1
|
Westhölter D, Pipping J, Raspe J, Schmitz M, Sutharsan S, Straßburg S, Welsner M, Taube C, Reuter S. Plasma levels of chemokines decrease during elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. Heliyon 2024; 10:e23428. [PMID: 38173511 PMCID: PMC10761561 DOI: 10.1016/j.heliyon.2023.e23428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Cystic fibrosis (CF) is associated with dysregulated immune responses, exaggerated inflammation and chronic infection. CF transmembrane conductance regulator (CFTR) modulator therapies directly target the underlying protein defects and resulted in significant clinical benefits for people with CF (pwCF). This study analysed the effects of triple CFTR modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) on CF-associated inflammation, especially systemic chemokines. Methods A bead-based immunoassay was used to quantify proinflammatory chemokines (IL-8, IP-10, Eotaxin, TARC, RANTES, MIP-1α, MIP-1β, MIP-3α, MIG, ENA-78, GROα, I-TAC) in plasma samples from pwCF collected before, at three, and at six months after starting ETI therapy. Results Fifty-one pwCF (47 % female; mean age 32 ± 10.4 years) were included. At baseline, 67 % were already receiving CFTR modulator therapy with tezacaftor/ivacaftor or lumacaftor/ivacaftor. After initiation of ETI therapy there was a significant improvement in percent predicted forced expiratory volume in 1 s (+12.7 points, p < 0.001) and a significant decrease in sweat chloride levels (-53.6 %, p < 0.001). After 6 months' treatment with ETI therapy there were significant decreases in plasma levels of MIP-3α (-68.2 %, p = 0.018), GROα (-17.7 %, p = 0.013), ENA-78 (-16.3 %, p = 0.034) and I-TAC (-3.4 %, p = 0.032). IL-8 exhibited a reduction that did not reach statistical significance (-17.8 %, p = 0.057); levels of other assessed cytokines did not change significantly from baseline. Conclusions ETI appears to affect a distinct group of chemokines that are predominately associated with neutrophilic inflammation, demonstrating the anti-inflammatory properties of ETI therapy.
Collapse
Affiliation(s)
- Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Johannes Pipping
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Mona Schmitz
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sivagurunathan Sutharsan
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Svenja Straßburg
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Matthias Welsner
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
2
|
Cockx M, Gouwy M, Van Damme J, Struyf S. Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: key players in chronic respiratory diseases. Cell Mol Immunol 2017; 15:312-323. [PMID: 29176750 DOI: 10.1038/cmi.2017.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with primary ciliary dyskinesia (PCD) and cystic fibrosis (CF), two inherited disorders, suffer from recurrent airway infections characterized by persistent bacterial colonization and uncontrollable inflammation. Although present in high counts, neutrophils fail to clear infection in the airways. High levels of C-X-C motif chemokine ligand 8/interleukin-8 (CXCL8/IL-8), the most potent chemokine to attract neutrophils to sites of infection, are detected in the sputum of both patient groups and might cause the high neutrophil influx in the airways. Furthermore, in CF, airway neutrophils are highly activated because of the genetic defect and the high levels of proinflammatory chemoattractants and cytokines (e.g., CXCL8/IL-8, tumor necrosis factor-α and IL-17). The overactive state of neutrophils leads to lung damage and fuels the vicious circle of infection, excessive inflammation and tissue damage. The inflammatory process in CF airways is well characterized, whereas the lung pathology in PCD is far less studied. The knowledge of CF lung pathology could be useful to guide molecular investigations of the inflammatory processes in PCD lungs. Current available therapies can not completely remedy the chronic airway infections in these diseases. This review gives an overview of the role that chemoattractants and cytokines play in these neutrophil-dominated lung pathologies. Finally, the most frequently applied treatments in CF and PCD and new experimental therapies to reduce neutrophil-dominated airway inflammation are described.
