1
|
Sun N, Brault C, Rodrigues A, Ko M, Vieira F, Phoophiboon V, Slama M, Chen L, Brochard L. Distribution of airway pressure opening in the lungs measured with electrical impedance tomography (POET): a prospective physiological study. Crit Care 2025; 29:28. [PMID: 39819779 PMCID: PMC11740639 DOI: 10.1186/s13054-025-05264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND In patients with acute hypoxemic respiratory failure (AHRF) under mechanical ventilation, the change in pressure slope during a low-flow insufflation indicates a global airway opening pressure (AOP) needed to reopen closed airways and may be used for titration of positive end-expiratory pressure. OBJECTIVES To understand 1) if airways open homogeneously inside the lungs or significant regional AOP variations exist; 2) whether the pattern of the pressure slope change during low-flow insufflation can indicate the presence of regional AOP variations. METHODS Using electrical impedance tomography, we recorded low-flow insufflation maneuvers (< 10 L/min) starting from end-expiratory positive pressure 0-5 cmH2O. We measured global (AOPglobal) and regional AOPs from pressure-impedance curves in the four different lung quadrants, and compared AOPglobal with the highest quadrantal AOP (AOPhighest). We categorized the slope change of the low-flow inflation pressure-time curve into three patterns: no change, progressive change, abrupt change. RESULTS Among the 36 patients analyzed, 9 (25%) had AOPglobal ≥ 5 cmH2O whereas 19 (53%) exhibited regional AOPhighest ≥ 5 cmH2O. AOPglobal was on average similar to AOP of the upper right quadrant (P = 0.182) but was lower than AOPs of the other three quadrants (P < 0.01 of each). AOPglobal was significantly lower than AOPhighest: 3.0 [2.0-4.3] vs. 5.0 [2.8-8.3] cmH2O, P < 0.001. AOP was higher in the dependent than the non-dependent ventilated lung (4.0 [2.0-6.3] vs. 3.0 [2.0-5.0] cmH2O, P < 0.001). Seventeen (47%) patients exhibited a 'progressive change' pattern in the pressure-time curve. These patients had a larger difference between AOPhighest and AOPglobal (3.0 [2.0-4.0] cmH2O with a maximum of 8 cmH2O) compared to the other two patterns: 1.0 [0-1.0] cmH2O in 'no change' , P < 0.001 and 1.0 [0-2.0] cmH2O in 'abrupt change' , P = 0.003. CONCLUSION AOPglobal mostly reflects the lowest opening pressure in the lung and frequently underestimates the highest regional AOP in mechanically ventilated patients with AHRF. A progressive slope change during the low-flow pressure-time curve indicates the presence of several and higher regional AOPs. TRIAL REGISTRATION Clinicaltrials.gov, NCT05825534 (registered, April 24th, 2023), retrospectively registered.
Collapse
Affiliation(s)
- Nannan Sun
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Critical Care Medicine and Anesthesia Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, Shandong, China
| | - Clement Brault
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Intensive Care Department, Amiens-Picardie University Hospital, Amiens, France
| | - Antenor Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Matthew Ko
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando Vieira
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Vorakamol Phoophiboon
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michel Slama
- Intensive Care Department, Amiens-Picardie University Hospital, Amiens, France
| | - Lu Chen
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Giosa L, Collins PD, Shetty S, Lubian M, Del Signore R, Chioccola M, Pugliese F, Camporota L. Bedside Assessment of the Respiratory System During Invasive Mechanical Ventilation. J Clin Med 2024; 13:7456. [PMID: 39685913 DOI: 10.3390/jcm13237456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Assessing the respiratory system of a patient receiving mechanical ventilation is complex. We provide an overview of an approach at the bedside underpinned by physiology. We discuss the importance of distinguishing between extensive and intensive ventilatory variables. We outline methods to evaluate both passive patients and those making spontaneous respiratory efforts during assisted ventilation. We believe a comprehensive assessment can influence setting mechanical ventilatory support to achieve lung and diaphragm protective ventilation.
Collapse
Affiliation(s)
- Lorenzo Giosa
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| | - Patrick D Collins
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| | - Sridevi Shetty
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Marta Lubian
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Riccardo Del Signore
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Mara Chioccola
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Pugliese
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Luigi Camporota
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Zhou L, Lin J, Zhuang M, Wang Y, Weng Q, Zhang H. Heliox ventilation in elderly, hypertensive ICU patients improves microcirculation: A randomized controlled study. J Crit Care 2024; 84:154897. [PMID: 39137689 DOI: 10.1016/j.jcrc.2024.154897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Conventional mechanical ventilation has adverse impacts on the hemodynamics of elderly, hypertensive ICU patients. Limited studies have addressed ways to ameliorate these negative effects. This study aimed to determine whether heliox ventilation could improve the hemodynamics, especially microcirculation, of elderly, hypertensive patients undergoing mechanical ventilation. METHODS Thirty-eight patients, over the age of 65 with essential hypertension who underwent invasive mechanical ventilation treatment, were divided into two groups: a control group of nitrogen‑oxygen ventilation (n = 19) and an experimental group of heliox ventilation (n = 19). The control group received conventional room air ventilation and the experimental group adopted the innovative, closed heliox ventilation technique. Changes in blood pressure, heart rate (HR), peripheral oxygen saturation (SpO2), central venous oxygen saturation (ScvO2), regional cerebral oxygen saturation (rSO2), lactic acid (Lac) and airway pressure were measured at 0,1,2,3 h under volume-controlled ventilation (VCV) mode throughout the study. Sublingual microcirculation parameters were additionally measured at 0 h and 3 h of ventilation treatment. RESULTS SpO2 in both groups increased after 1 h of ventilation compared with 0 h (p < 0.001), subsequently remaining stable. Compared with the control group, the experimental group showed a decrease in airway pressure and Lac, while blood pressure, ScvO2, and rSO2 increased (p < 0.05). Moreover, the sublingual microcirculation indexes in the experimental group improved compared with the control group (p < 0.05). CONCLUSIONS Heliox ventilation improves blood pressure and microcirculation in elderly hypertensive patients and may resolve the limitations of traditional nitrogen‑oxygen ventilation. TRIAL REGISTRATION This trial was registered. The Chinese trial registration number is ChiCTR2100043945. The date of registration is 6-3-2021.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Jing Lin
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Mingkai Zhuang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Digestive Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Yue Wang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Qinyong Weng
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Hui Zhang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| |
Collapse
|
4
|
Conrad AM, Zimmermann J, Mohr D, Froelich MF, Hertel A, Rathmann N, Boesing C, Thiel M, Schoenberg SO, Krebs J, Luecke T, Rocco PRM, Otto M. Quantification of pulmonary edema using automated lung segmentation on computed tomography in mechanically ventilated patients with acute respiratory distress syndrome. Intensive Care Med Exp 2024; 12:95. [PMID: 39487874 PMCID: PMC11531458 DOI: 10.1186/s40635-024-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Quantification of pulmonary edema in patients with acute respiratory distress syndrome (ARDS) by chest computed tomography (CT) scan has not been validated in routine diagnostics due to its complexity and time-consuming nature. Therefore, the single-indicator transpulmonary thermodilution (TPTD) technique to measure extravascular lung water (EVLW) has been used in the clinical setting. Advances in artificial intelligence (AI) have now enabled CT images of inhomogeneous lungs to be segmented automatically by an intensive care physician with no prior radiology training within a relatively short time. Nevertheless, there is a paucity of data validating the quantification of pulmonary edema using automated lung segmentation on CT compared with TPTD. METHODS A retrospective study (January 2016 to December 2021) analyzed patients with ARDS, admitted to the intensive care unit of the Department of Anesthesiology and Critical Care Medicine, University Hospital Mannheim, who underwent a chest CT scan and hemodynamic monitoring using TPTD at the same time. Pulmonary edema was estimated using manually and automated lung segmentation on CT and then compared to the pulmonary edema calculated from EVLW determined using TPTD. RESULTS 145 comparative measurements of pulmonary edema with TPTD and CT were included in the study. Estimating pulmonary edema using either automated lung segmentation on CT or TPTD showed a low bias overall (- 104 ml) but wide levels of agreement (upper: 936 ml, lower: - 1144 ml). In 13% of the analyzed CT scans, the agreement between the segmentation of the AI algorithm and a dedicated investigator was poor. Manual segmentation and automated segmentation adjusted for contrast agent did not improve the agreement levels. CONCLUSIONS Automated lung segmentation on CT can be considered an unbiased but imprecise measurement of pulmonary edema in mechanically ventilated patients with ARDS.
Collapse
Affiliation(s)
- Alice Marguerite Conrad
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Julia Zimmermann
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - David Mohr
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Matthias F Froelich
- Department of Clinical Radiology and Nuclear Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Alexander Hertel
- Department of Clinical Radiology and Nuclear Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Nils Rathmann
- Department of Clinical Radiology and Nuclear Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Manfred Thiel
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Stefan O Schoenberg
- Department of Clinical Radiology and Nuclear Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, Brazil
| | - Matthias Otto
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany.
| |
Collapse
|
5
|
Covotta M, Claroni C, Torregiani G, Menga LS, Venti E, Gazzè G, Anzellotti GM, Ceccarelli V, Gaglioti P, Orlando S, Rosà T, Forastiere E, Antonelli M, Grieco DL. Recruitment-to-inflation ratio to assess response to PEEP during laparoscopic surgery: A physiologic study. J Clin Anesth 2024; 98:111569. [PMID: 39106592 DOI: 10.1016/j.jclinane.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/14/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
STUDY OBJECTIVE During laparoscopic surgery, the role of PEEP to improve outcome is controversial. Mechanistically, PEEP benefits depend on the extent of alveolar recruitment, which prevents ventilator-induced lung injury by reducing lung dynamic strain. The hypotheses of this study were that pneumoperitoneum-induced aeration loss and PEEP-induced recruitment are inter-individually variable, and that the recruitment-to-inflation ratio (R/I) can identify patients who benefit from PEEP in terms of strain reduction. DESIGN Sequential study. SETTING Operating room. PATIENTS Seventeen ASA I-III patients receiving robot-assisted prostatectomy during Trendelenburg pneumoperitoneum. INTERVENTIONS AND MEASUREMENTS Patients underwent end-expiratory lung volume (EELV) and respiratory/lung/chest wall mechanics (esophageal manometry and inspiratory/expiratory occlusions) assessment at PEEP = 0 cmH2O before and after pneumoperitoneum, at PEEP = 4 and 12 cmH2O during pneumoperitoneum. Pneumoperitoneum-induced derecruitment and PEEP-induced recruitment were assessed through a simplified method based on multiple pressure-volume curve. Dynamic and static strain changes were evaluated. R/I between 12 and 4 cmH2O was assessed from EELV. Inter-individual variability was rated with the ratio of standard deviation to mean (CoV). MAIN RESULTS Pneumoperitoneum reduced EELV by (median [IqR]) 410 mL [80-770] (p < 0.001) and increased dynamic strain by 0.04 [0.01-0.07] (p < 0.001), with high inter-individual variability (CoV = 70% and 88%, respectively). Compared to PEEP = 4 cmH2O, PEEP = 12 cmH2O yielded variable amount of recruitment (139 mL [96-366] CoV = 101%), causing different extent of dynamic strain reduction (median decrease 0.02 [0.01-0.04], p = 0.002; CoV = 86%) and static strain increases (median increase 0.05 [0.04-0.07], p = 0.01, CoV = 33%). R/I (1.73 [0.58-3.35]) estimated the decrease in dynamic strain (p ≤0.001, r = -0.90) and the increase in static strain (p = 0.009, r = -0.73) induced by PEEP, while PEEP-induced changes in respiratory and lung mechanics did not. CONCLUSIONS Trendelenburg pneumoperitoneum yields variable derecruitment: PEEP capability to revert these phenomena varies significantly among individuals. High R/I identifies patients in whom higher PEEP mostly reduces dynamic strain with limited static strain increases, potentially allowing individualized settings.
Collapse
Affiliation(s)
- Marco Covotta
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Claroni
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Torregiani
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Luca S Menga
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Emanuela Venti
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gaetano Gazzè
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Gian Marco Anzellotti
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Valentina Ceccarelli
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Pierpaolo Gaglioti
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Sara Orlando
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Tommaso Rosà
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ester Forastiere
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenico L Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
6
|
Muñoz J, Cedeño JA, Castañeda GF, Visedo LC. Personalized ventilation adjustment in ARDS: A systematic review and meta-analysis of image, driving pressure, transpulmonary pressure, and mechanical power. Heart Lung 2024; 68:305-315. [PMID: 39214040 DOI: 10.1016/j.hrtlng.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) necessitates personalized treatment strategies due to its heterogeneity, aiming to mitigate Ventilator-Induced Lung Injury (VILI). Advanced monitoring techniques, including imaging, driving pressure, transpulmonary pressure, and mechanical power, present potential avenues for tailored interventions. OBJECTIVE To review some of the most important techniques for achieving greater personalization of mechanical ventilation in ARDS patients as evaluated in randomized clinical trials, by analyzing their effect on three clinically relevant aspects: mortality, ventilator-free days, and gas exchange. METHODS Following PRISMA guidelines, we conducted a systematic review and meta-analysis of Randomized Clinical Trials (RCTs) involving adult ARDS patients undergoing personalized ventilation adjustments. Outcomes were mortality (primary end-point), ventilator-free days, and oxygenation improvement. RESULTS Among 493 identified studies, 13 RCTs (n = 1255) met inclusion criteria. No personalized ventilation strategy demonstrated superior outcomes compared to traditional protocols. Meta-analysis revealed no significant reduction in mortality with image-guided (RR 0.88, 95 % CI 0.70-1.11), driving pressure-guided (RR 0.61, 95 % CI 0.29-1.30), or transpulmonary pressure-guided (RR 0.85, 95 % CI 0.58-1.24) strategies. Ventilator-free days and oxygenation outcomes showed no significant differences. CONCLUSION Our study does not support the superiority of personalized ventilation techniques over traditional protocols in ARDS patients. Further research is needed to standardize ventilation strategies and determine their impact on mechanical ventilation outcomes.
