1
|
Zhou QY, Liu W, Gong SX, Tian Y, Ma XF, Wang AP. Pulmonary artery smooth muscle cell pyroptosis promotes the proliferation of PASMCs by paracrine IL‑1β and IL‑18 in monocrotaline‑induced pulmonary arterial hypertensive rats. Exp Ther Med 2024; 28:394. [PMID: 39171148 PMCID: PMC11336803 DOI: 10.3892/etm.2024.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a common vascular disease, and pulmonary vascular remodeling is a pivotal pathophysiological mechanism of PAH. Major pathological changes of pulmonary arterial remodeling, including proliferation, hypertrophy and enhanced secretory activity, can occur in pulmonary artery smooth muscle cells (PASMCs). Multiple active factors and cytokines play important roles in PAH. However, the regulatory mechanisms of the active factors and cytokines in PAH remain unclear. The present study aimed to reveal the crucial role of PASMC pyroptosis in PAH and to elucidate the intrinsic mechanisms. To establish the PAH rat models, Sprague-Dawley rats were injected intraperitoneally with monocrotaline (MCT) at a dose of 60 mg/kg. The expression of proteins and interleukins were detected by western blotting and ELISA assay. The results indicated that the pyroptosis of PASMCs is significantly increased in MCT-induced PAH rats. Notably, pyroptotic PASMCs can secret IL-1β and IL-18 to promote the proliferation of PASMCs. On this basis, inhibiting the secretion of IL-1β and IL-18 can markedly inhibit PASMC proliferation. Collectively, the findings of the present study indicate a critical role for PASMC pyroptosis in MCT-induced PAH rats, prompting a new preventive and therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Qin-Yi Zhou
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wang Liu
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying Tian
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
2
|
Wang AP, Yang F, Tian Y, Su JH, Gu Q, Chen W, Gong SX, Ma XF, Qin XP, Jiang ZS. Pulmonary Artery Smooth Muscle Cell Senescence Promotes the Proliferation of PASMCs by Paracrine IL-6 in Hypoxia-Induced Pulmonary Hypertension. Front Physiol 2021; 12:656139. [PMID: 33897463 PMCID: PMC8058366 DOI: 10.3389/fphys.2021.656139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 01/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a critical and dangerous disease in cardiovascular system. Pulmonary vascular remodeling is an important pathophysiological mechanism for the development of pulmonary arterial hypertension. Pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy, and enhancing secretory activity are the main causes of pulmonary vascular remodeling. Previous studies have proven that various active substances and inflammatory factors, such as interleukin 6 (IL-6), IL-8, chemotactic factor for monocyte 1, etc., are involved in pulmonary vascular remodeling in PH. However, the underlying mechanisms of these active substances to promote the PASMC proliferation remain to be elucidated. In our study, we demonstrated that PASMC senescence, as a physiopathologic mechanism, played an essential role in hypoxia-induced PASMC proliferation. In the progression of PH, senescence PASMCs could contribute to PASMC proliferation via increasing the expression of paracrine IL-6 (senescence-associated secretory phenotype). In addition, we found that activated mTOR/S6K1 pathway can promote PASMC senescence and elevate hypoxia-induced PASMC proliferation. Further study revealed that the activation of mTOR/S6K1 pathway was responsible for senescence PASMCs inducing PASMC proliferation via paracrine IL-6. Targeted inhibition of PASMC senescence could effectively suppress PASMC proliferation and relieve pulmonary vascular remodeling in PH, indicating a potential for the exploration of novel anti-PH strategies.
Collapse
Affiliation(s)
- Ai-Ping Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China.,Department of Physiology, Institute of Neuroscience, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Yang
- Laboratory of Vascular Biology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qing Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Physiology, Institute of Neuroscience, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xu-Ping Qin
- Laboratory of Vascular Biology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
3
|
Egom EEA, Moyou-Somo R, Essame Oyono JL, Kamgang R. Identifying Potential Mutations Responsible for Cases of Pulmonary Arterial Hypertension. APPLICATION OF CLINICAL GENETICS 2021; 14:113-124. [PMID: 33732008 PMCID: PMC7958998 DOI: 10.2147/tacg.s260755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive and devastating disease for which there is an escalating body of genetic and related pathophysiological information on disease pathobiology. Nevertheless, the success to date in identifying susceptibility genes, genetic variants and epigenetic processes has been limited due to PAH clinical multi-faceted variations. A number of germline gene candidates have been proposed but demonstrating consistently the association with PAH has been problematic, at least partly due to the reduced penetrance and variable expressivity. Although the data for bone morphogenetic protein receptor type 2 (BMPR2) and related genes remains undoubtedly the most extensive, recent advanced gene sequencing technologies have facilitated the discovery of further gene candidates with mutations among those with and without familial forms of PAH. An in depth understanding of the multitude of biologic variations associated with PAH may provide novel opportunities for therapeutic intervention in the coming years. This knowledge will irrevocably provide the opportunity for improved patient and family counseling as well as improved PAH diagnosis, risk assessment, and personalized treatment.
