1
|
Siriphorn SV, Thorsuwan S, Thongam J, Ruangklai S, Hussarin P, Rungruang T, Srisuma S. Alterations in Adiponectin Expression in Models of Cigarette Smoke Extract-Induced Mouse Pulmonary Emphysema and Alveolar Epithelial Cell Injury. COPD 2025; 22:2477235. [PMID: 40079477 DOI: 10.1080/15412555.2025.2477235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE Cigarette smoke activates lung inflammation and destruction and the development of COPD. Among various factors influenced by lung inflammation, adiponectin produced by lung epithelial cells is thought to play a significant role in regulating inflammation and maintaining tissue integrity. This study aims to examine adiponectin expression in a mouse model of cigarette smoke extract (CSE)-induced emphysema and explore the effects of adiponectin on cell survival and cytokine gene expression in CSE-induced lung epithelial cell damage. METHODS CSE was prepared by passing cigarette smoke through a glass tube containing solvent. PBS or CSE was intraperitoneally administered to C57BL/6 mice. Inflammatory cells, cytokines, adiponectin expression in lung, bronchoalveolar lavage fluid (BALF) and adipose tissue were assessed. CSE and adiponectin were administered to A549 cells to determine cell viability and cytokine gene expression. RESULTS Intraperitoneal CSE injection significantly increased the mean alveolar linear intercept by 23.11%. CSE significantly increased total cells, macrophages, neutrophils, eosinophils, TNFα, IL-1β levels in BALF. CSE enhanced lung adiponectin protein expression. Treatment of A549 cells with CSE reduced cell survival and adiponectin gene expression. Furthermore, adiponectin treatment enhanced MCP-1 and IL-8 gene expression in A549 cells post-CSE exposure. CONCLUSION Intraperitoneal CSE treatment induced lung inflammation, airspace enlargement, and increased adiponectin expression in mice. CSE-exposed A549 cells showed reduced cell viability, upregulated proinflammatory genes, downregulated adiponectin genes. Adiponectin treatment further intensified these genes expressions, aligning with in vivo findings. Elevated adiponectin expression in alveolar epithelial cells suggests its potential role in the development of COPD by enhancing lung inflammation.
Collapse
Affiliation(s)
- Siriporn Vongsaiyat Siriphorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathumtani, Thailand
| | - Supitsara Thorsuwan
- Princess Agrarajakumari College of Nursing, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Julalux Thongam
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sukpattaraporn Ruangklai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poungpetch Hussarin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sorachai Srisuma
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Sezer O, Nursal AF, Gunal O, Gorgun S, Tekcan A, Unluguzel Ustun G, Yigit S. Evaluating interleukin-6 levels and the rs1800795 variant in Turkish patients with COVID-19: a prospective cohort study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:377-390. [PMID: 37787093 DOI: 10.1080/15257770.2023.2263490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a multisystem disease of global significance. Interleukin (IL)-6 is a soluble cytokine with a pleiotropic effect on inflammation and the immune response. OBJECTIVES Investigate the relationship between the interleukin 6 (IL6) rs1800795 variant and IL6 level in Turkish patients with COVID-19 disease. DESIGN Prospective cohort study. SETTING Tertiary care hospital. PATIENTS AND METHODS Real-time polymerase chain reaction (RT-PCR)-positive and/or chest computerized tomography (CT) scan-compatible COVID-19 patients were enrolled in the study. The clinical data and whole blood samples were collected from April 1, 2020, to August 1, 2020. IL6 rs1800795 genotyping was performed by the PCR-restriction fragment-length polymorphism (RFLP) method in 148 patients. Serum IL-6 concentrations were measured using the ELISA method in 89 patients. We evaluated the patients in three groups: asymptomatic, symptomatic, and intensive care unit patients. MAIN OUTCOME MEASURES IL6 rs1800795 genotype frequencies and serum IL-6 levels in COVID-19 patients with different clinical presentations. SAMPLE SIZE 148 cases. RESULTS IL6 rs1800795 GG genotype and G allele frequency increased in PCR positive patients compared to PCR-negative patients (p ˂ 0.000). IL6 rs1800795 GC genotype and C allele frequency were lower in PCR-positive patients than in PCR-negative patients. IL6 rs1800795 GG genotype and G allele frequency were higher in asymptomatic patients than in the symptomatic and intensive care unit groups. The IL6 rs1800795 C allele frequency was lower in asymptomatic patients than in the symptomatic and intensive care unit groups. IL6 rs1800795 GG genotype and G allele frequency were higher in CT negative patients than CT positive patients, while IL6 GC genotype and C allele frequency were higher in CT positive patients than negative patients. IL6 level elevation was seen in the asymptomatic patients compared to the symptomatic and intensive care unit groups. CONCLUSIONS These findings suggest that IL6 rs1800795 may contribute to the susceptibility of COVID-19 in people to Turkish origin. LIMITATIONS Further large-scale studies in different genetic populations are needed as this is a single-center, prospective study.
Collapse
Affiliation(s)
- Ozlem Sezer
- Department of Medical Genetics, Faculty of Medicine, Samsun University, Samsun, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Ozgur Gunal
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| | - Selim Gorgun
- Department of Microbiology and Clinical Microbiology, Samsun Training and Research Hospital, University of Health Sciences, Samsun, Turkey
| | - Akin Tekcan
- Department of Medical Biology, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Goksenin Unluguzel Ustun
- Department of Medical Biochemistry, Samsun Education and Research Hospital, University of Health Sciences, Samsun, Turkey
| | - Serbulent Yigit
- Department of Genetics, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
3
|
Xia H, Wu Y, Zhao J, Cheng C, Lin J, Yang Y, Lu L, Xiang Q, Bian T, Liu Q. N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2. Cell Death Differ 2023; 30:1293-1304. [PMID: 36828914 PMCID: PMC10154389 DOI: 10.1038/s41418-023-01138-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Epithelial cell damage-initiated chronic obstructive pulmonary disease (COPD) is implicated in regulated cell death (RCD) including ferroptosis triggered by complex gene-environment interactions. Our data showed that iron overload and ferroptosis are associated with COPD progression in COPD patients and in experimental COPD. Furthermore, we found that, in lung tissues of COPD patients, circSAV1 was associated with COPD progression by circRNA-seq screening. Knockdown of circSAV1 reversed cigarette smoke extract (CSE)-induced ferroptosis. Mechanistically, m6A-modified circSAV1 formed an RNA-protein ternary complex of circSAV1/YTHDF1/IREB2 to facilitate the translation of IREB2 mRNA. Elevated protein levels of IREB2 disrupted iron homeostasis, resulting in accumulation of a labile iron pool (LIP) and lipid peroxidation, which contribute to ferroptosis. Here we demonstrate, by use of an experimental COPD model induced by cigarette smoke (CS), that silencing of circSAV1 and the treatment with deferoxamine (DFO) blocked CS-induced ferroptosis of lung epithelial cells, which attenuated COPD progression in mice. Our results reveal that N6-methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2, indicating that circSAV1 is a mediator of ferroptosis and that circSAV1-dependent ferroptosis is a therapeutic target for COPD. In lung epithelial cell, m6A-modified circSAV1, via recruiting YTHDF1, induces the formation of a circSAV1/YTHDF1/IREB2 mRNA protein ternary complex, which promotes translation of IREB2 mRNA. Further, elevated IREB2 contributes to the accumulation of a labile iron pool (LIP) and lipid peroxidation, then triggers ferroptosis of lung epithelial cells. The ferroptosis of airway epithelial cells and alveolar epithelial cells induces airway remodeling and emphysema, respectively, which causes COPD.
