1
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Carollo PS, Tutone M, Culletta G, Fiduccia I, Corrao F, Pibiri I, Di Leonardo A, Zizzo MG, Melfi R, Pace A, Almerico AM, Lentini L. Investigating the Inhibition of FTSJ1, a Tryptophan tRNA-Specific 2'-O-Methyltransferase by NV TRIDs, as a Mechanism of Readthrough in Nonsense Mutated CFTR. Int J Mol Sci 2023; 24:9609. [PMID: 37298560 PMCID: PMC10253411 DOI: 10.3390/ijms24119609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, coding for the CFTR chloride channel. About 10% of the CFTR gene mutations are "stop" mutations that generate a premature termination codon (PTC), thus synthesizing a truncated CFTR protein. A way to bypass PTC relies on ribosome readthrough, which is the ribosome's capacity to skip a PTC, thus generating a full-length protein. "TRIDs" are molecules exerting ribosome readthrough; for some, the mechanism of action is still under debate. We investigate a possible mechanism of action (MOA) by which our recently synthesized TRIDs, namely NV848, NV914, and NV930, could exert their readthrough activity by in silico analysis and in vitro studies. Our results suggest a likely inhibition of FTSJ1, a tryptophan tRNA-specific 2'-O-methyltransferase.
Collapse
Affiliation(s)
| | - Marco Tutone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (P.S.C.); (G.C.); (I.F.); (F.C.); (I.P.); (A.D.L.); (M.G.Z.); (R.M.); (A.P.); (A.M.A.)
| | | | | | | | | | | | | | | | | | | | - Laura Lentini
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (P.S.C.); (G.C.); (I.F.); (F.C.); (I.P.); (A.D.L.); (M.G.Z.); (R.M.); (A.P.); (A.M.A.)
| |
Collapse
|
3
|
Kerschner JL, Paranjapye A, Harris A. Cellular heterogeneity in the 16HBE14o - airway epithelial line impacts biological readouts. Physiol Rep 2023; 11:e15700. [PMID: 37269165 PMCID: PMC10238858 DOI: 10.14814/phy2.15700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/04/2023] Open
Abstract
The airway epithelial cell line, 16HBE14o- , is an important cell model for studying airway disease. 16HBE14o- cells were originally generated from primary human bronchial epithelial cells by SV40-mediated immortalization, a process that is associated with genomic instability through long-term culture. Here, we explore the heterogeneity of these cells, with respect to expression of the cystic fibrosis transmembrane conductance regulator (CFTR) transcript and protein. We isolate clones of 16HBE14o- with stably higher and lower levels of CFTR in comparison to bulk 16HBE14o- , designated CFTRhigh and CFTRlow . Detailed characterization of the CFTR locus in these clones by ATAC-seq and 4C-seq showed open chromatin profiles and higher order chromatin structure that correlate with CFTR expression levels. Transcriptomic profiling of CFTRhigh and CFTRlow cells showed that the CFTRhigh cells had an elevated inflammatory/innate immune response phenotype. These results encourage caution in interpreting functional data from clonal lines of 16HBE14o- cells, generated after genomic or other manipulations.
Collapse
Affiliation(s)
- Jenny L. Kerschner
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Alekh Paranjapye
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOhioUSA
- Present address:
Department of GeneticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
4
|
Gasparello J, d'Aversa E, Breveglieri G, Borgatti M, Finotti A, Gambari R. In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR. Int Immunopharmacol 2021; 101:108201. [PMID: 34653729 PMCID: PMC8492649 DOI: 10.1016/j.intimp.2021.108201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022]
Abstract
One of the major clinical features of COVID-19 is a hyperinflammatory state, which is characterized by high expression of cytokines (such as IL-6 and TNF-α), chemokines (such as IL-8) and growth factors and is associated with severe forms of COVID-19. For this reason, the control of the “cytokine storm” represents a key issue in the management of COVID-19 patients. In this study we report evidence that the release of key proteins of the COVID-19 “cytokine storm” can be inhibited by mimicking the biological activity of microRNAs. The major focus of this report is on IL-8, whose expression can be modified by the employment of a molecule mimicking miR-93-5p, which is able to target the IL-8 RNA transcript and modulate its activity. The results obtained demonstrate that the production of IL-8 protein is enhanced in bronchial epithelial IB3-1 cells by treatment with the SARS-CoV-2 Spike protein and that IL-8 synthesis and extracellular release can be strongly reduced using an agomiR molecule mimicking miR-93-5p.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisabetta d'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy; Italian Consortium for Biotechnologies (C.I.B.), Italy.
| |
Collapse
|
5
|
Clauzure M, Valdivieso ÁG, Dugour AV, Mori C, Massip‐Copiz MM, Aguilar MÁ, Sotomayor V, Asensio CJA, Figueroa JM, Santa‐Coloma TA. NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (CASP1) modulation by intracellular Cl - concentration. Immunology 2021; 163:493-511. [PMID: 33835494 PMCID: PMC8274155 DOI: 10.1111/imm.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The impairment of the cystic fibrosis transmembrane conductance regulator (CFTR) activity induces intracellular chloride (Cl- ) accumulation. The anion Cl- , acting as a second messenger, stimulates the secretion of interleukin-1β (IL-1β), which starts an autocrine positive feedback loop. Here, we show that NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (CASP1) are indirectly modulated by the intracellular Cl- concentration, showing maximal expression and activity at 75 mM Cl- , in the presence of the ionophores nigericin and tributyltin. The expression of PYD and CARD domain containing (PYCARD/ASC) remained constant from 0 to 125 mM Cl- . The CASP1 inhibitor VX-765 and the NLRP3 inflammasome inhibitor MCC950 completely blocked the Cl- -stimulated IL-1β mRNA expression and partially the IL-1β secretion. DCF fluorescence (cellular reactive oxygen species, cROS) and MitoSOX fluorescence (mitochondrial ROS, mtROS) also showed maximal ROS levels at 75 mM Cl- , a response strongly inhibited by the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase (NOX) inhibitor GKT137831. These inhibitors also affected CASP1 and NLRP3 mRNA and protein expression. More importantly, the serum/glucocorticoid regulated kinase 1 (SGK1) inhibitor GSK650394, or its shRNAs, completely abrogated the IL-1β mRNA response to Cl- and the IL-1β secretion, interrupting the autocrine IL-1β loop. The results suggest that Cl- effects are mediated by SGK1, in which under Cl- modulation stimulates the secretion of mature IL-1β, in turn, responsible for the upregulation of ROS, CASP1, NLRP3 and IL-1β itself, through autocrine signalling.
Collapse
Affiliation(s)
- Mariángeles Clauzure
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
- Faculty of Veterinary ScienceNational University of La Pampa (UNLPam)General PicoArgentina
| | - Ángel G. Valdivieso
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | | | - Consuelo Mori
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | - María M. Massip‐Copiz
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | - María Á. Aguilar
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | - Verónica Sotomayor
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | - Cristian J. A. Asensio
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | | | - Tomás A. Santa‐Coloma
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| |
Collapse
|
6
|
Gasparello J, D'Aversa E, Papi C, Gambari L, Grigolo B, Borgatti M, Finotti A, Gambari R. Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153583. [PMID: 34033999 PMCID: PMC8095027 DOI: 10.1016/j.phymed.2021.153583] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND A key clinical feature of COVID-19 is a deep inflammatory state known as "cytokine storm" and characterized by high expression of several cytokines, chemokines and growth factors, including IL-6 and IL-8. A direct consequence of this inflammatory state in the lungs is the Acute Respiratory Distress Syndrome (ARDS), frequently observed in severe COVID-19 patients. The "cytokine storm" is associated with severe forms of COVID-19 and poor prognosis for COVID-19 patients. Sulforaphane (SFN), one of the main components of Brassica oleraceae L. (Brassicaceae or Cruciferae), is known to possess anti-inflammatory effects in tissues from several organs, among which joints, kidneys and lungs. PURPOSE The objective of the present study was to determine whether SFN is able to inhibit IL-6 and IL-8, two key molecules involved in the COVID-19 "cytokine storm". METHODS The effects of SFN were studied in vitro on bronchial epithelial IB3-1 cells exposed to the SARS-CoV-2 Spike protein (S-protein). The anti-inflammatory activity of SFN on IL-6 and IL-8 expression has been evaluated by RT-qPCR and Bio-Plex analysis. RESULTS In our study SFN inhibits, in cultured IB3-1 bronchial cells, the gene expression of IL-6 and IL-8 induced by the S-protein of SARS-CoV-2. This represents the proof-of-principle that SFN may modulate the release of some key proteins of the COVID-19 "cytokine storm". CONCLUSION The control of the cytokine storm is one of the major issues in the management of COVID-19 patients. Our study suggests that SFN can be employed in protocols useful to control hyperinflammatory state associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy.