Collapse
Affiliation(s)
- Emmanuel Eroume-A Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.,Reflex Medical Centre Cardiac Diagnostics, Reflex Medical Centre, Mississauga, ON, Canada
| | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
4
|
Liu B, Zhu L, Yuan P, Marsboom G, Hong Z, Liu J, Zhang P, Hu Q. Comprehensive identification of signaling pathways for idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 2020; 318:C913-C930. [PMID: 32159364 DOI: 10.1152/ajpcell.00382.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Whole exome sequencing (WES) was used in the research of familial pulmonary arterial hypertension (FPAH). CAV1 and KCNK3 were found as two novel candidate genes of FPAH. However, few pathogenic genes were identified in idiopathic pulmonary arterial hypertension (IPAH). We conducted WES in 20 unrelated IPAH patients who did not carry the known PAH-pathogenic variants among BMPR2, CAV1, KCNK3, SMAD9, ALK1, and ENG. We found a total of 4,950 variants in 3,534 genes, including 4,444 single-nucleotide polymorphisms and 506 insertions/deletions (InDels). Through the comprehensive and multilevel analysis, we disclosed several novel signaling cascades significantly connected to IPAH, including variants related to cadherin signaling pathway, dilated cardiomyopathy, glucose metabolism, immune response, mucin-type O-glycosylation, phospholipase C (PLC)-activating G protein-coupled receptor (GPCR) signaling pathway, vascular contraction and generation, and voltage-dependent Ca2+ channels. We also conducted validation studies in five mutant genes related to PLC-activating GPCR signaling pathway potentially involved in intracellular calcium regulation through Sanger sequencing for mutation accuracy, qRT-PCR for mRNA stability, immunofluorescence for subcellular localization, Western blotting for protein level, Fura-2 imaging for intracellular calcium, and proliferation analysis for cell function. The validation experiments showed that those variants in CCR5 and C3AR1 significantly increased the rise of intracellular calcium and the variant in CCR5 profoundly enhanced proliferative capacity of human pulmonary artery smooth muscle cells. Thus, our study suggests that multiple genetically affected signaling pathways take effect together to cause the formation of IPAH and the development of right heart failure and may further provide new therapy targets or putative clues for the present treatments such as limited therapeutic effectiveness of Ca2+ channel blockers.