Collapse
Affiliation(s)
- Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- School of Public Health, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yan Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Jing Zhao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Quanyong Xiang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tao Bian
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
- School of Public Health, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Johnston RA, Atkins CL, Siddiqui SR, Jackson WT, Mitchell NC, Spencer CY, Pilkington AW, Kashon ML, Haque IU. Interleukin-11 receptor subunit α-1 is required for maximal airway responsiveness to methacholine after acute exposure to ozone. Am J Physiol Regul Integr Comp Physiol 2022; 323:R921-R934. [PMID: 36283092 PMCID: PMC9722265 DOI: 10.1152/ajpregu.00213.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-11, a multifunctional cytokine, contributes to numerous biological processes, including adipogenesis, hematopoiesis, and inflammation. Asthma, a respiratory disease, is notably characterized by reversible airway obstruction, persistent lung inflammation, and airway hyperresponsiveness (AHR). Nasal insufflation of IL-11 causes AHR in wild-type mice while lung inflammation induced by antigen sensitization and challenge, which mimics features of atopic asthma in humans, is attenuated in mice genetically deficient in IL-11 receptor subunit α-1 (IL-11Rα1-deficient mice), a transmembrane receptor that is required conjointly with glycoprotein 130 to transduce IL-11 signaling. Nevertheless, the contribution of IL-11Rα1 to characteristics of nonatopic asthma is unknown. Thus, based on the aforementioned observations, we hypothesized that genetic deficiency of IL-11Rα1 attenuates lung inflammation and increases airway responsiveness after acute inhalation exposure to ozone (O3), a criteria pollutant and nonatopic asthma stimulus. Accordingly, 4 and/or 24 h after cessation of exposure to filtered room air or O3, we assessed lung inflammation and airway responsiveness in wild-type and IL-11Rα1-deficient mice. With the exception of bronchoalveolar lavage macrophages and adiponectin, which were significantly increased and decreased, respectively, in O3-exposed IL-11Rα1-deficient as compared with O3-exposed wild-type mice, no other genotype-related differences in lung inflammation indices that we quantified were observed in O3-exposed mice. However, airway responsiveness to acetyl-β-methylcholine chloride (methacholine) was significantly diminished in IL-11Rα1-deficient as compared with wild-type mice after O3 exposure. In conclusion, these results demonstrate that IL-11Rα1 minimally contributes to lung inflammation but is required for maximal airway responsiveness to methacholine in a mouse model of nonatopic asthma.
Collapse
Affiliation(s)
- Richard A Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Saad R Siddiqui
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - William T Jackson
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Nicholas C Mitchell
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Albert W Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
5
|
Guo L, Yang L, Rao L, Luo F, Gao N, Jia X, Yu B. Too depressed to breathe: The longitudinal association between depressive symptoms and lung function among general middle-aged and older adults. Arch Gerontol Geriatr 2022; 103:104797. [PMID: 36058044 DOI: 10.1016/j.archger.2022.104797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
Objective Most previous studies focusing on the association between depressive symptoms and lung function were conducted in patients with chronic lung diseases. This study aims to investigate the association of depressive symptoms with lung function among general Chinese middle-aged and older adults. Participants This study used data from the China Health and Retirement Longitudinal Study (CHARLS). Analyses were conducted with data from three waves (2011, 2013, and 2015) and restricted to those respondents aged 45 and older. Finally, 9487 individuals [mean age (SD) = 58.47 (9.19); female, 53.1%] were included in analysis. Methods Depressive symptoms were measured by the Chinese version of 10-item Center for Epidemiological Studies Depression Scale (CESD-10). Lung function was assessed by peak expiratory flow (PEF). Two-level linear mixed growth models were used to evaluate the longitudinal association between depressive symptoms and PEF. Results Depressive symptoms were significantly associated with PEF among general middle-aged and older adults (b = -1.85, p < 0.001) after adjusting for multiple confounding factors. A significant interaction between depressive symptoms and gender was found (b = 1.29, p < 0.001). The association between depressive symptoms and PEF was greater for men (b = -2.36, p < 0.001) than for women (b = -1.46, p < 0.001). Conclusions This longitudinal study found that increased depressive symptoms were associated with reduced PEF in middle-aged and older adults in China. Compared with women, men with a higher level of depressive symptoms experienced a greater decrement in PEF. Our findings suggest that it is possible to reduce the effects of PEF by improving psychological health among general middle-aged and older populations.
Collapse
Affiliation(s)
- Lizhi Guo
- School of Education, Tianjin University, Tianjin, China; Institute of Applied Psychology, Tianjin University, Tianjin, China; Laboratory of Suicidology, Tianjin Municipal Education Commission, Tianjin, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Li Yang
- School of Education, Tianjin University, Tianjin, China; Institute of Applied Psychology, Tianjin University, Tianjin, China; Laboratory of Suicidology, Tianjin Municipal Education Commission, Tianjin, China
| | - Liwei Rao
- School of Education, Tianjin University, Tianjin, China; Institute of Applied Psychology, Tianjin University, Tianjin, China; Laboratory of Suicidology, Tianjin Municipal Education Commission, Tianjin, China
| | - Fengping Luo
- Department of Psychology, Wuhan University, Wuhan, China
| | - Ningcan Gao
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bin Yu
- Institute of Applied Psychology, Tianjin University, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
6
|
Cross-talk between IL-6 trans-signaling and AIM2 inflammasome/IL-1β axes bridge innate immunity and epithelial apoptosis to promote emphysema. Proc Natl Acad Sci U S A 2022; 119:e2201494119. [PMID: 36037355 PMCID: PMC9457334 DOI: 10.1073/pnas.2201494119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1β but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1β and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.