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Italian Consortium for Biotechnologies (C.I.B.); Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy.
| |
Collapse
|
7
|
García R, Falduti C, Clauzure M, Jara R, Massip-Copiz MM, de Los Ángeles Aguilar M, Santa-Coloma TA, Valdivieso ÁG. CFTR chloride channel activity modulates the mitochondrial morphology in cultured epithelial cells. Int J Biochem Cell Biol 2021; 135:105976. [PMID: 33845203 DOI: 10.1016/j.biocel.2021.105976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
The impairment of the CFTR channel activity, a cAMP-activated chloride (Cl-) channel responsible for cystic fibrosis (CF), has been associated with a variety of mitochondrial alterations such as modified gene expression, impairment in oxidative phosphorylation, increased reactive oxygen species (ROS), and a disbalance in calcium homeostasis. The mechanisms by which these processes occur in CF are not fully understood. Previously, we demonstrated a reduced MTND4 expression and a failure in the mitochondrial complex I (mCx-I) activity in CF cells. Here we hypothesized that the activity of CFTR might modulate the mitochondrial fission/fusion balance, explaining the decreased mCx-I. The mitochondrial morphology and the levels of mitochondrial dynamic proteins MFN1 and DRP1 were analysed in IB3-1 CF cells, and S9 (IB3-1 expressing wt-CFTR), and C38 (IB3-1 expressing a truncated functional CFTR) cells. The mitochondrial morphology of IB3-1 cells compared to S9 and C38 cells showed that the impaired CFTR activity induced a fragmented mitochondrial network with increased rounded mitochondria and shorter branches. Similar results were obtained by using the CFTR pharmacological inhibitors CFTR(inh)-172 and GlyH101 on C38 cells. These morphological changes were accompanied by modifications in the levels of the mitochondrial dynamic proteins MFN1, DRP1, and p(616)-DRP1. IB3-1 CF cells treated with Mdivi-1, an inhibitor of mitochondrial fission, restored the mCx-I activity to values similar to those seen in S9 and C38 cells. These results suggest that the mitochondrial fission/fusion balance is regulated by the CFTR activity and might be a potential target to treat the impaired mCx-I activity in CF.
Collapse
Affiliation(s)
- Rocío García
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Camila Falduti
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Raquel Jara
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María M Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María de Los Ángeles Aguilar
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Massip-Copiz MM, Valdivieso ÁG, Clauzure M, Mori C, Asensio CJA, Aguilar MÁ, Santa-Coloma TA. Epidermal growth factor receptor activity upregulates lactate dehydrogenase A expression, lactate dehydrogenase activity, and lactate secretion in cultured IB3-1 cystic fibrosis lung epithelial cells. Biochem Cell Biol 2021; 99:476-487. [PMID: 33481676 DOI: 10.1139/bcb-2020-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It has been postulated that reduced HCO3- transport through CFTR may lead to a decreased airway surface liquid pH. In contrast, others have reported no changes in the extracellular pH (pHe). We have recently reported that in carcinoma Caco-2/pRS26 cells (transfected with short hairpin RNA for CFTR) or CF lung epithelial IB3-1 cells, the mutation in CFTR decreased mitochondrial complex I activity and increased lactic acid production, owing to an autocrine IL-1β loop. The secreted lactate accounted for the reduced pHe, because oxamate fully restored the pHe. These effects were attributed to the IL-1β autocrine loop and the downstream signaling kinases c-Src and JNK. Here we show that the pHe of IB3-1 cells can be restored to normal values (∼7.4) by incubation with the epidermal growth factor receptor (EGFR, HER1, ErbB1) inhibitors AG1478 and PD168393. PD168393 fully restored the pHe values of IB3-1 cells, suggesting that the reduced pHe is mainly due to increased EGFR activity and lactate. Also, in IB3-1 cells, lactate dehydrogenase A mRNA, protein expression, and activity are downregulated when EGFR is inhibited. Thus, a constitutive EGFR activation seems to be responsible for the reduced pHe in IB3-1 cells.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - María Á Aguilar
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| |
Collapse
|
9
|
O'Loughlin J, Hall RJ, Bhaker S, Portelli MA, Henry A, Pang V, Bates DO, Sharp TV, Sayers I. Extended lifespan of bronchial epithelial cells maintains normal cellular phenotype and transcriptome integrity. ERJ Open Res 2021; 7:00254-2020. [PMID: 33532474 PMCID: PMC7836642 DOI: 10.1183/23120541.00254-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic studies have identified several epithelial-derived genes associated with airway diseases. However, techniques used to study gene function frequently exceed the proliferative potential of primary human bronchial epithelial cells (HBECs) isolated from patients. Increased expression of the polycomb group protein BMI-1 extends the lifespan of HBECs while maintaining cell context plasticity. Herein we aimed to assess how BMI-1 expression impacted cellular functions and global mRNA expression. HBECs from six donors were transduced with lentivirus containing BMI-1 and cells were characterised, including by RNA sequencing and impedance measurement. BMI-1-expressing HBECs (B-HBECs) have a proliferative advantage and show comparable in vitro properties to low passage primary HBECs, including cell attachment/spreading and barrier formation. The B-HBEC mRNA signature was modestly different to HBECs, with only 293 genes differentially expressed (5% false discovery rate). Genes linked to epithelial mesenchymal transition and cell cycle were enriched in B-HBECs. We investigated the expression of genes implicated in asthma from genetic and expression studies and found that 97.6% of genes remained unaltered. We have shown that increased BMI-1 expression in HBECs delays lung epithelial cell senescence by promoting cell cycle progression and highlighted the flexible utility for B-HBECs as an important platform for studying airway epithelial mechanisms. A method to extend the lifespan of primary human bronchial epithelial cells that maintain a normal epithelial cell phenotype, thus providing a platform to investigate respiratory disease mechanisms over prolonged periodshttps://bit.ly/353Rklc
Collapse
Affiliation(s)
- Jonathan O'Loughlin
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| | - Robert J Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| | - Sangita Bhaker
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Michael A Portelli
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Amanda Henry
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Vincent Pang
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK
| | - Tyson V Sharp
- Centre of Cancer Cell and Molecular Biology, Barts Cancer Institute Queen Mary University of London, London, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| |
Collapse
|
10
|
Lambré CR, Aufderheide M, Bolton RE, Fubini B, Haagsman HP, Hext PM, Jorissen M, Landry Y, Morin JP, Nemery B, Nettesheim P, Pauluhn J, Richards RJ, Vickers AE, Wu R. In Vitro Tests for Respiratory Toxicity. Altern Lab Anim 2020. [DOI: 10.1177/026119299602400506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claude R. Lambré
- Department of Toxicology-Ecotoxicology, INERIS, 60550 Verneuil en Halatte, France
| | - Michaela Aufderheide
- Fraunhofer Institute of Toxicology & Aerosol Research, Nikola-Fuchs-Strasse 1, 3000 Hannover 61, Germany
| | - Robert E. Bolton
- Institute of Occupational Medicine, University of Edinburgh, 8 Roxburgh Place, Edinburgh EH8 9SU, UK
| | - Bice Fubini
- Dipartimento di Chimica Inorganica Chimica Fisica, Universitá di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Henk P. Haagsman
- Laboratory of Veterinary Biochemistry, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Paul M. Hext
- ZENECA Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK
| | - Mark Jorissen
- Centre for Human Genetics, University Hospital Campus Gathuisberg, Herestraat 49, 3000 Louvain, Belgium
| | - Yves Landry
- CJF INSERM, N9105, Faculté de Pharmacie, 67401 Illkirch, France
| | - Jean-Paul Morin
- INSERM U295, Université de Rouen, 97 Avenue de l'Université, 76803 Saint Etienne de Rouvray, France
| | - Benoit Nemery
- Laboratorium voor Pneumologie, Katholieke Universiteit Leuven, Herestraat 49, 3000 Louvain, Belgium
| | - Paul Nettesheim
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jürgen Pauluhn
- Abtelung Inhalationstoxikologie, Pharma-Forschungszentrum, Bayer AG, Aprather Weg, 42096 Wuppertal, Germany
| | - Roy J. Richards
- Department of Biochemistry, University College of Wales, Cardiff CF1 1ST, UK
| | | | - Reen Wu
- California Regional Primate Research Center, Hutchison Avenue, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci 2020; 21:ijms21134781. [PMID: 32640650 PMCID: PMC7369808 DOI: 10.3390/ijms21134781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons (PTCs) responsible for a truncated CFTR protein and a more severe form of the disease. Aminoglycoside and PTC124 derivatives have been used for the read-through of PTCs to restore the full-length CFTR protein. However, in a precision medicine framework, the CRISPR/dCas13b-based molecular tool “REPAIRv2” (RNA Editing for Programmable A to I Replacement, version 2) could be a good alternative to restore the full-length CFTR protein. This RNA editing approach is based on the targeting of the deaminase domain of the hADAR2 enzyme fused to the dCas13b protein to a specific adenosine to be edited to inosine in the mutant mRNA. Targeting specificity is allowed by a guide RNA (gRNA) complementarily to the target region and recognized by the dCas13b protein. Here, we used the REPAIRv2 platform to edit the UGA PTC to UGG in different cell types, namely IB3-1 cells, HeLa, and FRT cells engineered to express H2BGFPopal and CFTRW1282X, respectively.