Collapse
Affiliation(s)
- Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Glenn Marsboom
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Zhigang Hong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Jinming Liu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhang J, Dong J, Martin M, He M, Gongol B, Marin TL, Chen L, Shi X, Yin Y, Shang F, Wu Y, Huang HY, Zhang J, Zhang Y, Kang J, Moya EA, Huang HD, Powell FL, Chen Z, Thistlethwaite PA, Yuan ZY, Shyy JYJ. AMP-activated Protein Kinase Phosphorylation of Angiotensin-Converting Enzyme 2 in Endothelium Mitigates Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 198:509-520. [PMID: 29570986 DOI: 10.1164/rccm.201712-2570oc] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Endothelial dysfunction plays an integral role in pulmonary hypertension (PH). AMPK (AMP-activated protein kinase) and ACE2 (angiotensin-converting enzyme 2) are crucial in endothelial homeostasis. The mechanism by which AMPK regulates ACE2 in the pulmonary endothelium and its protective role in PH remain elusive. OBJECTIVES We investigated the role of AMPK phosphorylation of ACE2 Ser680 in ACE2 stability and deciphered the functional consequences of this post-translational modification of ACE2 in endothelial homeostasis and PH. METHODS Bioinformatics prediction, kinase assay, and antibody against phospho-ACE2 Ser680 (p-ACE2 S680) were used to investigate AMPK phosphorylation of ACE2 Ser680 in endothelial cells. Using CRISPR-Cas9 genomic editing, we created gain-of-function ACE2 S680D knock-in and loss-of-function ACE2 knockout (ACE2-/-) mouse lines to address the involvement of p-ACE2 S680 and ACE2 in PH. The AMPK-p-ACE2 S680 axis was also validated in lung tissue from humans with idiopathic pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS Phosphorylation of ACE2 by AMPK enhanced the stability of ACE2, which increased Ang (angiotensin) 1-7 and endothelial nitric oxide synthase-derived NO bioavailability. ACE2 S680D knock-in mice were resistant to PH as compared with wild-type littermates. In contrast, ACE2-knockout mice exacerbated PH, a similar phenotype found in mice with endothelial cell-specific deletion of AMPKα2. Consistently, the concentrations of phosphorylated AMPK, p-ACE2 S680, and ACE2 were decreased in human lungs with idiopathic pulmonary arterial hypertension. CONCLUSIONS Impaired phosphorylation of ACE2 Ser680 by AMPK in pulmonary endothelium leads to a labile ACE2 and hence is associated with the pathogenesis of PH. Thus, AMPK regulation of the vasoprotective ACE2 is a potential target for PH treatment.
Collapse
Affiliation(s)
- Jiao Zhang
- 1 Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,2 Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,3 Division of Cardiology and
| | - Jianjie Dong
- 1 Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,2 Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Marcy Martin
- 3 Division of Cardiology and.,4 Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, California
| | - Ming He
- 3 Division of Cardiology and
| | - Brendan Gongol
- 5 Department of Cardiopulmonary Sciences, Loma Linda University, Loma Linda, California; and
| | - Traci L Marin
- 5 Department of Cardiopulmonary Sciences, Loma Linda University, Loma Linda, California; and
| | - Lili Chen
- 2 Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinxing Shi
- 2 Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanjun Yin
- 2 Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fenqing Shang
- 2 Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Wu
- 1 Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hsi-Yuan Huang
- 6 Institute of Bioinformatics and Systems Biology and.,7 Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan
| | - Jin Zhang
- 2 Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yu Zhang
- 8 Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | | | | | - Hsien-Da Huang
- 6 Institute of Bioinformatics and Systems Biology and.,7 Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan
| | | | | | - Patricia A Thistlethwaite
- 8 Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Zu-Yi Yuan
- 1 Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - John Y-J Shyy
- 2 Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,3 Division of Cardiology and
| |
Collapse
|
6
|
Li Q, Zhou X, Zhou X. Downregulation of miR‑98 contributes to hypoxic pulmonary hypertension by targeting ALK1. Mol Med Rep 2019; 20:2167-2176. [PMID: 31322216 PMCID: PMC6691262 DOI: 10.3892/mmr.2019.10482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic hypoxia is one of the most common causes of secondary pulmonary hypertension, the mechanisms of which remain unclear. MicroRNAs (miRNAs) are small, noncoding RNAs that inhibit the translation or accelerate the degradation of mRNA. Previous studies have demonstrated that deregulated miRNA expression contributes to various cellular processes including cell apoptosis and proliferation, which are mediated by hypoxia. In the present study, the expression of miR‑98 was identified to be decreased in the lung tissue of a hypoxic pulmonary hypertension (HPH) rat model and pulmonary artery (PA) smooth muscle cells (PASMCs), which was induced by hypoxia. By transfecting miR‑98 mimics into PASMCs, the high expression of miR‑98 inhibited cell proliferation, but upregulated hypoxia‑induced PASMCs apoptosis. However, these effects of miR‑98 mimics on PASMCs were reversed by ALK1 (activin receptor‑like kinase‑1) overexpression. ALK1 was identified as a candidate target of miR‑98. In addition, overexpressing miR‑98 markedly decreased the pulmonary artery wall thickness and the right ventricular systolic pressure in rats induced by hypoxia. These results provided clear evidence that miR‑98 was a direct regulator of ALK1, and that the downregulation of miR‑98 contributed to the pathogenesis of HPH. These results provide a novel potential therapeutic strategy for the treatment of HPH.