Collapse
Affiliation(s)
- Javier Muñoz
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain.
| | - Jamil Antonio Cedeño
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain
| | | | - Lourdes Carmen Visedo
- C. S. San Juan de la Cruz, Pozuelo de Alarcón, C/ San Juan de la Cruz s/n, 28223 Madrid, Spain
| |
Collapse
|
7
|
Pinsky MR, Mercat A. Is Pulmonary Vascular Resistance in Acute Respiratory Distress Syndrome the Judge Defining Recruitment versus Overdistention with Positive End-Expiratory Pressure? Am J Respir Crit Care Med 2024; 210:861-863. [PMID: 39167791 PMCID: PMC11506908 DOI: 10.1164/rccm.202407-1414ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Michael R Pinsky
- Department of Critical Care Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| | - Alain Mercat
- Centre Hospitalier Universitaire d'Angers Université d'Angers Angers, France
| |
Collapse
|
8
|
Sousa MLA, Katira BH, Bouch S, Hsing V, Engelberts D, Amato MBP, Post M, Brochard L. Reply to Bihari et al.: Alveolar Collapse Is a Threat in Injured Lungs, but What About the Airway Opening Pressure? Am J Respir Crit Care Med 2024; 210:962-963. [PMID: 39133922 PMCID: PMC11506899 DOI: 10.1164/rccm.202407-1380le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 10/02/2024] Open
Affiliation(s)
- Mayson L A Sousa
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bhushan H Katira
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Pediatric Critical Care Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Sheena Bouch
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vanessa Hsing
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Doreen Engelberts
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcelo B P Amato
- Pulmonary Division, Faculdade de Medicina da Universidade de São Paulo, and Incor - Heart Institute, São Paulo, Brazil; and
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
| |
Collapse
|
9
|
Pellegrini M, Sousa MLA, Dubo S, Menga LS, Hsing V, Post M, Brochard LJ. Impact of airway closure and lung collapse on inhaled nitric oxide effect in acute lung injury: an experimental study. Ann Intensive Care 2024; 14:149. [PMID: 39312044 PMCID: PMC11420414 DOI: 10.1186/s13613-024-01378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Efficacy of inhaled therapy such as Nitric Oxide (iNO) during mechanical ventilation may depend on airway patency. We hypothesized that airway closure and lung collapse, countered by positive end-expiratory pressure (PEEP), influence iNO efficacy. This could support the role of an adequate PEEP titration for inhalation therapy. The main aim of this study was to assess the effect of iNO with PEEP set above or below the airway opening pressure (AOP) generated by airway closure, on hemodynamics and gas exchange in swine models of acute respiratory distress syndrome. Fourteen pigs randomly underwent either bilateral or asymmetrical two-hit model of lung injury. Airway closure and lung collapse were measured with electrical impedance tomography as well as ventilation/perfusion ratio (V/Q). After AOP detection, the effect of iNO (10ppm) was studied with PEEP set randomly above or below regional AOP. Respiratory mechanics, hemodynamics, and gas-exchange were recorded. RESULTS All pigs presented airway closure (AOP > 0.5cmH2O) after injury. In bilateral injury, iNO was associated with an improved mean pulmonary pressure from 49 ± 8 to 42 ± 7mmHg; (p = 0.003), and ventilation/perfusion matching, caused by a reduction in pixels with low V/Q and shunt from 16%[IQR:13-19] to 9%[IQR:4-12] (p = 0.03) only at PEEP set above AOP. iNO had no effect on hemodynamics or gas exchange for PEEP below AOP (low V/Q 25%[IQR:16-30] to 23%[IQR:14-27]; p = 0.68). In asymmetrical injury, iNO improved pulmonary hemodynamics and ventilation/perfusion matching independently from the PEEP set. iNO was associated with improved oxygenation in all cases. CONCLUSIONS In an animal model of bilateral lung injury, PEEP level relative to AOP markedly influences iNO efficacy on pulmonary hemodynamics and ventilation/perfusion match, independently of oxygenation.
Collapse
Affiliation(s)
- Mariangela Pellegrini
- Anesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden.
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University Hospital, Akademiska sjukhuset, ing 40 2 tr. 751 85, Uppsala, Sweden.
| | - Mayson L A Sousa
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Sebastian Dubo
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
- Department of Physiotherapy, Universidad de Concepción, Concepción, Chile
| | - Luca S Menga
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Vanessa Hsing
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Laurent J Brochard
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Lai C, Shi R, Jelinski L, Lardet F, Fasan M, Ayed S, Belotti H, Biard N, Guérin L, Fage N, Fossé Q, Gobé T, Pavot A, Roger G, Yhuel A, Teboul JL, Pham T, Monnet X. Respiratory effects of prone position in COVID-19 acute respiratory distress syndrome differ according to the recruitment-to-inflation ratio: a prospective observational study. Ann Intensive Care 2024; 14:146. [PMID: 39292429 PMCID: PMC11411043 DOI: 10.1186/s13613-024-01375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Improvements in oxygenation and lung mechanics with prone position (PP) in patients with acute respiratory distress syndrome (ARDS) are inconstant. The objectives of the study were (i) to identify baseline variables, including the recruitment-to-inflation ratio (R/I), associated with a positive response to PP in terms of oxygenation (improvement of the ratio of arterial oxygen partial pressure over the inspired oxygen fraction (PaO2/FiO2) ≥ 20 mmHg) and lung mechanics; (ii) to evaluate whether the response to the previous PP session is associated with the response to the next session. METHODS In this prospective, observational, single-center study in patients who underwent PP for ARDS due to COVID-19, respiratory variables were assessed just before PP and at the end of the session. Respiratory variables included mechanical ventilation settings and respiratory mechanics variables, including R/I, an estimate of the potential for lung recruitment compared to lung overinflation. RESULTS In 50 patients, 201 PP sessions lasting 19 ± 3 h were evaluated. Neuromuscular blockades were used in 116 (58%) sessions. The PaO2/FiO2 ratio increased from 109 ± 31 mmHg to 165 ± 65 mmHg, with an increase ≥ 20 mmHg in 142 (71%) sessions. In a mixed effect logistic regression, only pre-PP PaO2/FiO2 (OR 1.12 (95% CI [1.01-1.24])/every decrease of 10 mmHg, p = 0.034) in a first model and improvement in oxygenation at the previous PP session (OR 3.69 (95% CI [1.27-10.72]), p = 0.017) in a second model were associated with an improvement in oxygenation with PP. The R/I ratio (n = 156 sessions) was 0.53 (0.30-0.76), separating lower- and higher-recruiters. Whereas PaO2/FiO2 improved to the same level in both subgroups, driving pressure and respiratory system compliance improved only in higher-recruiters (from 14 ± 4 to 12 ± 4 cmH2O, p = 0.027, and from 34 ± 11 to 38 ± 13 mL/cmH2O, respectively, p = 0.014). CONCLUSIONS A lower PaO2/FiO2 at baseline and a positive O2-response at the previous PP session are associated with a PP-induced improvement in oxygenation. In higher-recruiters, lung mechanics improved along with oxygenation. Benefits of PP could thus be greater in these patients.
Collapse
Affiliation(s)
- Christopher Lai
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France.
- Inserm UMR S_999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, University Paris-Saclay, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| | - Rui Shi
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR S_999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, University Paris-Saclay, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Ludwig Jelinski
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Florian Lardet
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Marta Fasan
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Department of Surgery, Dentistry, Gynaecology and Paediatrics, University of Verona, Verona, Veneto, Italy
| | - Soufia Ayed
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Hugo Belotti
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Nicolas Biard
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Laurent Guérin
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Nicolas Fage
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Quentin Fossé
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Thibaut Gobé
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Arthur Pavot
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Guillaume Roger
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Alex Yhuel
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Jean-Louis Teboul
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR S_999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, University Paris-Saclay, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Tai Pham
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Inserm U1018, Equipe d'Epidémiologie Respiratoire Intégrative, CESP,, Université Paris-Saclay (UVSQ)-Université Paris-Sud, Villejuif, 94807, France
| | - Xavier Monnet
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR S_999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, University Paris-Saclay, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
11
|
Koulenti D, Almyroudi MP, Andrianopoulos I, Mantzarlis K, Papathanakos G, Fragkou PC. Management of severe COVID-19 in the ICU. COVID-19: AN UPDATE 2024. [DOI: 10.1183/2312508x.10020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Boesing C, Rocco PRM, Luecke T, Krebs J. Positive end-expiratory pressure management in patients with severe ARDS: implications of prone positioning and extracorporeal membrane oxygenation. Crit Care 2024; 28:277. [PMID: 39187853 PMCID: PMC11348554 DOI: 10.1186/s13054-024-05059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
The optimal strategy for positive end-expiratory pressure (PEEP) titration in the management of severe acute respiratory distress syndrome (ARDS) patients remains unclear. Current guidelines emphasize the importance of a careful risk-benefit assessment for PEEP titration in terms of cardiopulmonary function in these patients. Over the last few decades, the primary goal of PEEP usage has shifted from merely improving oxygenation to emphasizing lung protection, with a growing focus on the individual pattern of lung injury, lung and chest wall mechanics, and the hemodynamic consequences of PEEP. In moderate-to-severe ARDS patients, prone positioning (PP) is recommended as part of a lung protective ventilation strategy to reduce mortality. However, the physiologic changes in respiratory mechanics and hemodynamics during PP may require careful re-assessment of the ventilation strategy, including PEEP. For the most severe ARDS patients with refractory gas exchange impairment, where lung protective ventilation is not possible, veno-venous extracorporeal membrane oxygenation (V-V ECMO) facilitates gas exchange and allows for a "lung rest" strategy using "ultraprotective" ventilation. Consequently, the importance of lung recruitment to improve oxygenation and homogenize ventilation with adequate PEEP may differ in severe ARDS patients treated with V-V ECMO compared to those managed conservatively. This review discusses PEEP management in severe ARDS patients and the implications of management with PP or V-V ECMO with respect to respiratory mechanics and hemodynamic function.
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
13
|
Wang CJ, Wang IT, Chen CH, Tang YH, Lin HW, Lin CY, Wu CL. Recruitment-Potential-Oriented Mechanical Ventilation Protocol and Narrative Review for Patients with Acute Respiratory Distress Syndrome. J Pers Med 2024; 14:779. [PMID: 39201971 PMCID: PMC11355260 DOI: 10.3390/jpm14080779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Even though much progress has been made to improve clinical outcomes, acute respiratory distress syndrome (ARDS) remains a significant cause of acute respiratory failure. Protective mechanical ventilation is the backbone of supportive care for these patients; however, there are still many unresolved issues in its setting. The primary goal of mechanical ventilation is to improve oxygenation and ventilation. The use of positive pressure, especially positive end-expiratory pressure (PEEP), is mandatory in this approach. However, PEEP is a double-edged sword. How to safely set positive end-inspiratory pressure has long been elusive to clinicians. We hereby propose a pressure-volume curve measurement-based method to assess whether injured lungs are recruitable in order to set an appropriate PEEP. For the most severe form of ARDS, extracorporeal membrane oxygenation (ECMO) is considered as the salvage therapy. However, the high level of medical resources required and associated complications make its use in patients with severe ARDS controversial. Our proposed protocol also attempts to propose how to improve patient outcomes by balancing the possible overuse of resources with minimizing patient harm due to dangerous ventilator settings. A recruitment-potential-oriented evaluation-based protocol can effectively stabilize hypoxemic conditions quickly and screen out truly serious patients.
Collapse
Affiliation(s)
- Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
| | - I-Ting Wang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chao-Hsien Chen
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung 950408, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Department of Critical Care Medicine, MacKay Memorial Hospital, Tamsui 251020, Taiwan
| | - Hsin-Wei Lin
- Department of Chest Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
| | - Chien-Liang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
| |
Collapse
|
14
|
Murgolo F, Grieco DL, Spadaro S, Bartolomeo N, di Mussi R, Pisani L, Fiorentino M, Crovace AM, Lacitignola L, Staffieri F, Grasso S. Recruitment-to-inflation ratio reflects the impact of peep on dynamic lung strain in a highly recruitable model of ARDS. Ann Intensive Care 2024; 14:106. [PMID: 38963617 PMCID: PMC11224186 DOI: 10.1186/s13613-024-01343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The recruitment-to-inflation ratio (R/I) has been recently proposed to bedside assess response to PEEP. The impact of PEEP on ventilator-induced lung injury depends on the extent of dynamic strain reduction. We hypothesized that R/I may reflect the potential for lung recruitment (i.e. recruitability) and, consequently, estimate the impact of PEEP on dynamic lung strain, both assessed through computed tomography scan. METHODS Fourteen lung-damaged pigs (lipopolysaccharide infusion) underwent ventilation at low (5 cmH2O) and high PEEP (i.e., PEEP generating a plateau pressure of 28-30 cmH2O). R/I was measured through a one-breath derecruitment maneuver from high to low PEEP. PEEP-induced changes in dynamic lung strain, difference in nonaerated lung tissue weight (tissue recruitment) and amount of gas entering previously nonaerated lung units (gas recruitment) were assessed through computed tomography scan. Tissue and gas recruitment were normalized to the weight and gas volume of previously ventilated lung areas at low PEEP (normalized-tissue recruitment and normalized-gas recruitment, respectively). RESULTS Between high (median [interquartile range] 20 cmH2O [18-21]) and low PEEP, median R/I was 1.08 [0.88-1.82], indicating high lung recruitability. Compared to low PEEP, tissue and gas recruitment at high PEEP were 246 g [182-288] and 385 ml [318-668], respectively. R/I was linearly related to normalized-gas recruitment (r = 0.90; [95% CI 0.71 to 0.97) and normalized-tissue recruitment (r = 0.69; [95% CI 0.25 to 0.89]). Dynamic lung strain was 0.37 [0.29-0.44] at high PEEP and 0.59 [0.46-0.80] at low PEEP (p < 0.001). R/I was significantly related to PEEP-induced reduction in dynamic (r = - 0.93; [95% CI - 0.78 to - 0.98]) and global lung strain (r = - 0.57; [95% CI - 0.05 to - 0.84]). No correlation was found between R/I and and PEEP-induced changes in static lung strain (r = 0.34; [95% CI - 0.23 to 0.74]). CONCLUSIONS In a highly recruitable ARDS model, R/I reflects the potential for lung recruitment and well estimates the extent of PEEP-induced reduction in dynamic lung strain.