Collapse
|
12
|
Rayner RE, Wellmerling J, Osman W, Honesty S, Alfaro M, Peeples ME, Cormet-Boyaka E. In vitro 3D culture lung model from expanded primary cystic fibrosis human airway cells. J Cyst Fibros 2020; 19:752-761. [PMID: 32565193 DOI: 10.1016/j.jcf.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND In vitro cystic fibrosis (CF) models are crucial for understanding the mechanisms and consequences of the disease. They are also the gold standard for pre-clinical efficacy studies of current and novel CF drugs. However, few studies have investigated expansion and differentiation of primary CF human bronchial epithelial (CF-HBE) cells. Here we describe culture conditions to expand primary CF airway cells while preserving their ability to differentiate into 3D epithelial cultures expressing functional cystic fibrosis transmembrane conductance regulator (CFTR) ion channels that responds to CFTR modulators. METHODS Primary CF airway cells were expanded using PneumaCultTM-Ex Plus (StemCell Technologies) medium with no feeder cells or added Rho kinase (ROCK) inhibitor. Differentially passaged CF-HBE cells at the air-liquid interface (ALI) were characterized phenotypically and functionally in response to the CFTR corrector drug VX-661 (Tezacaftor). RESULTS CF-HBE primary cells, expanded up to six passages (~25 population doublings), differentiated into 3D epithelial cultures as evidenced by trans-epithelial electrical resistance (TEER) of >400 Ohms∙cm2 and presence of pseudostratified columnar ciliated epithelium with goblet cells. However, up to passage five cells from most donors showed increased CFTR-mediated short-circuit currents when treated with the corrector drug, VX-661. Ciliary beat frequency (CBF) also increased with the corrector VX-661. CONCLUSIONS CF donor-derived airway cells can be expanded without the use of feeder cells or additional ROCK inhibitor, and still achieve optimal 3D epithelial cultures that respond to CFTR modulators. The study of rare CF mutations could benefit from cell expansion and could lead to the design of personalized medicine/treatments.
Collapse
Affiliation(s)
- Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Jack Wellmerling
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Wissam Osman
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Sean Honesty
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Maria Alfaro
- Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Poschet JF, Perkett EA, Timmins GS, Deretic V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.29.008631. [PMID: 32511331 PMCID: PMC7239066 DOI: 10.1101/2020.03.29.008631] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is interest in the use of chloroquine/hydroxychloroquine (CQ/HCQ) and azithromycin (AZT) in COVID-19 therapy. Employing cystic fibrosis respiratory epithelial cells, here we show that drugs AZT and ciprofloxacin (CPX) act as acidotropic lipophilic weak bases and confer in vitro effects on intracellular organelles similar to the effects of CQ. These seemingly disparate FDA-approved antimicrobials display a common property of modulating pH of endosomes and trans-Golgi network. We believe this may in part help understand the potentially beneficial effects of CQ/HCQ and AZT in COVID-19, and that the present considerations of HCQ and AZT for clinical trials should be extended to CPX.
Collapse
Affiliation(s)
- Jens F. Poschet
- Departments of Molecular Genetics and Microbiology, University of New Mexico Health Science Center
| | - Elizabeth A. Perkett
- Departments of Pediatrics, University of New Mexico Health Science Center
- Departments of Internal Medicine, University of New Mexico Health Science Center
| | - Graham S. Timmins
- Pharmaceutical Sciences, University of New Mexico Health Science Center
| | - Vojo Deretic
- Departments of Molecular Genetics and Microbiology, University of New Mexico Health Science Center
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Science Center
| |
Collapse
|
14
|
Bellisola G, Caldrer S, Cestelli-Guidi M, Cinque G. Infrared biomarkers of impaired cystic fibrosis transmembrane regulator protein biogenesis. JOURNAL OF BIOPHOTONICS 2020; 13:e201900174. [PMID: 31654605 DOI: 10.1002/jbio.201900174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The mid-infrared (IR) spectra of human cystic fibrosis (CF) cells acquired by Fourier transform infrared microspectroscopy were compared with those of non-CF cells. Within the 1700 to 1480 cm-1 spectral domain of amides, unsupervised explorative principal component analysis identified a few variables reflecting quantitative and qualitative vibrations arising from protein secondary structures and amino acid side chains. Their pattern reflected α-helix to β-sheet transitions in bronchial epithelial cells and in immortalized peripheral blood mononuclear cells from patients with R1162X missense or in-frame F508del mutations in the cystic fibrosis transmembrane regulator gene (Cftr). Similar transitions have been described in IR spectra of cells, tissues and body fluids of patients affected with some neurodegenerative diseases characterized by the accumulation of misfolded protein aggregates. The variables pattern was able to distinguish CF cells from non-CF cells and was modified by molecular compounds used to rescue the unbalanced folding process of mutated cystic fibrosis transmembrane regulator (CFTR) anion channel. To our knowledge, this is the first experimental evidence of spectroscopic biomarkers of the impaired biogenesis of CFTR by IR microanalysis in the spectra of human CF bronchial epithelial and lymphoblastoid cells.
Collapse
Affiliation(s)
- Giuseppe Bellisola
- Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Frascati, Rome, Italy
| | - Sara Caldrer
- IRCSS Sacro Cuore - Don Calabria, Centro Malattie Tropicali, Negrar, Verona, Italy
| | | | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| |
Collapse
|
15
|
Palma Medina LM, Becker AK, Michalik S, Yedavally H, Raineri EJM, Hildebrandt P, Gesell Salazar M, Surmann K, Pförtner H, Mekonnen SA, Salvati A, Kaderali L, van Dijl JM, Völker U. Metabolic Cross-talk Between Human Bronchial Epithelial Cells and Internalized Staphylococcus aureus as a Driver for Infection. Mol Cell Proteomics 2019; 18:892-908. [PMID: 30808728 PMCID: PMC6495256 DOI: 10.1074/mcp.ra118.001138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is infamous for causing recurrent infections of the human respiratory tract. This is a consequence of its ability to adapt to different niches, including the intracellular milieu of lung epithelial cells. To understand the dynamic interplay between epithelial cells and the intracellular pathogen, we dissected their interactions over 4 days by mass spectrometry. Additionally, we investigated the dynamics of infection through live cell imaging, immunofluorescence and electron microscopy. The results highlight a major role of often overlooked temporal changes in the bacterial and host metabolism, triggered by fierce competition over limited resources. Remarkably, replicating bacteria reside predominantly within membrane-enclosed compartments and induce apoptosis of the host within ∼24 h post infection. Surviving infected host cells carry a subpopulation of non-replicating bacteria in the cytoplasm that persists. Altogether, we conclude that, besides the production of virulence factors by bacteria, it is the way in which intracellular resources are used, and how host and intracellular bacteria subsequently adapt to each other that determines the ultimate outcome of the infectious process.
Collapse
Affiliation(s)
- Laura M Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Harita Yedavally
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Henrike Pförtner
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Solomon A Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands;.
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;.
| |
Collapse
|
16
|
Valdivieso ÁG, Clauzure M, Massip-Copiz MM, Cancio CE, Asensio CJA, Mori C, Santa-Coloma TA. Impairment of CFTR activity in cultured epithelial cells upregulates the expression and activity of LDH resulting in lactic acid hypersecretion. Cell Mol Life Sci 2019; 76:1579-1593. [PMID: 30599064 PMCID: PMC11105536 DOI: 10.1007/s00018-018-3001-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Mutations in the gene encoding the CFTR chloride channel produce cystic fibrosis (CF). CF patients are more susceptible to bacterial infections in lungs. The most accepted hypothesis sustains that a reduction in the airway surface liquid (ASL) volume favor infections. Alternatively, it was postulated that a reduced HCO3- transport through CFTR leads to a decreased ASL pH, favoring bacterial colonization. The issue is controversial, since recent data from cultured primary cells and CF children showed normal pH values in the ASL. We have reported previously a decreased mitochondrial Complex I (mCx-I) activity in cultured cells with impaired CFTR activity. Thus, we hypothesized that the reduced mCx-I activity could lead to increased lactic acid production (Warburg-like effect) and reduced extracellular pH (pHe). In agreement with this idea, we report here that cells with impaired CFTR function (intestinal Caco-2/pRS26, transfected with an shRNA-CFTR, and lung IB3-1 CF cells) have a decreased pHe. These cells showed increased lactate dehydrogenase (LDH) activity, LDH-A expression, and lactate secretion. Similar effects were reproduced in control cells stimulated with recombinant IL-1β. The c-Src and JNK inhibitors PP2 and SP600125 were able to increase the pHe, although the differences between control and CFTR-impaired cells were not fully compensated. Noteworthy, the LDH inhibitor oxamate completely restored the pHe of the intestinal Caco-2/pRS26 cells and have a significant effect in lung IB3-1 cells; therefore, an increased lactic acid secretion seems to be the key factor that determine a reduced pHe in these epithelial cells.
