1
|
Fan Y, Sun N, Lv S, Jiang H, Zhang Z, Wang J, Xie Y, Yue X, Hu B, Ju B, Yu P. Prediction of developmental toxic effects of fine particulate matter (PM 2.5) water-soluble components via machine learning through observation of PM 2.5 from diverse urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174027. [PMID: 38906297 DOI: 10.1016/j.scitotenv.2024.174027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The global health implications of fine particulate matter (PM2.5) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM2.5 from two cities (Harbin and Hangzhou) with differences in air quality, underwent microscopic examination to identify primary target organs. The Harbin PM2.5 induced dose-dependent organ malformation in zebrafish, indicating a higher level of toxicity than that of the Hangzhou sample. Harbin PM2.5 led to severe deformities such as pericardial edema and a high mortality rate, while the Hangzhou sample exhibited hepatotoxicity, causing delayed yolk sac absorption. The experimental determination of PM2.5 constituents was followed by the application of four algorithms for predictive toxicological assessment. The random forest algorithm correctly predicted each of the effect classes and showed the best performance, suggesting that zebrafish malformation rates were strongly correlated with water-soluble components of PM2.5. Feature selection identified the water-soluble ions F- and Cl- and metallic elements Al, K, Mn, and Be as potential key components affecting zebrafish development. This study provides new insights into the developmental toxicity of PM2.5 and offers a new approach for predicting and exploring the health effects of PM2.5.
Collapse
Affiliation(s)
- Yang Fan
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nannan Sun
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China
| | - Shenchong Lv
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Jiang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ziqing Zhang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junjie Wang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyi Xie
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yue
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Ju
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China.
| | - Peilin Yu
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wu AH, Wu J, Tseng C, Stram DO, Shariff-Marco S, Larson T, Goldberg D, Fruin S, Jiao A, Inamdar PP, Ihenacho U, Le Marchand L, Wilkens L, Haiman C, Ritz B, Cheng I. Air Pollution and Breast Cancer Incidence in the Multiethnic Cohort Study. J Clin Oncol 2024:JCO2400418. [PMID: 39378392 DOI: 10.1200/jco.24.00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 10/10/2024] Open
Abstract
PURPOSE Recent studies suggested fine particulate matter (PM2.5) exposure increases the risk of breast cancer, but evidence among racially and ethnically diverse populations remains sparse. MATERIALS AND METHODS Among 58,358 California female participants of the Multiethnic Cohort (MEC) Study followed for an average of 19.3 years (1993-2018), we used Cox proportional hazards regression to examine associations of time-varying PM with invasive breast cancer risk (n = 3,524 cases; 70% African American and Latino females), adjusting for sociodemographics and lifestyle factors. Subgroup analyses were conducted for race and ethnicity, hormone receptor status, and breast cancer risk factors. RESULTS Satellite-based PM2.5 was associated with a statistically significant increased incidence of breast cancer (hazard ratio [HR] per 10 μg/m3, 1.28 [95% CI, 1.08 to 1.51]). We found no evidence of heterogeneity in associations by race and ethnicity and hormone receptor status. Family history of breast cancer showed evidence of heterogeneity in PM2.5-associations (Pheterogeneity = .046). In a meta-analysis of the MEC and 10 other prospective cohorts, breast cancer incidence increased in association with exposure to PM2.5 (HR per 10 μg/m3 increase, 1.05 [95% CI, 1.00 to 1.10]; P = .064). CONCLUSION Findings from this large multiethnic cohort with long-term air pollutant exposure and published prospective cohort studies support PM2.5 as a risk factor for breast cancer. As about half of breast cancer cannot be explained by established breast cancer risk factors and incidence is continuing to increase, particularly in low- and middle-income countries, our results highlight that breast cancer prevention should include not only individual-level behavior-centered approaches but also population-wide policies and regulations to curb PM2.5 exposure.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Salma Shariff-Marco
- San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Timothy Larson
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA
| | - Deborah Goldberg
- San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Scott Fruin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Anqi Jiao
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA
| | - Pushkar P Inamdar
- San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Ugonna Ihenacho
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI
| | - Lynne Wilkens
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI
| | - Christopher Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Iona Cheng
- San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Shusted CS, Barta JA, Nguyen A, Wen KY, Juon HS, Zeigler-Johnson C. Characterizing Lung Cancer Burden Among Asian-American Communities in Philadelphia. J Racial Ethn Health Disparities 2024; 11:2583-2595. [PMID: 37540304 DOI: 10.1007/s40615-023-01723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer death among Asian-Americans. However, there are differences in LC incidence and mortality among Asian racial subgroups. The objective of this study was to describe LC burden and disparities among race/ethnic groups (White, Black, Asian, and Hispanic) across US census tracts (CT) in Philadelphia using the Pennsylvania Cancer Registry dataset (N=11,865). ArcGIS Pro was used to geocode patient addresses to the CT level for linkage to US Census data. Despite being diagnosed more frequently with advanced-stage lung cancer compared with other race and ethnic groups in Philadelphia, Asian patients were most likely to be alive at the time of data receipt. Among Asian subgroups, Korean patients were the oldest (median age 75, p=0.024). Although not statistically different, distant stage disease was the most prevalent among Asian Indian (77.8%) and Korean (73.7%) and the least prevalent among Chinese patients (49.5%). LC was the cause of death for 77.8% of Asian Indian, 63.2% of Korean, 52.9% of other Asian, 48.5% of Chinese, and 47.5% of Vietnamese patients. CTs where Asian individuals were concentrated had lower socioeconomic status and greater tobacco retailer density compared to the entire city. Compared to all of Philadelphia, heavily Asian CTs experienced a greater age-standardized LC incidence (1.48 vs. 1.42) but lower age-standardized LC mortality (1.13 vs. 1.22). Our study suggests that LC disparities exist among Asian subgroups, with Asian Indian and Korean Philadelphians most likely to present with advanced disease. Additional studies are needed to investigate LC among high-risk racial and ethnic groups, including Asian subgroups.