Collapse
Affiliation(s)
- Francesco Murgolo
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy.
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DiMePRe-J), Sezione di Anestesiologia e Rianimazione, Ospedale Policlinico, Università Degli Studi "Aldo Moro", Piazza Giulio Cesare 11, Bari, Italy.
| | - Domenico L Grieco
- Department of Anesthesia, Intensive Care and Emergency, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Savino Spadaro
- Department of Translational Medicine, Section of Anesthesiology and Intensive Care Medicine, University of Ferrara, Ferrara, Italy
| | - Nicola Bartolomeo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Rossella di Mussi
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Luigi Pisani
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | | | - Luca Lacitignola
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Staffieri
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Salvatore Grasso
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
15
|
Rosà T, Bongiovanni F, Michi T, Mastropietro C, Menga LS, DE Pascale G, Antonelli M, Grieco DL. Recruitment-to-inflation ratio for bedside PEEP selection in acute respiratory distress syndrome. Minerva Anestesiol 2024; 90:694-706. [PMID: 39021144 DOI: 10.23736/s0375-9393.24.17982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In acute respiratory distress syndrome, the role of positive end-expiratory pressure (PEEP) to prevent ventilator-induced lung injury is controversial. Randomized trials comparing higher versus lower PEEP strategies failed to demonstrate a clinical benefit. This may depend on the inter-individually variable potential for lung recruitment (i.e. recruitability), which would warrant PEEP individualization to balance alveolar recruitment and the unavoidable baby lung overinflation produced by high pressure. Many techniques have been used to assess recruitability, including lung imaging, multiple pressure-volume curves and lung volume measurement. The Recruitment-to-Inflation ratio (R/I) has been recently proposed to bedside assess recruitability without additional equipment. R/I assessment is a simplified technique based on the multiple pressure-volume curve concept: it is measured by monitoring respiratory mechanics and exhaled tidal volume during a 10-cmH2O one-breath derecruitment maneuver after a short high-PEEP test. R/I scales recruited volume to respiratory system compliance, and normalizes recruitment to a proxy of actual lung size. With modest R/I (<0.3-0.4), setting low PEEP (5-8 cmH2O) may be advisable; with R/I>0.6-0.7, high PEEP (≥15 cmH2O) can be considered, provided that airway and/or transpulmonary plateau pressure do not exceed safety limits. In case of intermediate R/I (≈0.5), a more granular assessment of recruitability may be needed. This could be accomplished with advanced monitoring tools, like sequential lung volume measurement with granular R/I assessment or electrical impedance tomography monitoring during a decremental PEEP trial. In this review, we discuss R/I rationale, applications and limits, providing insights on its clinical use for PEEP selection in moderate-to-severe acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Claudia Mastropietro
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Gennaro DE Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
16
|
Iotti GA, Belliato M. Alveolar (de)recruitability and (in)stability. Minerva Anestesiol 2024; 90:603-606. [PMID: 39021135 DOI: 10.23736/s0375-9393.24.18297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Affiliation(s)
- Giorgio A Iotti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy -
| | - Mirko Belliato
- Unit of Cardiothoracic Anesthesia and Intensive Care, Cardiothoracovascular Department, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| |
Collapse
|
17
|
Ogura K, Nakayama R, Bunya N, Katayama S, Yama N, Goto Y, Sawamoto K, Uemura S, Narimatsu E. Correlation between normally aerated lung and respiratory system compliance at clinical high positive end-expiratory pressure in patients with COVID-19. Sci Rep 2024; 14:14477. [PMID: 38914620 PMCID: PMC11196724 DOI: 10.1038/s41598-024-64622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
Normally aerated lung tissue on computed tomography (CT) is correlated with static respiratory system compliance (Crs) at zero end-expiratory pressure. In clinical practice, however, patients with acute respiratory failure are often managed using elevated PEEP levels. No study has validated the relationship between lung volume and tissue and Crs at the applied positive end-expiratory pressure (PEEP). Therefore, this study aimed to demonstrate the relationship between lung volume and tissue on CT and Crs during the application of PEEP for the clinical management of patients with acute respiratory distress syndrome due to COVID-19. Additionally, as a secondary outcome, the study aimed to evaluate the relationship between CT characteristics and Crs, considering recruitability using the recruitment-to-inflation ratio (R/I ratio). We analyzed the CT and respiratory mechanics data of 30 patients with COVID-19 who were mechanically ventilated. The CT images were acquired during mechanical ventilation at PEEP level of 15 cmH2O and were quantitatively analyzed using Synapse Vincent system version 6.4 (Fujifilm Corporation, Tokyo, Japan). Recruitability was stratified into two groups, high and low recruitability, based on the median R/I ratio of our study population. Thirty patients were included in the analysis with the median R/I ratio of 0.71. A significant correlation was observed between Crs at the applied PEEP (median 15 [interquartile range (IQR) 12.2, 15.8]) and the normally aerated lung volume (r = 0.70 [95% CI 0.46-0.85], P < 0.001) and tissue (r = 0.70 [95% CI 0.46-0.85], P < 0.001). Multivariable linear regression revealed that recruitability (Coefficient = - 390.9 [95% CI - 725.0 to - 56.8], P = 0.024) and Crs (Coefficient = 48.9 [95% CI 32.6-65.2], P < 0.001) were significantly associated with normally aerated lung volume (R-squared: 0.58). In this study, Crs at the applied PEEP was significantly correlated with normally aerated lung volume and tissue on CT. Moreover, recruitability indicated by the R/I ratio and Crs were significantly associated with the normally aerated lung volume. This research underscores the significance of Crs at the applied PEEP as a bedside-measurable parameter and sheds new light on the link between recruitability and normally aerated lung.
Collapse
Affiliation(s)
- Keishi Ogura
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Ryuichi Nakayama
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Naofumi Bunya
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shinshu Katayama
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Naoya Yama
- Department of Diagnostic Radiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuya Goto
- Department of Intensive Care Medicine, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Keigo Sawamoto
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shuji Uemura
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eichi Narimatsu
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
18
|
Sousa MLA, Katira BH, Bouch S, Hsing V, Engelberts D, Amato MBP, Post M, Brochard LJ. Limiting Overdistention or Collapse When Mechanically Ventilating Injured Lungs: A Randomized Study in a Porcine Model. Am J Respir Crit Care Med 2024; 209:1441-1452. [PMID: 38354065 DOI: 10.1164/rccm.202310-1895oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/14/2024] [Indexed: 02/16/2024] Open
Abstract
Rationale: It is unknown whether preventing overdistention or collapse is more important when titrating positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS). Objectives: To compare PEEP targeting minimal overdistention or minimal collapse or using a compromise between collapse and overdistention in a randomized trial and to assess the impact on respiratory mechanics, gas exchange, inflammation, and hemodynamics. Methods: In a porcine model of ARDS, lung collapse and overdistention were estimated using electrical impedance tomography during a decremental PEEP titration. Pigs were randomized to three groups and ventilated for 12 hours: PEEP set at ⩽3% of overdistention (low overdistention), ⩽3% of collapse (low collapse), and the crossing point of collapse and overdistention. Measurements and Main Results: Thirty-six pigs (12 per group) were included. Median (interquartile range) values of PEEP were 7 (6-8), 11 (10-11), and 15 (12-16) cm H2O in the three groups (P < 0.001). With low overdistension, 6 (50%) pigs died, whereas survival was 100% in both other groups. Cause of death was hemodynamic in nature, with high transpulmonary vascular gradient and high epinephrine requirements. Compared with the other groups, pigs surviving with low overdistension had worse respiratory mechanics and gas exchange during the entire protocol. Minimal differences existed between crossing-point and low-collapse animals in physiological parameters, but postmortem alveolar density was more homogeneous in the crossing-point group. Inflammatory markers were not significantly different. Conclusions: PEEP to minimize overdistention resulted in high mortality in an animal model of ARDS. Minimizing collapse or choosing a compromise between collapse and overdistention may result in less lung injury, with potential benefits of the compromise approach.
Collapse
Affiliation(s)
- Mayson L A Sousa
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bhushan H Katira
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Pediatric Critical Care Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Sheena Bouch
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vanessa Hsing
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Doreen Engelberts
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcelo B P Amato
- Divisão de Pneumologia, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
- Instituto do Coração - InCor, Hospital das Clinicas, Faculade de Medicina da Universidade de São Paulo, São Paulo, Brazil; and
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laurent J Brochard
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
| |
Collapse
|
19
|
Cammarota G, Vaschetto R, Vetrugno L, Maggiore SM. Monitoring lung recruitment. Curr Opin Crit Care 2024; 30:268-274. [PMID: 38690956 DOI: 10.1097/mcc.0000000000001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE OF REVIEW This review explores lung recruitment monitoring, covering techniques, challenges, and future perspectives. RECENT FINDINGS Various methodologies, including respiratory system mechanics evaluation, arterial bold gases (ABGs) analysis, lung imaging, and esophageal pressure (Pes) measurement are employed to assess lung recruitment. In support to ABGs analysis, the assessment of respiratory mechanics with hysteresis and recruitment-to-inflation ratio has the potential to evaluate lung recruitment and enhance mechanical ventilation setting. Lung imaging tools, such as computed tomography scanning, lung ultrasound, and electrical impedance tomography (EIT) confirm their utility in following lung recruitment with the advantage of radiation-free and repeatable application at the bedside for sonography and EIT. Pes enables the assessment of dorsal lung tendency to collapse through end-expiratory transpulmonary pressure. Despite their value, these methodologies may require an elevated expertise in their application and data interpretation. However, the information obtained by these methods may be conveyed to build machine learning and artificial intelligence algorithms aimed at improving the clinical decision-making process. SUMMARY Monitoring lung recruitment is a crucial component of managing patients with severe lung conditions, within the framework of a personalized ventilatory strategy. Although challenges persist, emerging technologies offer promise for a personalized approach to care in the future.
Collapse
Affiliation(s)
- Gianmaria Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, Novara
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale, Novara
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences
| | - Salvatore M Maggiore
- Department of Anesthesiology and Intensive Care, Ospedale SS Annunziata & Department of Innovative Technologies in Medicine and Odonto-stomatology, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
20
|
Chiumello D, Fioccola A. Recent advances in cardiorespiratory monitoring in acute respiratory distress syndrome patients. J Intensive Care 2024; 12:17. [PMID: 38706001 PMCID: PMC11070081 DOI: 10.1186/s40560-024-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Recent advances on cardiorespiratory monitoring applied in ARDS patients undergoing invasive mechanical ventilation and noninvasive ventilatory support are available in the literature and may have potential prognostic implication in ARDS treatment. MAIN BODY The measurement of oxygen saturation by pulse oximetry is a valid, low-cost, noninvasive alternative for assessing arterial oxygenation. Caution must be taken in patients with darker skin pigmentation, who may experience a greater incidence of occult hypoxemia. Dead space surrogates, which are easy to calculate, have important prognostic implications. The mechanical power, which can be automatically computed by intensive care ventilators, is an important parameter correlated with ventilator-induced lung injury and outcome. In patients undergoing noninvasive ventilatory support, the use of esophageal pressure can measure inspiratory effort, avoiding possible delays in endotracheal intubation. Fluid responsiveness can also be evaluated using dynamic indices in patients ventilated at low tidal volumes (< 8 mL/kg). In patients ventilated at high levels of positive end expiratory pressure (PEEP), the PEEP test represents a valid alternative to passive leg raising. There is growing evidence on alternative parameters for evaluating fluid responsiveness, such as central venous oxygen saturation variations, inferior vena cava diameter variations and capillary refill time. CONCLUSION Careful cardiorespiratory monitoring in patients affected by ARDS is crucial to improve prognosis and to tailor treatment via mechanical ventilatory support.
Collapse
Affiliation(s)
- Davide Chiumello
- Department of Health Sciences, University of Milan, Milan, Italy.
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, Via Di Rudinì 9, Milan, Italy.
- Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy.
| | - Antonio Fioccola
- Department of Health Sciences, University of Milan, Milan, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
21
|
Battaglini D, Roca O, Ferrer R. Positive end-expiratory pressure optimization in ARDS: physiological evidence, bedside methods and clinical applications. Intensive Care Med 2024; 50:762-765. [PMID: 38568234 DOI: 10.1007/s00134-024-07397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Oriol Roca
- Servei de Medicina Intensiva, Parc Taulí Hospital Universitari, Institut de Recerca Part Taulí (I3PT-CERCA), Parc del Taulí 1, 08028, Sabadell, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricard Ferrer
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain.
| |
Collapse
|
22
|
Gattinoni L, Collino F, Camporota L. Assessing lung recruitability: does it help with PEEP settings? Intensive Care Med 2024; 50:749-751. [PMID: 38536421 PMCID: PMC11078853 DOI: 10.1007/s00134-024-07351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, University Medical Center Göttingen, Robert Koch Straße 40, 37075, Göttingen, Germany.
| | | | - Luigi Camporota
- Department of Adult Critical Care, Centre for Human and Applied Physiological Sciences, Guy's and St. Thomas' NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
23
|
Anđelić N, Uvelin A, Stokić E, Popović R, Zdravković R, Preveden A, Zornić N. The Effect of Recruitment Maneuver on Static Lung Compliance in Patients Undergoing General Anesthesia for Laparoscopic Cholecystectomy: A Single-Centre Prospective Clinical Intervention Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:666. [PMID: 38674312 PMCID: PMC11052059 DOI: 10.3390/medicina60040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: The aim of this study was to examine whether the use of an alveolar recruitment maneuver (RM) leads to a significant increase in static lung compliance (Cstat) and an improvement in gas exchange in patients undergoing laparoscopic cholecystectomy. Material and Methods: A clinical prospective intervention study was conducted. Patients were divided into two groups according to their body mass index (BMI): normal-weight (group I) and pre-obese and obese grade I (group II). Lung mechanics were monitored (Cstat, dynamic compliance-Cdin, peak pressure-Ppeak, plateau pressure-Pplat, driving pressure-DP) alongside gas exchange, and hemodynamic changes (heart rate-HR, mean arterial pressure-MAP) at six time points: T1 (induction of anesthesia), T2 (formation of pneumoperitoneum), T3 (RM with a PEEP of 5 cm H2O), T4 (RM with a PEEP of 7 cm H2O), T5 (desufflation), and T6 (RM at the end). The RM was performed by increasing the peak pressure by +5 cm of H2O at an equal inspiration-to-expiration ratio (I/E = 1:1) and applying a PEEP of 5 and 7 cm of H2O. Results: Out of 96 patients, 33 belonged to group I and 63 to group II. An increase in Cstat values occurred after all three RMs. At each time point, the Cstat value was measured higher in group I than in group II. A higher increase in Cstat was observed in group II after the second and third RM. Cstat values were higher at the end of the surgical procedure compared to values after the induction of anesthesia. The RM led to a significant increase in PaO2 in both groups without changes in HR or MAP. Conclusions: During laparoscopic cholecystectomy, the application of RM leads to a significant increase in Cstat and an improvement in gas exchange. The prevention of atelectasis during anesthesia should be initiated immediately after the induction of anesthesia, using protective mechanical ventilation and RM.
Collapse
Affiliation(s)
- Nada Anđelić
- Clinic for Anesthesia, Intensive Care and Pain Medicine, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia; (N.A.); (R.P.)
- Faculty of Medical Sciences, Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Arsen Uvelin
- Clinic for Anesthesia, Intensive Care and Pain Medicine, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia; (N.A.); (R.P.)
- Faculty of Medicine, Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (E.S.); (R.Z.); (A.P.)
| | - Edita Stokić
- Faculty of Medicine, Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (E.S.); (R.Z.); (A.P.)
- Clinic for Endocrinology, Diabetes and Metabolism, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia
| | - Radmila Popović
- Clinic for Anesthesia, Intensive Care and Pain Medicine, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia; (N.A.); (R.P.)
- Faculty of Medicine, Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (E.S.); (R.Z.); (A.P.)
| | - Ranko Zdravković
- Faculty of Medicine, Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (E.S.); (R.Z.); (A.P.)
- Institute of Cardiovascular Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Andrej Preveden
- Faculty of Medicine, Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (E.S.); (R.Z.); (A.P.)
- Institute of Cardiovascular Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Nenad Zornić
- Faculty of Medical Sciences, Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
- Department of Surgery, Clinical Centre of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
24
|
Le Pape S, Joly F, Arrivé F, Frat JP, Rodriguez M, Joos M, Marchasson L, Wairy M, Thille AW, Coudroy R. Factors associated with decreased compliance after on-site extracorporeal membrane oxygenation cannulation for acute respiratory distress syndrome: A retrospective, observational cohort study. JOURNAL OF INTENSIVE MEDICINE 2024; 4:194-201. [PMID: 38681786 PMCID: PMC11043634 DOI: 10.1016/j.jointm.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 05/01/2024]
Abstract
Background Extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS) is systematically associated with decreased respiratory system compliance (CRS). It remains unclear whether transportation to the referral ECMO center, changes in ventilatory mode or settings to achieve ultra-protective ventilation, or the natural evolution of ARDS drives this change in respiratory mechanics. Herein, we assessed the precise moment when CRS decreases after ECMO cannulation and identified factors associated with decreased CRS. Methods To rule out the effect of transportation and the different modes of ventilation on CRS, we conducted a retrospective, single-center, observational cohort study from January 2013 to May 2020, on 22 patients with severe ARDS requiring on-site ECMO and ventilated in pressure-controlled mode to achieve ultra-protective ventilation. CRS was assessed at different time points ranging from 12 h before ECMO cannulation to 72 h after ECMO cannulation. The primary outcome was the relative change in CRS between 3 h before and 3 h after ECMO cannulation. The secondary outcomes included variables associated with the relative changes in CRS within the first 3 h after ECMO cannulation and the relative changes in CRS at each time point. Results CRS decreased within the first 3 h after ECMO cannulation (-28.3%, 95% confidence interval [CI]: -38.8 to -17.9, P<0.001), while the decrease was mild before and after these first 3 h after ECMO cannulation. To achieve ultra-protective ventilation, respiratory rate decreased in the mean by -13 breaths/min (95% CI: -15 to -11) and driving pressure by -8.3 cmH2O (95% CI: -11.2 to -5.3), resulting in decreased tidal volume by -3.3 mL/kg of predicted body weight (95% CI: -3.9 to -2.6) as compared to before ECMO cannulation (P <0.001 for all). Plateau pressure reduction, driving pressure reduction, and tidal volume reduction were significantly associated with decreased CRS after ECMO cannulation, whereas neither respiratory rate, positive end-expiratory pressure, inspired fraction of oxygen, fluid balance, nor mean airway pressure was associated with decreased CRS. Conclusions Decreased driving pressure resulting in lower tidal volume to achieve ultra-protective ventilation after ECMO cannulation was associated with a marked decrease in CRS in ARDS patients with on-site ECMO cannulation.
Collapse
Affiliation(s)
- Sylvain Le Pape
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
| | - Florent Joly
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
| | - François Arrivé
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
| | - Jean-Pierre Frat
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
- INSERM Centre d'Investigation Clinique 1402, IS-ALIVE Research Group, Université de Poitiers, Poitiers, France
| | - Maeva Rodriguez
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
| | - Maïa Joos
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
| | - Laura Marchasson
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
| | - Mathilde Wairy
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
| | - Arnaud W. Thille
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
- INSERM Centre d'Investigation Clinique 1402, IS-ALIVE Research Group, Université de Poitiers, Poitiers, France
| | - Rémi Coudroy
- Centre Hospitalier Universitaire de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
- INSERM Centre d'Investigation Clinique 1402, IS-ALIVE Research Group, Université de Poitiers, Poitiers, France
| |
Collapse
|
25
|
Ferrer M, De Pascale G, Tanzarella ES, Antonelli M. Severe Community-Acquired Pneumonia: Noninvasive Mechanical Ventilation, Intubation, and HFNT. Semin Respir Crit Care Med 2024; 45:169-186. [PMID: 38604188 DOI: 10.1055/s-0043-1778140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Severe acute respiratory failure (ARF) is a major issue in patients with severe community-acquired pneumonia (CAP). Standard oxygen therapy is the first-line therapy for ARF in the less severe cases. However, respiratory supports may be delivered in more severe clinical condition. In cases with life-threatening ARF, invasive mechanical ventilation (IMV) will be required. Noninvasive strategies such as high-flow nasal therapy (HFNT) or noninvasive ventilation (NIV) by either face mask or helmet might cover the gap between standard oxygen and IMV. The objective of all the supporting measures for ARF is to gain time for the antimicrobial treatment to cure the pneumonia. There is uncertainty regarding which patients with severe CAP are most likely to benefit from each noninvasive support strategy. HFNT may be the first-line approach in the majority of patients. While NIV may be relatively contraindicated in patients with excessive secretions, facial hair/structure resulting in air leaks or poor compliance, NIV may be preferable in those with increased work of breathing, respiratory muscle fatigue, and congestive heart failure, in which the positive pressure of NIV may positively impact hemodynamics. A trial of NIV might be considered for select patients with hypoxemic ARF if there are no contraindications, with close monitoring by an experienced clinical team who can intubate patients promptly if they deteriorate. In such cases, individual clinician judgement is key to choose NIV, interface, and settings. Due to the paucity of studies addressing IMV in this population, the protective mechanical ventilation strategies recommended by guidelines for acute respiratory distress syndrome can be reasonably applied in patients with severe CAP.
Collapse
Affiliation(s)
- Miquel Ferrer
- Unitat de Vigilancia Intensiva Respiratoria, Servei de Pneumologia, Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica En Red-Enfermedades Respiratorias (CIBERES-CB060628), Barcelona, Spain
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eloisa S Tanzarella
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
26
|
Roca O, Telias I, Grieco DL. Bedside-available strategies to minimise P-SILI and VILI during ARDS. Intensive Care Med 2024; 50:597-601. [PMID: 38498168 DOI: 10.1007/s00134-024-07366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Oriol Roca
- Servei de Medicina Intensiva, Parc Taulí Hospital Universitari, Institut de Recerca Part Taulí - I3PT, Parc del Taulí 1, 08028, Sabadell, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Ciber Enfermedades Respiratorias (Ciberes), Instituto de Salud Carlos III, Madrid, Spain.
| | - Irene Telias
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
27
|
Franchineau G, Jonkman AH, Piquilloud L, Yoshida T, Costa E, Rozé H, Camporota L, Piraino T, Spinelli E, Combes A, Alcala GC, Amato M, Mauri T, Frerichs I, Brochard LJ, Schmidt M. Electrical Impedance Tomography to Monitor Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2024; 209:670-682. [PMID: 38127779 DOI: 10.1164/rccm.202306-1118ci] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.
Collapse
Affiliation(s)
- Guillaume Franchineau
- Service de Medecine Intensive Reanimation, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Annemijn H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lise Piquilloud
- Adult Intensive Care Unit, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eduardo Costa
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Hadrien Rozé
- Department of Thoraco-Abdominal Anesthesiology and Intensive Care, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
- Réanimation Polyvalente, Centre Hospitalier Côte Basque, Bayonne, France
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Department of Adult Critical Care, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Thomas Piraino
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Critical Care, Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alain Combes
- Sorbonne Université, Groupe de Recherche Clinique 30, Réanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aigüe, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Service de Médecine Intensive - Réanimation, Assistance Publique-Hôpitaux de Paris (APHP) Hôpital Pitié-Salpêtrière, Paris, France
| | - Glasiele C Alcala
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Marcelo Amato
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre of Schleswig-Holstein Campus Kiel, Kiel, Germany; and
| | - Laurent J Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Matthieu Schmidt
- Sorbonne Université, Groupe de Recherche Clinique 30, Réanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aigüe, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Service de Médecine Intensive - Réanimation, Assistance Publique-Hôpitaux de Paris (APHP) Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
28
|
Boesing C, Krebs J, Conrad AM, Otto M, Beck G, Thiel M, Rocco PRM, Luecke T, Schaefer L. Effects of prone positioning on lung mechanical power components in patients with acute respiratory distress syndrome: a physiologic study. Crit Care 2024; 28:82. [PMID: 38491457 PMCID: PMC10941550 DOI: 10.1186/s13054-024-04867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Prone positioning (PP) homogenizes ventilation distribution and may limit ventilator-induced lung injury (VILI) in patients with moderate to severe acute respiratory distress syndrome (ARDS). The static and dynamic components of ventilation that may cause VILI have been aggregated in mechanical power, considered a unifying driver of VILI. PP may affect mechanical power components differently due to changes in respiratory mechanics; however, the effects of PP on lung mechanical power components are unclear. This study aimed to compare the following parameters during supine positioning (SP) and PP: lung total elastic power and its components (elastic static power and elastic dynamic power) and these variables normalized to end-expiratory lung volume (EELV). METHODS This prospective physiologic study included 55 patients with moderate to severe ARDS. Lung total elastic power and its static and dynamic components were compared during SP and PP using an esophageal pressure-guided ventilation strategy. In SP, the esophageal pressure-guided ventilation strategy was further compared with an oxygenation-guided ventilation strategy defined as baseline SP. The primary endpoint was the effect of PP on lung total elastic power non-normalized and normalized to EELV. Secondary endpoints were the effects of PP and ventilation strategies on lung elastic static and dynamic power components non-normalized and normalized to EELV, respiratory mechanics, gas exchange, and hemodynamic parameters. RESULTS Lung total elastic power (median [interquartile range]) was lower during PP compared with SP (6.7 [4.9-10.6] versus 11.0 [6.6-14.8] J/min; P < 0.001) non-normalized and normalized to EELV (3.2 [2.1-5.0] versus 5.3 [3.3-7.5] J/min/L; P < 0.001). Comparing PP with SP, transpulmonary pressures and EELV did not significantly differ despite lower positive end-expiratory pressure and plateau airway pressure, thereby reducing non-normalized and normalized lung elastic static power in PP. PP improved gas exchange, cardiac output, and increased oxygen delivery compared with SP. CONCLUSIONS In patients with moderate to severe ARDS, PP reduced lung total elastic and elastic static power compared with SP regardless of EELV normalization because comparable transpulmonary pressures and EELV were achieved at lower airway pressures. This resulted in improved gas exchange, hemodynamics, and oxygen delivery. TRIAL REGISTRATION German Clinical Trials Register (DRKS00017449). Registered June 27, 2019. https://drks.de/search/en/trial/DRKS00017449.