Collapse
Affiliation(s)
- Qingling Li
- Department of Respiratory Medicine, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xincan Zhou
- Department of Respiratory Medicine, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xianghui Zhou
- Department of Respiratory Medicine, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
7
|
A Combined Targeted and Whole Exome Sequencing Approach Identified Novel Candidate Genes Involved in Heritable Pulmonary Arterial Hypertension. Sci Rep 2019; 9:753. [PMID: 30679663 PMCID: PMC6345742 DOI: 10.1038/s41598-018-37277-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of idiopathic and heritable forms of pulmonary arterial hypertension is still not completely understood, even though several causative genes have been proposed, so that a third of patients remains genetically unresolved. Here we applied a multistep approach to extend identification of the genetic bases of such a disease by searching for novel candidate genes/pathways. Twenty-eight patients belonging to 18 families were screened for BMPR2 mutations and BMPR2-negative samples were tested for 12 additional candidate genes by means of a specific massive parallel sequencing-based assay. Finally, whole exome sequencing was performed on four patients showing no mutations at known disease genes, as well as on their unaffected parents. In addition to EIF2AK4, which has been already suggested to be associated with pulmonary veno-occlusive disease, we identified the novel candidate genes ATP13A3, CD248, EFCAB4B, involved in lung vascular remodeling that represent reliable drivers contributing to the disease according to their biological functions/inheritance patterns. Therefore, our results suggest that combining gene panel and whole exome sequencing provides new insights useful for the genetic diagnosis of familial and idiopathic pulmonary arterial hypertension, as well as for the identification of biological pathways that will be potentially targeted by new therapeutic strategies.
Collapse
|
8
|
Cunningham KP, Holden RG, Escribano-Subias PM, Cogolludo A, Veale EL, Mathie A. Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension. J Physiol 2018; 597:1087-1101. [PMID: 30365877 PMCID: PMC6376074 DOI: 10.1113/jp277275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Key points The TASK‐1 channel gene (KCNK3) has been identified as a possible disease‐causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK‐1 channels, seen in PAH patients, have a substantially reduced current compared to wild‐type TASK‐1 channels. These mutated TASK‐1 channels are located at the plasma membrane to the same degree as wild‐type TASK‐1 channels. ONO‐RS‐082 and alkaline pH 8.4 both activate TASK‐1 channels but do not recover current through mutant TASK‐1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK‐1 channels but does not recover current through mutant TASK‐1 channels.
Abstract Pulmonary arterial hypertension (PAH) affects ∼15–50 people per million. KCNK3, the gene that encodes the two pore domain potassium channel TASK‐1 (K2P3.1), has been identified as a possible disease‐causing gene in heritable PAH. Recently, two new mutations have been identified in KCNK3 in PAH patients: G106R and L214R. The present study aimed to characterize the functional properties and regulation of wild‐type (WT) and mutated TASK‐1 channels and determine how these might contribute to PAH and its treatment. Currents through WT and mutated human TASK‐1 channels transiently expressed in tsA201 cells were measured using whole‐cell patch clamp electrophysiology. Localization of fluorescence‐tagged channels was visualized using confocal microscopy and quantified with in‐cell and on‐cell westerns. G106R or L214R mutated channels were located at the plasma membrane to the same degree as WT channels; however, their current was markedly reduced compared to WT TASK‐1 channels. Functional current through these mutated channels could not be restored using activators of WT TASK‐1 channels (pH 8.4, ONO‐RS‐082). The guanylate cyclase activator, riociguat, enhanced current through WT TASK‐1 channels; however, similar to the other activators investigated, riociguat did not have any effect on current through mutated TASK‐1 channels. Thus, novel mutations in TASK‐1 seen in PAH substantially alter the functional properties of these channels. Current through these channels could not be restored by activators of TASK‐1 channels. Riociguat enhancement of current through TASK‐1 channels could contribute to its therapeutic benefit in the treatment of PAH. The TASK‐1 channel gene (KCNK3) has been identified as a possible disease‐causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK‐1 channels, seen in PAH patients, have a substantially reduced current compared to wild‐type TASK‐1 channels. These mutated TASK‐1 channels are located at the plasma membrane to the same degree as wild‐type TASK‐1 channels. ONO‐RS‐082 and alkaline pH 8.4 both activate TASK‐1 channels but do not recover current through mutant TASK‐1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK‐1 channels but does not recover current through mutant TASK‐1 channels.