Collapse
Affiliation(s)
- Christine S Shusted
- Division of Pulmonary and Critical Care Medicine, The Jane and Leonard Korman Respiratory Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Julie A Barta
- Division of Pulmonary and Critical Care Medicine, The Jane and Leonard Korman Respiratory Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Anh Nguyen
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kuang-Yi Wen
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hee-Soon Juon
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charnita Zeigler-Johnson
- Fox Chase Cancer Center, Cancer Prevention and Control, 4141 Young Pavilion, 333 Cottman Avenue, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Yanosky JD, Washington A, Foulke GT, Guck D, Butt M, Helm MF. Air pollution and incident sarcoidosis in central Pennsylvania. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:763-772. [PMID: 38922578 DOI: 10.1080/15287394.2024.2369255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Sarcoidosis is a chronic granulomatous disease predominantly affecting the lungs and inducing significant morbidity and elevated mortality rate. The etiology of the disease is unknown but may involve exposure to an antigenic agent and subsequent inflammatory response resulting in granuloma formation. Various environmental and occupational risk factors have been suggested by previous observations, such as moldy environments, insecticides, and bird breeding. Our study investigated the association of air pollution with diagnosis of sarcoidosis using a case-control design. Penn State Health electronic medical records from 2005 to 2018 were examined for adult patients with (cases) and without (controls) an International Classification of Disease (ICD)-9 or -10 code for sarcoidosis. Patient addresses were geocoded and 24-hr residential-level air pollution concentrations were estimated using spatio-temporal models of particulate matter <2.5 μm (PM2.5), ozone, and PM2.5 elemental carbon (EC) and moving averages calculated. In total, 877 cases and 34,510 controls were identified. Logistic regression analysis did not identify significant associations between sarcoidosis incidence and air pollution exposure estimates. However, the odds ratio (OR) for EC for exposures occurring 7-10 years prior did approach statistical significance, and ORs exhibited an increasing trend for longer averaging periods. Data suggested a latency period of more than 6 years for PM2.5 and EC for reasons that are unclear. Overall, results for PM2.5 and EC suggest that long-term exposure to traffic-related air pollution may contribute to the development of sarcoidosis and emphasize the need for additional research and, if the present findings are substantiated, for public health interventions addressing air quality as well as increasing disease surveillance in areas with a large burden of PM2.5 and EC.
Collapse
Affiliation(s)
- Jeff D Yanosky
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Abigail Washington
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Galen T Foulke
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Daniel Guck
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Melissa Butt
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
- Department of Family and Community Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Matthew F Helm
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
5
|
Mu C, Li Q, Niu Y, Hu T, Li Y, Wang T, Yu X, Lv Y, Tang H, Jiang J, Xu H, Zheng Y, Han W. Chronic diesel exhaust exposure induced pulmonary vascular remodeling a potential trajectory for traffic related pulmonary hypertension. Respir Res 2024; 25:348. [PMID: 39342206 PMCID: PMC11439202 DOI: 10.1186/s12931-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND As one of the most common traffic-related pollutants, diesel exhaust (DE) confers high risk for cardiovascular and respiratory diseases. However, its impact on pulmonary vessels is still unclear. METHODS To explore the effects of DE exposure on pulmonary vascular remodeling, our study analyzed the number and volume of small pulmonary vessels in the diesel engine testers (the DET group) from Luoyang Diesel Engine Factory and the controls (the non-DET group) from the local water company, using spirometry and carbon content in airway macrophage (CCAM) in sputum. And then we constructed a rat model of chronic DE exposure, in which 12 rats were divided into the DE group (6 rats with 16-week DE exposure) and the control group (6 rats with 16-week clean air exposure). During right heart catheterization, right ventricular systolic pressure (RVSP) was assessed by manometry. Macrophage migration inhibitory factor (MIF) in lung tissues and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA, respectively. Histopathological analysis for cardiovascular remodeling was also performed. RESULTS In DET cohort, the number and volume of small pulmonary vessels in CT were positively correlated with CCAM in sputum (P<0.05). Rat model revealed that chronic DE-exposed rats had elevated RVSP, along with increased wall thickness of pulmonary small vessels and right the ventricle. What's more, the MIF levels in BALF and lung tissues were higher in DE-exposed rats than the controls. CONCLUSION Apart from airway remodeling, DE also induces pulmonary vascular remodeling, which will lead to cardiopulmonary dysfunction.
Collapse
Affiliation(s)
- Chaohui Mu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Qinghai Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yong Niu
- National Institute of Occupational Health and Posing Control, China CDC, Beijing, 100050, China
| | - Ting Hu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Tao Wang
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Xinjuan Yu
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Yiqiao Lv
- Department of Pulmonary and Critical Care Medicine, Qingdao Hospital, Dalian Medical University, Dalian, 116000, China
| | - Huiling Tang
- Department of Pulmonary and Critical Care Medicine, Qingdao Hospital, Dalian Medical University, Dalian, 116000, China
| | - Jing Jiang
- Department of Ultrasound, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Haibin Xu
- Department of Radiology, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071, China.