Collapse
|
7
|
Giordano L, Gregory AD, Pérez Verdaguer M, Ware SA, Harvey H, DeVallance E, Brzoska T, Sundd P, Zhang Y, Sciurba FC, Shapiro SD, Kaufman BA. Extracellular Release of Mitochondrial DNA: Triggered by Cigarette Smoke and Detected in COPD. Cells 2022; 11:369. [PMID: 35159179 PMCID: PMC8834490 DOI: 10.3390/cells11030369] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoke (CS) is the most common risk factor for chronic obstructive pulmonary disease (COPD). The present study aimed to elucidate whether mtDNA is released upon CS exposure and is detected in the plasma of former smokers affected by COPD as a possible consequence of airway damage. We measured cell-free mtDNA (cf-mtDNA) and nuclear DNA (cf-nDNA) in COPD patient plasma and mouse serum with CS-induced emphysema. The plasma of patients with COPD and serum of mice with CS-induced emphysema showed increased cf-mtDNA levels. In cell culture, exposure to a sublethal dose of CSE decreased mitochondrial membrane potential, increased oxidative stress, dysregulated mitochondrial dynamics, and triggered mtDNA release in extracellular vesicles (EVs). Mitochondrial DNA release into EVs occurred concomitantly with increased expression of markers that associate with DNA damage responses, including DNase III, DNA-sensing receptors (cGAS and NLRP3), proinflammatory cytokines (IL-1β, IL-6, IL-8, IL-18, and CXCL2), and markers of senescence (p16 and p21); the majority of the responses are also triggered by cytosolic DNA delivery in vitro. Exposure to a lethal CSE dose preferentially induced mtDNA and nDNA release in the cell debris. Collectively, the results of this study associate markers of mitochondrial stress, inflammation, and senescence with mtDNA release induced by CSE exposure. Because high cf-mtDNA is detected in the plasma of COPD patients and serum of mice with emphysema, our findings support the future study of cf-mtDNA as a marker of mitochondrial stress in response to CS exposure and COPD pathology.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| | - Alyssa D. Gregory
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Mireia Pérez Verdaguer
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Sarah A. Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
| | - Hayley Harvey
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
| | - Evan DeVallance
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| | - Tomasz Brzoska
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
- Division of Hematology/Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prithu Sundd
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Frank C. Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Steven D. Shapiro
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Brett A. Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| |
Collapse
|
8
|
Chen S, Chen Z, Deng Y, Zha S, Yu L, Li D, Liang Z, Yang K, Liu S, Chen R. Prevention of IL-6 signaling ameliorates toluene diisocyanate-induced steroid-resistant asthma. Allergol Int 2022; 71:73-82. [PMID: 34332882 DOI: 10.1016/j.alit.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Accumulating evidence indicated the crucial role for interleukin 6 (IL-6) signaling in the development of allergic asthma. Yet, the role of IL-6 signaling in toluene diisocyanate (TDI)-induced mixed granulocytic airway inflammation still remains unclear. Thus, the aims of this study were to dissect the role of IL-6 signaling and to evaluate the effect of tocilizumab on TDI-induced steroid-resistant asthma. METHODS TDI-induced asthma model was prepared and asthmatic mice were respectively given IL-6 monoclonal antibody, IL-6R monoclonal antibody (tocilizumab, 5 mg/kg, i.p. after each challenge) for therapeutic purposes or isotype IgG as control. RESULTS TDI exposure just elevated IL-6R expression in the infiltrated inflammatory cells around the airway, but increased glycoprotein 130 expression in the whole lung, especially in bronchial epithelium. Moreover, TDI inhalation increased airway hyperresponsiveness (AHR) to methacholine, coupled with mixed granulocytic inflammation, exaggerated epithelial denudation, airway smooth muscle thickening, goblet cell metaplasia, extensive submucosal collagen deposition, dysregulated Th2/Th17 responses, as well as innate immune responses and raised serum IgE. And almost all these responses except for raised serum IgE were markedly ameliorated by the administration of IL-6 neutralizing antibody or tocilizumab, but exhibited poor response to systemic steroid treatment. Also, TDI challenge induced nucleocytoplasm translocation of HMGB1 and promoted its release in the BALF, as well as elevated lung level of STAT3 phosphorylation, which were inhibited by anti-IL-6 and anti-IL-6R treatment. CONCLUSIONS Our data suggested that IL-6 monoclonal antibody and tocilizumab might effectively abrogate TDI-induced airway inflammation and remodeling, which could be used as a clinical potential therapy for patients with severe asthma.
Collapse
|
9
|
Ren Y, Liu Y, Wang S, Lei Z, Yan Y, Guan X, Hou J, Zhu S, Shan H, Tian X, Wang Q, Cao C, Zhang Y, Ma Y. Zhike pingchuan granules improve bronchial asthma by regulating the IL-6/JAK2/STAT3 pathway. Exp Ther Med 2021; 22:899. [PMID: 34257712 PMCID: PMC8243345 DOI: 10.3892/etm.2021.10331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the effects of zhike pingchuan granules (ZKPC) on bronchial asthma and the underlying mechanism. A bronchial asthma mouse model was established by aerosol inhalation of ovalbumin. The changes in lung pathomorphology were observed by hematoxylin and eosin staining. The levels of IL-1β, TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF) and serum were detected by corresponding ELISA kits. Levels of reactive oxygen species, malondialdehyde and superoxide dismutase in lung tissues were analyzed using corresponding kits. The expression of proteins related to apoptosis and the IL-6/janus kinase 2 (JAK2)/STAT3 pathway was detected by western blot analysis. The results showed that ZKPC significantly restored the dry/wet ratio and alleviated lung pathomorphology of bronchial asthmatic mice. In addition, ZKPC inhibits inflammation, oxidative stress levels and cell apoptosis in bronchial asthmatic mice and also suppressed the IL-6/JAK2/STAT3 pathway. Fedratinib (a JAK2 inhibitor) further strengthened the alleviative effects of ZKPC on bronchial asthma. In conclusion, ZKPC improved bronchial asthma by suppressing the IL-6/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Yumei Ren
- Pediatric Department of The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yuling Liu
- Pediatric Department of Nanjing Pukou Hospital of Chinese Medicine, Nanjing, Jiangsu 211800, P.R. China
| | - Shouchuan Wang
- Pediatric Department of Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Zhen Lei
- Central Laboratory of The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Yongbin Yan
- Pediatric Department of The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Xutao Guan
- Oncology Department of The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Jianghong Hou
- Health Preserving Discipline of The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Shan Zhu
- Pediatric Department of The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Haijun Shan
- Pediatric Department of The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Xinlei Tian
- Pediatric Department of The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Quan Wang
- Experimental Center of Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Caihong Cao
- Pediatric Department of The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Yingying Zhang
- Pediatric Department of The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Yunfeng Ma
- Discipline of Bone Injury of The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
10
|
Rowley J, Namvar S, Gago S, Labram B, Bowyer P, Richardson MD, Herrick SE. Differential Proinflammatory Responses to Aspergillus fumigatus by Airway Epithelial Cells In Vitro Are Protease Dependent. J Fungi (Basel) 2021; 7:468. [PMID: 34200666 PMCID: PMC8228831 DOI: 10.3390/jof7060468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/05/2022] Open
Abstract
Aspergillus fumigatus is an important human respiratory mould pathogen. In addition to a barrier function, airway epithelium elicits a robust defence against inhaled A. fumigatus by initiating an immune response. The manner by which A. fumigatus initiates this response and the reasons for the immunological heterogeneity with different isolates are unclear. Both direct fungal cell wall-epithelial cell interaction and secretion of soluble proteases have been proposed as possible mechanisms. Our aim was to determine the contribution of fungal proteases to the induction of epithelial IL-6 and IL-8 in response to different A. fumigatus isolates. Airway epithelial cells were exposed to conidia from a low or high protease-producing strain of A. fumigatus, and IL-6 and IL-8 gene expression and protein production were quantified. The role of proteases in cytokine production was further determined using specific protease inhibitors. The proinflammatory cytokine response correlated with conidia germination and hyphal extension. IL-8 induction was significantly reduced in the presence of matrix metalloprotease or cysteine protease inhibitors. With a high protease-producing strain of A. fumigatus, IL-6 release was metalloprotease dependent. Dectin-1 antagonism also inhibited the production of both cytokines. In conclusion, A. fumigatus-secreted proteases mediate a proinflammatory response by airway epithelial cells in a strain-dependent manner.
