1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2024:S2531-0437(24)00092-8. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I.
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department; Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int J Mol Sci 2023; 24:ijms24043149. [PMID: 36834561 PMCID: PMC9958859 DOI: 10.3390/ijms24043149] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial-mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF.
Collapse
|
3
|
Dong J, Feng C, Dang J, Yang X, Zhang T, Wang B. Preparation of healing promotive alanyl-glutamine-poly(p-dioxanone) electrospun membrane integrated with gentamycin and its application for intestinal anastomosis in rats. BIOMATERIALS ADVANCES 2022; 139:212977. [PMID: 35882134 DOI: 10.1016/j.bioadv.2022.212977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Anastomosis surgery at the intestinal site is performed on millions of individuals every year. However, several persistent complications, such as anastomotic leakage, abnormal adhesion, and anastomotic stenosis, have been observed after the surgery. For promoting anastomotic healing and to overcome the challenges mentioned above, re-epithelialization at anastomotic sites is crucial. In this study, an epithelialization-promoting macromolecular prodrug Ala-Gln-PPDO was prepared and processed into fibrous membranes by electrospinning. Ala-Gln and gentamicin were sustainably released from the electrospun membranes with degradation of these membranes to promote the proliferation of rat intestinal epithelial cells and suppress the proliferation of Staphylococcus aureus and Escherichia coli. The comprehensive repair effects of Ala-Gln-PPDO membranes have been evaluated in rat models of intestinal anastomosis in this study. Application of Ala-Gln-PPDO membranes, especially the gentamicin-incorporated Ala-Gln-PPDO ones, could prevent adhesion between the injured intestine and surrounding intestinal tissues. In addition, they did not affect the healing strength of anastomotic stoma negatively and could promote re-epithelialization at the anastomotic sites. Furthermore, the gentamicin-incorporated Ala-Gln-PPDO membranes could relieve stenosis at anastomotic sites. The gentamicin-incorporated Ala-Gln-PPDO electrospun membrane is a promising, comprehensive implantable material for promoting healing after gastrointestinal anastomosis owing to its effects involving the promotion of re-epithelialization, prevention of adhesion, and relieving of anastomotic stenosis.
Collapse
Affiliation(s)
- Jun Dong
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Chengmin Feng
- Department of Otolaryngology & Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiafeng Dang
- Gynecology and Obstetrics, Department of Clinical Medicine, The Third Affiliated Hospital of Chengdu Medicine College, Pidu District People's Hospital, Chengdu, China
| | - Xiaomei Yang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Ting Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China; Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
4
|
Lee SY, Lee CM, Ma B, Kamle S, Elias JA, Zhou Y, Lee CG. Targeting Chitinase 1 and Chitinase 3-Like 1 as Novel Therapeutic Strategy of Pulmonary Fibrosis. Front Pharmacol 2022; 13:826471. [PMID: 35370755 PMCID: PMC8969576 DOI: 10.3389/fphar.2022.826471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Chitinase 1 (CHIT1) and chitinase 3-like-1 (CHI3L1), two representative members of 18-Glycosyl hydrolases family, are significantly implicated in the pathogenesis of various human diseases characterized by inflammation and remodeling. Notably, dysregulated expression of CHIT1 and CHI3L1 was noted in the patients with pulmonary fibrosis and their levels were inversely correlated with clinical outcome of the patients. CHIT1 and CHI3L1, mainly expressed in alveolar macrophages, regulate profibrotic macrophage activation, fibroblast proliferation and myofibroblast transformation, and TGF-β signaling and effector function. Although the mechanism or the pathways that CHIT1 and CHI3L1 use to regulate pulmonary fibrosis have not been fully understood yet, these studies identify CHIT1 and CHI3L1 as significant modulators of fibroproliferative responses leading to persistent and progressive pulmonary fibrosis. These studies suggest a possibility that CHIT1 and CHI3L1 could be reasonable therapeutic targets to intervene or reverse established pulmonary fibrosis. In this review, we will discuss specific roles and regulatory mechanisms of CHIT1 and CHI3L1 in profibrotic cell and tissue responses as novel therapeutic targets of pulmonary fibrosis.
Collapse
Affiliation(s)
- Suh-Young Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
- Devision of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Bing Ma
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Jack A. Elias
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Yang Zhou
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| |
Collapse
|
5
|
Maccarinelli F, Bugatti M, Churruca Schuind A, Ganzerla S, Vermi W, Presta M, Ronca R. Endogenous Long Pentraxin 3 Exerts a Protective Role in a Murine Model of Pulmonary Fibrosis. Front Immunol 2021; 12:617671. [PMID: 33679758 PMCID: PMC7930377 DOI: 10.3389/fimmu.2021.617671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis is a progressive scarring disease of the lungs, characterized by inflammation, fibroblast activation, and deposition of extracellular matrix. The long pentraxin 3 (PTX3) is a member of the pentraxin family with non-redundant functions in innate immune responses, tissue repair, and haemostasis. The role played in the lungs by PTX3 during the fibrotic process has not been elucidated. In this study, the impact of PTX3 expression on lung fibrosis was assessed in an intratracheal bleomycin (BLM)-induced murine model of the disease applied to wild type animals, transgenic mice characterized by endothelial overexpression and stromal accumulation of PTX3 (Tie2-PTX3 mice), and genetically deficient Ptx3−/− animals. Our data demonstrate that PTX3 is produced during BLM-induced fibrosis in wild type mice, and that PTX3 accumulation in the stroma compartment of Tie2-PTX3 mice limits the formation of fibrotic tissue in the lungs, with reduced fibroblast activation and collagen deposition, and a decrease in the recruitment of the immune infiltrate. Conversely, Ptx3-null mice showed an exacerbated fibrotic response and decreased survival in response to BLM treatment. These results underline the protective role of endogenous PTX3 during lung fibrosis and pave the way for the study of novel PTX3-derived therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,ASST Spedali Civili di Brescia, Brescia, Italy
| | - Ander Churruca Schuind
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
6
|
Boutanquoi PM, Burgy O, Beltramo G, Bellaye PS, Dondaine L, Marcion G, Pommerolle L, Vadel A, Spanjaard M, Demidov O, Mailleux A, Crestani B, Kolb M, Garrido C, Goirand F, Bonniaud P. TRIM33 prevents pulmonary fibrosis by impairing TGF-β1 signalling. Eur Respir J 2020; 55:13993003.01346-2019. [PMID: 32184320 DOI: 10.1183/13993003.01346-2019] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterised by myofibroblast proliferation and abnormal extracellular matrix accumulation in the lungs. Transforming growth factor (TGF)-β1 initiates key profibrotic signalling involving the SMAD pathway and the small heat shock protein B5 (HSPB5). Tripartite motif-containing 33 (TRIM33) has been reported to negatively regulate TGF-β/SMAD signalling, but its role in fibrogenesis remains unknown. The objective of this study was to elucidate the role of TRIM33 in IPF. METHODS TRIM33 expression was assessed in the lungs of IPF patients and rodent fibrosis models. Bone marrow-derived macrophages (BMDM), primary lung fibroblasts and 3D lung tissue slices were isolated from Trim33-floxed mice and cultured with TGF-β1 or bleomycin (BLM). Trim33 expression was then suppressed by adenovirus Cre recombinase (AdCre). Pulmonary fibrosis was evaluated in haematopoietic-specific Trim33 knockout mice and in Trim33-floxed mice that received AdCre and BLM intratracheally. RESULTS TRIM33 was overexpressed in alveolar macrophages and fibroblasts in IPF patients and rodent fibrotic lungs. Trim33 inhibition in BMDM increased TGF-β1 secretion upon BLM treatment. Haematopoietic-specific Trim33 knockout sensitised mice to BLM-induced fibrosis. In primary lung fibroblasts and 3D lung tissue slices, Trim33 deficiency increased expression of genes downstream of TGF-β1. In mice, AdCre-Trim33 inhibition worsened BLM-induced fibrosis. In vitro, HSPB5 was able to bind directly to TRIM33, thereby diminishing its protein level and TRIM33/SMAD4 interaction. CONCLUSION Our results demonstrate a key role of TRIM33 as a negative regulator of lung fibrosis. Since TRIM33 directly associates with HSPB5, which impairs its activity, inhibitors of TRIM33/HSPB5 interaction may be of interest in the treatment of IPF.