Collapse
Affiliation(s)
- Kevin P Cunningham
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | | | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
9
|
Abstract
Tremendous progress has been made in understanding the genetics of pulmonary arterial hypertension (PAH) since its description in the 1950s as a primary disorder of the pulmonary vasculature. Heterozygous germline mutations in the gene coding bone morphogenetic receptor type 2 (BMPR2) are detectable in the majority of cases of heritable PAH, and in approximately 20% of cases of idiopathic pulmonary arterial hypertension (IPAH). However, recent advances in gene discovery methods have facilitated the discovery of additional genes with mutations among those with and without familial PAH. Heritable PAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, and female predominance. Biallelic germline mutations in the gene EIF2AK4 are now associated with pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. Growing genetic knowledge enhances our capacity to pursue and provide genetic counseling, although the issue remains complex given that the majority of carriers of PAH-related mutations will never be diagnosed with the disease.
Collapse
Affiliation(s)
- Joshua D. Chew
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Loyd
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric D. Austin
- Division of Pulmonary, Allergy, and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
10
|
Tang H, Zheng Q, Wang J. Pathogenic role of ion channels in pulmonary arterial hypertension. Exp Physiol 2017; 102:1075-1077. [PMID: 28856806 DOI: 10.1113/ep086426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Halliday SJ, Hemnes AR. Identifying "super responders" in pulmonary arterial hypertension. Pulm Circ 2017; 7:300-311. [PMID: 28597766 PMCID: PMC5467924 DOI: 10.1177/2045893217697708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Indexed: 02/01/2023] Open
Abstract
Pharmacotherapeutic options for pulmonary arterial hypertension (PAH) have increased dramatically in the last two decades and along with this have been substantial improvements in survival. Despite these advances, however, PAH remains a progressive and ultimately fatal disease for most patients and only epoprostenol has been shown to improve survival in a randomized control trial. Clinical observations of the heterogeneity of treatment response to different classes of medications across the phenotypically diverse PAH population has led to the identification of patients who derive significantly more benefit from certain medications than the population mean, the so-called "super responders." This was first recognized among PAH patients with acute vasodilator response during invasive hemodynamic testing, a subset of whom have dramatically improved survival when treated with calcium channel blocker (CCB) therapy. Retrospective studies have now suggested a sex discrepancy in response to endothelin receptor antagonists (ERA) and phosphodiesterase inhibitors, and more recently a few studies have found genomic associations with response to CCBs and ERAs. With increasing availability of "omics" technologies, recognition of these "super responders," combined with careful clinical and molecular phenotyping, will lead to advances in pharmacogenomics, precision medicine, and continued improvements in survival among PAH patients.
Collapse
Affiliation(s)
- Stephen J. Halliday
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Hayabuchi Y. The Action of Smooth Muscle Cell Potassium Channels in the Pathology of Pulmonary Arterial Hypertension. Pediatr Cardiol 2017; 38:1-14. [PMID: 27826710 DOI: 10.1007/s00246-016-1491-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
Many different types of potassium channels with various functions exist in pulmonary artery smooth muscle cells, contributing to many physiological actions and pathological conditions. The deep involvement of these channels in the onset and exacerbation of pulmonary arterial hypertension (PAH) also continues to be revealed. In 2013, KCNK3 (TASK1), which encodes a type of two-pore domain potassium channel, was shown to be a predisposing gene for PAH by genetic mutation, and it was added to the PAH classification at the Fifth World Symposium on Pulmonary Hypertension (Nice International Conference). Decreased expression and inhibited activity of voltage-gated potassium channels, particularly KCNA5 (Kv1.5), are also seen in PAH, regardless of the cause, and facilitation of pulmonary arterial contraction and vascular remodeling has been shown. The calcium-activated potassium channels seen in smooth muscle cells also change from BKca (Kca1.1) to IKca (Kca3.1) predominance in PAH due to transformation and have effects including the facilitation of smooth muscle cell migration, enhancement of proliferation, and inhibition of apoptosis. Elucidation of these roles for potassium channels in pulmonary vasoconstriction and remodeling may help bring new therapeutic strategies into view.
Collapse
Affiliation(s)
- Yasunobu Hayabuchi
- Department of Pediatrics, Tokushima University, Kuramoto-cho-3, Tokushima, 770-8503, Japan.
| |
Collapse
|