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China.
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China.
- School of Public Health, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Ganguly A, Ghosh S, Jin P, Wadehra M, Devaskar SU. Omega-3 reverses the metabolic and epigenetically regulated placental phenotype acquired from preconceptional and peri-conceptional exposure to air pollutants. J Nutr Biochem 2024; 134:109735. [PMID: 39122219 DOI: 10.1016/j.jnutbio.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Air pollution is detrimental to pregnancy adversely affecting maternal and child health. Our objective was to unravel epigenetic mechanisms mediating the effect of preconception, periconception, and gestational exposure to inhaled air pollutants (AP) upon the maternal and placental-fetal phenotype and explore the benefit of an omega-3 rich dietary intervention. To this end, we investigated intranasal instilled AP during 8 weeks of preconception, periconception, and gestation (G; D0 to 18) upon GD16-19 maternal mouse metabolic status, placental nutrient transporters, placental-fetal size, and placental morphology. Prepregnant mice were glucose intolerant and insulin resistant, while pregnant mice were glucose intolerant but displayed no major placental macro-nutrient transporter changes, except for an increase in CD36. Placentas revealed inflammatory cellular infiltration with cellular edema, necrosis, hemorrhage, and an increase in fetal body weight. Upon examination of placental genome-wide epigenetic processes of DNA sequence specific 5'-hydroxymethylation (5'-hmC) and 5'-methylation (5'-mC) upon RNA sequenced gene expression profiles, revealed changes in key metabolic, inflammatory, transcriptional, and cellular processing genes and pathways. An omega-3 rich anti-inflammatory diet from preconception (8 weeks) through periconception and gestation (GD0-18), ameliorated all these maternal and placental-fetal adverse effects. We conclude that preconceptional, periconceptional and gestational exposures to AP incite a maternal inflammatory response resulting in features of pre-existing maternal diabetes mellitus with injury to the placental-fetal unit. DNA 5'-mC more than 5'-hmC mediated AP induced maternal inflammatory and metabolic dysregulation which together alter placental gene expression and phenotype. A dietary intervention partially reversing these adversities provides possibilities for a novel nutrigenomic therapeutic strategy.
Collapse
Affiliation(s)
- Amit Ganguly
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Madhuri Wadehra
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
7
|
Williams PA, Zaidi SK, Ramian H, Sengupta R. AACR Cancer Disparities Progress Report 2024: Achieving the Bold Vision of Health Equity. Cancer Epidemiol Biomarkers Prev 2024; 33:870-873. [PMID: 38748491 DOI: 10.1158/1055-9965.epi-24-0658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Advances in cancer prevention, early detection, and treatments have led to unprecedented progress against cancer. However, these advances have not benefited everyone equally. Because of a long history of structural inequities and systemic injustices in the United States, many segments of the US population continue to shoulder a disproportionate burden of cancer. The American Association for Cancer Research (AACR) Cancer Disparities Progress Report 2024 (CancerDisparitiesProgressReport.org) outlines the recent progress against cancer disparities, the ongoing challenges faced by medically underserved populations, and emphasizes the vital need for further advances in cancer research and patient care to benefit all populations.
Collapse
Affiliation(s)
- Patrick A Williams
- Scientific Research Analysis and Dissemination, American Association for Cancer Research, Philadelphia, Pennsylvania
| | - Sayyed K Zaidi
- Scientific Research Analysis and Dissemination, American Association for Cancer Research, Philadelphia, Pennsylvania
| | - Haleh Ramian
- Scientific Research Analysis and Dissemination, American Association for Cancer Research, Philadelphia, Pennsylvania
| | - Rajarshi Sengupta
- Scientific Research Analysis and Dissemination, American Association for Cancer Research, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Kearney L, Nguyen T, Steiling K. Disparities across the continuum of lung cancer care: a review of recent literature. Curr Opin Pulm Med 2024; 30:359-367. [PMID: 38411202 DOI: 10.1097/mcp.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW Lung cancer remains the leading cause of cancer mortality worldwide. Health disparities have long been noted in lung cancer incidence and survival and persist across the continuum of care. Understanding the gaps in care that arise from disparities in lung cancer risk, screening, treatment, and survivorship are essential to guiding efforts to achieve equitable care. RECENT FINDINGS Recent literature continues to show that Black people, women, and people who experience socioeconomic disadvantage or live in rural areas experience disparities throughout the spectrum of lung cancer care. Contributing factors include structural racism, lower education level and health literacy, insurance type, healthcare facility accessibility, inhaled carcinogen exposure, and unmet social needs. Promising strategies to improve lung cancer care equity include policy to reduce exposure to tobacco smoke and harmful pollutants, more inclusive lung cancer screening eligibility criteria, improved access and patient navigation in lung cancer screening, diagnosis and treatment, more deliberate offering of appropriate surgical and medical treatments, and improved availability of survivorship and palliative care. SUMMARY Given ongoing disparities in lung cancer care, research to determine best practices for narrowing these gaps and to guide policy change are an essential focus of future lung cancer research.