Collapse
Affiliation(s)
- Maaike Cockx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| |
Collapse
|
3
|
Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, McCray PB, Chappell M, Hackam DJ, Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg 9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 2017; 314:L17-L31. [PMID: 28935640 DOI: 10.1152/ajplung.00498.2016] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase with important functions in the renin-angiotensin system and plays a critical role in inflammatory lung diseases. ACE2 cleaves single-terminal residues from several bioactive peptides such as angiotensin II. However, few of its substrates in the respiratory tract have been identified, and the mechanism underlying the role of ACE2 in inflammatory lung disease has not been fully characterized. In an effort to identify biological targets of ACE2 in the lung, we tested its effects on des-Arg9 bradykinin (DABK) in airway epithelial cells on the basis of the hypothesis that DABK is a biological substrate of ACE2 in the lung and ACE2 plays an important role in the pathogenesis of acute lung inflammation partly through modulating DABK/bradykinin receptor B1 (BKB1R) axis signaling. We found that loss of ACE2 function in mouse lung in the setting of endotoxin inhalation led to activation of the DABK/BKB1R axis, release of proinflammatory chemokines such as C-X-C motif chemokine 5 (CXCL5), macrophage inflammatory protein-2 (MIP2), C-X-C motif chemokine 1 (KC), and TNF-α from airway epithelia, increased neutrophil infiltration, and exaggerated lung inflammation and injury. These results indicate that a reduction in pulmonary ACE2 activity contributes to the pathogenesis of lung inflammation, in part because of an impaired ability to inhibit DABK/BKB1R axis-mediated signaling, resulting in more prompt onset of neutrophil infiltration and more severe inflammation in the lung. Our study identifies a biological substrate of ACE2 within the airways, as well as a potential new therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | | | - Yukihiro Yamaguchi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, The University of Iowa , Iowa City, Iowa
| | - Mark Chappell
- Hypertension and Vascular Research Center, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
4
|
The neutrophil-recruiting chemokine GCP-2/CXCL6 is expressed in cystic fibrosis airways and retains its functional properties after binding to extracellular DNA. Mucosal Immunol 2016; 9:112-23. [PMID: 25993443 DOI: 10.1038/mi.2015.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
Infections in cystic fibrosis (CF), often involving Pseudomonas aeruginosa, result from a dysregulated airway immunity where one hallmark is the accumulation of necrotic and apoptotic immune cells, in particular neutrophils. In addition, neutrophils actively release DNA, forming neutrophil extracellular traps (NETs) that contain antimicrobial proteins. Altogether, free DNA in complex with actin accumulates in the airway lumen, resulting in highly viscous sputum that provides an anionic matrix, binding cationic antimicrobial proteins. In this study, granulocyte chemotactic protein 2 (GCP-2)/CXCL6, a neutrophil-activating chemokine with bactericidal properties, was detected in the airway epithelium of CF patients and was also present in azurophilic and specific granules of neutrophils. Elastase of neutrophils, but not of P. aeruginosa, completely degraded CXCL6 (chemokine (C-X-C motif) ligand 6). In addition, CXCL6 colocalized with extracellular DNA in both CF sputa and in in vitro-formed NETs. In vitro, CXCL6 bound DNA with a KD of 2,500 nM. Interestingly, both the bactericidal and the receptor-activating properties of CXCL6 (against neutrophils) remained largely unaffected in the presence of DNA. However, the chemotactic properties of CXCL6 were reduced by the presence of DNA. Taken together, CXCL6 is expressed in CF, retaining its functional properties even after binding to the anionic scaffold that extracellular DNA provides in CF.
Collapse
|
5
|
Mercer PF, Williams AE, Scotton CJ, José RJ, Sulikowski M, Moffatt JD, Murray LA, Chambers RC. Proteinase-activated receptor-1, CCL2, and CCL7 regulate acute neutrophilic lung inflammation. Am J Respir Cell Mol Biol 2014; 50:144-57. [PMID: 23972264 DOI: 10.1165/rcmb.2013-0142oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PAR1 plays a central role in mediating the interplay between coagulation and inflammation, but its role in regulating acute neutrophilic inflammation is unknown. We report that antagonism of PAR1 was highly effective at reducing acute neutrophil accumulation in a mouse model of LPS-induced lung inflammation. PAR1 antagonism also reduced alveolar-capillary barrier disruption in these mice. This protection was associated with a reduction in the expression of the chemokines, CCL2 and CCL7, but not the proinflammatory cytokines, TNF and IL-6, or the classic neutrophil chemoattractants, CXCL1 and CXCL2. Antibody neutralization of CCL2 and CCL7 significantly reduced LPS-induced total leukocyte and neutrophil accumulation, recovered from the bronchoalveolar lavage fluid of challenged mice. Immunohistochemical analysis revealed that CCL2 predominantly localized to alveolar macrophages and pulmonary epithelial cells, whereas CCL7 was restricted to the pulmonary epithelium. In keeping with these observations, the intranasal administration of recombinant CCL2 (rCCL2) and rCCL7 led to the accumulation of neutrophils within the lung airspaces of naive mice in the absence of any underlying inflammation. Flow cytometry analysis further demonstrated an increase in Ly6G(hi) neutrophils expressing the chemokine receptors, CCR1 and CCR2, isolated from mouse lungs compared with circulating neutrophils. Conversely, the expression of CXCR2 decreased on neutrophils isolated from the lung compared with circulating neutrophils. Furthermore, this switch in chemokine receptor expression was accentuated after acute LPS-induced lung inflammation. Collectively, these findings reveal a novel role for PAR1 and the chemokines, CCL2 and CCL7, during the early events of acute neutrophilic inflammation.