Collapse
Affiliation(s)
- Jessica Rowley
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
| | - Sara Namvar
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| | - Sara Gago
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Briony Labram
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
| | - Paul Bowyer
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Malcolm D. Richardson
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Mycology Reference Centre, ECMM Excellence Centre of Medical Mycology, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Sarah E. Herrick
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
| |
Collapse
|
11
|
Gorshkova EA, Zvartsev RV, Drutskaya MS, Gubernatorova EO. Humanized Mouse Models as a Tool to Study Proinflammatory Cytokine Overexpression. Mol Biol 2019. [DOI: 10.1134/s0026893319050078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Hayashi S, Matsuno Y, Tsunoda Y, Sakurai H, Kiwamoto T, Morishima Y, Ishii Y, Yoh K, Takahashi S, Hizawa N. Transcription Factor T-bet Attenuates the Development of Elastase-induced Emphysema in Mice. Am J Respir Cell Mol Biol 2019; 61:525-536. [DOI: 10.1165/rcmb.2018-0109oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Keigyou Yoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
13
|
Botelho FM, Rodrigues R, Guerette J, Wong S, Fritz DK, Richards CD. Extracellular Matrix and Fibrocyte Accumulation in BALB/c Mouse Lung upon Transient Overexpression of Oncostatin M. Cells 2019; 8:cells8020126. [PMID: 30764496 PMCID: PMC6406700 DOI: 10.3390/cells8020126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
The accumulation of extracellular matrix in lung diseases involves numerous factors, including cytokines and chemokines that participate in cell activation in lung tissues and the circulation of fibrocytes that contribute to local fibrotic responses. The transient overexpression of the gp130 cytokine Oncostatin M can induce extracellular matrix (ECM) accumulation in mouse lungs, and here, we assess a role for IL-13 in this activity using gene deficient mice. The endotracheal administration of an adenovirus vector encoding Oncostatin M (AdOSM) caused increases in parenchymal lung collagen accumulation, neutrophil numbers, and CXCL1/KC chemokine elevation in bronchioalveolar lavage fluids. These effects were similar in IL-13-/- mice at day 7; however, the ECM matrix induced by Oncostatin M (OSM) was reduced at day 14 in the IL-13-/- mice. CD45+col1+ fibrocyte numbers were elevated at day 7 due to AdOSM whereas macrophages were not. Day 14 levels of CD45+col1+ fibrocytes were maintained in the wildtype mice treated with AdOSM but were reduced in IL-13-/- mice. The expression of the fibrocyte chemotactic factor CXCL12/SDF-1 was suppressed marginally by AdOSM in vivo and significantly in vitro in mouse lung fibroblast cell cultures. Thus, Oncostatin M can stimulate inflammation in an IL-13-independent manner in BALB/c lungs; however, the ECM remodeling and fibrocyte accumulation is reduced in IL-13 deficiency.
Collapse
Affiliation(s)
- Fernando M Botelho
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| | | | | | | | | | | |
Collapse
|
14
|
Jevnikar Z, Östling J, Ax E, Calvén J, Thörn K, Israelsson E, Öberg L, Singhania A, Lau LCK, Wilson SJ, Ward JA, Chauhan A, Sousa AR, De Meulder B, Loza MJ, Baribaud F, Sterk PJ, Chung KF, Sun K, Guo Y, Adcock IM, Payne D, Dahlen B, Chanez P, Shaw DE, Krug N, Hohlfeld JM, Sandström T, Djukanovic R, James A, Hinks TSC, Howarth PH, Vaarala O, van Geest M, Olsson H. Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. J Allergy Clin Immunol 2018; 143:577-590. [PMID: 29902480 DOI: 10.1016/j.jaci.2018.05.026] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/15/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. OBJECTIVE We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. METHODS An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. RESULTS Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1β, IL-8, and IL-1β. CONCLUSIONS Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.