Collapse
Affiliation(s)
- Lauren Kearney
- Section of Pulmonary, Allergy, and Critical Care Medicine. Boston University Chobanian and Avedisian School of Medicine
- Center for Healthcare Organization & Implementation Research, VA Boston Healthcare System
| | - Tatyana Nguyen
- Department of Medicine. Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Katrina Steiling
- Section of Pulmonary, Allergy, and Critical Care Medicine. Boston University Chobanian and Avedisian School of Medicine
| |
Collapse
|
9
|
Hutchings H, Wang A, Grady S, Popoff A, Zhang Q, Okereke I. Influence of air quality on lung cancer in people who have never smoked. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00536-1. [PMID: 38936598 DOI: 10.1016/j.jtcvs.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Lung cancer is the leading cause of cancer-related death. The percentage of people who have never smoked with lung cancer has risen recently, but alternative risk factors require further study. Our goal was to determine the influence of air quality on incidence of lung cancer in people who have smoked or never smoked. METHODS The cancer registry from a large urban medical center was queried to include every new diagnosis of lung cancer from 2013 to 2021. Air quality and pollution data for the county were obtained from the US Environmental Protection Agency from 1980 to 2018. Patient demographics, location of residence, smoking history, and tumor stage were recorded. Bivariate comparison analyses were conducted in R (R Foundation for Statistical Computing). RESULTS A total of 2223 new cases of lung cancer were identified. Mean age was 69.2 years. There was a nonsmoking rate of 8.1%. A total of 37% of patients identified as a racial minority. People who have never smoked were more likely to be diagnosed at an advanced stage. When analyzing geographic distribution, incidence of lung cancer among people who have never smoked was more closely associated with highly polluted areas. People who have never smoked with lung cancer had significantly higher exposure levels of multiple pollutants. CONCLUSIONS Newly diagnosed lung cancer appears to be more related to poor air quality among people who have never smoked than people who have smoked. Future studies are needed to examine the associations of specific pollutants with lung cancer incidence.
Collapse
Affiliation(s)
| | - Anqi Wang
- Department of Public Health Sciences, Henry Ford Health, Detroit, Mich
| | - Sue Grady
- Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Mich
| | - Andrew Popoff
- Department of Surgery, Henry Ford Health, Detroit, Mich
| | - Qiong Zhang
- Department of Public Health Sciences, Henry Ford Health, Detroit, Mich
| | - Ikenna Okereke
- Department of Surgery, Henry Ford Health, Detroit, Mich.
| |
Collapse
|
10
|
Guan A, Talingdan AS, Tanjasiri SP, Kanaya AM, Gomez SL. Lessons Learned from Immigrant Health Cohorts: A Review of the Evidence and Implications for Policy and Practice in Addressing Health Inequities among Asian Americans, Native Hawaiians, and Pacific Islanders. Annu Rev Public Health 2024; 45:401-424. [PMID: 38109517 PMCID: PMC11332134 DOI: 10.1146/annurev-publhealth-060922-040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The health of Asian Americans, Native Hawaiians, and Pacific Islanders (AANHPI) is uniquely impacted by structural and social determinants of health (SSDH) shaped by immigration policies and colonization practices, patterns of settlement, and racism. These SSDH also create vast heterogeneity in disease risks across the AANHPI population, with some ethnic groups having high disease burden, often masked with aggregated data. Longitudinal cohort studies are an invaluable tool to identify risk factors of disease, and epidemiologic cohort studies among AANHPI populations have led to seminal discoveries of disease risk factors. This review summarizes the limited but growing literature, with a focus on SSDH factors, from seven longitudinal cohort studies with substantial AANHPI samples. We also discuss key information gaps and recommendations for the next generation of AANHPI cohorts, including oversampling AANHPI ethnic groups; measuring and innovating on measurements of SSDH; emphasizing the involvement of scholars from diverse disciplines; and, most critically, engaging community members to ensure relevancy for public health, policy, and clinical impact.
Collapse
Affiliation(s)
- Alice Guan
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, USA;
| | - Ac S Talingdan
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, USA;
| | - Sora P Tanjasiri
- Department of Health, Society, and Behavior, and Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Alka M Kanaya
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, USA;
- Department of Medicine, University of California, San Francisco, California, USA
| | - Scarlett L Gomez
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, USA;
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| |
Collapse
|
11
|
Bookstein A, Po J, Tseng C, Larson TV, Yang J, Park SSL, Wu J, Shariff-Marco S, Inamdar PP, Ihenacho U, Setiawan VW, DeRouen MC, Le Marchand L, Stram DO, Samet J, Ritz B, Fruin S, Wu AH, Cheng I. Association between Airport Ultrafine Particles and Lung Cancer Risk: The Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 2024; 33:703-711. [PMID: 38372643 PMCID: PMC11062824 DOI: 10.1158/1055-9965.epi-23-0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Ultrafine particles (UFP) are unregulated air pollutants abundant in aviation exhaust. Emerging evidence suggests that UFPs may impact lung health due to their high surface area-to-mass ratio and deep penetration into airways. This study aimed to assess long-term exposure to airport-related UFPs and lung cancer incidence in a multiethnic population in Los Angeles County. METHODS Within the California Multiethnic Cohort, we examined the association between long-term exposure to airport-related UFPs and lung cancer incidence. Multivariable Cox proportional hazards regression models were used to estimate the effect of UFP exposure on lung cancer incidence. Subgroup analyses by demographics, histology and smoking status were conducted. RESULTS Airport-related UFP exposure was not associated with lung cancer risk [per one IGR HR, 1.01; 95% confidence interval (CI), 0.97-1.05] overall and across race/ethnicity. A suggestive positive association was observed between a one IQR increase in UFP exposure and lung squamous cell carcinoma (SCC) risk (HR, 1.08; 95% CI, 1.00-1.17) with a Phet for histology = 0.05. Positive associations were observed in 5-year lag analysis for SCC (HR, 1.12; 95% CI, CI, 1.02-1.22) and large cell carcinoma risk (HR, 1.23; 95% CI, 1.01-1.49) with a Phet for histology = 0.01. CONCLUSIONS This large prospective cohort analysis suggests a potential association between airport-related UFP exposure and specific lung histologies. The findings align with research indicating that UFPs found in aviation exhaust may induce inflammatory and oxidative injury leading to SCC. IMPACT These results highlight the potential role of airport-related UFP exposure in the development of lung SCC.