Collapse
Affiliation(s)
- Pierre-Marie Boutanquoi
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Olivier Burgy
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Guillaume Beltramo
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Dept of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, Dijon, France.,Reference Center for Rare Lung Diseases, University Hospital, Bourgogne-Franche Comté, Dijon, France
| | | | - Lucile Dondaine
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Reference Center for Rare Lung Diseases, University Hospital, Bourgogne-Franche Comté, Dijon, France
| | - Guillaume Marcion
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Lenny Pommerolle
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Aurélie Vadel
- INSERM U1152, Faculty of Medicine, University of Bichat, Paris, France
| | - Maximilien Spanjaard
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Dept of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, Dijon, France
| | - Oleg Demidov
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Arnaud Mailleux
- INSERM U1152, Faculty of Medicine, University of Bichat, Paris, France
| | - Bruno Crestani
- INSERM U1152, Faculty of Medicine, University of Bichat, Paris, France
| | | | - Carmen Garrido
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Françoise Goirand
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,These authors codirected this work and contributed equally to this work
| | - Philippe Bonniaud
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France .,Dept of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, Dijon, France.,Reference Center for Rare Lung Diseases, University Hospital, Bourgogne-Franche Comté, Dijon, France.,These authors codirected this work and contributed equally to this work
| |
Collapse
|
7
|
Oliveira FMS, da Paixão Matias PH, Kraemer L, Gazzinelli-Guimarães AC, Santos FV, Amorim CCO, Nogueira DS, Freitas CS, Caliari MV, Bartholomeu DC, Bueno LL, Russo RC, Fujiwara RT. Comorbidity associated to Ascaris suum infection during pulmonary fibrosis exacerbates chronic lung and liver inflammation and dysfunction but not affect the parasite cycle in mice. PLoS Negl Trop Dis 2019; 13:e0007896. [PMID: 31765381 PMCID: PMC6901262 DOI: 10.1371/journal.pntd.0007896] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/09/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Ascariasis is considered the most neglected tropical disease, and is a major problem for the public health system. However, idiopathic pulmonary fibrosis (IPF) is a result of chronic extracellular deposition of matrix in the pulmonary parenchyma, and thickening of the alveolar septa, which reduces alveolar gas exchange. Considering the high rates of ascariasis and pulmonary fibrosis, we believe that these two diseases may co-exist and possibly lead to comorbidities. We therefore investigated the mechanisms involved in comorbidity of Ascaris suum (A. suum) infection, which could interfere with the progression of pulmonary fibrosis. In addition, we evaluated whether a previous lung fibrosis could interfere with the pulmonary cycle of A. suum in mice. The most important findings related to comorbidity in which A. suum infection exacerbated pulmonary and liver injury, inflammation and dysfunction, but did not promote excessive fibrosis in mice during the investigated comorbidity period. Interestingly, we found that pulmonary fibrosis did not alter the parasite cycle that transmigrated preferentially through preserved but not fibrotic areas of the lungs. Collectively, our results demonstrate that A. suum infection leads to comorbidity, and contributes to the aggravation of pulmonary dysfunction during pulmonary fibrosis, which also leads to significant liver injury and inflammation, without changing the A. suum cycle in the lungs. Ascariasis is considered a major problem for the public health system, which has an estimated 800 million infected people worldwide. It occurs in the United States, Africa, Asia, and Latin America, and is generally associated with poverty and precarious health conditions. Pulmonary fibrosis affects 14–63 people per 100,000 habitants/year, and is characterized by collagen deposition and alveolar wall thickening. The comorbidities caused by infections are commonly associated with pulmonary fibrosis exacerbations, poor prognosis, and high mortality. Despite the comorbidities caused by helminth infections, which display a pulmonary parasitic cycle such as that of Ascaris, there is no evidence relating to pulmonary fibrosis progression, possibly because Ascariasis is considered a neglected disease. We evaluated the role of Ascaris during pulmonary fibrosis. We considered two simple questions: (1) Whether Ascaris infection could protect or aggravate fibrosis (comorbidities) and (2) whether pulmonary fibrosis could change the cycle of Ascaris as a result of increased alveolar thickening, larvae retention, and the limitation of influx into airways. We answered both questions as follows: (1) Ascaris infection exacerbates pulmonary and liver injury and inflammation, but not fibrosis; and (2) Pulmonary fibrosis did not alter the course of Ascaris cycle in lungs during transmigration into airways, because Ascaris preferentially seeks and penetrates into the lung areas, which are thought to be preserved, but not into fibrotic areas.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Hemanoel da Paixão Matias
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira Santos
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Castanheira Bartholomeu
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
8
|
The Role of Immunity and Inflammation in IPF Pathogenesis. Respir Med 2019. [PMCID: PMC7120022 DOI: 10.1007/978-3-319-99975-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
IPF is thought to be a consequence of repetitive micro-injury to ageing alveolar epithelium by factors including tobacco smoke, environmental exposures, microbial colonisation/infection, microaspiration, endoplasmic reticulum stress and oxidative stress, with resultant aberrant wound healing. Though partially effective antifibrotic therapies have focused attention away from older inflammation-based hypotheses for IPF pathogenesis, innate and adaptive immune cells and processes may play roles potentially in initiation and/or disease progression in IPF and/or in IPF acute exacerbations, based on multiple lines of evidence. Members of the Toll-like family of innate immune receptors have been implicated in IPF pathogenesis, including a potential modulatory role for the lung microbiome. A variety of chemokines are associated with the presence of IPF, and an imbalance of angiogenic chemokines has been linked to vascular remodelling in the disease. Subsets of circulating monocytes, including fibrocytes and segregated-nucleus-containing atypical monocytes (SatM), have been identified that may facilitate progression of fibrosis, and apoptosis-resistant pulmonary macrophages have been shown to demonstrate pro-fibrotic potential. Inflammatory cells that have been somewhat dismissed as irrelevant to IPF pathogenesis are being re-evaluated in light of new mechanistic data, such as activated neutrophils which release their chromatin in a process termed NETosis, which appears to mediate age-related murine lung fibrosis. A greater understanding is needed of the role of lymphoid aggregates, a histologic feature of IPF lungs found in close proximity to fibroblastic foci and highly suggestive of the presence of chronic immune responses in IPF, as are well-characterised activated circulating T lymphocytes and distinct autoantibodies that have been observed in IPF. There is a pressing need to discern whether or not the indisputably present immune dysregulation of IPF constitutes cause or effect in the ongoing search for more effective therapeutic strategies.
Collapse
|
9
|
Chakraborty K, Chatterjee S, Bhattacharyya A. Modulation of CD11c+ lung dendritic cells in respect to TGF-β in experimental pulmonary fibrosis. Cell Biol Int 2017; 41:991-1000. [PMID: 28557137 DOI: 10.1002/cbin.10800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/25/2017] [Indexed: 12/30/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly, progressive lung disease with very few treatment options till now. Bleomycin-induced pulmonary fibrosis (BIPF) is a commonly used mice model in IPF research. TGF-β1 has been shown to play a key role in pulmonary fibrosis (PF). Dendritic cell (DC) acts as a bridge between innate and adaptive immune systems. The coexistence of chronic inflammation sustained by mature DCs with fibrosis suggests that inflammatory phenomenon has key importance in the pathogenesis of pulmonary fibrosis. Here, we investigated the modulation of DCs phenotypic maturation, accumulation in lung tissue, and expression of other lung DC subsets in respect to TGF-β in PF. First, we established BIPF model in mice and blocked TGF-β expression by the use of inhibitor SB431542. Accumulation of lung CD11c+ DCs is significantly higher in both inflammatory and fibrotic phases of the disease but that percentages got reduced in the absence of TGF-β. TGF-β initiates up-regulation of costimulatory molecules CD86 and CD80 in the inflammatory phases of the disease but not so at fibrotic stage. Expression of lung DC subset CD11c+CD103+ is significantly increased in inflammatory phase and also in fibrotic phase of BIPF. Blocking of TGF-β causes decreased expression of CD11c+CD103+ DCs. Another important lung DC subset CD11c+CD11b+ expression is suppressed by the absence of TGF-β after bleomycin administration. CD11c+CD103+ DCs might have anti-inflammatory as well as anti-fibrotic nature in PF. All these data demonstrate differential modulation of CD11c+ lung DCs by TGF-β in experimental PF.
Collapse
Affiliation(s)
- Kaustav Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Soumya Chatterjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| |
Collapse
|
10
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Abdalla M, Sabbineni H, Prakash R, Ergul A, Fagan SC, Somanath PR. The Akt inhibitor, triciribine, ameliorates chronic hypoxia-induced vascular pruning and TGFβ-induced pulmonary fibrosis. Br J Pharmacol 2015; 172:4173-88. [PMID: 26033700 PMCID: PMC4543621 DOI: 10.1111/bph.13203] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/22/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Interstitial lung disease accounts for a group of chronic and progressive disorders associated with severe pulmonary vascular remodelling, peripheral vascular rarefaction and fibrosis, thus limiting lung function. We have previously shown that Akt is necessary for myofibroblast differentiation, a critical event in organ fibrosis. However, the contributory role of the Akt-mTOR pathway in interstitial lung disease and the therapeutic benefits of targeting Akt and mTOR remain unclear. EXPERIMENTAL APPROACH We investigated the role of the Akt-mTOR pathway and its downstream molecular mechanisms in chronic hypoxia- and TGFβ-induced pulmonary vascular pruning and fibrosis in mice. We also determined the therapeutic benefits of the Akt inhibitor triciribine and the mTOR inhibitor rapamycin for the treatment of pulmonary fibrosis in mice. KEY RESULTS Akt1(-) (/) (-) mice were protected from chronic hypoxia-induced peripheral vascular pruning. In contrast, hyperactivation of Akt1 induced focal fibrosis similar to TGFβ-induced fibrosis. Pharmacological inhibition of Akt, but not the Akt substrate mTOR, inhibited hypoxia- and TGFβ-induced pulmonary vascular rarefaction and fibrosis. Mechanistically, we found that Akt1 modulates pulmonary remodelling via regulation of thrombospondin1 (TSP1) expression. Hypoxic Akt1(-) (/) (-) mice lungs expressed less TSP1. Moreover, TSP1(-) (/) (-) mice were resistant to adMyrAkt1-induced pulmonary fibrosis. CONCLUSIONS AND IMPLICATIONS Our study identified Akt1 as a novel target for the treatment of interstitial lung disease and provides preclinical data on the potential benefits of the Akt inhibitor triciribine for the treatment of interstitial lung disease.