Collapse
Affiliation(s)
- Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - María M Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Carla E Cancio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| |
Collapse
|
17
|
TALEN-Mediated Gene Targeting for Cystic Fibrosis-Gene Therapy. Genes (Basel) 2019; 10:genes10010039. [PMID: 30641980 PMCID: PMC6356284 DOI: 10.3390/genes10010039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited monogenic disorder, amenable to gene-based therapies. Because CF lung disease is currently the major cause of mortality and morbidity, and the lung airway is readily accessible to gene delivery, the major CF gene therapy effort at present is directed to the lung. Although airway epithelial cells are renewed slowly, permanent gene correction through gene editing or targeting in airway stem cells is needed to perpetuate the therapeutic effect. Transcription activator-like effector nuclease (TALEN) has been utilized widely for a variety of gene editing applications. The stringent requirement for nuclease binding target sites allows for gene editing with precision. In this study, we engineered helper-dependent adenoviral (HD-Ad) vectors to deliver a pair of TALENs together with donor DNA targeting the human AAVS1 locus. With homology arms of 4 kb in length, we demonstrated precise insertion of either a LacZ reporter gene or a human cystic fibrosis transmembrane conductance regulator (CFTR) minigene (cDNA) into the target site. Using the LacZ reporter, we determined the efficiency of gene integration to be about 5%. In the CFTR vector transduced cells, we were able to detect CFTR mRNA expression using qPCR and function correction using fluorometric image plate reader (FLIPR) and iodide efflux assays. Taken together, these findings suggest a new direction for future in vitro and in vivo studies in CF gene editing.
Collapse
|
18
|
Scharf C, Eymann C, Emicke P, Bernhardt J, Wilhelm M, Görries F, Winter J, von Woedtke T, Darm K, Daeschlein G, Steil L, Hosemann W, Beule A. Improved Wound Healing of Airway Epithelial Cells Is Mediated by Cold Atmospheric Plasma: A Time Course-Related Proteome Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7071536. [PMID: 31223425 PMCID: PMC6541959 DOI: 10.1155/2019/7071536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/28/2019] [Indexed: 01/08/2023]
Abstract
The promising potential of cold atmospheric plasma (CAP) treatment as a new therapeutic option in the field of medicine, particularly in Otorhinolaryngology and Respiratory medicine, demands primarily the assessment of potential risks and the prevention of any direct and future cell damages. Consequently, the application of a special intensity of CAP that is well tolerated by cells and tissues is of particular interest. Although improvement of wound healing by CAP treatment has been described, the underlying mechanisms and the molecular influences on human tissues are so far only partially characterized. In this study, human S9 bronchial epithelial cells were treated with cold plasma of atmospheric pressure plasma jet that was previously proven to accelerate the wound healing in a clinically relevant extent. We studied the detailed cellular adaptation reactions for a specified plasma intensity by time-resolved comparative proteome analyses of plasma treated vs. nontreated cells to elucidate the mechanisms of the observed improved wound healing and to define potential biomarkers and networks for the evaluation of plasma effects on human epithelial cells. K-means cluster analysis and time-related analysis of fold-change factors indicated concordantly clear differences between the short-term (up to 1 h) and long-term (24-72 h) adaptation reactions. Thus, the induction of Nrf2-mediated oxidative and endoplasmic reticulum stress response, PPAR-alpha/RXR activation as well as production of peroxisomes, and prevention of apoptosis already during the first hour after CAP treatment are important cell strategies to overcome oxidative stress and to protect and maintain cell integrity and especially microtubule dynamics. After resolving of stress, when stress adaptation was accomplished, the cells seem to start again with proliferation and cellular assembly and organization. The observed strategies and identification of marker proteins might explain the accelerated wound healing induced by CAP, and these indicators might be subsequently used for risk assessment and quality management of application of nonthermal plasma sources in clinical settings.
Collapse
Affiliation(s)
- Christian Scharf
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Christine Eymann
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Philipp Emicke
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Jörg Bernhardt
- 2Institute for Microbiology, University of Greifswald, Germany
| | - Martin Wilhelm
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Fabian Görries
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Jörn Winter
- 3Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Thomas von Woedtke
- 3Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- 4Department of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Darm
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Georg Daeschlein
- 5Department of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- 6Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Germany
| | - Werner Hosemann
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Achim Beule
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
- 7Department of Otorhinolaryngology, University Hospital Münster, Münster, Germany
| |
Collapse
|
19
|
Cooney AL, McCray PB, Sinn PL. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes (Basel) 2018; 9:genes9110538. [PMID: 30405068 PMCID: PMC6266271 DOI: 10.3390/genes9110538] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a cAMP-regulated anion channel. Although CF is a multi-organ system disease, most people with CF die of progressive lung disease that begins early in childhood and is characterized by chronic bacterial infection and inflammation. Nearly 90% of people with CF have at least one copy of the ΔF508 mutation, but there are hundreds of CFTR mutations that result in a range of disease severities. A CFTR gene replacement approach would be efficacious regardless of the disease-causing mutation. After the discovery of the CFTR gene in 1989, the in vitro proof-of-concept for gene therapy for CF was quickly established in 1990. In 1993, the first of many gene therapy clinical trials attempted to rescue the CF defect in airway epithelia. Despite the initial enthusiasm, there is still no FDA-approved gene therapy for CF. Here we discuss the history of CF gene therapy, from the discovery of the CFTR gene to current state-of-the-art gene delivery vector designs. While implementation of CF gene therapy has proven more challenging than initially envisioned; thanks to continued innovation, it may yet become a reality.
Collapse
Affiliation(s)
- Ashley L Cooney
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Patrick L Sinn
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Xia E, Duan R, Shi F, Seigel KE, Grasemann H, Hu J. Overcoming the Undesirable CRISPR-Cas9 Expression in Gene Correction. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:699-709. [PMID: 30513454 PMCID: PMC6278715 DOI: 10.1016/j.omtn.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 01/06/2023]
Abstract
The CRISPR-Cas9 system is attractive for gene therapy, as it allows for permanent genetic correction. However, as a new technology, Cas9 gene editing in clinical applications faces major challenges, such as safe delivery and gene targeting efficiency. Cas9 is a foreign protein to recipient cells; thus, its expression may prompt the immune system to eliminate gene-edited cells. To overcome these challenges, we have engineered a novel delivery system based on the helper-dependent adenoviral (HD-Ad) vector, which is capable of delivering genes to airway basal stem cells in vivo. Using this system, we demonstrate the successful co-delivery of both CRISPR-Cas9/single-guide RNA and the LacZ reporter or CFTR gene as donor DNA to cultured cells. HD-Ad vector genome integrity is compromised following donor DNA integration, and because the CRISPR-Cas9/single-guide RNA and donor DNA are carried on the same vector, CRISPR-Cas9 expression is concurrently eliminated. Thus, we show the feasibility of site-specific gene targeting with limited Cas9 expression. In addition, we achieved stable CFTR expression and functional correction in cultured cells following successful gene integration.