Collapse
Affiliation(s)
- Arthur Bookstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Justine Po
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Timothy V. Larson
- Departments of Civil & Environmental Engineering and Environmental & Occupational Health Sciences, University of Washington, Seattle, WA
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Sung-shim L. Park
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA
| | - Pushkar P. Inamdar
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Ugonna Ihenacho
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mindy C. DeRouen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI
| | - Daniel O. Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jonathan Samet
- Departments of Epidemiology and of Environmental & Occupational Health, Colorado School of Public Health, Aurora, CO
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Scott Fruin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
13
|
Li W, Wang W. Causal effects of exposure to ambient air pollution on cancer risk: Insights from genetic evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168843. [PMID: 38029998 DOI: 10.1016/j.scitotenv.2023.168843] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Air pollution has been increasingly linked to cancer risk. However, the genetic causality between air pollution and cancer risk remains poorly understood. To elucidate the potential roles of air pollution (NOx, NO2, PM2.5, PM course, and PM10) in the risk of 18 specific-site cancers, large-scale genome-wide association studies with a novel Mendelian randomization (MR) method were employed. Our MR analyses revealed significant associations between certain air pollutants and specific types of cancer. Specifically, a positive association was observed between NOx exposure and squamous cell lung cancer (OR: 1.96, 95%CI: 1.07-3.59, p = 0.03) as well as esophageal cancer (OR: 1.002, 95%CI: 1.001-1.003, p = 0.005). Genetically predicted NO2 exposure was found to be a risk factor for endometrial cancer (OR 1.41, 95%CI: 1.03-1.94, p = 0.03) and ovarian cancer (OR: 1.49, 95%CI: 1.14-1.95, p = 0.0037). Additionally, genetically predicted PM2.5 exposure was associated with an increased risk of ER+ breast cancer (OR: 1.24, 95%CI: 1.03-1.5, p = 0.02) and ER- breast cancer (OR: 2.57, 95%CI: 1.05-6.3, p = 0.04). PM course exposure was identified as a risk factor for glioma (OR: 487.28, 95%CI: 13.08-18,153, p = 0.0008), while PM10 exposure exerted a detrimental effect on mesothelioma (OR: 114.75, 95%CI: 1.14-11,500.11, p = 0.04) and esophageal cancer (OR: 1.01, 95%CI: 1.007-1.02, p = 0.03). These findings underscored the importance of mitigating air pollution to reduce the burden of cancer and highlight the need for further investigations to elucidate the underlying mechanisms involved in these associations.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
14
|
Chiavarini M, Rosignoli P, Sorbara B, Giacchetta I, Fabiani R. Benzene Exposure and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Human Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:205. [PMID: 38397694 PMCID: PMC10887806 DOI: 10.3390/ijerph21020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Lung cancer is a leading cause of death with nearly 1.8 million deaths estimated worldwide in 2020. Although benzene is classified as a human carcinogen (Group 1) on the basis of its association with acute myeloid/non-lymphocytic leukaemia, there is still limited evidence that it may influence lung cancer risk. This study examined the potential link between benzene exposure and risk of lung cancer using a systematic review of epidemiological studies and meta-analysis. We searched through PubMed, Web of Science and Scopus databases up to 10 February 2023 to identify all articles on the association between benzene exposure and lung cancer (incidence or prevalence) and/or mortality. We extracted the risk estimates of the highest and the lowest reported categories of benzene exposure and conducted a meta-analysis using a random-effects model. Heterogeneity and publication bias were analysed using an I2 test and funnel plots asymmetry, respectively. Twenty-one studies were included in the final analysis, with a total of 10,750 lung cancer cases and 2899 lung cancer deaths. Overall, risk estimates of lung cancer prevalence and mortality in association with benzene exposure were 1.20 (n = 14; 95% CI 1.05-1.37) and 1.15 (n = 13; 95% CI 1.02-1.30), respectively. In all cases, heterogeneity was quite large, while no significant publication bias was observed. When only studies that adjusted for smoking habit were selected, the risk for lung cancer increased by up to 34% (n = 9; 95% CI 1.10-1.64). Our data, which show a strong association between benzene exposure and lung cancer risk, may have important public health implications. However, further studies are needed to identify the lung cancer risk associated with benzene exposure considering different smoking conditions.