Collapse
Affiliation(s)
- Paul F Mercer
- 1 Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 2008; 13:23-35. [PMID: 18167337 PMCID: PMC2245859 DOI: 10.1016/j.ccr.2007.12.004] [Citation(s) in RCA: 739] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 08/06/2007] [Accepted: 12/04/2007] [Indexed: 01/17/2023]
Abstract
Aberrant TGFbeta signaling is common in human cancers and contributes to tumor metastasis. Here, we demonstrate that Gr-1+CD11b+ myeloid cells are recruited into mammary carcinomas with type II TGF beta receptor gene (Tgfbr2) deletion and directly promote tumor metastasis. Gr-1+CD11b+ cells infiltrate into the invasive front of tumor tissues and facilitate tumor cell invasion and metastasis through a process involving metalloproteinase activity. This infiltration of Gr-1+CD11b+ cells also results in increased abundance of TGF beta 1 in tumors with Tgfbr2 deletion. The recruitment of Gr-1+CD11b+ cells into tumors with Tgfbr2 deletion involves two chemokine receptor axes, the SDF-1/CXCR4 and CXCL5/CXCR2 axes. Together, these data indicate that Gr-1+CD11b+ cells contribute to TGFbeta-mediated metastasis through enhancing tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Li Yang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rambeaud M, Pighetti GM. Differential calcium signaling in dairy cows with specific CXCR1 genotypes potentially related to interleukin-8 receptor functionality. Immunogenetics 2006; 59:53-8. [PMID: 17119953 DOI: 10.1007/s00251-006-0170-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/17/2006] [Indexed: 11/28/2022]
Abstract
Neutrophil migration and activation are critical components of innate immunity and are mediated by a variety of inflammatory mediators, which include interleukin-8 (IL-8) and epithelial-derived neutrophil activating peptide-78 (ENA-78). Limited knowledge on the expression of receptors for these inflammatory mediators (CXCR1 and CXCR2) in bovine, in addition to the association of a polymorphism (G-->C) in position +777 of the CXCR1 gene with impaired neutrophil function, prompted evaluation of CXCR1 and CXCR2 mRNA and protein expression, ligand binding affinity, and intracellular receptor signaling in neutrophils from cows with different CXCR1 genotypes. Initial observations revealed that overall IL-8 receptor numbers appeared to be lower in cows with a CC genotype compared to cows with a GG genotype. However, in the presence of SB225002, a CXCR2 inhibitor, CXCR1 affinity was about fivefold lower in cows with a CC genotype and may have resulted in an underestimation of receptor numbers in cows with this genotype. In addition, intracellular calcium ([Ca++]i) release was lower in cows with a CC genotype when cells were stimulated with IL-8 but not ENA-78. Furthermore, when neutrophils were stimulated with an optimal dose of IL-8 in the presence of SB225002, [Ca++]i release was lower in cows with a CC genotype, suggesting differential CXCR1 signaling among genotypes. These findings offer knowledge of the role that each of these receptors plays in the inflammatory response in the bovine and provide insight into the potential mechanisms that may be affected in neutrophils of cows with different CXCR1 genotypes.
Collapse
Affiliation(s)
- M Rambeaud
- Department of Animal Science, The University of Tennessee, 114 McCord Hall, 2640 Morgan Circle, Knoxville, TN 37996, USA
| | | |
Collapse
|
8
|
Imaizumi T, Hatakeyama M, Taima K, Ishikawa A, Yamashita K, Yoshida H, Satoh K. Effect of double-stranded RNA on the expression of epithelial neutrophil activating peptide-78/CXCL-5 in human endothelial cells. Inflammation 2005; 28:215-9. [PMID: 15673163 DOI: 10.1023/b:ifla.0000049046.23377.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epithelial neutophil activating peptide-78 (ENA-78)/CXCL-5 is a member of CXC chemokines. ENA-78 was originally described as a factor produced by epithelial cells only. But other types of cells including vascular endothelial cells also produce it. ENA-78 production by endothelial cells may be important for the regulation of neutrophil activation in inflammatory reactions. Polyinosinic-polycytidylic acid (poly IC) is a synthetic double-stranded RNA, which mimics the viral infection when applied to cells and affects the expression of various genes related to inflammatory reactions. In the present study, we examined the effect of poly IC on the expression of ENA-78 in human umbilical vein endothelial cells (HUVEC). HUVEC in culture were treated with poly IC and the expression of ENA-78 mRNA and protein were analyzed by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Poly IC induced ENA-78 expression in time- and concentration-dependent manners. Th2-type cytokine IL-4 partially inhibited the induction of ENA-78 by poly IC. 2-Aminopurine, an inhibitor of dsRNA-dependent kinase, suppressed the induction of ENA-78 by poly IC. ENA-78 may be involved in the inflammatory reactions elicited by viral infection in endothelial cells.