Collapse
Affiliation(s)
- Zala Jevnikar
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jörgen Östling
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Ax
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Calvén
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thörn
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Israelsson
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lisa Öberg
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Akul Singhania
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom
| | - Laurie C K Lau
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom
| | - Susan J Wilson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan A Ward
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anoop Chauhan
- Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom
| | - Ana R Sousa
- Discovery Medicine, GlaxoSmithKline, Brentford, United Kingdom
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | | | | | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London UK & Royal Brompton Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Kai Sun
- Department of Computing & Data Science Institute, Imperial College London, London, United Kingdom
| | - Yike Guo
- Department of Computing & Data Science Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London UK & Royal Brompton Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Debbie Payne
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, United Kingdom
| | - Barbro Dahlen
- Karolinska University Hospital & Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | | | - Dominick E Shaw
- Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Norbert Krug
- Fraunhofer Institute of Toxicology and Experimental Medicine, Member of the German Center for Lung Research, Hannover, Germany
| | - Jens M Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Member of the German Center for Lung Research, Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom
| | - Anna James
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Timothy S C Hinks
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom; Respiratory Medicine Unit, NDM Experimental Medicine, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom
| | - Peter H Howarth
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom
| | - Outi Vaarala
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marleen van Geest
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
15
|
Wu Y, Xu B, He X, Wu B, Li Y, Yu G, Tan C, Wang H. Correlation between autophagy levels in peripheral blood mononuclear cells and clinical parameters in patients with chronic obstructive pulmonary disease. Mol Med Rep 2018; 17:8003-8009. [PMID: 29620199 DOI: 10.3892/mmr.2018.8831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/02/2018] [Indexed: 11/05/2022] Open
Abstract
Autophagy serves a role in the pathogenesis of chronic inflammatory diseases. The aim of the present study was to compare the autophagy levels in the peripheral blood mononuclear cells (PBMCs) of patients with chronic obstructive pulmonary disease (COPD) and healthy individuals and to assess the association between autophagy and the clinical parameters of COPD. Samples of peripheral blood from 20 patients with stable COPD and 20 healthy controls were collected. PBMCs were harvested using Ficoll density gradient centrifugation. Levels of the autophagy‑associated proteins ubiquitin‑binding protein p62 (p62), microtubule‑associated proteins 1A/1B light chain 3A (LC3I/II) and beclin‑1 in PBMCs were detected by western blotting. Enzyme‑linked immunosorbent assay kits were used to detect the serum concentrations of interleukin (IL)‑6, IL‑8 and tumor necrosis factor (TNF)‑α. Associations between the levels of autophagy and forced expiratory volume in 1 sec % predicted (FEV1%) and pro‑inflammatory factors were assessed. Western blotting demonstrated that the protein expression of p62 was decreased, but LC3II/I and beclin‑1 levels increased in patients with COPD compared with healthy controls. Serum levels of IL‑6, IL‑8 and TNF‑α were increased in patients with COPD. The extent of PBMC autophagy was negatively correlated with FEV1% predicted, but positively correlated with levels of pro‑inflammatory cytokines. The levels of autophagy in PBMCs in patients with COPD were increased and were negatively correlated with FEV1% predicted and positively correlated with circulating levels of pro‑inflammatory cytokines. Autophagy may serve a role as a biomarker of the severity of COPD or as a therapeutic target for treatment of COPD.
Collapse
Affiliation(s)
- Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bo Xu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xin He
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bo Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yunxiao Li
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Chunting Tan
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
16
|
The longitudinal association between changes in lung function and changes in abdominal visceral obesity in Korean non-smokers. PLoS One 2018; 13:e0193516. [PMID: 29474424 PMCID: PMC5825142 DOI: 10.1371/journal.pone.0193516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/04/2018] [Indexed: 02/08/2023] Open
Abstract
Obesity, particularly abdominal obesity, might be related to decreased lung function. We aimed to investigate whether obesity indices are associated with forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) in asymptomatic non-smokers through a longitudinal cohort study. The clinical records of 1,145 subjects (428 males, mean age 52.3 years) who underwent a comprehensive health evaluation, including spirometry and abdominal fat computed tomography, at least twice between 2007 and 2014 were retrospectively reviewed and analysed. The mean follow-up period was 1,105 days (over 3.0 years). The baseline total adipose tissue (TAT) and visceral adipose tissue (VAT) were inversely associated with both FEV1 and FVC (P < 0.05). The longitudinal study found that increasing TAT and VAT were significantly related to decreasing FEV1 and FVC, whereas decreasing TAT and VAT were related to increasing FEV1 and FVC in both males and females (P < 0.05). The strength and consistency of these associations were clearer in males than in females. However, no significant relationship was found between changes in subcutaneous adipose tissue and changes in lung function. In Korean non-smokers, longitudinal changes in abdominal visceral fat were found to be inversely related to changes in lung function over a mean period of three years. These results suggest that decreasing abdominal visceral obesity could increase lung function despite ageing.
Collapse
|
17
|
Ruwanpura SM, McLeod L, Dousha LF, Seow HJ, Alhayyani S, Tate MD, Deswaerte V, Brooks GD, Bozinovski S, MacDonald M, Garbers C, King PT, Bardin PG, Vlahos R, Rose-John S, Anderson GP, Jenkins BJ. Therapeutic Targeting of the IL-6 Trans-Signaling/Mechanistic Target of Rapamycin Complex 1 Axis in Pulmonary Emphysema. Am J Respir Crit Care Med 2017; 194:1494-1505. [PMID: 27373892 DOI: 10.1164/rccm.201512-2368oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The potent immunomodulatory cytokine IL-6 is consistently up-regulated in human lungs with emphysema and in mouse emphysema models; however, the mechanisms by which IL-6 promotes emphysema remain obscure. IL-6 signals using two distinct modes: classical signaling via its membrane-bound IL-6 receptor (IL-6R), and trans-signaling via a naturally occurring soluble IL-6R. OBJECTIVES To identify whether IL-6 trans-signaling and/or classical signaling contribute to the pathogenesis of emphysema. METHODS We used the gp130F/F genetic mouse model for spontaneous emphysema and cigarette smoke-induced emphysema models. Emphysema in mice was quantified by various methods including in vivo lung function and stereology, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to assess alveolar cell apoptosis. In mouse and human lung tissues, the expression level and location of IL-6 signaling-related genes and proteins were measured, and the levels of IL-6 and related proteins in sera from emphysematous mice and patients were also assessed. MEASUREMENTS AND MAIN RESULTS Lung tissues from patients with emphysema, and from spontaneous and cigarette smoke-induced emphysema mouse models, were characterized by excessive production of soluble IL-6R. Genetic blockade of IL-6 trans-signaling in emphysema mouse models and therapy with the IL-6 trans-signaling antagonist sgp130Fc ameliorated emphysema by suppressing augmented alveolar type II cell apoptosis. Furthermore, IL-6 trans-signaling-driven emphysematous changes in the lung correlated with mechanistic target of rapamycin complex 1 hyperactivation, and treatment of emphysema mouse models with the mechanistic target of rapamycin complex 1 inhibitor rapamycin attenuated emphysematous changes. CONCLUSIONS Collectively, our data reveal that specific targeting of IL-6 trans-signaling may represent a novel treatment strategy for emphysema.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Lovisa F Dousha