Collapse
Affiliation(s)
- Manuela Chiavarini
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy;
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (P.R.); (B.S.)
| | - Beatrice Sorbara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (P.R.); (B.S.)
| | - Irene Giacchetta
- Department of Medicine and Surgery, Section of Public Heath, School of Hygiene and Preventive Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Roberto Fabiani
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy;
| |
Collapse
|
15
|
Wu X, Li W, Tu H. Big data and artificial intelligence in cancer research. Trends Cancer 2024; 10:147-160. [PMID: 37977902 DOI: 10.1016/j.trecan.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The field of oncology has witnessed an extraordinary surge in the application of big data and artificial intelligence (AI). AI development has made multiscale and multimodal data fusion and analysis possible. A new era of extracting information from complex big data is rapidly evolving. However, challenges related to efficient data curation, in-depth analysis, and utilization remain. We provide a comprehensive overview of the current state of the art in big data and computational analysis, highlighting key applications, challenges, and future opportunities in cancer research. By sketching the current landscape, we seek to foster a deeper understanding and facilitate the advancement of big data utilization in oncology, call for interdisciplinary collaborations, ultimately contributing to improved patient outcomes and a profound understanding of cancer.
Collapse
Affiliation(s)
- Xifeng Wu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wenyuan Li
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Huakang Tu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Jones RR, Fisher JA, Hasheminassab S, Kaufman JD, Freedman ND, Ward MH, Sioutas C, Vermeulen R, Hoek G, Silverman DT. Outdoor Ultrafine Particulate Matter and Risk of Lung Cancer in Southern California. Am J Respir Crit Care Med 2024; 209:307-315. [PMID: 37856832 PMCID: PMC10840777 DOI: 10.1164/rccm.202305-0902oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
Rationale: Particulate matter ⩽2.5 μm in aerodynamic diameter (PM2.5) is an established cause of lung cancer, but the association with ultrafine particulate matter (UFP; aerodynamic diameter < 0.1 μm) is unclear. Objectives: To investigate the association between UFP and lung cancer overall and by histologic subtype. Methods: The Los Angeles Ultrafines Study includes 45,012 participants aged ⩾50 years in southern California at enrollment (1995-1996) followed through 2017 for incident lung cancer (n = 1,770). We estimated historical residential ambient UFP number concentrations via land use regression and back extrapolation using PM2.5. In Cox proportional hazards models adjusted for smoking and other confounders, we estimated associations between 10-year lagged UFP (per 10,000 particles/cm3 and quartiles) and lung cancer overall and by major histologic subtype (adenocarcinoma, squamous cell carcinoma, and small cell carcinoma). We also evaluated relationships by smoking status, birth cohort, and historical duration at the residence. Measurements and Main Results: UFP was modestly associated with lung cancer risk overall (hazard ratio [HR], 1.03 [95% confidence interval (CI), 0.99-1.08]). For adenocarcinoma, we observed a positive trend among men; risk was increased in the highest exposure quartile versus the lowest (HR, 1.39 [95% CI, 1.05-1.85]; P for trend = 0.01) and was also increased in continuous models (HR per 10,000 particles/cm3, 1.09 [95% CI, 1.00-1.18]), but no increased risk was apparent among women (P for interaction = 0.03). Adenocarcinoma risk was elevated among men born between 1925 and 1930 (HR, 1.13 [95% CI, 1.02-1.26] per 10,000) but not for other birth cohorts, and was suggestive for men with ⩾10 years of residential duration (HR, 1.11 [95% CI, 0.98-1.26]). We found no consistent associations for women or other histologic subtypes. Conclusions: UFP exposure was modestly associated with lung cancer overall, with stronger associations observed for adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Rena R. Jones
- Occupational and Environmental Epidemiology Branch and
| | | | - Sina Hasheminassab
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Neal D. Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch and
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands; and
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands; and
| | | |
Collapse
|
17
|
Wan W, Peters S, Portengen L, Olsson A, Schüz J, Ahrens W, Schejbalova M, Boffetta P, Behrens T, Brüning T, Kendzia B, Consonni D, Demers PA, Fabiánová E, Fernández-Tardón G, Field JK, Forastiere F, Foretova L, Guénel P, Gustavsson P, Jöckel KH, Karrasch S, Landi MT, Lissowska J, Barul C, Mates D, McLaughlin JR, Merletti F, Migliore E, Richiardi L, Pándics T, Pohlabeln H, Siemiatycki J, Świątkowska B, Wichmann HE, Zaridze D, Ge C, Straif K, Kromhout H, Vermeulen R. Occupational Benzene Exposure and Lung Cancer Risk: A Pooled Analysis of 14 Case-Control Studies. Am J Respir Crit Care Med 2024; 209:185-196. [PMID: 37812782 PMCID: PMC10806413 DOI: 10.1164/rccm.202306-0942oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Rationale: Benzene has been classified as carcinogenic to humans, but there is limited evidence linking benzene exposure to lung cancer. Objectives: We aimed to examine the relationship between occupational benzene exposure and lung cancer. Methods: Subjects from 14 case-control studies across Europe and Canada were pooled. We used a quantitative job-exposure matrix to estimate benzene exposure. Logistic regression models assessed lung cancer risk across different exposure indices. We adjusted for smoking and five main occupational lung carcinogens and stratified analyses by smoking status and lung cancer subtypes. Measurements and Main Results: Analyses included 28,048 subjects (12,329 cases, 15,719 control subjects). Lung cancer odds ratios ranged from 1.12 (95% confidence interval, 1.03-1.22) to 1.32 (95% confidence interval, 1.18-1.48) (Ptrend = 0.002) for groups with the lowest and highest cumulative occupational exposures, respectively, compared with unexposed subjects. We observed an increasing trend of lung cancer with longer duration of exposure (Ptrend < 0.001) and a decreasing trend with longer time since last exposure (Ptrend = 0.02). These effects were seen for all lung cancer subtypes, regardless of smoking status, and were not influenced by specific occupational groups, exposures, or studies. Conclusions: We found consistent and robust associations between different dimensions of occupational benzene exposure and lung cancer after adjusting for smoking and main occupational lung carcinogens. These associations were observed across different subgroups, including nonsmokers. Our findings support the hypothesis that occupational benzene exposure increases the risk of developing lung cancer. Consequently, there is a need to revisit published epidemiological and molecular data on the pulmonary carcinogenicity of benzene.