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Alice Marguerite Conrad
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Otto
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Grietje Beck
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Manfred Thiel
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, Brazil
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Laura Schaefer
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
29
|
Zaidi SF, Shaikh A, Khan DA, Surani S, Ratnani I. Driving pressure in mechanical ventilation: A review. World J Crit Care Med 2024; 13:88385. [PMID: 38633474 PMCID: PMC11019631 DOI: 10.5492/wjccm.v13.i1.88385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024] Open
Abstract
Driving pressure (∆P) is a core therapeutic component of mechanical ventilation (MV). Varying levels of ∆P have been employed during MV depending on the type of underlying pathology and severity of injury. However, ∆P levels have also been shown to closely impact hard endpoints such as mortality. Considering this, conducting an in-depth review of ∆P as a unique, outcome-impacting therapeutic modality is extremely important. There is a need to understand the subtleties involved in making sure ∆P levels are optimized to enhance outcomes and minimize harm. We performed this narrative review to further explore the various uses of ∆P, the different parameters that can affect its use, and how outcomes vary in different patient populations at different pressure levels. To better utilize ∆P in MV-requiring patients, additional large-scale clinical studies are needed.
Collapse
Affiliation(s)
- Syeda Farheen Zaidi
- Department of Medicine, Queen Mary University, London E1 4NS, United Kingdom
| | - Asim Shaikh
- Department of Medicine, Aga Khan University, Sindh, Karachi 74500, Pakistan
| | - Daniyal Aziz Khan
- Department of Medicine, Jinnah Postgraduate Medical Center, Sindh, Karachi 75510, Pakistan
| | - Salim Surani
- Department of Medicine and Pharmacology, Texas A and M University, College Station, TX 77843, United States
| | - Iqbal Ratnani
- Department of Anesthesiology and Critical Care, Houston Methodist Hospital, Houston, TX 77030, United States
| |
Collapse
|
30
|
Esposito T, Fregonese M, Morettini G, Carboni P, Tardioli C, Messina A, Vaschetto R, Della Corte F, Vetrugno L, Navalesi P, De Robertis E, Azzolina D, Piriyapatsom A, Tucci MR, Wrigge H, Simon P, Bignami E, Maggiore SM, Simonte R, Cammarota G. Intraoperative individualization of positive-end-expiratory pressure through electrical impedance tomography or esophageal pressure assessment: a systematic review and meta-analysis of randomized controlled trials. J Clin Monit Comput 2024; 38:89-100. [PMID: 37863862 DOI: 10.1007/s10877-023-01094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE This systematic review of randomized-controlled trials (RCTs) with meta-analyses aimed to compare the effects on intraoperative arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2), exerted by positive end-expiratory pressure (PEEP) individualized trough electrical impedance tomography (EIT) or esophageal pressure (Pes) assessment (intervention) vs. PEEP not tailored on EIT or Pes (control), in patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach. METHODS PUBMED®, EMBASE®, and Cochrane Controlled Clinical trials register were searched for observational studies and RCTs from inception to the end of August 2022. Inclusion criteria were: RCTs comparing PEEP titrated on EIT/Pes assessment vs. PEEP not individualized on EIT/Pes and reporting intraoperative PaO2/FiO2. Two authors independently extracted data from the enrolled investigations. Data are reported as mean difference and 95% confidence interval (CI). RESULTS Six RCTs were included for a total of 240 patients undergoing general anesthesia for surgery, of whom 117 subjects in the intervention group and 123 subjects in the control group. The intraoperative mean PaO2/FiO2 was 69.6 (95%CI 32.-106.4 ) mmHg higher in the intervention group as compared with the control group with 81.4% between-study heterogeneity (p < 0.01). However, at meta-regression, the between-study heterogeneity diminished to 44.96% when data were moderated for body mass index (estimate 3.45, 95%CI 0.78-6.11, p = 0.011). CONCLUSIONS In patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach, PEEP personalized by EIT or Pes allowed the achievement of a better intraoperative oxygenation compared to PEEP not individualized through EIT or Pes. PROSPERO REGISTRATION NUMBER CRD 42021218306, 30/01/2023.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Anesthesiology and Intensive Care, 'Maggiore della Carità' Hospital, Novara, Italy
| | - Martina Fregonese
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Giulio Morettini
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paloma Carboni
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Cecilia Tardioli
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Antonio Messina
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| | - Paolo Navalesi
- Department of Medicine, Università degli Studi Di Padova, Padova, Italy
| | - Edoardo De Robertis
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Danila Azzolina
- Department of Ambiental Science and Prevention, Università degli Studi di Ferrara, Ferrara, Italy
| | - Annop Piriyapatsom
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mauro R Tucci
- Service of Pneumology, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hermann Wrigge
- Integrated Research and Treatment Centre Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital, Halle, Germany
- Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Philipp Simon
- Integrated Research and Treatment Centre Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Anesthesiology and Operative Intensive Care, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Salvatore M Maggiore
- Department of Anesthesiology and Intensive Care, Ospedale SS Annunziata & Department of Innovative Technologies in Medicine and Odonto-stomatology, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| | - Rachele Simonte
- Department of Anesthesiology and Intensive Care, 'Maggiore della Carità' Hospital, Novara, Italy
| | - Gianmaria Cammarota
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy.
- Dipartimento di Medicina Traslazionale, Università degli Studi del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
31
|
Menga LS, Subirà C, Wong A, Sousa M, Brochard LJ. Setting positive end-expiratory pressure: does the 'best compliance' concept really work? Curr Opin Crit Care 2024; 30:20-27. [PMID: 38085857 DOI: 10.1097/mcc.0000000000001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Determining the optimal positive end-expiratory pressure (PEEP) setting remains a central yet debated issue in the management of acute respiratory distress syndrome (ARDS).The 'best compliance' strategy set the PEEP to coincide with the peak respiratory system compliance (or 2 cmH 2 O higher) during a decremental PEEP trial, but evidence is conflicting. RECENT FINDINGS The physiological rationale that best compliance is always representative of functional residual capacity and recruitment has raised serious concerns about its efficacy and safety, due to its association with increased 28-day all-cause mortality in a randomized clinical trial in ARDS patients.Moreover, compliance measurement was shown to underestimate the effects of overdistension, and neglect intra-tidal recruitment, airway closure, and the interaction between lung and chest wall mechanics, especially in obese patients. In response to these concerns, alternative approaches such as recruitment-to-inflation ratio, the nitrogen wash-in/wash-out technique, and electrical impedance tomography (EIT) are gaining attention to assess recruitment and overdistention more reliably and precisely. SUMMARY The traditional 'best compliance' strategy for determining optimal PEEP settings in ARDS carries risks and overlooks some key physiological aspects. The advent of new technologies and methods presents more reliable strategies to assess recruitment and overdistention, facilitating personalized approaches to PEEP optimization.
Collapse
Affiliation(s)
- Luca S Menga
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
- Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, Anesthesiology and Intensive Care Medicine
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Anesthesia, Emergency and Intensive Care Medicine, Roma, Italy
| | - Carles Subirà
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid
- Critical Care Department, Althaia Xarxa Assistencial Universitària de Manresa, IRIS Research Institute, Manresa, Spain
- Grup de Recerca de Malalt Crític (GMC). Institut de Recerca Biomèdica Catalunya Central IRIS-CC
| | - Alfred Wong
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - Mayson Sousa
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - Laurent J Brochard
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Keenan Research Centre
- University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Lan L, Ni Y, Zhou Y, Fu L, Wu W, Li P, Yu H, Liang G, Luo F. PEEP-Induced Lung Recruitment Maneuver Combined with Prone Position for ARDS: A Single-Center, Prospective, Randomized Clinical Trial. J Clin Med 2024; 13:853. [PMID: 38337547 PMCID: PMC10856548 DOI: 10.3390/jcm13030853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Prone position (PP) and the positive end-expiratory pressure (PEEP)-induced lung recruitment maneuver (LRM) are both efficient in improving oxygenation and prognosis in patients with ARDS. The synergistic effect of PP combined with PEEP-induced LRM in patients with ARDS remains unclear. We aim to explore the effects of PP combined with PEEP-induced LRM on prognosis in patients with moderate to severe ARDS and the predicting role of lung recruitablity. Methods: Patients with moderate to severe ARDS were consecutively enrolled. The patients were prospectively assigned to either the intervention (PP with PEEP-induced LRM) or control groups (PP). The clinical outcomes, respiratory mechanics, and electric impedance tomography (EIT) monitoring results for the two groups were compared. Lung recruitablity (recruitment-to-inflation ratio: R/I) was measured during the PEEP-induced LRM procedure and was used for predicting the response to LRM. Results: Fifty-eight patients were included in the final analysis, among which 28 patients (48.2%) received PEEP-induced LRM combined with PP. PEEP-induced LRM enhanced the effect of PP by a significant improvement in oxygenation (∆PaO2/FiO2 75.8 mmHg vs. 4.75 mmHg, p < 0.001) and the compliance of respiratory system (∆Crs, 2 mL/cmH2O vs. -1 mL/cmH2O, p = 0.02) among ARDS patients. Based on the EIT measurement, PP combined with PEEP-induced LRM increased the ventilation distribution mainly in the dorsal region (5.0% vs. 2.0%, p = 0.015). The R/I ratio was measured in 28 subjects. The higher R/I ratio was related to greater oxygenation improvement after LRM (Pearson's r = 0.4; p = 0.034). Conclusions: In patients with moderate to severe ARDS, PEEP-induced LRM combined with PP can improve oxygenation and dorsal ventilation distribution. R/I can be useful to predict responses to LRM.
Collapse
Affiliation(s)
- Lan Lan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yuenan Ni
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yubei Zhou
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Linxi Fu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wentao Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - He Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
| | - Guopeng Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
33
|
Pavlovsky B, Desprez C, Richard JC, Fage N, Lesimple A, Chean D, Courtais A, Mauri T, Mercat A, Beloncle F. Bedside personalized methods based on electrical impedance tomography or respiratory mechanics to set PEEP in ARDS and recruitment-to-inflation ratio: a physiologic study. Ann Intensive Care 2024; 14:1. [PMID: 38180544 PMCID: PMC10769993 DOI: 10.1186/s13613-023-01228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Various Positive End-Expiratory Pressure (PEEP) titration strategies have been proposed to optimize ventilation in patients with acute respiratory distress syndrome (ARDS). We aimed to compare PEEP titration strategies based on electrical impedance tomography (EIT) to methods derived from respiratory system mechanics with or without esophageal pressure measurements, in terms of PEEP levels and association with recruitability. METHODS Nineteen patients with ARDS were enrolled. Recruitability was assessed by the estimated Recruitment-to-Inflation ratio (R/Iest) between PEEP 15 and 5 cmH2O. Then, a decremental PEEP trial from PEEP 20 to 5 cmH2O was performed. PEEP levels determined by the following strategies were studied: (1) plateau pressure 28-30 cmH2O (Express), (2) minimal positive expiratory transpulmonary pressure (Positive PLe), (3) center of ventilation closest to 0.5 (CoV) and (4) intersection of the EIT-based overdistension and lung collapse curves (Crossing Point). In addition, the PEEP levels determined by the Crossing Point strategy were assessed using different PEEP ranges during the decremental PEEP trial. RESULTS Express and CoV strategies led to higher PEEP levels than the Positive PLe and Crossing Point ones (17 [14-17], 20 [17-20], 8 [5-11], 10 [8-11] respectively, p < 0.001). For each strategy, there was no significant association between the optimal PEEP level and R/Iest (Crossing Point: r2 = 0.073, p = 0.263; CoV: r2 < 0.001, p = 0.941; Express: r2 < 0.001, p = 0.920; Positive PLe: r2 = 0.037, p = 0.461). The PEEP level obtained with the Crossing Point strategy was impacted by the PEEP range used during the decremental PEEP trial. CONCLUSIONS CoV and Express strategies led to higher PEEP levels than the Crossing Point and Positive PLe strategies. Optimal PEEP levels proposed by these four methods were not associated with recruitability. Recruitability should be specifically assessed in ARDS patients to optimize PEEP titration.