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Huei J Seow
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Sultan Alhayyani
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle D Tate
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Virginie Deswaerte
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Gavin D Brooks
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Steven Bozinovski
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.,4 School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Martin MacDonald
- 5 Monash Lung and Sleep, Monash Medical Centre, Victoria, Australia; and
| | - Christoph Garbers
- 6 Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Paul T King
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,5 Monash Lung and Sleep, Monash Medical Centre, Victoria, Australia; and
| | - Philip G Bardin
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,5 Monash Lung and Sleep, Monash Medical Centre, Victoria, Australia; and
| | - Ross Vlahos
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.,4 School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Stefan Rose-John
- 6 Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Gary P Anderson
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan J Jenkins
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Das S, Miller M, Broide DH. Chromosome 17q21 Genes ORMDL3 and GSDMB in Asthma and Immune Diseases. Adv Immunol 2017; 135:1-52. [PMID: 28826527 DOI: 10.1016/bs.ai.2017.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome 17q21 contains a cluster of genes including ORMDL3 and GSDMB, which have been highly linked to asthma in genome-wide association studies. ORMDL3 is localized to the endoplasmic reticulum and regulates downstream pathways including sphingolipids, metalloproteases, remodeling genes, and chemokines. ORMDL3 inhibits serine palmitoyl-CoA transferase, the rate-limiting enzyme for sphingolipid biosynthesis. In addition, ORMDL3 activates the ATF6α branch of the unfolded protein response which regulates SERCA2b and IL-6, pathways of potential importance to asthma. The SNP-linking chromosome 17q21 to asthma is associated with increased ORMDL3 and GSDMB expression. Mice expressing either increased levels of human ORMDL3, or human GSDMB, have an asthma phenotype characterized by increased airway responsiveness and increased airway remodeling (increased smooth muscle and fibrosis) in the absence of airway inflammation. GSDMB regulates expression of 5-LO and TGF-β1 which are known pathways involved in the pathogenesis of asthma. GSDMB is one of four members of the GSDM family (GSDMA, GSDMB, GSDMC, and GSDMD). GSDMD (located on chromosome 8q24 and not linked to asthma) has emerged as a key mediator of pyroptosis. GSDMD is a key component of the NLPR3 inflammasome and is required for its activation. GSDMD undergoes proteolytic cleavage by caspase-1 to release its N-terminal fragment, which in turn mediates pyroptosis and IL-1β secretion. Chromosome 17q21 has not only been linked to asthma but also to type 1 diabetes, inflammatory bowel disease, and primary biliary cirrhosis suggesting that future insights into the biology of genes located in this region will increase our understanding of these diseases.
Collapse
Affiliation(s)
- Sudipta Das
- University of California, San Diego, CA, United States
| | - Marina Miller
- University of California, San Diego, CA, United States
| | | |
Collapse
|
19
|
Kobayashi K, Koyama K, Suzukawa M, Igarashi S, Hebisawa A, Nagase T, Ohta K. Epithelial-mesenchymal transition promotes reactivity of human lung adenocarcinoma A549 cells to CpG ODN. Allergol Int 2016; 65 Suppl:S45-52. [PMID: 27475623 DOI: 10.1016/j.alit.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is reported to promote airway remodeling in asthmatics, which is the main histological change that causes complex and severe symptoms in asthmatics. However, little is known about whether EMT also plays a role in acute exacerbations of asthma evoked by respiratory tract infections. METHODS A human lung adenocarcinoma line, A549, was incubated with TGF-β1 at 10 ng/ml to induce EMT. Then the cells were stimulated with CpG ODN. Expression of surface and intracellular molecules was analyzed by flow cytometry. IL-6, IL-8 and MCP-1 in the culture supernatant were measured by Cytometric Bead Assay, and the expression of mRNA was quantitated by real-time PCR. CpG ODN uptake was analyzed by flow cytometry. RESULTS The culture supernatant levels of IL-6, IL-8 and MCP-1 and the expression of mRNA for these cytokines in CpG ODN-stimulated A549 cells that had undergone EMT was significantly higher compared to those that had not. Addition of ODN H154, a TLR9-inhibiting DNA, significantly suppressed the CpG ODN-induced production of those cytokines. However, flow cytometry found the level of TLR9 expression to be slightly lower in A549 cells that had undergone EMT compared to those that had not. On the other hand, CpG ODN uptake was increased in cells that had undergone EMT. CONCLUSIONS EMT induction of A549 cells enhanced CpG ODN uptake and CpG ODN-induced production of IL-6, IL-8 and MCP-1. These results suggest that EMT plays an important role in exacerbation in asthmatics with airway remodeling by enhancing sensitivity to extrinsic pathogens.
Collapse
Affiliation(s)
- Koichi Kobayashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Kazuya Koyama
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.
| | - Sayaka Igarashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Hebisawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
20
|
Young RP, Hopkins RJ, Marsland B. The Gut-Liver-Lung Axis. Modulation of the Innate Immune Response and Its Possible Role in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2016; 54:161-9. [PMID: 26473323 DOI: 10.1165/rcmb.2015-0250ps] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence from epidemiological studies suggests that a diet high in fiber is associated with better lung function and reduced risk of chronic obstructive pulmonary disease (COPD). The mechanism for this benefit remains unknown, but, as fiber is not absorbed by the gut, this finding suggests that the gut may play an active role in pathogenic pathways underlying COPD. There is a growing awareness that aberrant activity of the innate immune system, characterized by increased neutrophil and macrophage activation, may contribute to the development or progression of COPD. Innate immunity is modulated in large part by the liver, where hepatic cells function in immune surveillance of the portal circulation, as well as providing a rich source of systemic inflammatory cytokines and immune mediators (notably, IL-6 and C-reactive protein). We believe that the beneficial effect of dietary fiber on lung function is through modulation of innate immunity and subsequent attenuation of the pulmonary response to inflammatory stimuli, most apparent in current or former smokers. We propose that the "gut-liver-lung axis" may play a modifying role in the pathogenesis of COPD. In this review, we summarize lines of evidence that include animal models, large prospective observational studies, and clinical trials, supporting the hypothesis that the gut-liver-lung axis plays an integral part in the pathogenic mechanisms underlying the pathogenesis of COPD.