Collapse
Affiliation(s)
- Maha Abdalla
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
- Department of Pharmaceutical Sciences, South College School of PharmacyKnoxville, TN, USA
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
| | - Roshini Prakash
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
| | - Adviye Ergul
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
- Department of Physiology, Georgia Regents UniversityAugusta, GA, USA
| | - Susan C Fagan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
- Department of Neurology, Georgia Regents UniversityAugusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
- Department of Medicine, Georgia Regents UniversityAugusta, GA, USA
- Vascular Biology Center, Georgia Regents UniversityAugusta, GA, USA
- Cancer Center, Georgia Regents UniversityAugusta, GA, USA
| |
Collapse
|
12
|
Abstract
Progressive lung fibrosis in humans, typified by idiopathic pulmonary fibrosis (IPF), is a serious cause of morbidity and mortality in people. Similar diseases have been described in dogs, cats, and horses. The cause and pathogenesis of such diseases in all species is poorly understood. There is growing evidence in human medicine that IPF is a manifestation of abnormal wound repair in response to epithelial injury. Because viruses can contribute to epithelial injury, there is increasing interest in a possible role of viruses, particularly gammaherpesviruses, in the pathogenesis of pulmonary fibrosis. This review provides background information on progressive fibrosing lung disease in human and veterinary medicine and summarizes the evidence for an association between gammaherpesvirus infection and pulmonary fibrosis, especially Epstein-Barr virus in human pulmonary fibrosis, and equine herpesvirus 5 in equine multinodular pulmonary fibrosis. Data derived from experimental lung infection in mice with the gammaherpesvirus murine herpesvirus are presented, emphasizing the host and viral factors that may contribute to lung fibrosis. The experimental data are considered in the context of the pathogenesis of naturally occurring pulmonary fibrosis in humans and horses.
Collapse
Affiliation(s)
- K. J. Williams
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Bellaye PS, Wettstein G, Burgy O, Besnard V, Joannes A, Colas J, Causse S, Marchal-Somme J, Fabre A, Crestani B, Kolb M, Gauldie J, Camus P, Garrido C, Bonniaud P. The small heat-shock protein α
B-crystallin is essential for the nuclear localization of Smad4: impact on pulmonary fibrosis. J Pathol 2014; 232:458-72. [DOI: 10.1002/path.4314] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Pierre-Simon Bellaye
- INSERM U866 Équipe Labellisée Ligue Contre le Cancer; Dijon France
- Faculty of Medicine and Pharmacy; University of Burgundy; Dijon France
| | - Guillaume Wettstein
- INSERM U866 Équipe Labellisée Ligue Contre le Cancer; Dijon France
- Faculty of Medicine and Pharmacy; University of Burgundy; Dijon France
| | - Olivier Burgy
- INSERM U866 Équipe Labellisée Ligue Contre le Cancer; Dijon France
- Faculty of Medicine and Pharmacy; University of Burgundy; Dijon France
| | | | | | - Julien Colas
- INSERM U866 Équipe Labellisée Ligue Contre le Cancer; Dijon France
- Faculty of Medicine and Pharmacy; University of Burgundy; Dijon France
| | - Sébastien Causse
- INSERM U866 Équipe Labellisée Ligue Contre le Cancer; Dijon France
- Faculty of Medicine and Pharmacy; University of Burgundy; Dijon France
| | | | | | - Bruno Crestani
- INSERM U700; Paris France
- Université Paris Diderot; PRES Sorbonne Paris Cité Paris France
- Faculté de Médecine Bichat; Paris APHP, Hôpital Bichat, Service de Pneumologie A; Paris France
| | - Martin Kolb
- Center for Gene Therapeutics; McMaster University; Hamilton ON Canada
| | - Jack Gauldie
- Center for Gene Therapeutics; McMaster University; Hamilton ON Canada
| | - Philippe Camus
- INSERM U866 Équipe Labellisée Ligue Contre le Cancer; Dijon France
- Faculty of Medicine and Pharmacy; University of Burgundy; Dijon France
- Service de Pneumologie; CHU Dijon France
| | - Carmen Garrido
- INSERM U866 Équipe Labellisée Ligue Contre le Cancer; Dijon France
- Faculty of Medicine and Pharmacy; University of Burgundy; Dijon France
| | - Philippe Bonniaud
- INSERM U866 Équipe Labellisée Ligue Contre le Cancer; Dijon France
- Faculty of Medicine and Pharmacy; University of Burgundy; Dijon France
- Service de Pneumologie; CHU Dijon France
| |
Collapse
|
14
|
Hirota JA, Hiebert PR, Gold M, Wu D, Graydon C, Smith JA, Ask K, McNagny K, Granville DJ, Knight DA. Granzyme B deficiency exacerbates lung inflammation in mice after acute lung injury. Am J Respir Cell Mol Biol 2013; 49:453-62. [PMID: 23642129 DOI: 10.1165/rcmb.2012-0512oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Granzyme B (GzmB) is a serine protease with intracellular and extracellular activities capable of regulating inflammation through cytokine processing and the apoptosis of effector cells. We tested the hypothesis that GzmB expression in T regulatory cells (Tregs) is required for the control of inflammatory responses and pathology during acute lung injury. To substantiate the clinical relevance of GzmB during lung injury, we performed GzmB immunohistochemistry on lung tissue from patients with acute respiratory distress syndrome (ARDS) and healthy control subjects. We also performed in vivo experiments with wild-type (WT) C57BL/6 and GzmB(-/-) mice exposed to a single intranasal instillation of bleomycin to model lung injury. Our results demonstrate that the expression of GzmB was elevated in ARDS lung sections, relative to healthy control samples. Bleomycin-exposed GzmB(-/-) mice exhibited greater morbidity and mortality, which was associated with increased numbers of lung lymphocytes. Bleomycin induced an equal increase in CD4(+)/CD25(+)/FoxP3(+) Treg populations in WT and GzmB(-/-) mice. GzmB expression was not significant in Tregs, with the majority of the expression localized to natural killer (NK)-1.1(+) cells. The expression of GzmB in NK cells of bleomycin-exposed WT mice was associated with greater lymphocyte apoptosis, reduced total lymphocyte numbers, and reduced pathology relative to GzmB(-/-) mice. Our data demonstrate that GzmB deficiency results in the exacerbation of lymphocytic inflammation during bleomycin-induced acute lung injury, which is associated with pathology, morbidity, and mortality.
Collapse
Affiliation(s)
- Jeremy A Hirota
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Comparison of gene expression profiling between lung fibrotic and emphysematous tissues sampled from patients with combined pulmonary fibrosis and emphysema. FIBROGENESIS & TISSUE REPAIR 2012; 5:17. [PMID: 23025845 PMCID: PMC3541270 DOI: 10.1186/1755-1536-5-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/11/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED BACKGROUND Combined pulmonary fibrosis and emphysema (CPFE) is characterized by both emphysema of the upper zone and diffuse parenchymal lung disease with fibrosis of the lower zone of the lung on chest computed tomography. The aim of this study was to investigate the mechanism of CPFE regarding gene expressions by comparing the results of microarray sequences between fibrotic and emphysematous lesions in the lungs of CPFE patients. RESULTS The expression profiles of the fibrotic and emphysematous lesions were remarkably different in terms of function. Genes related to the immune system, structural constituents of the cytoskeleton, and cellular adhesion were overexpressed in fibrotic lesions, while genes associated with the cellular fraction, cell membrane structures, vascular growth and biology, second-messenger-mediated signaling, and lung development (all processes that contribute to the destruction and repair of cells, vessels, and the lung) were overexpressed in emphysematous lesions. CONCLUSIONS The differences in gene expression were detected in fibrotic and emphysematous lesions in CPFE patients. We propose that the development of coexisting fibrotic and emphysematous lesions in CPFE is implemented by these different patterns of gene expressions.