Collapse
Affiliation(s)
- Emily Xia
- Translational Medicine, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Rongqi Duan
- Translational Medicine, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Fushan Shi
- Translational Medicine, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Kyle E Seigel
- Translational Medicine, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Hartmut Grasemann
- Translational Medicine, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Paediatrics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jim Hu
- Translational Medicine, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Paediatrics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Analysis of Staphylococcus aureus proteins secreted inside infected human epithelial cells. Int J Med Microbiol 2018; 308:664-674. [DOI: 10.1016/j.ijmm.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/24/2018] [Accepted: 06/16/2018] [Indexed: 11/22/2022] Open
|
22
|
Ziesemer S, Eiffler I, Schönberg A, Müller C, Hochgräfe F, Beule AG, Hildebrandt JP. Staphylococcus aureusα-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells. Am J Respir Cell Mol Biol 2018; 58:482-491. [DOI: 10.1165/rcmb.2016-0207oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, Zoological Institute, and
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Zoological Institute, and
| | | | | | - Falko Hochgräfe
- Junior Research Group Pathoproteomics, Competence Center Functional Genomics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Achim G. Beule
- Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, Greifswald, Germany; and
- Department of Otorhinolaryngology, University Hospital, Münster, Germany
| | | |
Collapse
|
23
|
Torr E, Heath M, Mee M, Shaw D, Sharp TV, Sayers I. Expression of polycomb protein BMI-1 maintains the plasticity of basal bronchial epithelial cells. Physiol Rep 2017; 4:4/16/e12847. [PMID: 27558999 PMCID: PMC5002903 DOI: 10.14814/phy2.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022] Open
Abstract
The airway epithelium is altered in respiratory disease and is thought to contribute to disease etiology. A caveat to disease research is that the technique of isolation of bronchial epithelial cells from patients is invasive and cells have a limited lifespan. The aim of this study was to extensively characterize the plasticity of primary human bronchial epithelial cells that have been engineered to delay cell senescence including the ability of these cells to differentiate. Cells were engineered to express BMI‐1 or hTERT using viral vector systems. Cells were characterized at passage (p) early (p5), mid (p10), and late (p15) stage for: BMI‐1, p16, and CK14 protein expression, viability and the ability to differentiate at air–liquid interface (ALI), using a range of techniques including immunohistochemistry (IHC), immunofluorescence (IF), transepithelial electrical resistance (TEER), scanning electron microscopy (SEM), MUC5AC and beta tubulin (BTUB) staining. BMI‐1‐expressing cells maintained elevated levels of the BMI‐1 protein and the epithelial marker CK14 and showed a suppression of p16. BMI‐1‐expressing cells had a viability advantage, differentiated at ALI, and had a normal karyotype. In contrast, hTERT‐expressing cells had a reduced viability, showed limited differentiation, and had an abnormal karyotype. We therefore provide extensive characterization of the plasticity of BMI‐1 expressing cells in the context of the ALI model. These cells retain properties of wild‐type cells and may be useful to characterize respiratory disease mechanisms in vitro over sustained periods.
Collapse
Affiliation(s)
- Elizabeth Torr
- Division of Respiratory Medicine, Queens Medical Centre University of Nottingham, Nottingham, United Kingdom
| | - Meg Heath
- Cytogenetics Unit, Nottingham City Hospital, Hucknall Road, Nottingham, United Kingdom
| | - Maureen Mee
- School of Life Sciences, Queens Medical Centre University of Nottingham, Nottingham, United Kingdom
| | - Dominick Shaw
- Division of Respiratory Medicine, Queens Medical Centre University of Nottingham, Nottingham, United Kingdom
| | - Tyson V Sharp
- Centre for Molecular Oncology, Barts Cancer Institute Queen Mary University of London, London, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, Queens Medical Centre University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
24
|
Clauzure M, Valdivieso ÁG, Massip-Copiz MM, Mori C, Dugour AV, Figueroa JM, Santa-Coloma TA. Intracellular Chloride Concentration Changes Modulate IL-1β Expression and Secretion in Human Bronchial Epithelial Cultured Cells. J Cell Biochem 2017; 118:2131-2140. [DOI: 10.1002/jcb.25850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/19/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| | - Ángel G. Valdivieso
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| | - María M. Massip-Copiz
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| | | | | | - Tomás A. Santa-Coloma
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| |
Collapse
|
25
|
Montagner G, Bezzerri V, Cabrini G, Fabbri E, Borgatti M, Lampronti I, Finotti A, Nielsen PE, Gambari R. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system. Int J Biol Macromol 2017; 99:492-498. [PMID: 28167114 DOI: 10.1016/j.ijbiomac.2017.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/23/2022]
Abstract
Discovery of novel antimicrobial agents against Pseudomonas aeruginosa able to inhibit bacterial growth as well as the resulting inflammatory response is a key goal in cystic fibrosis research. We report in this paper that a peptide nucleic acid (PNA3969) targeting the translation initiation region of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably, no effect on PAO1 induction of VEGF, GM-CSF and IL-17 was observed. Analogous experiments using a two base mis-match control PNA did not show such inhibition. Furthermore, no significant effects of the PNAs were seen on cell growth, apoptosis or secretome profile in uninfected IB3-1 cells (with the exception of a PNA-mediated up-regulation of PDGF, IL-17 and GM-CSF). Thus, we conclude that in cell culture an antimicrobial PNA against P. aeruginosa can inhibit the expression of pro-inflammatory cytokines otherwise induced by the infection. In particular, the effects of PNA-3969 on IL-8 gene expression are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection.
Collapse
Affiliation(s)
| | - Valentino Bezzerri
- Department of Pathology and Diagnostics, University Hospital of Verona, Italy
| | - Giulio Cabrini
- Department of Pathology and Diagnostics, University Hospital of Verona, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Ferrara, Italy
| | | | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara, Italy
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark.
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara, Italy.
| |
Collapse
|
26
|
Miller AD, De las Heras M, Yu J, Zhang F, Liu SL, Vaughan AE, Vaughan TL, Rosadio R, Rocca S, Palmieri G, Goedert JJ, Fujimoto J, Wistuba II. Evidence against a role for jaagsiekte sheep retrovirus in human lung cancer. Retrovirology 2017; 14:3. [PMID: 28107820 PMCID: PMC5248497 DOI: 10.1186/s12977-017-0329-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Jaagsiekte sheep retrovirus (JSRV) causes a contagious lung cancer in sheep and goats that can be transmitted by aerosols produced by infected animals. Virus entry into cells is initiated by binding of the viral envelope (Env) protein to a specific cell-surface receptor, Hyal2. Unlike almost all other retroviruses, the JSRV Env protein is also a potent oncoprotein and is responsible for lung cancer in animals. Of concern, Hyal2 is a functional receptor for JSRV in humans. RESULTS We show here that JSRV is fully capable of infecting human cells, as measured by its reverse transcription and persistence in the DNA of cultured human cells. Several studies have indicated a role for JSRV in human lung cancer while other studies dispute these results. To further investigate the role of JSRV in human lung cancer, we used highly-specific mouse monoclonal antibodies and a rabbit polyclonal antiserum against JSRV Env to test for JSRV expression in human lung cancer. JSRV Env expression was undetectable in lung cancers from 128 human subjects, including 73 cases of bronchioalveolar carcinoma (BAC; currently reclassified as lung invasive adenocarcinoma with a predominant lepidic component), a lung cancer with histology similar to that found in JSRV-infected sheep. The BAC samples included 8 JSRV DNA-positive samples from subjects residing in Sardinia, Italy, where sheep farming is prevalent and JSRV is present. We also tested for neutralizing antibodies in sera from 138 Peruvians living in an area where sheep farming is prevalent and JSRV is present, 24 of whom were directly exposed to sheep, and found none. CONCLUSIONS We conclude that while JSRV can infect human cells, JSRV plays little if any role in human lung cancer.