Collapse
Affiliation(s)
- Robert P Young
- 1 School of Biological Science and the Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; and
| | - Raewyn J Hopkins
- 1 School of Biological Science and the Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; and
| | - Benjamin Marsland
- 2 Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universataire Vaudois, Epalinges, Switzerland
| |
Collapse
|
21
|
Ortega-Martínez M, Rodríguez-Flores LE, Ancer-Arellano A, Cerda-Flores RM, de-la-Garza-González C, Ancer-Rodríguez J, Jaramillo-Rangel G. Analysis of Cell Turnover in the Bronchiolar Epithelium Through the Normal Aging Process. Lung 2016; 194:581-7. [PMID: 27164984 DOI: 10.1007/s00408-016-9890-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Aging is associated with changes in the lung that leads to a decrease in its function. Alterations in structure and function in the small airways are well recognized in chronic lung diseases. The aim of this study was the assessment of cell turnover in the bronchiolar epithelium of mouse through the normal aging process. METHODS Lungs from CD1 mice at the age of 2, 6, 12, 18, or 24 months were fixed in neutral-buffered formalin and paraffin-embedded. Proliferating cell nuclear antigen was examined by immunohistochemistry. Apoptosis was analyzed by in situ end-labeling of fragmented DNA. Epithelial dimensions were analyzed by morphometry. RESULTS The 2-month-old mice showed significantly higher number of proliferating cells when compared with mice at all other age groups. The number of apoptotic cells in mice at 24 months of age was significantly greater than in mice at all other age groups. Thus, the number of epithelial cells decreased as the age of the subject increased. We also found reductions in both area and height of the bronchiolar epithelium in mice at 18 and 24 months of age. CONCLUSIONS We found a decrease in the total number of epithelial cells in the aged mice, which was accompanied by a thinning of the epithelium. These changes reflect a dysregulated tissue regeneration process in the bronchiolar epithelium that might predispose to respiratory diseases in elderly subjects.
Collapse
Affiliation(s)
- Marta Ortega-Martínez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Laura E Rodríguez-Flores
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Adriana Ancer-Arellano
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Ricardo M Cerda-Flores
- School of Nursing, Autonomous University of Nuevo Leon, Ave. Gonzalitos 1500 Nte., Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Carlos de-la-Garza-González
- Department of Embryology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Jesús Ancer-Rodríguez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
22
|
Shin D, Lee G, Sohn SH, Park S, Jung KH, Lee JM, Yang J, Cho J, Bae H. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice. Toxins (Basel) 2016; 8:131. [PMID: 27144583 PMCID: PMC4885046 DOI: 10.3390/toxins8050131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 01/30/2023] Open
Abstract
Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.
Collapse
Affiliation(s)
- Dasom Shin
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Sung-Hwa Sohn
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Soojin Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Kyung-Hwa Jung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Ji Min Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Jieun Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| |
Collapse
|
23
|
Dinger K, Kasper P, Hucklenbruch-Rother E, Vohlen C, Jobst E, Janoschek R, Bae-Gartz I, van Koningsbruggen-Rietschel S, Plank C, Dötsch J, Alejandre Alcázar MA. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep 2016; 6:24168. [PMID: 27087690 PMCID: PMC4834579 DOI: 10.1038/srep24168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/22/2016] [Indexed: 12/30/2022] Open
Abstract
Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma.
Collapse
Affiliation(s)
- Katharina Dinger
- Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Philipp Kasper
- Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Metabolism and Perinatal Programming, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christina Vohlen
- Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Metabolism and Perinatal Programming, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Eva Jobst
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Ruth Janoschek
- Metabolism and Perinatal Programming, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Inga Bae-Gartz
- Metabolism and Perinatal Programming, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Silke van Koningsbruggen-Rietschel
- Pediatric Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christian Plank
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Jörg Dötsch
- University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Miguel Angel Alejandre Alcázar
- Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Caetano MS, Zhang H, Cumpian AM, Gong L, Unver N, Ostrin EJ, Daliri S, Chang SH, Ochoa CE, Hanash S, Behrens C, Wistuba II, Sternberg C, Kadara H, Ferreira CG, Watowich SS, Moghaddam SJ. IL6 Blockade Reprograms the Lung Tumor Microenvironment to Limit the Development and Progression of K-ras-Mutant Lung Cancer. Cancer Res 2016; 76:3189-99. [PMID: 27197187 DOI: 10.1158/0008-5472.can-15-2840] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
Activating mutations of K-ras are the most common oncogenic alterations found in lung cancer. Unfortunately, attempts to target K-ras-mutant lung tumors have thus far failed, clearly indicating the need for new approaches in patients with this molecular profile. We have previously shown NF-κB activation, release of IL6, and activation of its responsive transcription factor STAT3 in K-ras-mutant lung tumors, which was further amplified by the tumor-enhancing effect of chronic obstructive pulmonary disease (COPD)-type airway inflammation. These findings suggest an essential role for this inflammatory pathway in K-ras-mutant lung tumorigenesis and its enhancement by COPD. Therefore, here we blocked IL6 using a monoclonal anti-IL6 antibody in a K-ras-mutant mouse model of lung cancer in the absence or presence of COPD-type airway inflammation. IL6 blockade significantly inhibited lung cancer promotion, tumor cell-intrinsic STAT3 activation, tumor cell proliferation, and angiogenesis markers. Moreover, IL6 inhibition reduced expression of protumor type 2 molecules (arginase 1, Fizz 1, Mgl, and IDO), number of M2-type macrophages and granulocytic myeloid-derived suppressor cells, and protumor T-regulatory/Th17 cell responses. This was accompanied by increased expression of antitumor type 1 molecule (Nos2), and antitumor Th1/CD8 T-cell responses. Our study demonstrates that IL6 blockade not only has direct intrinsic inhibitory effect on tumor cells, but also reeducates the lung microenvironment toward an antitumor phenotype by altering the relative proportion between protumor and antitumor immune cells. This information introduces IL6 as a potential druggable target for prevention and treatment of K-ras-mutant lung tumors. Cancer Res; 76(11); 3189-99. ©2016 AACR.
