strategy for overcoming the intractable pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Kazuya Koyama
- 1 Department of Respiratory Medicine and Rheumatology and.,2 Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Hisatsugu Goto
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Shun Morizumi
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Kozo Kagawa
- 1 Department of Respiratory Medicine and Rheumatology and
| | | | - Seidai Sato
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Hiroshi Kawano
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Yuko Toyoda
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Hirohisa Ogawa
- 3 Department of Molecular and Environmental Pathology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan; and
| | - Sakae Homma
- 2 Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
49
|
Kobayashi K, Suzukawa M, Watanabe K, Arakawa S, Igarashi S, Asari I, Hebisawa A, Matsui H, Nagai H, Nagase T, Ohta K. Secretory IgA accumulated in the airspaces of idiopathic pulmonary fibrosis and promoted VEGF, TGF-β and IL-8 production by A549 cells. Clin Exp Immunol 2019; 199:326-336. [PMID: 31660581 DOI: 10.1111/cei.13390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Secretory IgA (SIgA) is a well-known mucosal-surface molecule in first-line defense against extrinsic pathogens and antigens. Its immunomodulatory and pathological roles have also been emphasized, but it is unclear whether it plays a pathological role in lung diseases. In the present study, we aimed to determine the distribution of IgA in idiopathic pulmonary fibrosis (IPF) lungs and whether IgA affects the functions of airway epithelial cells. We performed immunohistochemical analysis of lung sections from patients with IPF and found that mucus accumulated in the airspaces adjacent to the hyperplastic epithelia contained abundant SIgA. This was not true in the lungs of non-IPF subjects. An in-vitro assay revealed that SIgA bound to the surface of A549 cells and significantly promoted production of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β and interleukin (IL)-8, important cytokines in the pathogenesis of IPF. Among the known receptors for IgA, A549 cells expressed high levels of transferrin receptor (TfR)/CD71. Transfection experiments with siRNA targeted against TfR/CD71 followed by stimulation with SIgA suggested that TfR/CD71 may be at least partially involved in the SIgA-induced cytokine production by A549 cells. These phenomena were specific for SIgA, distinct from IgG. SIgA may modulate the progression of IPF by enhancing synthesis of VEGF, TGF-β and IL-8.
Collapse
Affiliation(s)
- K Kobayashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - M Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - K Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - S Arakawa
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan.,Division of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - S Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - I Asari
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - A Hebisawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Asahi General Hospital, Chiba, Japan
| | - H Matsui
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - H Nagai
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - T Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - K Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Tokyo, Japan
| |
Collapse
|
50
|
Vascular endothelial growth factor 165 inhibits pro-fibrotic differentiation of stromal cells via the DLL4/Notch4/smad7 pathway. Cell Death Dis 2019; 10:681. [PMID: 31515487 PMCID: PMC6742656 DOI: 10.1038/s41419-019-1928-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Endometrial fibrosis is the main pathological feature of Asherman’s syndrome (AS), which is the leading cause of uterine infertility. Much is known about the expression of VEGF165 in luminal/glandular epithelial cells and stromal cells of the endometrium in normal menstrual cycles; however, less is known about the role and mechanism of VEGF165 in endometrial fibrosis. Herein, we report that VEGF165 is a key regulator in endometrial stromal cells to inhibit α-SMA and collagen 1 expression. Compared to human control subjects, patients with AS exhibited decreased VEGF165 expression in the endometrium along with increased fibrotic marker expression and collagen production. A fibrotic phenotype was shown in both mice with conditional VEGF reduction and VEGF165-deleted endometrial stromal cells. Exogenous VEGF165 could suppress TGFβ1-induced α-SMA and collagen 1 expression in human primary endometrial stromal cells. However, this beneficial effect was hindered when the expression of smad7 or Notch4 was inhibited or when Notch signaling was blocked, suggesting that smad7 and Notch4 are essential downstream molecules for VEGFA functioning. Overall, our results uncover a clinical targeting strategy for VEGF165 to inhibit pro-fibrotic differentiation of stromal cells by inducing DLL4/Notch4/smad7, which paves the way for AS treatment.
Collapse
|