Collapse
Affiliation(s)
- A. Dusty Miller
- Fred Hutchinson Cancer Research Center, Seattle, WA USA
- Department of Pathology, University of Washington, Seattle, WA USA
- 17915 Edmundson Rd, Sisters, OR 97759 USA
| | | | - Jingyou Yu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH USA
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Canter, University of Missouri, Columbia, MO USA
| | - Fushun Zhang
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Canter, University of Missouri, Columbia, MO USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH USA
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Canter, University of Missouri, Columbia, MO USA
| | - Andrew E. Vaughan
- Fred Hutchinson Cancer Research Center, Seattle, WA USA
- Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Thomas L. Vaughan
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Raul Rosadio
- Veterinary Faculty, National University of San Marcos, Lima, Peru
| | - Stefano Rocca
- Department of Veterinary Medicine, Sassari University, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
27
|
Massip-Copiz MM, Clauzure M, Valdivieso ÁG, Santa-Coloma TA. CFTR impairment upregulates c-Src activity through IL-1β autocrine signaling. Arch Biochem Biophys 2017; 616:1-12. [PMID: 28088327 DOI: 10.1016/j.abb.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/24/2022]
Abstract
Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Previously, we found several genes showing a differential expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; its expression and activity was found increased in CFDE cells, acting as a signaling molecule between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells (CF cells) also showed increased c-Src activity compared to 'CFTR-corrected' S9 cells. In addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by using the NOX1/4 inhibitor GKT137831. Thus, IL-1β→c-Src and IL-1β→NOX signaling pathways appear to be responsible for the production of cellular and mitochondrial ROS in CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, located upstream of c-Src, which is stimulated in cells with impaired CFTR activity.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Ángel Gabriel Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Tomás Antonio Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
28
|
Hildebrandt P, Surmann K, Salazar MG, Normann N, Völker U, Schmidt F. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells. Cytometry A 2016; 89:932-940. [PMID: 27643682 DOI: 10.1002/cyto.a.22981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/01/2016] [Accepted: 08/30/2016] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that is able to cause a broad range of infectious diseases in humans. Furthermore, S. aureus is able to survive inside nonprofessional phagocytic host cell which serve as a niche for the pathogen to hide from the immune system and antibiotics therapies. Modern OMICs technologies provide valuable tools to investigate host-pathogen interactions upon internalization. However, these experiments are often hampered by limited capabilities to retrieve bacteria from such an experimental setting. Thus, the aim of this study was to develop a labeling strategy allowing fast detection and quantitation of S. aureus in cell lysates or infected cell lines by flow cytometry for subsequent proteome analyses. Therefore, S. aureus cells were labeled with the DNA stain SYTO® 9, or Vancomycin BODIPY® FL (VMB), a glycopeptide antibiotic binding to most Gram-positive bacteria which was conjugated to a fluorescent dye. Staining of S. aureus HG001 with SYTO 9 allowed counting of bacteria from pure cultures but not in cell lysates from infection experiments. In contrast, with VMB it was feasible to stain bacteria from pure cultures as well as from samples of infection experiments. VMB can also be applied for histocytochemistry analysis of formaldehyde fixed cell layers grown on coverslips. Proteome analyses of S. aureus labeled with VMB revealed that the labeling procedure provoked only minor changes on proteome level and allowed cell sorting and analysis of S. aureus from infection settings with sensitivity similar to continuous gfp expression. Furthermore, VMB labeling allowed precise counting of internalized bacteria and can be employed for downstream analyses, e.g., proteomics, of strains not easily amendable to genetic manipulation such as clinical isolates. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Petra Hildebrandt
- Department Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,ZIK-FunGene University Medicine Greifswald, Department Functional Genomics, Greifswald, Germany
| | - Kristin Surmann
- Department Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,ZIK-FunGene University Medicine Greifswald, Department Functional Genomics, Greifswald, Germany
| | - Manuela Gesell Salazar
- Department Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Normann
- Department Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,ZIK-FunGene University Medicine Greifswald, Department Functional Genomics, Greifswald, Germany
| | - Uwe Völker
- Department Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,ZIK-FunGene University Medicine Greifswald, Department Functional Genomics, Greifswald, Germany
| | - Frank Schmidt
- Department Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany. .,ZIK-FunGene University Medicine Greifswald, Department Functional Genomics, Greifswald, Germany.
| |
Collapse
|
29
|
Liu PY, Li ST, Shen FF, Ko WH, Yao XQ, Yang D. A small synthetic molecule functions as a chloride–bicarbonate dual-transporter and induces chloride secretion in cells. Chem Commun (Camb) 2016; 52:7380-3. [DOI: 10.1039/c6cc01964a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A C2 symmetric small molecule composed of l-phenylalanine and isophthalamide was found to function as a Cl−/HCO3− dual transporter and self-assemble into chloride channels.
Collapse
Affiliation(s)
- Peng-Yun Liu
- Morningside Laboratory for Chemical Biology
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Shing-To Li
- Morningside Laboratory for Chemical Biology
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Fang-Fang Shen
- Morningside Laboratory for Chemical Biology
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Wing-Hung Ko
- School of Biomedical Sciences
- The Chinese University of Hong Kong
- P. R. China
| | - Xiao-Qiang Yao
- School of Biomedical Sciences
- The Chinese University of Hong Kong
- P. R. China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| |
Collapse
|
30
|
David J, Bell RE, Clark GC. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells. Front Cell Infect Microbiol 2015; 5:80. [PMID: 26636042 PMCID: PMC4649042 DOI: 10.3389/fcimb.2015.00080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022] Open
Abstract
Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan David
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK
| | - Rachel E Bell
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK ; Division of Immunology, Infection and Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London London, UK
| | - Graeme C Clark
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK
| |
Collapse
|
31
|
Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506059. [PMID: 26539504 PMCID: PMC4619824 DOI: 10.1155/2015/506059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.
Collapse
|
32
|
Oglesby IK, Vencken SF, Agrawal R, Gaughan K, Molloy K, Higgins G, McNally P, McElvaney NG, Mall MA, Greene CM. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J 2015; 46:1350-60. [PMID: 26160865 DOI: 10.1183/09031936.00163414] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/29/2015] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases.
Collapse
Affiliation(s)
- Irene K Oglesby
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland Both authors contributed equally
| | - Sebastian F Vencken
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland Both authors contributed equally
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Kevin Gaughan
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Kevin Molloy
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Gerard Higgins
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Paul McNally
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
33
|
Richter E, Harms M, Ventz K, Gierok P, Chilukoti RK, Hildebrandt JP, Mostertz J, Hochgräfe F. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS One 2015; 10:e0122089. [PMID: 25816343 PMCID: PMC4376684 DOI: 10.1371/journal.pone.0122089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Responsiveness of cells to alpha-toxin (Hla) from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of the epidermal growth factor receptor EGFR and mitogen-activated protein kinases MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects.
Collapse
Affiliation(s)
- Erik Richter
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Manuela Harms
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Katharina Ventz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Philipp Gierok
- Department of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Ravi Kumar Chilukoti
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, 17489, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute, University of Greifswald, 17487, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
- * E-mail:
| |
Collapse
|
34
|
Ryan A, Smith A, Moore P, McNally S, Carrington SD, Reid CJ, Clyne M. Expression and Characterization of a Novel Recombinant Version of the Secreted Human Mucin MUC5AC in Airway Cell Lines. Biochemistry 2015; 54:1089-99. [DOI: 10.1021/bi5011267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Aindrias Ryan
- The School of Medicine and Medical
Science, ‡Conway Institute of Biomolecular
and Biomedical Research, and §School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Angeline Smith
- The School of Medicine and Medical
Science, ‡Conway Institute of Biomolecular
and Biomedical Research, and §School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Moore
- The School of Medicine and Medical
Science, ‡Conway Institute of Biomolecular
and Biomedical Research, and §School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Susan McNally
- The School of Medicine and Medical
Science, ‡Conway Institute of Biomolecular
and Biomedical Research, and §School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stephen D. Carrington
- The School of Medicine and Medical
Science, ‡Conway Institute of Biomolecular
and Biomedical Research, and §School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Colm J. Reid
- The School of Medicine and Medical
Science, ‡Conway Institute of Biomolecular
and Biomedical Research, and §School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Marguerite Clyne
- The School of Medicine and Medical
Science, ‡Conway Institute of Biomolecular
and Biomedical Research, and §School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Hermann I, Räth S, Ziesemer S, Volksdorf T, Dress RJ, Gutjahr M, Müller C, Beule AG, Hildebrandt JP. Staphylococcus aureusHemolysin A Disrupts Cell–Matrix Adhesions in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2015; 52:14-24. [DOI: 10.1165/rcmb.2014-0082oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Interference with ubiquitination in CFTR modifies stability of core glycosylated and cell surface pools. Mol Cell Biol 2014; 34:2554-65. [PMID: 24777605 DOI: 10.1128/mcb.01042-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is recognized that both wild-type and mutant CFTR proteins undergo ubiquitination at multiple lysines in the proteins and in one or more subcellular locations. We hypothesized that ubiquitin is added to specific sites in wild-type CFTR to stabilize it and at other sites to signal for proteolysis. Mass spectrometric analysis of wild-type CFTR identified ubiquitinated lysines 68, 710, 716, 1041, and 1080. We demonstrate that the ubiquitinated K710, K716, and K1041 residues stabilize wild-type CFTR, protecting it from proteolysis. The polyubiquitin linkage is predominantly K63. N-tail mutants, K14R and K68R, lead to increased mature band CCFTR, which can be augmented by proteasomal (but not lysosomal) inhibition, allowing trafficking to the surface. The amount of CFTR in the K1041R mutant was drastically reduced and consisted of bands A/B, suggesting that the site in transmembrane 10 (TM10) was critical to further processing beyond the proteasome. The K1218R mutant increases total and cell surface CFTR, which is further accumulated by proteasomal and lysosomal inhibition. Thus, ubiquitination at residue 1218 may destabilize wild-type CFTR in both the endoplasmic reticulum (ER) and recycling pools. Small molecules targeting the region of residue 1218 to block ubiquitination or to preserving structure at residues 710 to 716 might be protein sparing for some forms of cystic fibrosis.