Collapse
Affiliation(s)
- Bertrand Pavlovsky
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France.
| | - Christophe Desprez
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Jean-Christophe Richard
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Nicolas Fage
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Arnaud Lesimple
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Dara Chean
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Antonin Courtais
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, IRCCS (Institute for Treatment and Research, Ca' Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alain Mercat
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - François Beloncle
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| |
Collapse
|
34
|
Hoshino T, Yoshida T. Future directions of lung-protective ventilation strategies in acute respiratory distress syndrome. Acute Med Surg 2024; 11:e918. [PMID: 38174326 PMCID: PMC10761614 DOI: 10.1002/ams2.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by the heterogeneous distribution of lung aeration along a gravitational direction due to increased lung density. Therefore, the lung available for ventilation is usually limited to ventral, nondependent lung regions and has been called the "baby" lung. In ARDS, ventilator-induced lung injury is known to occur in nondependent "baby" lungs, as ventilation is shifted to ventral, nondependent lung regions, increasing stress and strain. To protect this nondependent "baby" lung, the clinician targets and limits global parameters such as tidal volume and plateau pressure. In addition, positive end-expiratory pressure (PEEP) is used to prevent dorsal, dependent atelectasis and, if successful, increases the size of the baby lung and lessens its susceptibility to injury from inspiratory stretch. Although many clinical trials have been performed in patients with ARDS over the last two decades, there are few successfully showing benefits on mortality (ie, prone positioning and neuromuscular blocking agents). These disappointing results contrast with other medical disciplines, especially in oncology, where the heterogeneity of diseases is recognized widely and precision medicine has been promoted. Thus, lung-protective ventilation strategies need to take an innovative approach that accounts for the heterogeneity of injured lungs. This article summarizes ventilator-induced lung injury and ARDS and discusses how to implement precision medicine in the field of ARDS. Potentially useful methods to individualize PEEP with esophageal balloon manometry, lung recruitability, and electrical impedance tomography were discussed.
Collapse
Affiliation(s)
- Taiki Hoshino
- The Department of Anesthesiology and Intensive Care MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Takeshi Yoshida
- The Department of Anesthesiology and Intensive Care MedicineOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
35
|
Collins PD, Giosa L, Camporota L, Barrett NA. State of the art: Monitoring of the respiratory system during veno-venous extracorporeal membrane oxygenation. Perfusion 2024; 39:7-30. [PMID: 38131204 DOI: 10.1177/02676591231210461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Monitoring the patient receiving veno-venous extracorporeal membrane oxygenation (VV ECMO) is challenging due to the complex physiological interplay between native and membrane lung. Understanding these interactions is essential to understand the utility and limitations of different approaches to respiratory monitoring during ECMO. We present a summary of the underlying physiology of native and membrane lung gas exchange and describe different tools for titrating and monitoring gas exchange during ECMO. However, the most important role of VV ECMO in severe respiratory failure is as a means of avoiding further ergotrauma. Although optimal respiratory management during ECMO has not been defined, over the last decade there have been advances in multimodal respiratory assessment which have the potential to guide care. We describe a combination of imaging, ventilator-derived or invasive lung mechanic assessments as a means to individualise management during ECMO.
Collapse
Affiliation(s)
- Patrick Duncan Collins
- Department of Critical Care Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Lorenzo Giosa
- Department of Critical Care Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | - Luigi Camporota
- Department of Critical Care Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Nicholas A Barrett
- Department of Critical Care Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
36
|
Nagata K, Yokoyama T, Tsugitomi R, Nakashima H, Kuraishi H, Ohshimo S, Mori Y, Sakuraya M, Kagami R, Tanigawa M, Tobino K, Kamo T, Kadowaki T, Koga Y, Ogata Y, Nishimura N, Kondoh Y, Taniuchi S, Shintani A, Tomii K. Continuous positive airway pressure versus high-flow nasal cannula oxygen therapy for acute hypoxemic respiratory failure: A randomized controlled trial. Respirology 2024; 29:36-45. [PMID: 37648252 DOI: 10.1111/resp.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND OBJECTIVE The relative effectiveness of initial non-invasive respiratory strategies for acute respiratory failure using continuous positive airway pressure (CPAP) or high-flow nasal cannula (HFNC) is unclear. METHODS We conducted a multicenter, open-label, parallel-group randomized controlled trial to compare the efficacy of CPAP and HFNC on reducing the risk of meeting the prespecified criteria for intubation and improving clinical outcomes of acute hypoxemic respiratory failure. The primary endpoint was the time taken to meet the prespecified criteria for intubation within 28 days. RESULTS Eighty-five patients were randomly assigned to the CPAP or HFNC group. Eleven (28.9%) in the CPAP group and twenty (42.6%) in the HFNC group met the criteria for intubation within 28 days. Compared with HFNC, CPAP reduced the risk of meeting the intubation criteria (hazard ratio [HR], 0.327; 95% CI, 0.148-0.724; p = 0.006). There were no significant between-group differences in the intubation rates, in-hospital and 28-day mortality rates, ventilator-free days, duration of the need for respiratory support, or duration of hospitalization for respiratory illness. Pulmonary oxygenation was significantly better in the CPAP group, with significantly lower pH and higher partial pressure of carbon dioxide, but there were no differences in the respiratory rate between groups. CPAP and HFNC were associated with few possibly causal adverse events. CONCLUSION CPAP is more effective than HFNC at reducing the risk of meeting the intubation criteria in patients with acute hypoxemic respiratory failure.
Collapse
Affiliation(s)
- Kazuma Nagata
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Toshiki Yokoyama
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Ryosuke Tsugitomi
- Department of Pulmonary Medicine, Thoracic Center, St. Luke's International Hospital, Chuo City, Tokyo, Japan
| | - Harunori Nakashima
- Department of Respiratory Medicine, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Hiroshi Kuraishi
- Department of Pulmonary Medicine, Nagano Red Cross Hospital, Nagano, Nagano, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yoshihiro Mori
- Department of Respiratory Medicine, KKR Takamatsu Hospital, Takamatsu, Kagawa, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hiroshima, Hiroshima, Japan
| | - Ryogo Kagami
- Department of Pulmonary Medicine, National Hospital Organization Himeji Medical Center, Himeji, Hyogo, Japan
| | - Motoaki Tanigawa
- Department of Respiratory Medicine, Japanese Red Cross Ise Hospital, Ise, Mie, Japan
| | - Kazunori Tobino
- Department of Respiratory Medicine, Iizuka Hospital, Iizuka, Fukuoka, Japan
| | - Tetsuro Kamo
- Department of Respiratory Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Tochigi, Japan
| | - Toru Kadowaki
- Department of Pulmonary Medicine, National Hospital Organization Matsue Medical Center, Matsue, Shimane, Japan
| | - Yasutaka Koga
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Yoshitaka Ogata
- Department of Critical Care Medicine, Yao Tokushukai General Hospital, Yao, Osaka, Japan
| | - Naoki Nishimura
- Department of Pulmonary Medicine, Thoracic Center, St. Luke's International Hospital, Chuo City, Tokyo, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Satsuki Taniuchi
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
37
|
Qadir N, Sahetya S, Munshi L, Summers C, Abrams D, Beitler J, Bellani G, Brower RG, Burry L, Chen JT, Hodgson C, Hough CL, Lamontagne F, Law A, Papazian L, Pham T, Rubin E, Siuba M, Telias I, Patolia S, Chaudhuri D, Walkey A, Rochwerg B, Fan E. An Update on Management of Adult Patients with Acute Respiratory Distress Syndrome: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2024; 209:24-36. [PMID: 38032683 PMCID: PMC10870893 DOI: 10.1164/rccm.202311-2011st] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background: This document updates previously published Clinical Practice Guidelines for the management of patients with acute respiratory distress syndrome (ARDS), incorporating new evidence addressing the use of corticosteroids, venovenous extracorporeal membrane oxygenation, neuromuscular blocking agents, and positive end-expiratory pressure (PEEP). Methods: We summarized evidence addressing four "PICO questions" (patient, intervention, comparison, and outcome). A multidisciplinary panel with expertise in ARDS used the Grading of Recommendations, Assessment, Development, and Evaluation framework to develop clinical recommendations. Results: We suggest the use of: 1) corticosteroids for patients with ARDS (conditional recommendation, moderate certainty of evidence), 2) venovenous extracorporeal membrane oxygenation in selected patients with severe ARDS (conditional recommendation, low certainty of evidence), 3) neuromuscular blockers in patients with early severe ARDS (conditional recommendation, low certainty of evidence), and 4) higher PEEP without lung recruitment maneuvers as opposed to lower PEEP in patients with moderate to severe ARDS (conditional recommendation, low to moderate certainty), and 5) we recommend against using prolonged lung recruitment maneuvers in patients with moderate to severe ARDS (strong recommendation, moderate certainty). Conclusions: We provide updated evidence-based recommendations for the management of ARDS. Individual patient and illness characteristics should be factored into clinical decision making and implementation of these recommendations while additional evidence is generated from much-needed clinical trials.
Collapse
|
38
|
Jacquier M, Labruyère M, Ecarnot F, Roudaut JB, Andreu P, Voizeux P, Save Q, Pedri R, Rigaud JP, Quenot JP. Ventilatory Management of Patients with Acute Respiratory Distress Syndrome Due to SARS-CoV-2. J Clin Med 2023; 12:7509. [PMID: 38137578 PMCID: PMC10743400 DOI: 10.3390/jcm12247509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of the new SARS-CoV-2 in December 2019 caused a worldwide pandemic of the resultant disease, COVID-19. There was a massive surge in admissions to intensive care units (ICU), notably of patients with hypoxaemic acute respiratory failure. In these patients, optimal oxygen therapy was crucial. In this article, we discuss tracheal intubation to provide mechanical ventilation in patients with hypoxaemic acute respiratory failure due to SARS-CoV-2. We first describe the pathophysiology of respiratory anomalies leading to acute respiratory distress syndrome (ARDS) due to infection with SARS-CoV-2, and then briefly review management, focusing particularly on the ventilation strategy. Overall, the ventilatory management of ARDS due to SARS-CoV-2 infection is largely the same as that applied in ARDS from other causes, and lung-protective ventilation is recommended. The difference lies in the initial clinical presentation, with profound hypoxaemia often observed concomitantly with near-normal pulmonary compliance.
Collapse
Affiliation(s)
- Marine Jacquier
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, 21000 Dijon, France
| | - Marie Labruyère
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- INSERM CIC 1432, Clinical Epidemiology, University of Burgundy, 21000 Dijon, France
| | - Fiona Ecarnot
- Department of Cardiology, University Hospital Besancon, 25030 Besançon, France;
- EA3920, University of Franche-Comté, 25000 Besançon, France
| | - Jean-Baptiste Roudaut
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Pascal Andreu
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Pierre Voizeux
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Quentin Save
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Romain Pedri
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Jean-Philippe Rigaud
- Department of Intensive Care, Centre Hospitalier de Dieppe, 76202 Dieppe, France;
- Espace de Réflexion Éthique de Normandie, University Hospital Caen, 14000 Caen, France
| | - Jean-Pierre Quenot
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, 21000 Dijon, France
- INSERM CIC 1432, Clinical Epidemiology, University of Burgundy, 21000 Dijon, France
- DRCI, USMR, CHU Dijon Bourgogne, 21000 Dijon, France
- Espace de Réflexion Éthique Bourgogne Franche-Comté (EREBFC), University of Burgundy, 21000 Dijon, France
| |
Collapse
|
39
|
Grieco DL, Pintaudi G, Bongiovanni F, Anzellotti GM, Menga LS, Cesarano M, Dell’Anna AM, Rosá T, Delle Cese L, Bello G, Giammatteo V, Gennenzi V, Tanzarella ES, Cutuli SL, De Pascale G, De Gaetano A, Maggiore SM, Antonelli M. Recruitment-to-inflation Ratio Assessed through Sequential End-expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome. Anesthesiology 2023; 139:801-814. [PMID: 37523486 PMCID: PMC10723770 DOI: 10.1097/aln.0000000000004716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/15/2022] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) benefits in acute respiratory distress syndrome are driven by lung dynamic strain reduction. This depends on the variable extent of alveolar recruitment. The recruitment-to-inflation ratio estimates recruitability across a 10-cm H2O PEEP range through a simplified maneuver. Whether recruitability is uniform or not across this range is unknown. The hypotheses of this study are that the recruitment-to-inflation ratio represents an accurate estimate of PEEP-induced changes in dynamic strain, but may show nonuniform behavior across the conventionally tested PEEP range (15 to 5 cm H2O). METHODS Twenty patients with moderate-to-severe COVID-19 acute respiratory distress syndrome underwent a decremental PEEP trial (PEEP 15 to 13 to 10 to 8 to 5 cm H2O). Respiratory mechanics and end-expiratory lung volume by nitrogen dilution were measured the end of each step. Gas exchange, recruited volume, recruitment-to-inflation ratio, and changes in dynamic, static, and total strain were computed between 15 and 5 cm H2O (global recruitment-to-inflation ratio) and within narrower PEEP ranges (granular recruitment-to-inflation ratio). RESULTS Between 15 and 5 cm H2O, median [interquartile range] global recruitment-to-inflation ratio was 1.27 [0.40 to 1.69] and displayed a linear correlation with PEEP-induced dynamic strain reduction (r = -0.94; P < 0.001). Intraindividual recruitment-to-inflation ratio variability within the narrower ranges was high (85% [70 to 109]). The relationship between granular recruitment-to-inflation ratio and PEEP was mathematically described by a nonlinear, quadratic equation (R2 = 0.96). Granular recruitment-to-inflation ratio across the narrower PEEP ranges itself had a linear correlation with PEEP-induced reduction in dynamic strain (r = -0.89; P < 0.001). CONCLUSIONS Both global and granular recruitment-to-inflation ratio accurately estimate PEEP-induced changes in lung dynamic strain. However, the effect of 10 cm H2O of PEEP on lung strain may be nonuniform. Granular recruitment-to-inflation ratio assessment within narrower PEEP ranges guided by end-expiratory lung volume measurement may aid more precise PEEP selection, especially when the recruitment-to-inflation ratio obtained with the simplified maneuver between PEEP 15 and 5 cm H2O yields intermediate values that are difficult to interpret for a proper choice between a high and low PEEP strategy. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriele Pintaudi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Bongiovanni
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gian Marco Anzellotti
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS, Annunziata Hospital, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luca Salvatore Menga
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Melania Cesarano
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio M. Dell’Anna
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tommaso Rosá
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Delle Cese
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Bello
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giammatteo
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Gennenzi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eloisa S. Tanzarella
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore L. Cutuli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gennaro De Pascale
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea De Gaetano
- Consiglio Nazionale delle Ricerche, IRIB Istituto per la Ricerca e l’Innovazione Biomedica, Palermo, Italy; IASI Istituto per l’Analisi dei Sistemi ed Informatica, Rome, Italy; Department of Biomatics, Óbuda University, Budapest, Hungary
| | - Salvatore M. Maggiore
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS, Annunziata Hospital, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
40
|
Yuan X, Zhao Z, Chao Y, Chen D, Chen H, Zhang R, Liu S, Xie J, Yang Y, Qiu H, Heunks L, Liu L. Effects of early versus delayed application of prone position on ventilation-perfusion mismatch in patients with acute respiratory distress syndrome: a prospective observational study. Crit Care 2023; 27:462. [PMID: 38012731 PMCID: PMC10683149 DOI: 10.1186/s13054-023-04749-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Prone position has been shown to improve oxygenation and survival in patients with early acute respiratory distress syndrome (ARDS). These beneficial effects are partly mediated by improved ventilation/perfusion (V/Q) distribution. Few studies have investigated the impact of early versus delayed proning on V/Q distribution in patients with ARDS. The aim of this study was to assess the regional ventilation and perfusion distribution in early versus persistent ARDS after prone position. METHODS This is a prospective, observational study from June 30, 2021, to October 1, 2022 at the medical ICU in Zhongda Hospital, Southeast University. Fifty-seven consecutive adult patients with moderate-to-severe ARDS ventilated in supine and prone position. Electrical impedance tomography was used to study V/Q distribution in the supine position and 12 h after a prone session. RESULTS Of the 57 patients, 33 were early ARDS (≤ 7 days) and 24 were persistent ARDS (> 7 days). Oxygenation significantly improved after proning in early ARDS (157 [121, 191] vs. 190 [164, 245] mm Hg, p < 0.001), whereas no significant change was found in persistent ARDS patients (168 [136, 232] vs.177 [155, 232] mm Hg, p = 0.10). Compared to supine position, prone reduced V/Q mismatch in early ARDS (28.7 [24.6, 35.4] vs. 22.8 [20.0, 26.8] %, p < 0.001), but increased V/Q mismatch in persistent ARDS (23.8 [19.8, 28.6] vs. 30.3 [24.5, 33.3] %, p = 0.006). In early ARDS, proning significantly reduced shunt in the dorsal region and dead space in the ventral region. In persistent ARDS, proning increased global shunt. A significant correlation was found between duration of ARDS onset to proning and the change in V/Q distribution (r = 0.54, p < 0.001). CONCLUSIONS Prone position significantly reduced V/Q mismatch in patients with early ARDS, while it increased V/Q mismatch in persistent ARDS patients. Trial registration ClinicalTrials.gov (NCT05207267, principal investigator Ling Liu, date of registration 2021.08.20).