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Qiu Y, Zhu J, Bandi V, Atmar RL, Hattotuwa K, Guntupalli KK, Jeffery PK. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003; 168:968-75. [PMID: 12857718 DOI: 10.1164/rccm.200208-794oc] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have applied immunohistology and in situ hybridization to bronchial biopsies of patients with chronic obstructive pulmonary disease (COPD) to examine neutrophil recruitment and to determine neutrophil chemoattractant and CXC receptor (CXCR) 1 and CXCR2 gene expression associated with acute severe exacerbations. Cells were counted in endobronchial biopsies of (1) patients with COPD intubated for exacerbations (E-COPD; n = 15), (2) those with COPD in a stable phase of their disease (S-COPD; n = 7), and (3) nonsmoker surgical control subjects intubated for a nonrespiratory surgical procedure (n = 15). In comparison with the nonrespiratory surgical procedure and S-COPD groups, neutrophilia and gene expression for epithelial-derived neutrophil attractant-78 (CXCL5), interleukin-8 (CXCL8), CXCR1, and CXCR2 were each upregulated in the E-COPD group (p < 0.01); compared with the S-COPD group, by 97-, 6-, 6-, 3-, and 7-fold, respectively (p < 0.01). In E-COPD, there was a significant positive association between the number of neutrophils and CXCR2 mRNA-positive cells (r = 0.79; p < 0.01) but not between the number of neutrophils and CXCR1 mRNA-positive cells. At the time of sampling of the mucosa, there was no association between neutrophil number and either the length of intubation or viral infection. Thus, in COPD, in addition to CXCL8 and CXCR1, CXCL5 and CXCR2 appear to play important roles in the airway neutrophilia characteristic of severe exacerbations.
Collapse
Affiliation(s)
- Yusheng Qiu
- Lung Pathology, Department of Gene Therapy, Imperial College, Royal Brompton Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Leidal KG, Munson KL, Johnson MC, Denning GM. Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. J Interferon Cytokine Res 2003; 23:307-18. [PMID: 12859857 DOI: 10.1089/107999003766628151] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic human pathogen associated with both an acute lung disease in patients with hospital-acquired pneumonia and a chronic, progressive lung disease in individuals with cystic fibrosis. A unique characteristic of this bacterium in its natural environment is the secretion of a wide variety of factors designed to ensure its growth and survival. Evidence suggests, however, that when present in the human host, these same factors may contribute to disease. In the course of studying the effect of P. aeruginosa secretory factors on airway epithelial cells, we observed that metalloproteases in bacterial-conditioned medium, as well as purified alkaline protease and elastase, degraded human RANTES, monocyte chemotactic protein-1 (MCP-1), and epithelial neutrophil-activating protein-78 (ENA-78). Under identical conditions, interleukin-8 (IL-8) was significantly more resistant to proteolysis. Degradation was accompanied by a loss of chemotactic activity. These data suggest that metalloproteases from P. aeruginosa could alter the relative amounts of critical immunomodulatory cytokines in the airway and, thus, could contribute to the pathophysiology observed in P. aeruginosa-associated lung disease.
Collapse
Affiliation(s)
- Kevin G Leidal
- Department of Internal Medicine, The VA Medical Center and The University of Iowa, Iowa City, IA 52246, USA
| | | | | | | |
Collapse
|
11
|
Suri R, Marshall LJ, Wallis C, Metcalfe C, Bush A, Shute JK. Effects of recombinant human DNase and hypertonic saline on airway inflammation in children with cystic fibrosis. Am J Respir Crit Care Med 2002; 166:352-5. [PMID: 12153969 DOI: 10.1164/rccm.2110015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recombinant human DNase (rhDNase) is an established treatment in cystic fibrosis (CF), but it may liberate cationic mediators bound to DNA in the airways. An alternative mucolytic therapy is hypertonic saline (HS); however, HS may potentiate neutrophilic inflammation. We compared the effect of rhDNase and HS on cationic proinflammatory mediators in CF sputum. In a randomized, crossover trial, 48 children with CF were allocated consecutively to 12 weeks of once-daily 2.5 mg rhDNase, alternate-day 2.5 mg rhDNase, and twice-daily 7% HS. Sputum levels of total interleukin-8 (IL-8), free IL-8, myeloperoxidase, eosinophil cationic protein, and neutrophil elastase (NE) activity were measured before and after each treatment. The change in mediator levels from baseline with daily rhDNase and HS was not significant; however, with alternate-day rhDNase, there was an increase in free IL-8. When changes in mediator levels with daily rhDNase were compared with alternate-day rhDNase and HS, no significant differences were detected. Only changes in NE activity were associated with changes in lung function. In summary, we were unable to show that rhDNase or HS promote airway inflammation in CF.