Collapse
Affiliation(s)
- Wenxin Wan
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ann Olsson
- International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Joachim Schüz
- International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
- Faculty of Mathematics and Computer Science, Institute of Statistics, University of Bremen, Bremen, Germany
| | - Miriam Schejbalova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University, Bochum, Germany
| | - Benjamin Kendzia
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University, Bochum, Germany
| | - Dario Consonni
- Epidemiology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paul A. Demers
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario, Canada
| | - Eleonóra Fabiánová
- Regional Authority of Public Health, Banská Bystrica, Slovakia
- Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Health Research Institute of Asturias, University Institute of Oncology of Asturias – Cajastur Social Program, University of Oviedo, Oviedo, Spain
| | - John K. Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Pascal Guénel
- Center for Research in Epidemiology and Population Health, Team Exposome and Heredity, U1018 Institut national de la santé et de la recherche médicale, University of Paris-Saclay, Villejuif, France
| | - Per Gustavsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Stefan Karrasch
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, and
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jolanta Lissowska
- Epidemiology Unit, Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Christine Barul
- Université Rennes, Institut national de la santé et de la recherche médicale, École des hautes études en santé publique, Institut de recherche en santé, environnement et travail, UMR_S 1085, Pointe-à-Pitre, France
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - John R. McLaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Franco Merletti
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Enrica Migliore
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Hermann Pohlabeln
- Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
| | - Jack Siemiatycki
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Beata Świątkowska
- Department of Environmental Epidemiology, The Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Heinz-Erich Wichmann
- Institut für Medizinische Informatik Biometrie Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany
| | - David Zaridze
- Department of Cancer Epidemiology and Prevention, N.N. Blokhin National Research Center of Oncology, Moscow, Russia
| | - Calvin Ge
- Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Utrecht, the Netherlands
| | - Kurt Straif
- ISGlobal, Barcelona, Spain; and
- Boston College, Boston, Massachusetts
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
18
|
Bonner SN, Curley R, Love K, Akande T, Akhtar A, Erhunmwunsee L. Structural Racism and Lung Cancer Risk: A Scoping Review. JAMA Oncol 2024; 10:122-128. [PMID: 38032677 DOI: 10.1001/jamaoncol.2023.4897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Importance Structural racism is associated with persistent inequities in health and health outcomes in the US for racial and ethnic minority groups. This review summarizes how structural racism contributes to differential population-level exposure to lung cancer risk factors and thus disparate lung cancer risk across different racial and ethnic groups. Observations A scoping review was conducted focusing on structural racism and lung cancer risk for racial and ethnic minority groups. The domains of structural racism evaluated included housing and built environment, occupation and employment, health care, economic and educational opportunity, private industry, perceived stress and discrimination, and criminal justice involvement. The PubMed, Embase, and MedNar databases were searched for English-language studies in the US from January 1, 2010, through June 30, 2022. The review demonstrated that racial and ethnic minority groups are more likely to have environmental exposures to air pollution and known carcinogens due to segregation of neighborhoods and poor housing quality. In addition, racial and ethnic minority groups were more likely to have exposures to pesticides, silica, and asbestos secondary to higher employment in manual labor occupations. Furthermore, targeted marketing and advertisement of tobacco products by private industry were more likely to occur in neighborhoods with more racial and ethnic minority groups. In addition, poor access to primary care services and inequities in insurance status were associated with elevated lung cancer risk among racial and ethnic minority groups. Lastly, inequities in tobacco use and cessation services among individuals with criminal justice involvement had important implications for tobacco use among Black and Hispanic populations. Conclusions and Relevance The findings suggest that structural racism must be considered as a fundamental contributor to the unequal distribution of lung cancer risk factors and thus disparate lung cancer risk across different racial and ethnic groups. Additional research is needed to better identify mechanisms contributing to inequitable lung cancer risk and tailor preventive interventions.
Collapse
Affiliation(s)
- Sidra N Bonner
- Department of Surgery, University of Michigan, Ann Arbor
- National Clinician Scholars Program, University of Michigan, Ann Arbor
| | - Richard Curley
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Kyra Love
- Library Services, City of Hope, Duarte, California
| | - Tola Akande
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Aamna Akhtar
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Loretta Erhunmwunsee
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Populations Sciences, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
19
|
Gay P, Pautas É. [A geriatric perspective on the sixth IPCC synthesis report]. SOINS. GERONTOLOGIE 2023; 28:37-40. [PMID: 37977763 DOI: 10.1016/j.sger.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Climate change brings with it many foreseeable consequences for ecosystems and populations, including health consequences that could have a particular impact on older populations. Extreme climatic events, including heat waves, are associated with higher morbidity and mortality among the elderly. Air pollution has a deleterious effect on illnesses associated with aging, or which become more frequent with age. The health consequences of climate change must be anticipated, as they will require the adaptation of healthcare systems, which could be of particular interest to geriatric medicine.