Collapse
Affiliation(s)
- Xueyan Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Yali Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Dongyu Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rui Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Songqiao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
- Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, No. 86 Chongwen Road, Lishui District, Nanjing, 211200, Jiangsu, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Leo Heunks
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
41
|
Boesing C, Schaefer L, Schoettler JJ, Quentin A, Beck G, Thiel M, Honeck P, Kowalewski KF, Pelosi P, Rocco PRM, Luecke T, Krebs J. Effects of individualised positive end-expiratory pressure titration on respiratory and haemodynamic parameters during the Trendelenburg position with pneumoperitoneum: A randomised crossover physiologic trial. Eur J Anaesthesiol 2023; 40:817-825. [PMID: 37649211 DOI: 10.1097/eja.0000000000001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Trendelenburg position with pneumoperitoneum during surgery promotes dorsobasal atelectasis formation, which impairs respiratory mechanics and increases lung stress and strain. Positive end-expiratory pressure (PEEP) can reduce pulmonary inhomogeneities and preserve end-expiratory lung volume (EELV), resulting in decreased inspiratory strain and improved gas-exchange. The optimal intraoperative PEEP strategy is unclear. OBJECTIVES To compare the effects of individualised PEEP titration strategies on set PEEP levels and resulting transpulmonary pressures, respiratory mechanics, gas-exchange and haemodynamics during Trendelenburg position with pneumoperitoneum. DESIGN Prospective, randomised, crossover single-centre physiologic trial. SETTING University hospital. PATIENTS Thirty-six patients receiving robot-assisted laparoscopic radical prostatectomy. INTERVENTIONS Randomised sequence of three different PEEP strategies: standard PEEP level of 5 cmH 2 O (PEEP 5 ), PEEP titration targeting a minimal driving pressure (PEEP ΔP ) and oesophageal pressure-guided PEEP titration (PEEP Poeso ) targeting an end-expiratory transpulmonary pressure ( PTP ) of 0 cmH 2 O. MAIN OUTCOME MEASURES The primary endpoint was the PEEP level when set according to PEEP ΔP and PEEP Poeso compared with PEEP of 5 cmH 2 O. Secondary endpoints were respiratory mechanics, lung volumes, gas-exchange and haemodynamic parameters. RESULTS PEEP levels differed between PEEP ΔP , PEEP Poeso and PEEP5 (18.0 [16.0 to 18.0] vs. 20.0 [18.0 to 24.0]vs. 5.0 [5.0 to 5.0] cmH 2 O; P < 0.001 each). End-expiratory PTP and lung volume were lower in PEEP ΔP compared with PEEP Poeso ( P = 0.014 and P < 0.001, respectively), but driving pressure, lung stress, as well as respiratory system and dynamic elastic power were minimised using PEEP ΔP ( P < 0.001 each). PEEP ΔP and PEEP Poeso improved gas-exchange, but PEEP Poeso resulted in lower cardiac output compared with PEEP 5 and PEEP ΔP . CONCLUSION PEEP ΔP ameliorated the effects of Trendelenburg position with pneumoperitoneum during surgery on end-expiratory PTP and lung volume, decreased driving pressure and dynamic elastic power, as well as improved gas-exchange while preserving cardiac output. TRIAL REGISTRATION German Clinical Trials Register (DRKS00028559, date of registration 2022/04/27). https://drks.de/search/en/trial/DRKS00028559.
Collapse
Affiliation(s)
- Christoph Boesing
- From the Department of Anaesthesiology and Critical Care Medicine (CB, LS, JJS, AQ, GB, MT, TL, JK), Department of Urology and Urosurgery, University Medical Centre Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany (PH, KFK), Department of Surgical Sciences and Integrated Diagnostics, University of Genoa (PP), Department of Anesthesiology and Critical Care - San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (PP) and Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil (PRMR)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nishikimi M, Ohshimo S, Hamaguchi J, Fujizuka K, Hagiwara Y, Anzai T, Ishii J, Ogata Y, Aokage T, Ikeda T, Yagi T, Suzuki G, Ishikura K, Katsuta K, Konno D, Hattori N, Nakamura T, Matsumura Y, Kasugai D, Kikuchi H, Iino T, Kai S, Hashimoto H, Yoshida T, Igarashi Y, Ogura T, Matsumura K, Shimizu K, Nakamura M, Ichiba S, Takahashi K, Shime N. High versus low positive end-expiratory pressure setting in patients receiving veno-venous extracorporeal membrane oxygenation support for severe acute respiratory distress syndrome: study protocol for the multicentre, randomised ExPress SAVER Trial. BMJ Open 2023; 13:e072680. [PMID: 37852764 PMCID: PMC10603413 DOI: 10.1136/bmjopen-2023-072680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/23/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION While limiting the tidal volume to 6 mL/kg during veno-venous extracorporeal membrane oxygenation (V-V ECMO) to ameliorate lung injury in patients with acute respiratory distress syndrome (ARDS) is widely accepted, the best setting for positive end-expiratory pressure (PEEP) is still controversial. This study is being conducted to investigate whether a higher PEEP setting (15 cmH2O) during V-V ECMO can decrease the duration of ECMO support needed in patients with severe ARDS, as compared with a lower PEEP setting. METHODS AND ANALYSIS The study is an investigator-initiated, multicentre, open-label, two-arm, randomised controlled trial conducted with the participation of 20 intensive care units (ICUs) at academic as well as non-academic hospitals in Japan. The subjects of the study are patients with severe ARDS who require V-V ECMO support. Eligible patients will be randomised equally to the high PEEP group or low PEEP group. Recruitment to the study will continue until a total of 210 patients with ARDS requiring V-V ECMO support have been randomised. In the high PEEP group, PEEP will be set at 15 cmH2O from the start of V-V ECMO until the trials for liberation from V-V ECMO (or until day 28 after the allocation), while in the low PEEP group, the PEEP will be set at 5 cmH2O. Other treatments will be the same in the two groups. The primary endpoint of the study is the number of ECMO-free days until day 28, defined as the length of time (in days) from successful libration from V-V ECMO to day 28. The secondary endpoints are mortality on day 28, in-hospital mortality on day 60, ventilator-free days during the first 60 days and length of ICU stay. ETHICS AND DISSEMINATION Ethics approval for the trial at all the participating hospitals was obtained on 27 September 2022, by central ethics approval (IRB at Hiroshima University Hospital, C2022-0006). The results of this study will be presented at domestic and international medical congresses, and also published in scientific journals. TRIAL REGISTRATION NUMBER The Japan Registry of Clinical Trials jRCT1062220062. Registered on 28 September 2022. PROTOCOL VERSION 28 March 2023, version 4.0.
Collapse
Affiliation(s)
- Mitsuaki Nishikimi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jun Hamaguchi
- Department of Critical Care and Emergency Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Kenji Fujizuka
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Maebashi, UK
| | - Yoshihiro Hagiwara
- Department of Emergency Medicine and Critical Care Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Tatsuhiko Anzai
- Department of Biostatistics, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junki Ishii
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Ogata
- Department of Critical Care Medicine, Yao Tokushukai General Hospital, Osaka, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tokuji Ikeda
- Department of Emergency Medicine and Critical Care Medicine, Yamanashi Prefectural Central Hospital, Kouhu, Japan
| | - Tsukasa Yagi
- Department of Cardiology, Nihon University Hospital, Tokyo, Japan
| | - Ginga Suzuki
- Emergency and Critical Care Center, Toho University Omori Medical Center, Tokyo, Japan
| | - Ken Ishikura
- Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ken Katsuta
- Department of Emergency and Critical Care, Tohoku University Hospital, Sendai, Japan
| | - Daisuke Konno
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Noriyuki Hattori
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoyuki Nakamura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency Medical Center, Chiba, Chiba, Japan
| | - Daisuke Kasugai
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kikuchi
- Department of Emergency Medicine, Sagamihara Kyodo Hospital, Sagamihara, Japan
| | - Tatsuhiko Iino
- Department of Emergency Medicine, Kishiwada Tokushukai Hospital, Osaka, Japan
| | - Shinichi Kai
- Department of Anesthesia, Kyoto University School of Medicine, Kyoto, Japan
| | - Haruka Hashimoto
- Department of Anesthesia and Intensive Care Medicine, Osaka University School of Medicine, Osaka, Japan
| | - Takeshi Yoshida
- Department of Anesthesia and Intensive Care Medicine, Osaka University School of Medicine, Osaka, Japan
| | - Yumi Igarashi
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takayuki Ogura
- Department of Emergency Medicine and Critical Care Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Kazuki Matsumura
- Department of Critical Care and Emergency Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Keiki Shimizu
- Department of Critical Care and Emergency Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Mitsunobu Nakamura
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Maebashi, UK
| | - Shingo Ichiba
- Department of Critical Care Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kunihiko Takahashi
- Department of Biostatistics, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
43
|
Fawley JA, Tignanelli CJ, Werner NL, Kasotakis G, Mandell SP, Glass NE, Dries DJ, Costantini TW, Napolitano LM. American Association for the Surgery of Trauma/American College of Surgeons Committee on Trauma clinical protocol for management of acute respiratory distress syndrome and severe hypoxemia. J Trauma Acute Care Surg 2023; 95:592-602. [PMID: 37314843 PMCID: PMC10545067 DOI: 10.1097/ta.0000000000004046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/15/2023]
Abstract
LEVEL OF EVIDENCE Therapeutic/Care Management: Level V.