Collapse
|
37
|
Haghi M, Ong HX, Traini D, Young P. Across the pulmonary epithelial barrier: Integration of physicochemical properties and human cell models to study pulmonary drug formulations. Pharmacol Ther 2014; 144:235-52. [DOI: 10.1016/j.pharmthera.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/30/2014] [Indexed: 11/16/2022]
|
38
|
Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun 2014; 5:5105. [PMID: 25290234 DOI: 10.1038/ncomms6105] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022] Open
Abstract
Young cystic fibrosis (CF) patients' airways are mainly colonized by Staphylococcus aureus, while Pseudomonas aeruginosa predominates in adults. However, the mechanisms behind this infection switch are unclear. Here, we show that levels of type-IIA-secreted phospholipase A2 (sPLA2-IIA, a host enzyme with bactericidal activity) increase in expectorations of CF patients in an age-dependent manner. These levels are sufficient to kill S. aureus, with marginal effects on P. aeruginosa strains. P. aeruginosa laboratory strains and isolates from CF patients induce sPLA2-IIA expression in bronchial epithelial cells from CF patients (these cells are a major source of the enzyme). In an animal model of lung infection, P. aeruginosa induces sPLA2-IIA production that favours S. aureus killing. We suggest that sPLA2-IIA induction by P. aeruginosa contributes to S. aureus eradication in CF airways. Our results indicate that a bacterium can eradicate another bacterium by manipulating the host immunity.
Collapse
|
39
|
Seegmiller AC. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: biochemical mechanisms and clinical implications. Int J Mol Sci 2014; 15:16083-99. [PMID: 25216340 PMCID: PMC4200767 DOI: 10.3390/ijms150916083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying biochemical mechanism for some of these changes, namely increased expression and activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate to arachidonate. Increased desaturase expression appears to be linked to cystic fibrosis mutations via stimulation of the AMP-activated protein kinase in the absence of functional CFTR protein. There is evidence that these abnormalities may contribute to disease pathophysiology by increasing production of eicosanoids, such as prostaglandins and leukotrienes, of which arachidonate is a key substrate. Understanding these underlying mechanisms provides key insights that could potentially impact the diagnosis, clinical monitoring, nutrition, and therapy of patients suffering from this deadly disease.
Collapse
Affiliation(s)
- Adam C Seegmiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 4918B TVC, 1301 Medical Center Dr., Nashville, TN 37027, USA.
| |
Collapse
|
40
|
Loberto N, Tebon M, Lampronti I, Marchetti N, Aureli M, Bassi R, Giri MG, Bezzerri V, Lovato V, Cantù C, Munari S, Cheng SH, Cavazzini A, Gambari R, Sonnino S, Cabrini G, Dechecchi MC. GBA2-encoded β-glucosidase activity is involved in the inflammatory response to Pseudomonas aeruginosa. PLoS One 2014; 9:e104763. [PMID: 25141135 PMCID: PMC4139313 DOI: 10.1371/journal.pone.0104763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Current anti-inflammatory strategies for the treatment of pulmonary disease in cystic fibrosis (CF) are limited; thus, there is continued interest in identifying additional molecular targets for therapeutic intervention. Given the emerging role of sphingolipids (SLs) in various respiratory disorders, including CF, drugs that selectively target the enzymes associated with SL metabolism are under development. Miglustat, a well-characterized iminosugar-based inhibitor of β-glucosidase 2 (GBA2), has shown promise in CF treatment because it reduces the inflammatory response to infection by P. aeruginosa and restores F508del-CFTR chloride channel activity. This study aimed to probe the molecular basis for the anti-inflammatory activity of miglustat by examining specifically the role of GBA2 following the infection of CF bronchial epithelial cells by P. aeruginosa. We also report the anti-inflammatory activity of another potent inhibitor of GBA2 activity, namely N-(5-adamantane-1-yl-methoxy)pentyl)-deoxynojirimycin (Genz-529648). In CF bronchial cells, inhibition of GBA2 by miglustat or Genz-529648 significantly reduced the induction of IL-8 mRNA levels and protein release following infection by P. aeruginosa. Hence, the present data demonstrate that the anti-inflammatory effects of miglustat and Genz-529648 are likely exerted through inhibition of GBA2.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maela Tebon
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Nicola Marchetti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maria Grazia Giri
- Medical Physics Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Valentino Bezzerri
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Valentina Lovato
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Cinzia Cantù
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Seng H. Cheng
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| |
Collapse
|
41
|
Surmann K, Michalik S, Hildebrandt P, Gierok P, Depke M, Brinkmann L, Bernhardt J, Salazar MG, Sun Z, Shteynberg D, Kusebauch U, Moritz RL, Wollscheid B, Lalk M, Völker U, Schmidt F. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Front Microbiol 2014; 5:392. [PMID: 25136337 PMCID: PMC4117987 DOI: 10.3389/fmicb.2014.00392] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/13/2014] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549), and human embryonic kidney cells (HEK 293). Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen's proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2 × 106 bacteria, roughly 1450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreased levels of ribosomal proteins and metabolic enzymes or increased amounts of proteins involved in arginine and lysine biosynthesis, enzymes coding for terminal oxidases and stress responsive proteins or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and regulatory mutants.
Collapse
Affiliation(s)
- Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Stephan Michalik
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Petra Hildebrandt
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Philipp Gierok
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Maren Depke
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Lars Brinkmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Manuela G Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Zhi Sun
- Institute for Systems Biology Seattle, WA USA
| | | | | | | | - Bernd Wollscheid
- Institute of Molecular Systems Biology, ETH Zurich Zurich, Switzerland
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Frank Schmidt
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| |
Collapse
|
42
|
Disruption of interleukin-1β autocrine signaling rescues complex I activity and improves ROS levels in immortalized epithelial cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PLoS One 2014; 9:e99257. [PMID: 24901709 PMCID: PMC4047112 DOI: 10.1371/journal.pone.0099257] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 05/13/2014] [Indexed: 12/22/2022] Open
Abstract
Patients with cystic fibrosis (CF) have elevated concentration of cytokines in sputum and a general inflammatory condition. In addition, CF cells in culture produce diverse cytokines in excess, including IL-1β. We have previously shown that IL-1β, at low doses (∼30 pM), can stimulate the expression of CFTR in T84 colon carcinoma cells, through NF-κB signaling. However, at higher doses (>2.5 ng/ml, ∼150 pM), IL-1β inhibit CFTR mRNA expression. On the other hand, by using differential display, we found two genes with reduced expression in CF cells, corresponding to the mitochondrial proteins CISD1 and MTND4. The last is a key subunit for the activity of mitochondrial Complex I (mCx-I); accordingly, we later found a reduced mCx-I activity in CF cells. Here we found that IB3-1 cells (CF cells), cultured in serum-free media, secrete 323±5 pg/ml of IL-1β in 24 h vs 127±3 pg/ml for S9 cells (CFTR-corrected IB3-1 cells). Externally added IL-1β (5 ng/ml) reduces the mCx-I activity and increases the mitochondrial (MitoSOX probe) and cellular (DCFH-DA probe) ROS levels of S9 (CFTR-corrected IB3-1 CF cells) or Caco-2/pRSctrl cells (shRNA control cells) to values comparable to those of IB3-1 or Caco-2/pRS26 cells (shRNA specific for CFTR). Treatments of IB3-1 or Caco-2/pRS26 cells with either IL-1β blocking antibody, IL-1 receptor antagonist, IKK inhibitor III (NF-κB pathway) or SB203580 (p38 MAPK pathway), restored the mCx-I activity. In addition, in IB3-1 or Caco-2/pRS26 cells, IL-1β blocking antibody, IKK inhibitor III or SB203580 reduced the mitochondrial ROS levels by ∼50% and the cellular ROS levels near to basal values. The AP-1 inhibitors U0126 (MEK1/2) or SP600125 (JNK1/2/3 inhibitor) had no effects. The results suggest that in these cells IL-1β, through an autocrine effect, acts as a bridge connecting the CFTR with the mCx-I activity and the ROS levels.
Collapse
|
43
|
Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, Bezzerri V, Dechecchi MC, Cabrini G, Gambari R. Expression of microRNA-93 and Interleukin-8 duringPseudomonas aeruginosa–Mediated Induction of Proinflammatory Responses. Am J Respir Cell Mol Biol 2014; 50:1144-55. [DOI: 10.1165/rcmb.2013-0160oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
44
|
Umunakwe OC, Seegmiller AC. Abnormal n-6 fatty acid metabolism in cystic fibrosis is caused by activation of AMP-activated protein kinase. J Lipid Res 2014; 55:1489-97. [PMID: 24859760 DOI: 10.1194/jlr.m050369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism.