Collapse
|
16
|
Meuten T, Hickey A, Franklin K, Grossi B, Tobias J, Newman DR, Jennings SH, Correa M, Sannes PL. WNT7B in fibroblastic foci of idiopathic pulmonary fibrosis. Respir Res 2012; 13:62. [PMID: 22838404 PMCID: PMC3479038 DOI: 10.1186/1465-9921-13-62] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/17/2012] [Indexed: 12/29/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial pneumonia causing a loss of respiratory surface area due to a proliferative fibrotic response involving hyperplastic, hypertrophic, and metaplastic epithelium, cystic honeycomb change, septal expansion, and variable inflammation. Wnt (wingless) signaling glycoproteins are known to be involved in lung development and tissue repair, and are up-regulated in patients with IPF. Based on previous qRT-PCR data showing increased Wnt7B in lungs of IPF patients, a systematic, quantitative examination of its tissue site distribution was undertaken. Methods Tissue samples from the Lung Tissue Research Consortium (LTRC) of 39 patients diagnosed with mild to severe IPF/usual interstitial pneumonia (UIP) and 19 normal patients were examined for the immunolocalization of Wnt7B. Results In normal lung, moderate Wnt7B reactivity was confined to airway epithelium, smooth muscle of airways and vasculature, and macrophages. IPF lung showed strong Wnt7B reactivity in fibroblastic foci, dysplastic airway and alveolar epithelium, and in highly discrete subepithelial, basement membrane-associated regions. All reactive sites were sized and counted relative to specific microscopic regions. Those in the subepithelial sites were found in significantly greater numbers and larger relative area compared with the others. No reactive sites were present in normal patient controls. Conclusions The results demonstrate Wnt7B to be expressed at high concentrations in regions of active hyperplasia, metaplasia, and fibrotic change in IPF patients. In this context and its previously established biologic activities, Wnt7B would be expected to be of potential importance in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Travis Meuten
- Departments of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Barlo NP, van Moorsel CHM, Korthagen NM, Heron M, Rijkers GT, Ruven HJT, van den Bosch JMM, Grutters JC. Genetic variability in the IL1RN gene and the balance between interleukin (IL)-1 receptor agonist and IL-1β in idiopathic pulmonary fibrosis. Clin Exp Immunol 2012; 166:346-51. [PMID: 22059992 DOI: 10.1111/j.1365-2249.2011.04468.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive interstitial lung disease of unknown aetiology. Interleukin (IL)-1β plays an important role in inflammation and has been associated with fibrotic remodelling. We investigated the balance between IL-1β and IL-1 receptor antagonist (IL-1Ra) in bronchoalveolar lavage fluid (BALF) and serum as well as the influence of genetic variability in the IL1B and IL1RN gene on disease susceptibility and cytokine levels. In 77 IPF patients and 349 healthy controls, single nucleotide polymorphisms (SNPs) in the IL1RN and IL1B genes were determined. Serum and BALF IL-1Ra and IL-1β levels were measured using a multiplex suspension bead array system and were correlated with genotypes. Both in serum and BALF a significantly decreased IL-1Ra/IL-1β ratio was found in IPF patients compared to healthy controls. In the IL1RN gene, one SNP was associated with both the susceptibility to IPF and reduced IL-1Ra/IL-1β ratios in BALF. Our results show that genetic variability in the IL1RN gene may play a role in the pathogenesis of IPF and that this role may be more important than thought until recently. The imbalance between IL-1Ra and IL-1β might contribute to a proinflammatory and pro-fibrotic environment in their lungs.
Collapse
Affiliation(s)
- N P Barlo
- Department of Pulmonology, Centre for Interstitial Lung Diseases, St Antonius Hospital, Nieuwegein, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Todd NW, Jeudy J, Lavania S, Franks TJ, Galvin JR, Deepak J, Britt EJ, Atamas SP. Centrilobular emphysema combined with pulmonary fibrosis results in improved survival. FIBROGENESIS & TISSUE REPAIR 2011; 4:6. [PMID: 21324139 PMCID: PMC3055815 DOI: 10.1186/1755-1536-4-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/15/2011] [Indexed: 12/21/2022]
Abstract
Background We hypothesized that, in patients with pulmonary fibrosis combined with emphysema, clinical characteristics and outcomes may differ from patients with pulmonary fibrosis without emphysema. We identified 102 patients who met established criteria for pulmonary fibrosis. The amount of emphysema (numerical score) and type of emphysema (centrilobular, paraseptal, or mixed) were characterized in each patient. Clinical characteristics, pulmonary function tests and patient survival were analysed. Results Based on the numerical emphysema score, patients were classified into those having no emphysema (n = 48), trivial emphysema (n = 26) or advanced emphysema (n = 28). Patients with advanced emphysema had a significantly higher amount of smoking in pack/years than patients with no emphysema or trivial emphysema (P < 0.0001). Median survival [1st, 3rd quartiles] of patients with advanced emphysema was 63 [36, 82] months compared to 29 [18, 49] months in patients without emphysema and 32 [19, 48] months in patients with trivial emphysema (P < 0.001). Median forced vital capacity (FVC) and total lung capacity (TLC) were higher in the advanced emphysema group compared to patients with no emphysema (P < 0.01 and P < 0.001, respectively), whereas median DLCO did not differ among groups and was overall low. Within the advanced emphysema group (n = 28), further characterization of the type of emphysema was performed and, within these subgroups of patients, survival was 75 [58, 85] months for patients with centrilobular emphysema, 75 [48, 85] months for patients with mixed centrilobular/paraseptal emphysema, and 24 [22, 35] months for patients with paraseptal emphysema (P < 0.01). Patients with advanced paraseptal emphysema had similar survival times to patients without emphysema. Conclusions Patients with pulmonary fibrosis combined with advanced centrilobular or mixed emphysema have an improved survival compared with patients with pulmonary fibrosis without emphysema, with trivial emphysema or with advanced paraseptal emphysema.
Collapse
Affiliation(s)
- Nevins W Todd
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C, Gabrielli A, Sanduzzi A, Avvedimento EV. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One 2010; 5:e14003. [PMID: 21103368 PMCID: PMC2982828 DOI: 10.1371/journal.pone.0014003] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 10/18/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal illness whose pathogenesis remains poorly understood. Recent evidence suggests oxidative stress as a key player in the establishment/progression of lung fibrosis in animal models and possibly in human IPF. The aim of the present study was to characterize the cellular phenotype of fibroblasts derived from IPF patients and identify underlying molecular mechanisms. METHODOLOGY/PRINCIPAL FINDINGS We first analyzed the baseline differentiation features and growth ability of primary lung fibroblasts derived from 7 histology proven IPF patients and 4 control subjects at different culture passages. Then, we focused on the redox state and related molecular pathways of IPF fibroblasts and investigated the impact of oxidative stress in the establishment of the IPF phenotype. IPF fibroblasts were differentiated into alpha-smooth muscle actin (SMA)-positive myofibroblasts, displayed a pro-fibrotic phenotype as expressing type-I collagen, and proliferated lower than controls cells. The IPF phenotype was inducible upon oxidative stress in control cells and was sensitive to ROS scavenging. IPF fibroblasts also contained large excess of reactive oxygen species (ROS) due to the activation of an NADPH oxidase-like system, displayed higher levels of tyrosine phosphorylated proteins and were more resistant to oxidative-stress induced cell death. Interestingly, the IPF traits disappeared with time in culture, indicating a transient effect of the initial trigger. CONCLUSIONS/SIGNIFICANCE Robust expression of α-SMA and type-I collagen, high and uniformly-distributed ROS levels, resistance to oxidative-stress induced cell death and constitutive activation of tyrosine kinase(s) signalling are distinctive features of the IPF phenotype. We suggest that this phenotype can be used as a model to identify the initial trigger of IPF.
Collapse
Affiliation(s)
- Marialuisa Bocchino
- Dipartimento di Medicina Clinica e Sperimentale, Sezione di Malattie dell'Apparato Respiratorio, Università Federico II, Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Russo RC, Garcia CC, Barcelos LS, Rachid MA, Guabiraba R, Roffê E, Souza ALS, Sousa LP, Mirolo M, Doni A, Cassali GD, Pinho V, Locati M, Teixeira MM. Phosphoinositide 3-kinase γ plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice. J Leukoc Biol 2010; 89:269-82. [PMID: 21048214 DOI: 10.1189/jlb.0610346] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PI3Kγ is central in signaling diverse arrays of cellular functions and inflammation. Pulmonary fibrosis is associated with pulmonary inflammation, angiogenesis, and deposition of collagen and is modeled by instillation of bleomycin. The role of PI3Kγ in mediating bleomycin-induced pulmonary inflammation and fibrosis in mice and potential mechanisms involved was investigated here. WT or PI3Kγ KO mice were instilled with bleomycin and leukocyte subtype influx, cytokine and chemokine levels, and angiogenesis and tissue fibrosis evaluated. The activation of lung-derived leukocytes and fibroblasts was evaluated in vitro. The relevance of PI3Kγ for endothelial cell function was evaluated in HUVECs. PI3Kγ KO mice had greater survival and weight recovery and less fibrosis than WT mice after bleomycin instillation. This was associated with decreased production of TGF-β(1) and CCL2 and increased production of IFN-γ and IL-10. There was reduced expression of collagen, fibronectin, α-SMA, and von Willebrand factor and decreased numbers and activation of leukocytes and phosphorylation of AKT and IκB-α. PI3Kγ KO mice had a reduced number and area of blood vessels in the lungs. In vitro, treatment of human endothelial cells with the PI3Kγ inhibitor AS605240 decreased proliferation, migration, and formation of capillary-like structures. AS605240 also decreased production of collagen by murine lung-derived fibroblasts. PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury, angiogenesis, and fibrosis through the modulation of leukocyte, fibroblast, and endothelial cell functions. Inhibitors of PI3Kγ may be beneficial for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Remo C Russo
- Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Russo RC, Alessandri AL, Garcia CC, Cordeiro BF, Pinho V, Cassali GD, Proudfoot AEI, Teixeira MM. Therapeutic effects of evasin-1, a chemokine binding protein, in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2010; 45:72-80. [PMID: 20833968 DOI: 10.1165/rcmb.2009-0406oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CC chemokines play an important role in the pathogenesis of idiopathic pulmonary fibrosis. Few studies have evaluated the efficacy of therapeutically targeting CC chemokines and their receptors during interstitial lung diseases. In the present study, the therapeutic effects of Evasin-1, a tick-derived chemokine-binding protein that has high affinity for CCL3/microphage inflammatory protein (MIP)-1α, was investigated in a murine model of bleomycin-induced lung fibrosis. CCL3/MIP-1α concentrations in lung homogenates increased significantly with time after bleomycin challenge, and this was accompanied by increased number of leukocytes and elevated levels of CCL2/monocyte chemoattractant protein (MCP)-1, CCL5/regulated upon activation, normal T cell expressed and secreted, TNF-α and transforming growth factor-β(1), and pulmonary fibrosis. Administration of evasin-1 on a preventive (from the day of bleomycin administration) or therapeutic (from Day 8 after bleomycin) schedule decreased number of leukocytes in the lung, reduced levels of TNF-α and transforming growth factor-β(1), and attenuated lung fibrosis. These protective effects were similar to those observed in CCL3/MIP-1α-deficient mice. In conclusion, targeting CCL3/MIP-1α by treatment with evasin-1 is beneficial in the context of bleomycin-induced lung injury, even when treatment is started after the fibrogenic insult. Mechanistically, evasin-1 treatment was associated with decreased recruitment of leukocytes and production of fibrogenic cytokines. Modulation of CCL3/MIP-1α function by evasin-1 could be useful for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas-Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 30882-650-Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gupte VV, Ramasamy SK, Reddy R, Lee J, Weinreb PH, Violette SM, Guenther A, Warburton D, Driscoll B, Minoo P, Bellusci S. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 2009; 180:424-36. [PMID: 19498056 DOI: 10.1164/rccm.200811-1794oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Fibroblast growth factor-10 (FGF10) controls survival, proliferation, and differentiation of distal-alveolar epithelial progenitor cells during lung development. OBJECTIVES To test for the protective and regenerative effect of Fgf10 overexpression in a bleomycin-induced mouse model of pulmonary inflammation and fibrosis. METHODS In SP-C-rtTA; tet(O)Fgf10 double-transgenic mice, lung fibrosis was induced in 2-month-old transgenic mice by subcutaneous delivery of bleomycin (BLM), using an osmotic minipump for 1 week. Exogenous Fgf10 expression in the alveolar epithelium was induced for 7 days with doxycycline during the first, second, and third weeks after bleomycin pump implantation, and lungs were examined at 28 days. MEASUREMENTS AND MAIN RESULTS Fgf10 overexpression during Week 1 (inflammatory phase) resulted in increased survival and attenuated lung fibrosis score and collagen deposition. In these Fgf10-overexpressing mice, an increase in regulatory T cells and a reduction in both transforming growth factor-beta(1) and matrix metalloproteinase-2 activity were observed in bronchoalveolar lavage fluids whereas the number of surfactant protein C (SP-C)-positive, alveolar epithelial type II cells (AEC2) was markedly elevated. Analysis of SP-C and TUNEL (terminal deoxynucleotidyltransferase dUTP nick end labeling) double-positive cells and isolation of AEC2 from lungs overexpressing Fgf10 demonstrated increased AEC2 survival. Expression of Fgf10 during Weeks 2 and 3 (fibrotic phase) showed significant attenuation of the lung fibrosis score and collagen deposition. CONCLUSIONS In the bleomycin model of lung inflammation and fibrosis, Fgf10 overexpression during both the inflammatory and fibrotic phases results in a greatly reduced extent of lung fibrosis, suggesting that FGF10 may be useful as a novel approach to the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Varsha V Gupte
- Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Pulmonary fibrosis and architectural remodeling of tissues can severely disrupt lung function, often with fatal consequences. The etiology of pulmonary fibrotic diseases is varied, with an array of triggers including allergens, chemicals, radiation and environmental particles. However, the cause of one of the most common pulmonary fibrotic conditions, idiopathic pulmonary fibrosis (IPF), is still unclear. This review examines common mechanisms of pulmonary wound-healing responses following lung injury, and highlights the pathogenesis of some of the most widespread pulmonary fibrotic diseases. A three phase model of wound repair is reviewed that includes; (1) injury; (2) inflammation; and (3) repair. In most pulmonary fibrotic conditions dysregulation at one or more of these phases has been reported. Chronic inflammation can lead to an imbalance in the production of chemokines, cytokines, growth factors, and disrupt cellular recruitment. These changes coupled with excessive pro-fibrotic IL-13 and/or TGFbeta1 production can turn a well-controlled healing response into a pathogenic fibrotic response. Endogenous regulatory mechanisms are discussed including novel areas of therapeutic intervention. Restoring homeostasis to these dysregulated healing responses, or simply neutralizing the key pro-fibrotic mediators may prevent or slow the progression of pulmonary fibrosis.
Collapse
|
24
|
Kim JY, Choeng HC, Ahn C, Cho SH. Early and late changes of MMP-2 and MMP-9 in bleomycin-induced pulmonary fibrosis. Yonsei Med J 2009; 50:68-77. [PMID: 19259351 PMCID: PMC2649867 DOI: 10.3349/ymj.2009.50.1.68] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/20/2008] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of pulmonary fibrosis. To understand the role of MMP-2 and MMP-9 in pulmonary fibrosis, we evaluated the sequential dynamic change and different cellular sources of the 2 MMPs along the time course and their differential expression in the bronchoalveolar lavage (BAL) fluid and in the lung parenchyma of the bleomycin-induced pulmonary fibrosis models in rats. MATERIALS AND METHODS The level of MMPs in BAL fluid of 54 bleomycin-treated rats was assessed by zymography from 1 to 28 days after intratracheal bleomycin instillation. The level of MMPs in lung parenchyma was evaluated by immunohistochemistry. RESULTS MMP-2 and MMP-9 were markedly increased in both the BAL fluid and in the lung parenchyma of the bleomycin-treated rats, especially in the early phase with the peak on the 4th day. The levels of both MMPs in the BAL fluid correlated generally well to those in lung parenchyma, although the level of MMP-9 in BAL fluid was higher than MMP-2. In the lung parenchyma, the 2 MMPs, in early stage, were predominantly expressed in the inflammatory cells. In late stage, type II pneumocytes and alveolar epithelial cells at the periphery of the fibrotic foci retained MMP expression, which was more prominent in the cells showing features of cellular injury and/or repair. CONCLUSION In bleomycin-induced pulmonary fibrosis, MMP-2 and MMP-9 may play important roles, especially in the early phase. In the late stage, the MMP-2 and MMP-9 may play a role in the process of repair.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do, Korea
| | - Hyun Cheol Choeng
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Cancer Metastasis Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Cheolmin Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Ho Cho
- Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do, Korea
| |
Collapse
|
25
|
Russo RC, Guabiraba R, Garcia CC, Barcelos LS, Roffê E, Souza ALS, Amaral FA, Cisalpino D, Cassali GD, Doni A, Bertini R, Teixeira MM. Role of the chemokine receptor CXCR2 in bleomycin-induced pulmonary inflammation and fibrosis. Am J Respir Cell Mol Biol 2008; 40:410-21. [PMID: 18836137 DOI: 10.1165/rcmb.2007-0364oc] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary fibrosis is characterized by chronic inflammation and excessive collagen deposition. Neutrophils are thought to be involved in the pathogenesis of lung fibrosis. We hypothesized that CXCR2-mediated neutrophil recruitment is essential for the cascade of events leading to bleomycin-induced pulmonary fibrosis. CXCL1/KC was detected as early as 6 hours after bleomycin instillation and returned to basal levels after Day 8. Neutrophils were detected in bronchoalveolar lavage and interstitium from 12 hours and peaked at Day 8 after instillation. Treatment with the CXCR2 receptor antagonist, DF2162, reduced airway neutrophil transmigration but led to an increase of neutrophils in lung parenchyma. There was a significant reduction in IL-13, IL-10, CCL5/RANTES, and active transforming growth factor (TGF)-beta(1) levels, but not on IFN-gamma and total TGF-beta(1,) and enhanced granulocyte macrophage-colony-stimulating factor production in DF2162-treated animals. Notably, treatment with the CXCR2 antagonist led to an improvement of the lung pathology and reduced collagen deposition. Using a therapeutic schedule, DF2162 administered from Days 8 to 16 after bleomycin reduced pulmonary fibrosis and levels of active TGF-beta(1) and IL-13. DF2162 treatment reduced bleomycin-induced expression of von Willebrand Factor, a marker of angiogenesis, in the lung. In vitro, DF2162 reduced the angiogenic activity of IL-8 on human umbilical vein endothelial cells. In conclusion, we show that CXCR2 plays an important role in mediating fibrosis after bleomycin instillation. The compound blocks angiogenesis and the production of pro-angiogenic cytokines, and decreases IL-8-induced endothelial cell activation. An effect on neutrophils does not appear to account for the major effects of the blockade of CXCR2 in the system.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, CEP 30882-650-Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Vuokko L. Kinnula
- Department of Medicine, Pulmonary Division, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Bringardner BD, Baran CP, Eubank TD, Marsh CB. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal 2008; 10:287-301. [PMID: 17961066 PMCID: PMC2737712 DOI: 10.1089/ars.2007.1897] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The role of inflammation in idiopathic pulmonary fibrosis (IPF) is controversial. If inflammation were critical to the disease process, lung pathology would demonstrate an influx of inflammatory cells, and that the disease would respond to immunosuppression. Neither is true. The classic pathology does not display substantial inflammation, and no modulation of the immune system is effective as treatment. Recent data suggest that the pathophysiology of the disease is more a product of fibroblast dysfunction than of dysregulated inflammation. The role of inflammation in disease pathogenesis comes from pathology from atypical patients, biologic samples procured during exacerbations of the disease, and careful examination of biologic specimens from patients with stable disease. We suggest that inflammation is indeed a critical factor in IPF and propose five potential nontraditional mechanisms for the role of inflammation in the pathogenesis of IPF: the direct inflammatory hypothesis, the matrix hypothesis, the growth factor-receptor hypothesis, the plasticity hypothesis, and the vascular hypothesis. To address these, we review the literature exploring the differences in pathology, prognosis, and clinical course, as well as the role of cytokines, growth factors, and other mediators of inflammation, and last, the role of matrix and vascular supply in patients with IPF.