Collapse
|
44
|
Beloncle FM, Richard JC, Merdji H, Desprez C, Pavlovsky B, Yvin E, Piquilloud L, Olivier PY, Chean D, Studer A, Courtais A, Campfort M, Rahmani H, Lesimple A, Meziani F, Mercat A. Advanced respiratory mechanics assessment in mechanically ventilated obese and non-obese patients with or without acute respiratory distress syndrome. Crit Care 2023; 27:343. [PMID: 37667379 PMCID: PMC10476380 DOI: 10.1186/s13054-023-04623-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Respiratory mechanics is a key element to monitor mechanically ventilated patients and guide ventilator settings. Besides the usual basic assessments, some more complex explorations may allow to better characterize patients' respiratory mechanics and individualize ventilation strategies. These advanced respiratory mechanics assessments including esophageal pressure measurements and complete airway closure detection may be particularly relevant in critically ill obese patients. This study aimed to comprehensively assess respiratory mechanics in obese and non-obese ICU patients with or without ARDS and evaluate the contribution of advanced respiratory mechanics assessments compared to basic assessments in these patients. METHODS All intubated patients admitted in two ICUs for any cause were prospectively included. Gas exchange and respiratory mechanics including esophageal pressure and end-expiratory lung volume (EELV) measurements and low-flow insufflation to detect complete airway closure were assessed in standardized conditions (tidal volume of 6 mL kg-1 predicted body weight (PBW), positive end-expiratory pressure (PEEP) of 5 cmH2O) within 24 h after intubation. RESULTS Among the 149 analyzed patients, 52 (34.9%) were obese and 90 (60.4%) had ARDS (65.4% and 57.8% of obese and non-obese patients, respectively, p = 0.385). A complete airway closure was found in 23.5% of the patients. It was more frequent in obese than in non-obese patients (40.4% vs 14.4%, p < 0.001) and in ARDS than in non-ARDS patients (30% vs. 13.6%, p = 0.029). Respiratory system and lung compliances and EELV/PBW were similarly decreased in obese patients without ARDS and obese or non-obese patients with ARDS. Chest wall compliance was not impacted by obesity or ARDS, but end-expiratory esophageal pressure was higher in obese than in non-obese patients. Chest wall contribution to respiratory system compliance differed widely between patients but was not predictable by their general characteristics. CONCLUSIONS Most respiratory mechanics features are similar in obese non-ARDS and non-obese ARDS patients, but end-expiratory esophageal pressure is higher in obese patients. A complete airway closure can be found in around 25% of critically ill patients ventilated with a PEEP of 5 cmH2O. Advanced explorations may allow to better characterize individual respiratory mechanics and adjust ventilation strategies in some patients. Trial registration NCT03420417 ClinicalTrials.gov (February 5, 2018).
Collapse
Affiliation(s)
- François M Beloncle
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France.
- CNRS, INSERM 1083, MITOVASC, University of Angers, Angers, France.
| | - Jean-Christophe Richard
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
- Med2Lab, ALMS, Antony, France
| | - Hamid Merdji
- Medical ICU, University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
- UMR 1260, Regenerative Nanomedicine (RNM), FMTS, INSERM (French National Institute of Health and Medical Research), Strasbourg, France
| | - Christophe Desprez
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Bertrand Pavlovsky
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Elise Yvin
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Lise Piquilloud
- Adult Intensive Care Unit, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Yves Olivier
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Dara Chean
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Antoine Studer
- Medical ICU, University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Antonin Courtais
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Maëva Campfort
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Hassene Rahmani
- Medical ICU, University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Arnaud Lesimple
- CNRS, INSERM 1083, MITOVASC, University of Angers, Angers, France
- Med2Lab, ALMS, Antony, France
| | - Ferhat Meziani
- Medical ICU, University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
- UMR 1260, Regenerative Nanomedicine (RNM), FMTS, INSERM (French National Institute of Health and Medical Research), Strasbourg, France
| | - Alain Mercat
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| |
Collapse
|
45
|
Jonkman A, Brochard L. Reply to Jimenez and Hyzy and to Le Stang and Dres. Am J Respir Crit Care Med 2023; 208:638-639. [PMID: 37387595 PMCID: PMC10492257 DOI: 10.1164/rccm.202306-0987le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Annemijn Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Canada; and
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Canada; and
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Zeng C, Zhu M, Motta-Ribeiro G, Lagier D, Hinoshita T, Zang M, Grogg K, Winkler T, Vidal Melo MF. Dynamic lung aeration and strain with positive end-expiratory pressure individualized to maximal compliance versus ARDSNet low-stretch strategy: a study in a surfactant depletion model of lung injury. Crit Care 2023; 27:307. [PMID: 37537654 PMCID: PMC10401825 DOI: 10.1186/s13054-023-04591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) individualized to a maximal respiratory system compliance directly implies minimal driving pressures with potential outcome benefits, yet, raises concerns on static and dynamic overinflation, strain and cyclic recruitment. Detailed accurate assessment and understanding of these has been hampered by methodological limitations. We aimed to investigate the effects of a maximal compliance-guided PEEP strategy on dynamic lung aeration, strain and tidal recruitment using current four-dimensional computed tomography (CT) techniques and analytical methods of tissue deformation in a surfactant depletion experimental model of acute respiratory distress syndrome (ARDS). METHODS ARDS was induced by saline lung lavage in anesthetized and mechanically ventilated healthy sheep (n = 6). Animals were ventilated in a random sequence with: (1) ARDSNet low-stretch protocol; (2) maximal compliance PEEP strategy. Lung aeration, strain and tidal recruitment were acquired with whole-lung respiratory-gated high-resolution CT and quantified using registration-based techniques. RESULTS Relative to the ARDSNet low-stretch protocol, the maximal compliance PEEP strategy resulted in: (1) improved dynamic whole-lung aeration at end-expiration (0.456 ± 0.064 vs. 0.377 ± 0.101, P = 0.019) and end-inspiration (0.514 ± 0.079 vs. 0.446 ± 0.083, P = 0.012) with reduced non-aerated and increased normally-aerated lung mass without associated hyperinflation; (2) decreased aeration heterogeneity at end-expiration (coefficient of variation: 0.498 ± 0.078 vs. 0.711 ± 0.207, P = 0.025) and end-inspiration (0.419 ± 0.135 vs. 0.580 ± 0.108, P = 0.014) with higher aeration in dorsal regions; (3) tidal aeration with larger inspiratory increases in normally-aerated and decreases in poorly-aerated areas, and negligible in hyperinflated lung (Aeration × Strategy: P = 0.026); (4) reduced tidal strains in lung regions with normal-aeration (Aeration × Strategy: P = 0.047) and improved regional distributions with lower tidal strains in middle and ventral lung (Region-of-interest [ROI] × Strategy: P < 0.001); and (5) less tidal recruitment in middle and dorsal lung (ROI × Strategy: P = 0.044) directly related to whole-lung tidal strain (r = 0.751, P = 0.007). CONCLUSIONS In well-recruitable ARDS models, a maximal compliance PEEP strategy improved end-expiratory/inspiratory whole-lung aeration and its homogeneity without overinflation. It further reduced dynamic strain in middle-ventral regions and tidal recruitment in middle-dorsal areas. These findings suggest the maximal compliance strategy minimizing whole-lung dynamically quantified mechanisms of ventilator-induced lung injury with less cyclic recruitment and no additional overinflation in large heterogeneously expanded and recruitable lungs.
Collapse
Affiliation(s)
- Congli Zeng
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Min Zhu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Motta-Ribeiro
- Biomedical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Lagier
- Department of Cardiovascular Anesthesiology and Critical Care Medicine, University Hospital Timone, Marseille, France
| | | | - Mingyang Zang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kira Grogg
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcos F Vidal Melo
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
47
|
Zersen KM. Setting the optimal positive end-expiratory pressure: a narrative review. Front Vet Sci 2023; 10:1083290. [PMID: 37538169 PMCID: PMC10395088 DOI: 10.3389/fvets.2023.1083290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
The primary goals of positive end-expiratory pressure (PEEP) are to restore functional residual capacity through recruitment and prevention of alveolar collapse. Through these mechanisms, PEEP improves arterial oxygenation and may reduce the risk of ventilator-induced lung injury (VILI). Because of the many potential negative effects associated with the use of PEEP, much research has concentrated on determining the optimal PEEP setting. Arterial oxygenation targets and pressure-volume loops have been utilized to set the optimal PEEP for decades. Several other techniques have been suggested, including the use of PEEP tables, compliance, driving pressure (DP), stress index (SI), transpulmonary pressures, imaging, and electrical impedance tomography. Each of these techniques has its own benefits and limitations and there is currently not one technique that is recommended above all others.
Collapse
|
48
|
Grotberg JC, Reynolds D, Kraft BD. Management of severe acute respiratory distress syndrome: a primer. Crit Care 2023; 27:289. [PMID: 37464381 DOI: 10.1186/s13054-023-04572-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
This narrative review explores the physiology and evidence-based management of patients with severe acute respiratory distress syndrome (ARDS) and refractory hypoxemia, with a focus on mechanical ventilation, adjunctive therapies, and veno-venous extracorporeal membrane oxygenation (V-V ECMO). Severe ARDS cases increased dramatically worldwide during the Covid-19 pandemic and carry a high mortality. The mainstay of treatment to improve survival and ventilator-free days is proning, conservative fluid management, and lung protective ventilation. Ventilator settings should be individualized when possible to improve patient-ventilator synchrony and reduce ventilator-induced lung injury (VILI). Positive end-expiratory pressure can be individualized by titrating to best respiratory system compliance, or by using advanced methods, such as electrical impedance tomography or esophageal manometry. Adjustments to mitigate high driving pressure and mechanical power, two possible drivers of VILI, may be further beneficial. In patients with refractory hypoxemia, salvage modes of ventilation such as high frequency oscillatory ventilation and airway pressure release ventilation are additional options that may be appropriate in select patients. Adjunctive therapies also may be applied judiciously, such as recruitment maneuvers, inhaled pulmonary vasodilators, neuromuscular blockers, or glucocorticoids, and may improve oxygenation, but do not clearly reduce mortality. In select, refractory cases, the addition of V-V ECMO improves gas exchange and modestly improves survival by allowing for lung rest. In addition to VILI, patients with severe ARDS are at risk for complications including acute cor pulmonale, physical debility, and neurocognitive deficits. Even among the most severe cases, ARDS is a heterogeneous disease, and future studies are needed to identify ARDS subgroups to individualize therapies and advance care.
Collapse
Affiliation(s)
- John C Grotberg
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| | - Daniel Reynolds
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Bryan D Kraft
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
49
|
Haudebourg AF, Moncomble E, Lesimple A, Delamaire F, Louis B, Mekontso Dessap A, Mercat A, Richard JC, Beloncle F, Carteaux G. A novel method for assessment of airway opening pressure without the need for low-flow insufflation. Crit Care 2023; 27:273. [PMID: 37420282 PMCID: PMC10329375 DOI: 10.1186/s13054-023-04560-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Airway opening pressure (AOP) detection and measurement are essential for assessing respiratory mechanics and adapting ventilation. We propose a novel approach for AOP assessment during volume assist control ventilation at a usual constant-flow rate of 60 L/min. OBJECTIVES To validate the conductive pressure (Pcond) method, which compare the Pcond-defined on the airway pressure waveform as the difference between the airway pressure level at which an abrupt change in slope occurs at the beginning of insufflation and PEEP-to resistive pressure for AOP detection and measurement, and to compare its respiratory and hemodynamic tolerance to the standard low-flow insufflation method. METHODS The proof-of-concept of the Pcond method was assessed on mechanical (lung simulator) and physiological (cadavers) bench models. Its diagnostic performance was evaluated in 213 patients, using the standard low-flow insufflation method as a reference. In 45 patients, the respiratory and hemodynamic tolerance of the Pcond method was compared with the standard low-flow method. MEASUREMENTS AND MAIN RESULTS Bench assessments validated the Pcond method proof-of-concept. Sensitivity and specificity of the Pcond method for AOP detection were 93% and 91%, respectively. AOP obtained by Pcond and standard low-flow methods strongly correlated (r = 0.84, p < 0.001). Changes in SpO2 were significantly lower during Pcond than during standard method (p < 0.001). CONCLUSION Determination of Pcond during constant-flow assist control ventilation may permit to easily and safely detect and measure AOP.
Collapse
Affiliation(s)
- Anne-Fleur Haudebourg
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France
| | - Elsa Moncomble
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France
| | - Arnaud Lesimple
- CNRS, INSERM 1083, MITOVASC, Université d'Angers, Angers, France
- Laboratoire Med2Lab ALMS, Antony, France
| | - Flora Delamaire
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France
| | - Bruno Louis
- INSERM U955, Institut Mondor de Recherche Biomédicale, 94010, Créteil, France
| | - Armand Mekontso Dessap
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, 94010, Créteil, France
| | - Alain Mercat
- CNRS, INSERM 1083, MITOVASC, Université d'Angers, Angers, France
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Vent' Lab, Faculté de Santé, Université d'Angers, Angers, France
| | - Jean-Christophe Richard
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Vent' Lab, Faculté de Santé, Université d'Angers, Angers, France
- UMR 1066, INSERM, Créteil, France
| | - François Beloncle
- CNRS, INSERM 1083, MITOVASC, Université d'Angers, Angers, France
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Vent' Lab, Faculté de Santé, Université d'Angers, Angers, France
| | - Guillaume Carteaux
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomédicale, 94010, Créteil, France.
| |
Collapse
|
50
|
Brochard LJ. Mechanical Ventilation: Negative to Positive and Back Again. Crit Care Clin 2023; 39:437-449. [PMID: 37230549 DOI: 10.1016/j.ccc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Critical care and mechanical ventilation have a relatively brief history in medicine. Premises existed through the seventeenth to nineteenth centuries but modern mechanical ventilation started in the twentieth century. Noninvasive ventilation techniques had started both in the intensive care unit and for home ventilation at the end of the 1980s and the 1990s. The need for mechanical ventilation is increasingly influenced worldwide by the spread of respiratory viruses, and the last coronavirus disease 2019 pandemic has seen a massive successful use of noninvasive ventilation.
Collapse
Affiliation(s)
- Laurent J Brochard
- Keenan Research Centre, St Michael's Hospital, Unity Health Toronto, 209 Victoria Street, Room 4-08, Toronto, Ontario M5B 1T8, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|