Collapse
Affiliation(s)
- Ranjan Suri
- MRCPCH, Department of Respiratory Paediatrics, Royal Brompton and Harefield NHS Trust, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Nasu K, Arima K, Kai K, Fujisawa K, Nishida M, Miyakawa I. Expression of epithelial neutrophil-activating peptide 78 in cultured human endometrial stromal cells. Mol Hum Reprod 2001; 7:453-8. [PMID: 11331668 DOI: 10.1093/molehr/7.5.453] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that human endometrial stromal cells (ESC) produce a variety of chemokines in vivo and in vitro. To evaluate the expression of epithelial neutrophil-activating peptide 78 (ENA-78) in the endometrium, concentrations of ENA-78 in cyclic endometrial tissues were measured using enzyme-linked immunosorbent assay. The expression of ENA-78 was also detected in cyclic endometrium by immunohistochemistry. Endometrial tissues in the secretory phase contained higher amounts of ENA-78 protein than did those in the proliferative phase. Immunofluorescence staining revealed that ENA-78 protein was localized mainly in the stroma of endometrium. In addition, to evaluate the involvement of inflammatory mediators and ovarian steroid hormones in the production of ENA-78 by ESC was evaluated by in-vitro studies. Unstimulated ESC constitutively secreted ENA-78. Progesterone, lipopolysaccharide, tumour necrosis factor-alpha, and interleukin-1beta significantly stimulated the expression of ENA-78 by ESC. It is suggested that the production of ENA-78 by ESC is regulated by progesterone as well as by the inflammatory mediators. The modulation of ENA-78 concentration in the local environment by these mediators may contribute to the normal and pathological processes of human reproduction through regulation of leukocyte trafficking into the endometrium.
Collapse
Affiliation(s)
- K Nasu
- Department of Obstetrics and Gynecology, Oita Medical University, Hasama-machi, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Perks B, Shute JK. DNA and actin bind and inhibit interleukin-8 function in cystic fibrosis sputa: in vitro effects of mucolytics. Am J Respir Crit Care Med 2000; 162:1767-72. [PMID: 11069810 DOI: 10.1164/ajrccm.162.5.9908107] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Infection of the cystic fibrosis (CF) airways elicits an exaggerated, interleukin-8 (IL-8) mediated, neutrophil inflammatory response. Necrosing neutrophils release DNA and actin into the airways, increasing the viscoelasticity of airway secretions. Mucolytics aim to improve airway clearance by reducing this viscoelasticity. DNase I reduces the viscoelasticity of CF sputum, and a human recombinant form of this enzyme is widely administered to patients with CF. Gelsolin, which cleaves actin polymers, is also known to reduce CF sputum viscosity in vitro, and it has been proposed as a future mucolytic agent. We have shown that the anionic polymers DNA and actin bind and mask immunologic recognition of the basic peptide IL-8 and prevent this chemokine from binding to neutrophil receptors. Reduction of CF sputum viscosity by DNase I or gelsolin in vitro was demonstrated to increase the proportion of free IL-8 and the IL-8-dependent neutrophil chemotactic activity of sputum supernatants. We hypothesize that an electrostatic interaction between polymer and chemokine may limit the inflammatory potential of the latter, but that this interaction may be weakened by polymer cleavage. The potential risk of increased inflammation via this mechanism suggests a caveat should be attendant on treatment of patients with CF with these mucolytic agents.
Collapse
Affiliation(s)
- B Perks
- Department of Medical Specialties, Southampton General Hospital, Southampton, United Kingdom
| | | |
Collapse
|
14
|
Rossi DL, Hurst SD, Xu Y, Wang W, Menon S, Coffman RL, Zlotnik A. Lungkine, a Novel CXC Chemokine, Specifically Expressed by Lung Bronchoepithelial Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We describe a novel mouse CXC chemokine that is selectively expressed in lung epithelial cells and up-regulated in various lung inflammation models. Although this chemokine clusters with other ELR-CXC chemokines, none of them can confidently be assigned to be its human homologue based on sequence identity. In addition, the highly restricted mRNA tissue distribution of this chemokine differentiates it from all previously described chemokines: Lungkine could not be detected in any of the 70 cDNA libraries analyzed corresponding to specific murine cell populations and tissues. High levels of Lungkine mRNA were specifically detected in the lung and at lower levels in fetal lung tissue by Northern blot and in situ hybridization, suggesting a potential role for this chemokine during lung development. Moreover, Lungkine protein is secreted into the airway spaces and induces the in vitro and in vivo migration of neutrophils, suggesting that it is involved in lung-specific neutrophil trafficking. Using fluorescent in situ hybridization, we show that Lungkine maps to mouse chromosome 5.