Collapse
Affiliation(s)
- Obi C Umunakwe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Adam C Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
45
|
Gierok P, Harms M, Richter E, Hildebrandt JP, Lalk M, Mostertz J, Hochgräfe F. Staphylococcus aureus alpha-toxin mediates general and cell type-specific changes in metabolite concentrations of immortalized human airway epithelial cells. PLoS One 2014; 9:e94818. [PMID: 24733556 PMCID: PMC3986243 DOI: 10.1371/journal.pone.0094818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/20/2014] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus alpha-toxin (Hla) is a potent pore-forming cytotoxin that plays an important role in the pathogenesis of S. aureus infections, including pneumonia. The impact of Hla on the dynamics of the metabolome in eukaryotic host cells has not been investigated comprehensively. Using 1H-NMR, GC-MS and HPLC-MS, we quantified the concentrations of 51 intracellular metabolites and assessed alterations in the amount of 25 extracellular metabolites in the two human bronchial epithelial cell lines S9 and 16HBE14o− under standard culture conditions and after treatment with sub-lethal amounts (2 µg/ml) of recombinant Hla (rHla) in a time-dependent manner. Treatment of cells with rHla caused substantial decreases in the concentrations of intracellular metabolites from different metabolic pathways in both cell lines, including ATP and amino acids. Concomitant increases in the extracellular concentrations were detected for various intracellular compounds, including nucleotides, glutathione disulfide and NAD+. Our results indicate that rHla has a major impact on the metabolome of eukaryotic cells as a consequence of direct rHla-mediated alterations in plasma membrane permeability or indirect effects mediated by cellular signalling. However, cell-specific changes also were observed. Glucose consumption and lactate production rates suggest that the glycolytic activity of S9 cells, but not of 16HBE14o− cells, is increased in response to rHla. This could contribute to the observed higher level of resistance of S9 cells against rHla-induced membrane damage.
Collapse
Affiliation(s)
- Philipp Gierok
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Manuela Harms
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Erik Richter
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
46
|
Shah K, McCormack CE, Bradbury NA. Do you know the sex of your cells? Am J Physiol Cell Physiol 2014; 306:C3-18. [PMID: 24196532 PMCID: PMC3919971 DOI: 10.1152/ajpcell.00281.2013] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022]
Abstract
Do you know the sex of your cells? Not a question that is frequently heard around the lab bench, yet thanks to recent research is probably one that should be asked. It is self-evident that cervical epithelial cells would be derived from female tissue and prostate cells from a male subject (exemplified by HeLa and LnCaP, respectively), yet beyond these obvious examples, it would be true to say that the sex of cell lines derived from non-reproductive tissue, such as lung, intestine, kidney, for example, is given minimal if any thought. After all, what possible impact could the presence of a Y chromosome have on the biochemistry and cell biology of tissues such as the exocrine pancreatic acini? Intriguingly, recent evidence has suggested that far from being irrelevant, genes expressed on the sex chromosomes can have a marked impact on the biology of such diverse tissues as neurons and renal cells. It is also policy of AJP-Cell Physiology that the source of all cells utilized (species, sex, etc.) should be clearly indicated when submitting an article for publication, an instruction that is rarely followed (http://www.the-aps.org/mm/Publications/Info-For-Authors/Composition). In this review we discuss recent data arguing that the sex of cells being used in experiments can impact the cell's biology, and we provide a table outlining the sex of cell lines that have appeared in AJP-Cell Physiology over the past decade.
Collapse
Affiliation(s)
- Kalpit Shah
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | | |
Collapse
|
47
|
Madeira A, dos Santos SC, Santos PM, Coutinho CP, Tyrrell J, McClean S, Callaghan M, Sá-Correia I. Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection. PLoS One 2013; 8:e83065. [PMID: 24349432 PMCID: PMC3862766 DOI: 10.1371/journal.pone.0083065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient’s death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.
Collapse
Affiliation(s)
- Andreia Madeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra C. dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M. Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla P. Coutinho
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jean Tyrrell
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
48
|
Corti A, Bergamini G, Menegazzi M, Piaggi S, Bramanti E, Scataglini I, Cianchetti S, Paggiaro P, Melotti P, Pompella A. γ-Glutamyltransferase catabolism of S-nitrosoglutathione modulates IL-8 expression in cystic fibrosis bronchial epithelial cells. Free Radic Biol Med 2013; 65:360-370. [PMID: 23820266 DOI: 10.1016/j.freeradbiomed.2013.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 01/22/2023]
Abstract
S-nitrosoglutathione (GSNO) is an endogenous nitrosothiol involved in several pathophysiological processes. A role for GSNO has been envisaged in the expression of inflammatory cytokines such as IL-8; however, conflicting results have been reported. γ-Glutamyltransferase (GGT) enzyme activity can hydrolyze the γ-glutamyl bond present in the GSNO molecule thus greatly accelerating the release of bioactive nitric oxide. Expression of GGT is induced by oxidative stress, and activated neutrophils contribute to GGT increase in cystic fibrosis (CF) lung exudates by releasing GGT-containing microvesicles. This study was aimed at evaluating the effect of GSNO catabolism mediated by GGT on production of IL-8 in CF transmembrane regulation protein-mutated IB3-1 bronchial cells. The rapid, GGT-catalyzed catabolism of GSNO caused a decrease in both basal and lipopolysaccharide-stimulated IL-8 production in IB3-1 cells, by modulating both NF-κB and ERK1/2 pathways, along with a decrease in cell proliferation. In contrast, a slow decomposition of GSNO produced a significant increase in both cell proliferation and expression of IL-8, the latter possibly through p38-mediated stabilization of IL-8 mRNA. Our data suggest that the differential GSNO catabolism mediated by GGT enzyme activity can downregulate the production of IL-8 in CF cells. Hence, the role of GGT activity should be considered when evaluating GSNO for both in vitro and in vivo studies, the more so in the case of GSNO-based therapies for cystic fibrosis.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, 56126 Pisa, Italy.
| | - Gabriella Bergamini
- Cystic Fibrosis Center-Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Marta Menegazzi
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Simona Piaggi
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, 56126 Pisa, Italy
| | - Emilia Bramanti
- National Research Council of Italy, CNR, Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS, Pisa, Italy
| | - Ilenia Scataglini
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, 56126 Pisa, Italy
| | - Silvana Cianchetti
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, 56126 Pisa, Italy
| | - Pierluigi Paggiaro
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, 56126 Pisa, Italy
| | - Paola Melotti
- Cystic Fibrosis Center-Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
49
|
COMMD1 modulates noxious inflammation in cystic fibrosis. Int J Biochem Cell Biol 2013; 45:2402-9. [DOI: 10.1016/j.biocel.2013.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022]
|
50
|
Caretti A, Bragonzi A, Facchini M, De Fino I, Riva C, Gasco P, Musicanti C, Casas J, Fabriàs G, Ghidoni R, Signorelli P. Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis. Biochim Biophys Acta Gen Subj 2013; 1840:586-94. [PMID: 24141140 DOI: 10.1016/j.bbagen.2013.10.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/07/2013] [Accepted: 10/10/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sphingolipids take part in immune response and can initiate and/or sustain inflammation. Various inflammatory diseases have been associated with increased ceramide content, and pharmacological reduction of ceramide diminishes inflammation damage in vivo. Inflammation and susceptibility to microbial infection are two elements in a vicious circle. Recently, sphingolipid metabolism inhibitors were used to reduce infection. Cystic fibrosis (CF) is characterized by a hyper-inflammation and an excessive innate immune response, which fails to evolve into adaptive immunity and to eradicate infection. Chronic infections result in lung damage and patient morbidity. Notably, ceramide content in mucosa airways is higher in CF mouse models and in patients than in control mice or healthy subjects. METHODS The therapeutic potential of myriocin, an inhibitor of the sphingolipid de novo synthesis rate limiting enzyme (Serine Palmitoyl Transferase, SPT),was investigated in CF cells and mice models. RESULTS We treated CF human respiratory epithelial cells with myriocin, This treatment resulted in reduced basal, as well as TNFα-stimulated, inflammation. In turn, TNFα induced an increase in SPT in these cells, linking de novo synthesis of ceramide to inflammation. Furthermore, myriocin-loaded nanocarrier, injected intratrachea prior to P. aeruginosa challenge, enabled a significant reduction of lung infection and reduced inflammation. CONCLUSIONS The presented data suggest that de novo ceramide synthesis is constitutively enhanced in CF mucosa and that it can be envisaged as pharmacological target for modulating inflammation and restoring effective innate immunity against acute infection. GENERAL SIGNIFICANCE Myriocin stands as a powerful immunomodulatory agent for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Anna Caretti
- Department of Health Sciences, University of Milan, San Paolo Hospital, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|