Collapse
Affiliation(s)
- Benjamin D Bringardner
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
28
|
Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin Immunol 2008; 20:130-6. [PMID: 18191409 DOI: 10.1016/j.smim.2007.11.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/13/2007] [Accepted: 11/16/2007] [Indexed: 01/16/2023]
Abstract
Evidence is emerging that biomaterials cause inflammation by ligating innate immune receptors on antigen presenting cells. Although inflammation is usually viewed as detrimental, it has unexpected and potentially beneficial effects on fibrosis and transplant rejection. For example, the magnitude of inflammation due to a biomaterial is not predictive of the extent of fibrosis. Similarly, biomaterials do not always show adjuvancy. Some biomaterials suppressed T cell rejection responses in vivo and in vitro, while others non-specifically stimulated T cell proliferation. Understanding these complex inter-relationships is the key to designing a biomaterial that stimulates regeneration and induces tolerance in tissue engineering applications.
Collapse
|
29
|
Gauldie J, Bonniaud P, Sime P, Ask K, Kolb M. TGF-beta, Smad3 and the process of progressive fibrosis. Biochem Soc Trans 2007; 35:661-4. [PMID: 17635115 DOI: 10.1042/bst0350661] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient adenovirus-mediated gene transfer of active TGF-beta1 (transforming growth factor-beta1) induces severe and progressive fibrosis in rodent lung without apparent inflammation. Alternatively, transfer of IL-1beta (interleukin 1beta) induces marked tissue injury and inflammation, which develops into progressive fibrosis, associated with an increase in TGF-beta1 concentrations in lung fluid and tissue. Both vector treatments induce a fibrotic response involving myofibroblasts and progressive matrix deposition starting at the peri-bronchial site of expression and extending over days to involve the entire lung and pleural surface. Administration of the TGF-beta1 vector to the pleural space induces progressive pleural fibrosis, which minimally extends into the lung parenchyma. The mechanisms involved in progressive fibrosis need to account for the limitation of fibrosis to specific organs (lung fibrosis and not liver fibrosis or vice versa) and the lack of effect of anti-inflammatory treatments in regulating progressive fibrosis. TGF-beta1 is a key cytokine in the process of fibrogenesis, using intracellular signalling pathways involving the ALK5 receptor and signalling molecules Smad2 and Smad3. Transient gene transfer of either TGF-beta1 or IL-1beta to Smad3-null mouse lung provides little evidence of progressive fibrosis and no fibrogenesis-associated genes are induced. These results suggest that mechanisms of progressive fibrosis involve factors presented within the context of the matrix that define the microenvironment for progressive matrix deposition.
Collapse
Affiliation(s)
- J Gauldie
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St West, Hamilton, ON, Canada L8N 3Z5.
| | | | | | | | | |
Collapse
|
30
|
Molina-Molina M, Pereda J, Xaubet A. Modelos experimentales para el estudio de la fibrosis pulmonar: utilidad práctica actual y futura. Arch Bronconeumol 2007. [DOI: 10.1157/13109471] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Srivastava PK, Dastidar SG, Ray A. Chronic obstructive pulmonary disease: role of matrix metalloproteases and future challenges of drug therapy. Expert Opin Investig Drugs 2007; 16:1069-78. [PMID: 17594190 DOI: 10.1517/13543784.16.7.1069] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
COPD is a chronic disease of the lung that is characterised by decreased air flow and associated abnormal inflammatory responses of the lungs. A total of 80% of COPD incidences are observed in patients with history of smoking tobacco. The chronic condition of COPD is characterised by airway remodelling, which leads to emphysema and chronic bronchitis. Inflammatory cells of the immune system play a major role in pathophysiology of COPD. High levels of neutrophils, macrophages and CD8(+) T cells have been found in bronchoalveolar lavage samples of COPD patients. Matrix metalloproteases (MMPs), which are secreted by these inflammatory cells, have the enzymatic capacity to cause morphological changes in the lungs and contribute significantly to the COPD state. Increased concentrations of MMP-1, -2, -9, -12 and so on have been found in bronchoalveolar lavage samples of COPD patients compared with non-COPD individuals. COPD is rated as among the top five diseases with high mortality rates and it is estimated that in the next 20 years, the healthcare cost alone for COPD will be US $800 million worldwide. The present drug therapies are neither very efficacious nor cost effective; hence, there is unmet medical need to discover small-molecule drugs for COPD. In this regard, synthetic MMP inhibitors show a great promise for COPD treatment.
Collapse
Affiliation(s)
- Punit K Srivastava
- Ranbaxy Research Laboratories, Department of Pharmacology, New Drug Discovery Research, Plot No-20, Sector-18, Udyog Vihar, Gurgaon, Haryana, India.
| | | | | |
Collapse
|
32
|
Abstract
The outcome of all cancer therapies, including radiation, has greatly improved in the last 25 years, resulting in a doubling of the number of long-term cancer survivors. However, a subset of these survivors incurs adverse chronic side effects in unavoidably irradiated normal tissues, persisting long after treatment and compromising the quality of life of these patients. Interpatient variability in normal tissue radiation response is well documented and suggested to be under genetic control. Fibrosis, a clinically significant late effect in many irradiated tissues that results in tissue remodeling and loss of function, is a complex genetic trait making identification of the underlying genes difficult. Current clinical and animal studies are providing information on the genetics and molecular basis of late normal tissue injury in the radiation therapy setting, bringing us closer to our dual goal of individualizing treatment by genetic profiling and improving the quality of life of long-term survivors.
Collapse
Affiliation(s)
- Elizabeth L Travis
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Abstract
The CXC chemokine family is a pleiotropic family of cytokines that are involved in promoting the trafficking of various leukocytes, in regulating angiogenesis and vascular remodeling, and in promoting the mobilization and trafficking of mesenchymal progenitor cells such as fibrocytes. These functions of CXC chemokines are important in the pathogenesis of pulmonary fibrosis and other fibroproliferative disorders. In this Review, we discuss the biology of CXC chemokine family members, specifically as it relates to their role in regulating vascular remodeling and trafficking of circulating mesenchymal progenitor cells (also known as fibrocytes) in pulmonary fibrosis.
Collapse
Affiliation(s)
- Robert M Strieter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
34
|
Pierce EM, Carpenter K, Jakubzick C, Kunkel SL, Flaherty KR, Martinez FJ, Hogaboam CM. Therapeutic targeting of CC ligand 21 or CC chemokine receptor 7 abrogates pulmonary fibrosis induced by the adoptive transfer of human pulmonary fibroblasts to immunodeficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1152-64. [PMID: 17392156 PMCID: PMC1829450 DOI: 10.2353/ajpath.2007.060649] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 x 10(6) primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7.
Collapse
MESH Headings
- Adoptive Transfer/adverse effects
- Adoptive Transfer/methods
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Chemokine CCL21
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Cytokines/metabolism
- Extracellular Matrix Proteins/genetics
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression/drug effects
- Humans
- Hydroxyproline/metabolism
- Injections, Intravenous
- Interleukin-13/metabolism
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Inbred ICR
- Mice, SCID
- Polymerase Chain Reaction
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/prevention & control
- Receptors, CCR7
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Elizabeth M Pierce
- Associate Professor, Immunology Program, Department of Pathology, University of Michigan Medical School, Room 4057, BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Manoury B, Nénan S, Guénon I, Lagente V, Boichot E. Influence of early neutrophil depletion on MMPs/TIMP-1 balance in bleomycin-induced lung fibrosis. Int Immunopharmacol 2007; 7:900-11. [PMID: 17499192 DOI: 10.1016/j.intimp.2007.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/20/2007] [Accepted: 02/20/2007] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix in interstitium resulting in respiratory failure associated with inflammation showing mainly neutrophil (PMN) recruitment. The turn over of extracellular matrix is partially regulated by proteases such as metalloproteinases (MMPs) and their inhibitors (TIMPs). We investigated the impact of PMN depletion on the MMP/TIMP-1 imbalance and the development of fibrosis in mice induced by bleomycin (0.3 mg/mouse). Administration of 200 microL of rabbit anti-mouse PMN antibody i.p. blunted the neutrophil influx detected in BAL and in whole blood one day after bleomycin administration. At day(14), hydroxyproline content was increased both in anti-PMN treated and control mice, without any difference between groups. At day one, bleomycin elicited a raise in pro-MMP-9 level in BAL that was significantly attenuated in anti-PMN depleted mice, whereas TIMP-1 and MMP-2 release were similar in both groups at day(1) and day(14). Higher RNA levels were observed in PMN-treated mice at day(1) for MMP-9 and MMP-2 and at day(14) for MMP-2 only. At day(14), bleomycin elicited a raise of TIMP-1 protein and RNA levels regardless of anti-PMN treatment, whereas MMP-9 returned to basal level. Bleomycin enhanced MMP-8 level in BAL at day(14) only for the control group. The amount of MMP-8 was more important in BAL from anti-PMN treated mice than in control mice at day(1) and day(14). PMN-depletion and the associated modifications in pro-MMP-9/TIMP-1 imbalance in lung during the early inflammatory phase do not alter susceptibility to bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Boris Manoury
- INSERM U620, IFR140, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes 1, Rennes, 35043, France
| | | | | | | | | |
Collapse
|
36
|
Molina-Molina M, Pereda J, Xaubet A. Experimental Models for the Study of Pulmonary Fibrosis: Current Usefulness and Future Promise. ACTA ACUST UNITED AC 2007; 43:501-7. [DOI: 10.1016/s1579-2129(07)60115-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Oikonomou N, Harokopos V, Zalevsky J, Valavanis C, Kotanidou A, Szymkowski DE, Kollias G, Aidinis V. Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS One 2006; 1:e108. [PMID: 17205112 PMCID: PMC1762410 DOI: 10.1371/journal.pone.0000108] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 11/23/2006] [Indexed: 02/07/2023] Open
Abstract
Background Fibrosis, the replacement of functional tissue with excessive fibrous tissue, can occur in all the main tissues and organ systems, resulting in various pathological disorders. Idiopathic Pulmonary Fibrosis is a prototype fibrotic disease involving abnormal wound healing in response to multiple sites of ongoing alveolar epithelial injury. Methodology/Principal Findings To decipher the role of TNF and TNF-mediated inflammation in the development of fibrosis, we have utilized the bleomycin-induced animal model of Pulmonary Fibrosis and a series of genetically modified mice lacking components of TNF signaling. Transmembrane TNF expression is shown to be sufficient to elicit an inflammatory response, but inadequate for the transition to the fibrotic phase of the disease. Soluble TNF expression is shown to be crucial for lymphocyte recruitment, a prerequisite for TGF-b1 expression and the development of fibrotic lesions. Moreover, through a series of bone marrow transfers, the necessary TNF expression is shown to originate from the non-hematopoietic compartment further localized in apoptosing epithelial cells. Conclusions These results suggest a primary detrimental role of soluble TNF in the pathologic cascade, separating it from the beneficial role of transmembrane TNF, and indicate the importance of assessing the efficacy of soluble TNF antagonists in the treatment of Idiopathic Pulmonary Fibrosis.