Collapse
Affiliation(s)
| | | | - Yuming Xu
- †Molecular Biology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304
| | | | - Satish Menon
- †Molecular Biology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304
| | | | | |
Collapse
|
15
|
Nufer O, Corbett M, Walz A. Amino-terminal processing of chemokine ENA-78 regulates biological activity. Biochemistry 1999; 38:636-42. [PMID: 9888803 DOI: 10.1021/bi981294s] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epithelial cell-derived neutrophil-activating protein-78 (ENA-78) is a potent stimulator of neutrophils, inducing a variety of biological responses such as chemotaxis, enzyme release, up-regulation of surface receptors, and intracellular calcium mobilization. Proteolysis of ENA-78 with cathepsin G and chymotrypsin yielded a time-dependent increase in elastase-releasing activity, predicting the formation of truncation products with higher potency than native ENA-78. To investigate the biological implications of progressive truncation of ENA-78, the N-terminal variants ENA(5-78), ENA(9-78), and ENA(10-78) were cloned and expressed in E. coli. When tested in the neutrophil elastase release assay, the variants ENA(5-78) and ENA(9-78) had a 2-3-fold higher potency than full-length ENA-78, while ENA(10-78) was 3-fold less potent. In the chemotaxis assay, the variant ENA(5-78) exhibited an 8-fold and ENA(9-78) a 2-fold higher potency than native ENA-78. ENA(10-78), conversely, was 10-fold less potent, but reached a comparable efficacy to ENA-78 at 10(-)7 M concentration. In summary, the rank order in potency with respect to elastase release was ENA(9-78) > ENA(5-78) > ENA-78 > ENA(10-78), while for chemotaxis it was ENA(5-78) > ENA(9-78) > ENA-78 > ENA(10-78). Variant ENA(5-78) had a higher overall potency and efficiency for chemotaxis than interleukin-8 (IL-8), while ENA(9-78) exhibited a higher efficiency at concentrations of 1-100 nM. The fact that neutrophil cathepsin G produces the stable ENA(9-78) variant in vitro strongly suggests a role for this N-terminal proteolysis during inflammatory processes in vivo.
Collapse
Affiliation(s)
- O Nufer
- Theodor Kocher Institute, University of Bern, Switzerland
| | | | | |
Collapse
|
16
|
Goodman RB, Strieter RM, Frevert CW, Cummings CJ, Tekamp-Olson P, Kunkel SL, Walz A, Martin TR. Quantitative comparison of C-X-C chemokines produced by endotoxin-stimulated human alveolar macrophages. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L87-95. [PMID: 9688939 DOI: 10.1152/ajplung.1998.275.1.l87] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The C-X-C chemokines are a structurally related and functionally redundant family of proteins with neutrophil chemotactic activity. Many of the C-X-C chemokines are produced by endotoxin-stimulated alveolar macrophages (AMs), but knowledge of their relative quantities and their relative contributions to the total chemotactic activity released from these cells is incomplete. Human AMs were stimulated with or without Escherichia coli endotoxin for 2, 4, 8, and 24 h. The mRNA sequences of interleukin (IL)-8, the 78-amino acid epithelial cell-derived neutrophil activator (ENA-78), growth-related protein (GRO) alpha, GRObeta, and GROgamma were cloned by PCR and identified by sequence analysis. The relative mRNA quantities were compared by Northern analysis, and IL-8 was found to predominate. Similarly, IL-8 protein concentrations in the cell supernatants were consistently higher than either the ENA-78 or GRO concentration, and by 24 h, IL-8 concentrations were 10-fold higher than those of the other C-X-C chemokines. Blocking polyclonal antibodies to IL-8 substantially reduced the chemotactic activity in the AM supernatants, whereas antibodies to ENA-78 and GRO had little or no effect. We conclude that IL-8 is the predominant C-X-C chemokine and the dominant neutrophil chemoattractant accumulating in 24-h supernatants of lipopolysaccharide-stimulated human AMs. These studies provide insight into potentially effective strategies of interrupting AM-derived inflammatory signals in the lungs.