Collapse
Affiliation(s)
- Pierre Gay
- Service de gériatrie aiguë, Hôpital européen Georges-Pompidou, GHU AP-HP centre université Paris-Cité, 20, rue Leblanc, 75015 Paris, France.
| | - Éric Pautas
- Service de gériatrie aiguë polyvalente, Hôpital Charles-Foix, GHU AP-HP Sorbonne université, Ivry-sur-Seine, France; UFR médecine, Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Sangaramoorthy M, Yang J, Tseng C, Wu J, Ritz B, Larson TV, Fruin S, Stram DO, Park SSL, Franke AA, Wilkens LR, Samet JM, Le Marchand L, Shariff-Marco S, Haiman CA, Wu AH, Cheng I. Particulate matter, traffic-related air pollutants, and circulating C-reactive protein levels: The Multiethnic Cohort Study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 332:121962. [PMID: 37277070 PMCID: PMC10870935 DOI: 10.1016/j.envpol.2023.121962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Inhaled particles and gases can harm health by promoting chronic inflammation in the body. Few studies have investigated the relationship between outdoor air pollution and inflammation by race and ethnicity, socioeconomic status, and lifestyle risk factors. We examined associations of particulate matter (PM) and other markers of traffic-related air pollution with circulating levels of C-reactive protein (CRP), a biomarker of systemic inflammation. CRP was measured from blood samples obtained in 1994-2016 from 7,860 California residents participating in the Multiethnic Cohort (MEC) Study. Exposure to PM (aerodynamic diameter ≤2.5 μm [PM2.5], ≤10 μm [PM10], and between 2.5 and 10 μm [PM10-2.5]), nitrogen oxides (NOx, including nitrogen dioxide [NO2]), carbon monoxide (CO), ground-level ozone (O3), and benzene averaged over one or twelve months before blood draw were estimated based on participants' addresses. Percent change in geometric mean CRP levels and 95% confidence intervals (CI) per standard concentration increase of each pollutant were estimated using multivariable generalized linear regression. Among 4,305 females (55%) and 3,555 males (45%) (mean age 68.1 [SD 7.5] years at blood draw), CRP levels increased with 12-month exposure to PM10 (11.0%, 95% CI: 4.2%, 18.2% per 10 μg/m3), PM10-2.5 (12.4%, 95% CI: 1.4%, 24.5% per 10 μg/m3), NOx (10.4%, 95% CI: 2.2%, 19.2% per 50 ppb), and benzene (2.9%, 95% CI: 1.1%, 4.6% per 1 ppb). In subgroup analyses, these associations were observed in Latino participants, those who lived in low socioeconomic neighborhoods, overweight or obese participants, and never or former smokers. No consistent patterns were found for 1-month pollutant exposures. This investigation identified associations of primarily traffic-related air pollutants, including PM, NOx, and benzene, with CRP in a multiethnic population. The diversity of the MEC across demographic, socioeconomic, and lifestyle factors allowed us to explore the generalizability of the effects of air pollution on inflammation across subgroups.
Collapse
Affiliation(s)
- Meera Sangaramoorthy
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Juan Yang
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, USA
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, CA, USA
| | - Timothy V Larson
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Scott Fruin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sung-Shim Lani Park
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Adrian A Franke
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Lynne R Wilkens
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jonathan M Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Liang H, Zhou X, Zhu Y, Li D, Jing D, Su X, Pan P, Liu H, Zhang Y. Association of outdoor air pollution, lifestyle, genetic factors with the risk of lung cancer: A prospective cohort study. ENVIRONMENTAL RESEARCH 2023; 218:114996. [PMID: 36481370 DOI: 10.1016/j.envres.2022.114996] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES The effect of air pollution exposure on incident lung cancer remains uncertain, and the modifying role of lifestyle and genetic susceptibility in association between air pollution and lung cancer is ambiguous. METHODS A total of 367,623 participants from UK biobank cohort were enrolled in the analysis. The concentrations of particle matter (PM2.5, PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx), were evaluated by land-use regression model. Cox proportional hazard model was applied to assess the associations between air pollution and incident lung cancer. A lifestyle risk score and a polygenic risk score were established to investigate whether lifestyle and heritable risk could modify the effect of air pollution on lung cancer risk. RESULTS Per interquartile range (IQR) increment in annual concentrations of PM2.5 (HR = 1.22, 95% CI, 1.15∼1.30), NO2 (HR = 1.19, 95% CI, 1.10∼1.27), and NOx (HR = 1.14, 95% CI, 1.09∼1.20) were associated with increased risk of lung cancer. We observed an additive interaction between air pollution including PM2.5 and NOx and lifestyle or genetic risk. Individuals with high air pollution exposure, poor lifestyle and high genetic risk had the highest risk of incident lung cancer. CONCLUSION Long-term exposures to air pollution is associated with increased risk of lung cancer, and this effect was modified by lifestyle or genetic risk. Integrated interventions for environmental pollution by government and adherence to healthy lifestyle by individuals are advocated for lung cancer prevention.
Collapse
Affiliation(s)
- Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xin Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Dianwu Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xiaoli Su
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| | - Hong Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Department of Dermatology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
22
|
Turner MC. Advancing Understanding of Environmental Contributions to Disparities in Lung Cancer. Am J Respir Crit Care Med 2022; 206:934-936. [PMID: 35731621 PMCID: PMC9801988 DOI: 10.1164/rccm.202206-1109ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health (ISGlobal)Barcelona, Spain,Universitat Pompeu FabraBarcelona, Spain,Centro de Investigación Biomédica en RedEpidemiología y Salud PúblicaMadrid, Spain
| |
Collapse
|