Collapse
MESH Headings
- Animals
- Bleomycin/toxicity
- Bone Marrow Transplantation
- Disease Models, Animal
- Humans
- Idiopathic Pulmonary Fibrosis/drug therapy
- Idiopathic Pulmonary Fibrosis/etiology
- Inflammation/chemically induced
- Inflammation/etiology
- Inflammation/metabolism
- Inflammation/pathology
- Lymphocytes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pulmonary Fibrosis/chemically induced
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Signal Transduction
- Solubility
- Transforming Growth Factor beta1/biosynthesis
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Nikos Oikonomou
- Institute of Immunology, Biomedical Sciences Research Center “Alexander Fleming,” Athens, Greece
| | - Vaggelis Harokopos
- Institute of Immunology, Biomedical Sciences Research Center “Alexander Fleming,” Athens, Greece
| | | | - Christos Valavanis
- Molecular Pathology Unit, Department of Pathology, Metaxa Cancer Hospital, Piraeus, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care, Medical School, University of Athens, Athens, Greece
| | | | - George Kollias
- Institute of Immunology, Biomedical Sciences Research Center “Alexander Fleming,” Athens, Greece
| | - Vassilis Aidinis
- Institute of Immunology, Biomedical Sciences Research Center “Alexander Fleming,” Athens, Greece
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Manoury B, Caulet-Maugendre S, Guénon I, Lagente V, Boichot E. TIMP-1 is a key factor of fibrogenic response to bleomycin in mouse lung. Int J Immunopathol Pharmacol 2006; 19:471-87. [PMID: 17026855 DOI: 10.1177/039463200601900303] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pulmonary fibrosis is characterized by the excessive deposition of extracellular matrix in the interstitium, resulting in respiratory failure. The role of remodeling mediators such as metalloproteinases (MMPs) and their inhibitors (TIMPs) in the fibrogenic process remains misunderstood. We investigated MMP-9, MMP-2, TIMP-1, TIMP-2 and TIMP-3 in the fibrotic response to bleomycin of fibrosis prone C57BL/6J and fibrosis resistant BALB/c mice. Mice were administered with 0.1 mg bleomycin by intranasal administration. Either 24 h or 14 days after, the mice were anesthetized and underwent either bronchoalveolear lavage (BAL) or lung removal. Collagen deposition in lung tissue was determined by hydroxyproline measurement, MMP activity was analyzed by zymography, and other mediators were analyzed by ELISA. TIMP-1 was localized in lung sections by immunohistochemistry and real time PCR was performed to gene expression in lung. Non parametric Mann-Whitney and Spearman tests were used for statistical analysis. Fourteen days after bleomycin administration, hydroxyproline assay and histological study revealed that BALB/c mice developed significantly less fibrosis compared to C57BL/6J mice. At day 1, bleomycin enhanced TIMP-1, MMP-2 and MMP-9 protein levels in BALF, and induced corresponding genes in lung tissue of both strains. The rise of Timp-1, Mmp-9 and Mmp-2 gene levels were significantly stronger in lungs of C57BL/6J, whereas gelatinase activities of MMP-2 and MMP-9 were similar. Immunohistochemistry revealed that TIMP-1 macrophages and epithelial cells were prominent TIMP-1 producers in both strains. At day 14, neither MMP-2 nor MMP-9 levels exhibited strain-dependent protein level or gene expression, although TIMP-1 was strongly associated with fibrosis. Interestingly, bleomycin induced neither Timp-2 nor Timp-3 in lung tissue at any time of the study. The present study shows that early altered regulation of TIMP-1 following bleomycin administration may be involved in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- B Manoury
- INSERM U620, University of Rennes, France
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Mura M, Belmonte G, Fanti S, Contini P, Pacilli AMG, Fasano L, Zompatori M, Schiavina M, Fabbri M. Inflammatory activity is still present in the advanced stages of idiopathic pulmonary fibrosis. Respirology 2006; 10:609-14. [PMID: 16268914 DOI: 10.1111/j.1440-1843.2005.00757.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The role of active inflammation in idiopathic pulmonary fibrosis (IPF) is controversial. A gallium-67 citrate (Ga(67) scan) is a sensitive indicator of inflammatory activity. The aim of this study was to assess the Ga(67) uptake and other markers of inflammation at different stages of IPF and to investigate its prognostic role. METHODOLOGY Twenty-two patients (aged 66 +/- 11 years, 18 males) with IPF were monitored for a period of 6-20 months (mean 13 months). At presentation (T0), high resolution CT (HRCT) scans showed reticular opacities and traction bronchiectasis with bi-basilar and peripheral distribution in all cases. At both T0 and follow-up (T1), we measured pulmonary function (PaO(2), FVC, DLco), overall radiographic extent of fibrosis (HRCT visual score), Ga(67) uptake, serum concentrations of lactate dehydrogenase (LDH) and C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). RESULTS All parameters showed a significant deterioration during the T0-T1 interval, though the increase in Ga(67) uptake and serum markers was not significant. Patients with Ga(67) uptake indices graded as normal or mildly increased (group I), and graded as considerably or severely increased (group II) at presentation, were compared. There was no significant difference with respect to lung function or HRCT score between the two groups at T1. Ga(67) uptake, LDH, CRP and ESR at presentation did not correlate significantly with the interval change in pulmonary function and disease extent. CONCLUSIONS Our findings indicate that inflammatory activity in the advanced stage of IPF is still relevant, although a Ga(67) scan is not predictive of the clinical course.
Collapse
Affiliation(s)
- Marco Mura
- UO Fisiopatologia Respiratoria, Policlinico Sant'Orsola-Malpighi, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Prasse A, Pechkovsky DV, Toews GB, Jungraithmayr W, Kollert F, Goldmann T, Vollmer E, Müller-Quernheim J, Zissel G. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med 2006; 173:781-92. [PMID: 16415274 DOI: 10.1164/rccm.200509-1518oc] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Recently, models of macrophage activation have been revised. Macrophages stimulated with Th2 cytokines have been classified as alternatively activated. OBJECTIVES This article examines the expression and regulation of CC chemokine ligand 18 (CCL18), a marker of alternative activation, by human alveolar macrophages (AMs). METHODS AM were obtained from bronchoalveolar lavage (BAL) fluid of patients with idiopathic pulmonary fibrosis, sarcoidosis, or hypersensitivity pneumonitis (n = 69) and healthy volunteers (n = 22). Expression of CCL18 was determined by quantitative reverse transcriptase-polymerase chain reaction, in situ hybridization, flow cytometry, and immunohistochemistry, respectively. MEASUREMENTS AND MAIN RESULTS Spontaneous CCL18 production by BAL-derived cells was markedly increased in patients with pulmonary fibrosis and correlated negatively with pulmonary function test parameters. CCL18 gene expression and protein production were up-regulated in normal AMs after Th2 cytokine stimulation and/or coculture with human lung fibroblasts. Native collagen significantly up-regulated CCL18 expression in normal AMs activated with Th2 cytokines via a mechanism mediated by beta2-integrin/ scavenger receptor(s). Culture supernatants of AMs from patients with idiopathic pulmonary fibrosis increased collagen production by normal lung fibroblasts partly mediated via CCL18. CONCLUSIONS Our findings suggest that AMs from patients with pulmonary fibrosis disclose a phenotype of alternative activation and might be a part of a positive feedback loop with lung fibroblasts perpetuating fibrotic processes.