Collapse
Affiliation(s)
- R B Goodman
- Medical Research Service, Seattle Veterans Affairs Medical Center, Seattle, Washington 98108, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Shao W, Jerva LF, West J, Lolis E, Schweitzer BI. Solution structure of murine macrophage inflammatory protein-2. Biochemistry 1998; 37:8303-13. [PMID: 9622482 DOI: 10.1021/bi980112r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The solution structure of murine macrophage inflammatory protein-2 (MIP-2), a heparin-binding chemokine that is secreted in response to inflammatory stimuli, has been determined using two-dimensional homonuclear and heteronuclear NMR spectroscopy. Structure calculations were carried out by means of torsion-angle molecular dynamics using the program X-PLOR. The structure is based on a total of 2390 experimental restraints, comprising 2246 NOE-derived distance restraints, 44 distance restraints for 22 hydrogen bonds, and 100 torsion angle restraints. The structure is well-defined, with the backbone (N, Calpha, C) and heavy atom atomic rms distribution about the mean coordinates for residues 9-69 of the dimer being 0.57 +/- 0.16 A and 0.96 +/- 0.12 A, respectively. The N- and C-terminal residues (1-8 and 70-73, respectively) are disordered. The overall structure of the MIP-2 dimer is similar to that reported previously for the NMR structures of MGSA and IL-8 and consists of a six-stranded antiparallel beta-sheet (residue 25-29, 39-44, and 48-52) packed against two C-terminal antiparallel alpha-helices. A best fit superposition of the NMR structure of MIP-2 on the structures of MGSA, NAP-2, and the NMR and X-ray structures of IL-8 are 1.11, 1.02, 1.27, and 1.19 A, respectively, for the monomers, and 1.28, 1.10, 1.55, and 1.36 A, respectively, for the dimers (IL-8 residues 7-14 and 16-67, NAP-2 residues 25-84). At the tertiary level, the main differences between the MIP-2 solution structure and the IL-8, MGSA, and NAP-2 structures involve the N-terminal loop between residues 9-23 and the loops formed by residues 30-38 and residues 53-58. At the quaternary level, the difference between MIP-2 and IL-8, MGSA, or NAP-2 results from differing interhelical angles and separations.
Collapse
Affiliation(s)
- W Shao
- Walt Disney Memorial Cancer Institute at Florida Hospital, Orlando 32826, USA
| | | | | | | | | |
Collapse
|
18
|
Gill EA, Imaizumi T, Carveth H, Topham MK, Tarbet EB, McIntyre TM, Prescott SM, Zimmerman GA. Bacterial lipopolysaccharide induces endothelial cells to synthesize a degranulating factor for neutrophils. FASEB J 1998; 12:673-84. [PMID: 9619446 DOI: 10.1096/fasebj.12.9.673] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enzymes and other factors secreted by degranulating neutrophils (polymorphonuclear leukocytes, PMNs) mediate endothelial injury, thrombosis, and vascular remodeling. In bacteremia and sepsis syndrome and their consequent complications (including acute respiratory distress syndrome and systemic ischemia-reperfusion resulting from septic shock), neutrophil degranulation is an important mechanism of injury. In related studies, we found that human endothelial cells regulate neutrophil degranulation and that inflammatory cytokines induce synthesis of degranulating factors by human endothelial cells. Here we show that lipopolysaccharides (LPS) from gram-negative bacteria were the most potent agonists for release of degranulating activity by endothelial cells when compared to several cytokines and stimulatory factors. LPS also induced the release of degranulating signals for PMNs from a human endothelial cell line, EA.hy 926. Interleukin 8 (IL-8) is synthesized by endothelial and EA.hy 926 cells in response to LPS and induces neutrophil degranulation. However, complementary strategies using receptor desensitization, translation of messenger RNA by Xenopus laevis oocytes, and purification and analysis of factors from conditioned supernatants demonstrated that degranulating factors distinct from IL8 are generated in response to LPS. The characteristics of a partially purified degranulating factor isolated from conditioned supernatants distinguished it from known chemokines and other factors that induce PMN degranulation and are generated by endothelial cells in response to LPS. Thus, cultured human endothelial cells and endothelial cell lines synthesize several unique signaling molecules that can trigger neutrophil granular secretion. If produced in vivo in response to LPS or other pathologic agonists, these degranulating signals may activate PMNs in combination or in sequence, initiating or propagating vascular damage.
Collapse
Affiliation(s)
- E A Gill
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City 84112-5000, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kruger T, Baier J. Induction of neutrophil chemoattractant cytokines by Mycoplasma hominis in alveolar type II cells. Infect Immun 1997; 65:5131-6. [PMID: 9393806 PMCID: PMC175739 DOI: 10.1128/iai.65.12.5131-5136.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of premature infants who are mechanically ventilated due to respiratory distress. The disease consists of an initial inflammatory influx of neutrophils to the lungs, followed by long-term chronic fibrosis of the lung tissue. The antigenic repertoire that initiates the inflammatory component of BPD has not been defined. Furthermore, the repertoire of cytokines responsible for attracting neutrophils to the lung and the mediators of pathogenesis in BPD have not been characterized. Mycoplasmas such as Mycoplasma hominis and Ureaplasma urealyticum have been isolated from the lungs of infants that developed BPD and yet have not been widely recognized as potential initiators of the inflammatory component of BPD. In the studies described here, we examined the ability of both viable and heat-killed Mycoplasma hominis to elicit type II epithelial cell production of cytokines that are chemotactic for polymorphonuclear leukocytes (PMNs), particularly interleukin-8 (IL-8) and epithelial cell-derived neutrophil-activating peptide (ENA-78). The results of these studies demonstrate that M. hominis and M. hominis antigen are potent stimulators of type II epithelial cell-derived IL-8 and ENA-78. Thus, these data strongly suggest that the presence of M. hominis in the lungs of premature infants may initiate the inflammatory component of BPD by inducing epithelial cell production of cytokines chemotactic for PMNs. Furthermore, these data suggest that the onset of the inflammatory component of BPD likely precedes, and is independent of, the recruitment and activation of alveolar macrophages.