Collapse
Affiliation(s)
- Antje Prasse
- Department of Pneumology, University Hospital, Killianstr. 5, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M. TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. THE JOURNAL OF IMMUNOLOGY 2005; 175:5390-5. [PMID: 16210645 DOI: 10.4049/jimmunol.175.8.5390] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient adenovirus-mediated gene transfer of IL-1beta (AdIL-1beta), a proinflammatory cytokine, induces marked inflammation and severe and progressive fibrosis in rat lungs. This is associated with an increase in TGF-beta1 concentration in bronchoalveolar lavage (BAL) fluid. TGF-beta1 is a key cytokine in the process of fibrogenesis, using intracellular signaling pathways involving Smad2 and Smad3. In this study we investigate whether inflammation induced by IL-1beta is able to independently induce lung fibrosis in mice deficient in the Smad3 gene. Seven days after AdIL-1beta administration, similar levels of IL-1beta transgene are seen in BAL in both wild-type (WT) and knockout (KO) mice, and BAL cell profiles demonstrated a similar marked neutrophilic inflammation. Phospho-Smad2 staining was positive in areas of inflammation in both WT and KO mice at day 7. By day 35 after transient IL-1beta expression, WT mice showed marked fibrosis in peribronchial areas, quantified by picrosirius red staining and morphometry. However, there was no evidence of fibrosis or collagen accumulation in IL-1beta-treated KO mice, and peribronchial areas were not different from KO mice treated with the control adenovector. TGF-beta1 and phospho-Smad2 were strongly positive at day 35 in fibrotic areas observed in WT mice, but no such staining was detectable in KO mice. The IL-1beta-induced chronic fibrotic response in mouse lungs is dependent on Smad3. KO and WT animals demonstrated a similar inflammatory response to overexpression of IL-1beta indicating that inflammation must link to the Smad3 pathway, likely through TGF-beta, to induce progressive fibrosis.
Collapse
Affiliation(s)
- Philippe Bonniaud
- Department of Pathology and Molecular Medicine, Center for Gene Therapeutics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Noble PW, Homer RJ. Back to the future: historical perspective on the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2005; 33:113-20. [PMID: 16024580 DOI: 10.1165/rcmb.f301] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul W Noble
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, TAC-441C, New Haven, CT 06520-8057, USA.
| | | |
Collapse
|
44
|
Lagente V, Manoury B, Nénan S, Le Quément C, Martin-Chouly C, Boichot E. Role of matrix metalloproteinases in the development of airway inflammation and remodeling. Braz J Med Biol Res 2005; 38:1521-30. [PMID: 16172745 DOI: 10.1590/s0100-879x2005001000009] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate extracellular matrix (ECM) turnover and so they have been suggested to be important in the process of lung disease associated with tissue remodeling. This has led to the concept that modulation of airway remodeling including excessive proteolysis damage to the tissue may be of interest for future treatment. Within the MMP family, macrophage elastase (MMP-12) is able to degrade ECM components such as elastin and is involved in tissue remodeling processes in chronic obstructive pulmonary disease including emphysema. Pulmonary fibrosis has an aggressive course and is usually fatal within an average of 3 to 6 years after the onset of symptoms. Pulmonary fibrosis is associated with deposition of ECM components in the lung interstitium. The excessive airway remodeling as a result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components could justify anti-protease treatments. Indeed, the correlation of the differences in hydroxyproline levels in the lungs of bleomycin-treated mice strongly suggests that a reduced molar pro-MMP-9/TIMP-1 ratio in bronchoalveolar lavage fluid is associated with collagen deposition, beginning as early as the inflammatory events at day 1 after bleomycin administration. Finally, these observations emphasize that effective treatment of these disorders must be started early during the natural history of the disease, prior to the development of extensive lung destruction and fibrosis.
Collapse
Affiliation(s)
- V Lagente
- INSERM U620, Faculté de Pharmacie, Université de Rennes 1, Rennes, France.
| | | | | | | | | | | |
Collapse
|
45
|
Genovese T, Di Paola R, Mazzon E, Muià C, Caputi AP, Cuzzocrea S. Melatonin limits lung injury in bleomycin treated mice. J Pineal Res 2005; 39:105-12. [PMID: 16098086 DOI: 10.1111/j.1600-079x.2005.00229.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Melatonin is the principal secretory product of the pineal gland and its role as an immuno-modulator is well established. Recent evidence shows that melatonin is a scavenger of oxyradicals and peroxynitrite and exerts protective effects in septic shock, hemorrhagic shock and inflammation. The aim of this study was to investigate the effect of melatonin on the lung injury caused by bleomycin (BLM) administration. Mice subjected to intratracheal administration of BLM developed significant lung injury characterized by a marked neutrophil infiltration [assessed by myeloperoxidase (MPO) activity] and by tissue edema. In addition, an increase of immunoreactivity to nitrotyrosine, poly-ADP-ribose (PAR) was also observed in the lung of BLM-treated mice. Also, lung injury induced by BLM administration was correlated with a significant loss of body weight and with a significant mortality. Administration of melatonin (10 mg/kg i.p.) daily significantly reduced the (i) loss of body weight, (ii) mortality rate, (iii) infiltration of the lung with polymorphonuclear neutrophils (MPO activity), (iv) edema formation and (v) histological evidence of lung injury. Administration of melatonin also markedly reduced the nitrotyrosine and PAR formation. Taken together, our results demonstrate that treatment with melatonin significantly reduces lung injury induced by BLM in the mice.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina Torre Biologica, Policlinico Universitario, Messina, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Substantial challenges remain in our understanding of fibrotic lung diseases. Nowhere is this more true than in the elucidation and verification of the pathogenetic basis upon which they develop. Scientific progress, most recently in the field of experimental therapy, has relied closely on interpreting data derived from animal modeling. Such models are used to identify the cellular interactions and molecular pathways involved in lung tissue repair and fibrosis. Over the coming years, the significance of new discoveries will continue to be evaluated using the in vivo analysis of animal models substituting for patients with actual pulmonary fibrosis. The commonest strategy to induce experimental pulmonary fibrosis is by directly administering a profibrotic agent to either wild-type animals or those that bear a specific genetic modification. The creation of new models has been greatly enhanced by the availability of stem cell lines and methods for introducing genetic mutations into these cells. Despite an increasing choice of models, there are still good reasons to continue adapting and using one of its earliest examples, the bleomycin model, in post-genomic pulmonary fibrosis research. A brief review of the exacting requirements of such research will place the strengths of this particular model in perspective.
Collapse
Affiliation(s)
- Felix Chua
- Centre for Respiratory Research, Royal Free and University College London School of Medicine, London, UK.
| | | | | |
Collapse
|
47
|
|
48
|
Khalil N, O'Connor R. Idiopathic pulmonary fibrosis: current understanding of the pathogenesis and the status of treatment. CMAJ 2004; 171:153-60. [PMID: 15262886 PMCID: PMC450366 DOI: 10.1503/cmaj.1030055] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal pulmonary fibrotic lung disease. The diagnostic histological changes are called usual interstitial pneumonia and are characterized by histological temporal heterogeneity, whereby normal lung tissue is interspersed with interstitial fibrosis, honeycomb cysts and fibroblast foci. Pulmonary functions show restricted volumes and capacities, preserved flows and evidence of decreased gas exchange. High-resolution computed axial tomography demonstrates evidence of fibrosis and lung remodelling such as honeycomb cysts and traction bronchiectasis. There is no known effective treatment for IPF, but lung transplantation improves survival.
Collapse
Affiliation(s)
- Nasreen Khalil
- Respiratory Division, Vancouver Coastal Health Research Institute, Vancouver, BC.
| | | |
Collapse
|
49
|
Choi ES, Jakubzick C, Carpenter KJ, Kunkel SL, Evanoff H, Martinez FJ, Flaherty KR, Toews GB, Colby TV, Kazerooni EA, Gross BH, Travis WD, Hogaboam CM. Enhanced monocyte chemoattractant protein-3/CC chemokine ligand-7 in usual interstitial pneumonia. Am J Respir Crit Care Med 2004; 170:508-15. [PMID: 15191918 DOI: 10.1164/rccm.200401-002oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemokines are increased and may exert effects on both inflammatory and remodeling events in idiopathic pulmonary pneumonia (IIP). Accordingly, we examined the concomitant expression of inflammatory CC chemotactic cytokines or chemokines and their corresponding receptors in surgical lung biopsies obtained at the time of disease diagnosis and pulmonary fibroblasts grown from these biopsies. By gene array analysis, upper and lower lobe biopsies and primary fibroblast lines from patients with usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia, and respiratory bronchiolitis-interstitial lung disease, but not patients without IIP, exhibited CCL7 gene expression. TAQMAN, immunohistochemical, and ELISA analyses confirmed that CCL7 was expressed at significantly higher levels in UIP lung biopsies compared with biopsies from patients with nonspecific interstitial pneumonia, respiratory bronchiolitis-interstitial lung disease, and from patients without IIP. Higher levels of CCL7 were present in cultures of IIP fibroblasts compared with non-IIP fibroblasts, and CCL5, a CCR5 agonist, significantly increased the synthesis of CCL7 by UIP fibroblasts. Together, these data suggest that CCL7 is highly expressed in biopsies and pulmonary fibroblast lines obtained from patients with UIP relative to patients with other IIP and patients without IIP, and that this CC chemokine may have a major role in the progression of fibrosis in this IIP patient group.
Collapse
Affiliation(s)
- Esther S Choi
- Department of Pathology, University of Michigan Medical School, Rm. 5216B, Med Sci I, 1301 Catherine Rd., Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|