Collapse
Affiliation(s)
- T Kruger
- Department of Pediatrics, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | |
Collapse
|
20
|
Jerva LF, Sullivan G, Lolis E. Functional and receptor binding characterization of recombinant murine macrophage inflammatory protein 2: sequence analysis and mutagenesis identify receptor binding epitopes. Protein Sci 1997; 6:1643-52. [PMID: 9260277 PMCID: PMC2143775 DOI: 10.1002/pro.5560060805] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Murine macrophage inflammatory protein-2 (MIP-2), a member of the alpha-chemokine family, is one of several proteins secreted by cells in response to lipopolysaccharide. Many of the alpha-chemokines, such as interleukin-8, gro-alpha/MGSA, and neutrophil activating peptide-2 (NAP-2), are associated with neutrophil activation and chemotaxis. We describe the expression, purification, and characterization of murine MIP-2 from Pichia pastoris. Circular dichroism spectroscopy reveals that MIP-2 exhibits a highly ordered secondary structure consistent with the alpha/beta structures of other chemokines. Recombinant MIP-2 is chemotactic for human and murine neutrophils and up-regulates cell surface expression of Mac-1. MIP-2 binds to human and murine neutrophils with dissociation constants of 6.4 nM and 2.9 nM, respectively. We further characterize the binding of MIP-2 to the human types A and B IL-8 receptors and the murine homologue of the IL-8 receptor. MIP-2 displays low-affinity binding to the type A IL-8 receptor (Kd > 120 nM) and high-affinity binding to the type B IL-8 receptor (Kd 5.7 nM) and the murine receptor (Kd 6.8 nM). The three-dimensional structure of IL-8 and sequence analysis of six chemokines (IL-8, gro-alpha, NAP-2, ENA-78, KC, and MIP-2) that display high-affinity binding to the IL-8 type B receptor are used to identify an extended N-terminal surface that interacts with this receptor. Two mutants of MIP-2 establish that this region is also involved in binding and activating the murine homologue of the IL-8 receptor. Differences in the sequence between IL-8 and related chemokines identify a unique hydrophobic/aromatic region surrounded by charged residues that is likely to impart specificity to IL-8 for binding to the type A receptor.
Collapse
Affiliation(s)
- L F Jerva
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
21
|
Imaizumi T, Albertine KH, Jicha DL, McIntyre TM, Prescott SM, Zimmerman GA. Human endothelial cells synthesize ENA-78: relationship to IL-8 and to signaling of PMN adhesion. Am J Respir Cell Mol Biol 1997; 17:181-92. [PMID: 9271306 DOI: 10.1165/ajrcmb.17.2.2818] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interaction of endothelial cells and polymorphonuclear leukocytes (PMNs, neutrophils) is a critical determinant of the acute inflammatory response, and mirrors cell-cell interactions in other biologic systems. Adhesion molecules that tether the two cells together, and signaling factors that bind to receptors on the leukocytes and mediate their spatially-localized activation, govern PMN responses as they adhere to and traverse stimulated endothelial cells. Here we show that cultured human endothelial cells express two members of the C-X-C family of chemokines, epithelial neutrophil activating peptide-78 (ENA-78) and interleukin (IL)-8, when stimulated by IL-1 or certain other agonists. ENA-78, previously thought to be exclusively a product of epithelium, is expressed by in situ endothelium in inflamed human lung and other tissues as well as by cultured endothelial cells. The regulation of ENA-78 and IL-8 share certain features in common and they have overlapping biologic activities, including the ability to induce PMN adhesiveness. This was demonstrated in experiments in which we found that ENA-78 induces inside-out signaling of beta2 integrins on the PMN surface, as does IL-8. Antibody blocking experiments demonstrated that ENA-78 contributes to the proadhesive activity for neutrophils that is released by endothelial cells stimulated with IL-1 for a prolonged period and that it acts in concert with IL-8, which provides the major component of the signal for adhesion under this condition. We also show, however, that the temporal expression and secretion of ENA-78 and other characteristics of its handling by stimulated endothelial cells vary from the expression of IL-8, indicating that differential regulation of the two signaling chemokines occurs in this cell type.
Collapse
Affiliation(s)
- T Imaizumi
- The Nora Eccles Harrison Cardiovascular Research and Training Institute, and the Department of Anatomy, University of Utah Health Sciences Center, Salt Lake City 84112, USA
| | | | | | | | | | | |
Collapse
|