Collapse
Affiliation(s)
- Mauricio S Caetano
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huiyuan Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amber M Cumpian
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Gong
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nese Unver
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Soudabeh Daliri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seon Hee Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cesar E Ochoa
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cinthya Sternberg
- Clinical Research Department, Brazilian Clinical Research Network (RNPCC), Rio de Janeiro, Brazil
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Gil Ferreira
- Clinical Research Department, Brazilian Clinical Research Network (RNPCC), Rio de Janeiro, Brazil
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
25
|
Prasad S, Rana RK, Sheth R, Mauskar AV. A Hospital Based Study to Establish the Correlation between Recurrent Wheeze and Vitamin D Deficiency Among Children of Age Group Less than 3 Years in Indian Scenario. J Clin Diagn Res 2016; 10:SC18-21. [PMID: 27042548 DOI: 10.7860/jcdr/2016/17318.7287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/20/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Early childhood wheezing is a heterogeneous condition, which has several phenotypic expressions and a complex relationship with the development of asthma later in life. New studies indicate the prevalence of recurrent wheeze to be associated with Vitamin D deficiency. This has not been explored in Indian settings widely, mandating this exploration. AIM To determine the severity of Vitamin D deficiency and its association with recurrent wheeze in children less than 3 years of age. MATERIALS AND METHODS Consecutive type of non-probability sampling was followed for selection of study subjects with a total sample size to be 122 children in the Hospital setting. A pre- formed, pre- tested, structured interview schedule was used to obtain information. Estimation of 25 (OH) Vitamin D was done using ELISA method. Kit used for estimation was DLD Diagnostika GMBH 25(OH) Vitamin D ELISA from Germany. Standard statistical tools were used including Logistic regression analysis, and ROC curve, p value <0.05 was considered to be statistically significant. SPSS software version 17.0 was used. RESULTS Each 10ng/ml decrease in Vitamin D level is associated with 7.25% greater odds of wheezing. Our study also suggests, exclusive breast feeding and delaying of complementary feeding beyond 6 months of age are significant predictors of Vitamin D deficiency and have indirect association with increased incidence of wheezing in children. CONCLUSION The study concluded that Vitamin D deficiency is associated with increased risk of recurrent wheezing.
Collapse
Affiliation(s)
- Santosh Prasad
- Senior Registrar, Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital Sion Mumbai, Mumbai, Maharasthra, India
| | - Rishabh Kumar Rana
- Epidemiologist, Department of Community Medicine, Life Member Indian Medical Association, International Epidemiological Association (USA) , IAPSM, India
| | - Ronak Sheth
- Senior Registrar, Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital Sion Mumbai, Mumbai, Maharasthra, India
| | - Anupama V Mauskar
- Addtnl Professor, Department of Pediatrics, Lokmanya Tilak Municipal Medical College and General Hospital Sion Mumbai, Mumbai, Maharasthra, India
| |
Collapse
|
26
|
Cloonan SM, Glass K, Laucho-Contreras ME, Bhashyam AR, Cervo M, Pabón MA, Konrad C, Polverino F, Siempos II, Perez E, Mizumura K, Ghosh MC, Parameswaran H, Williams NC, Rooney KT, Chen ZH, Goldklang MP, Yuan GC, Moore SC, Demeo DL, Rouault TA, D’Armiento JM, Schon EA, Manfredi G, Quackenbush J, Mahmood A, Silverman EK, Owen CA, Choi AM. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med 2016; 22:163-74. [PMID: 26752519 PMCID: PMC4742374 DOI: 10.1038/nm.4021] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Airway Remodeling
- Animals
- Bronchitis/etiology
- Bronchitis/genetics
- Disease Models, Animal
- Electron Transport Complex IV/metabolism
- Electrophoretic Mobility Shift Assay
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Gene Expression Profiling
- Humans
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- Iron/metabolism
- Iron Chelating Agents/pharmacology
- Iron Regulatory Protein 2/genetics
- Iron Regulatory Protein 2/metabolism
- Iron, Dietary
- Iron-Binding Proteins/genetics
- Lung/drug effects
- Lung/metabolism
- Lung Injury/etiology
- Lung Injury/genetics
- Membrane Potential, Mitochondrial
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mucociliary Clearance/genetics
- Pneumonia/etiology
- Pneumonia/genetics
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Emphysema/etiology
- Pulmonary Emphysema/genetics
- Real-Time Polymerase Chain Reaction
- Smoke/adverse effects
- Smoking/adverse effects
- Nicotiana
- Frataxin
Collapse
Affiliation(s)
- Suzanne M. Cloonan
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria E. Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhiram R. Bhashyam
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Morgan Cervo
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria A. Pabón
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Csaba Konrad
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research institute, Albuquerque, NM, USA
- Pulmonary Department, University of Parma, Parma, Italy
| | - Ilias I. Siempos
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Elizabeth Perez
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Kenji Mizumura
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Manik C. Ghosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA
| | | | - Niamh C. Williams
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Kristen T. Rooney
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Zhi-Hua Chen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Monica P. Goldklang
- Department of Anesthesiology, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephen C. Moore
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dawn L. Demeo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tracey A. Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA
| | - Jeanine M. D’Armiento
- Department of Anesthesiology, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA
| | - Eric A. Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashfaq Mahmood
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin K. Silverman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research institute, Albuquerque, NM, USA
| | - Augustine M.K. Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Lin YL, Chen SH, Wang JY. Critical role of IL-6 in dendritic cell-induced allergic inflammation of asthma. J Mol Med (Berl) 2015; 94:51-9. [PMID: 26232935 DOI: 10.1007/s00109-015-1325-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 01/21/2023]
Abstract
UNLABELLED Interleukin (IL)-6 plays important roles in autoimmunity and inflammation and is essential for T helper (Th) 2 and Th17 differentiation. However, whether it is involved in the development and function of dendritic cells (DCs) during allergen-induced airway inflammation and airway hyper-reactivity (AHR) remains undefined. In this study, Dermatophagoides pteronyssinus (Der p)-induced airway inflammation and AHR were studied in IL-6 knockout (KO) mice. Der p-loaded bone marrow-derived DCs (BMDCs) from IL-6 KO mice were used to assaying their ability to induce airway inflammation in naïve wild-type mice. Our results showed that IL-6 KO mice showed reduced AHR, significant decreases in inflammatory cell recruitment and Th2 and Th17 cytokine production in the airways, and lowered Der p-specific immunoglobulin G1 after Der p exposure. Further exploration of BMDCs from IL-6 KO mice revealed decreased activity of phagocytosis and reduced expression of MHC class II and CD86 after Der p stimulation. Adoptive transfer of Der p-loaded BMDCs from IL-6 KO mice also showed a functional defect in their inability to induce Th2 and Th17 immune responses and trigger airway inflammation and AHR in recipient mice. Finally, in allergic asthmatics, DCs that differentiated from monocytes treated with anti-IL-6 receptor antibody (tocilizumab) had poor capacity for eliciting Th2 polarization as compared to DCs generated from monocytes without antibody treatment. In conclusion, IL-6 signaling in DCs is essential for their uptake of allergens, maturation, and initiation of Th2/Th17-mediated airway inflammation and AHR in asthma, thus providing a new potential target for treating allergic asthma. KEY MESSAGES IL-6 signaling is important for DCs to take up allergens and to initiate Th2/Th17-mediated airway inflammation. DCs from allergic asthmatics treated with anti-IL-6 receptor antibody had poor capacity for eliciting Th2 polarization. Anti-IL-6 treatment may provide a new potential target for treating allergic asthma.
Collapse
Affiliation(s)
- Yen-Lin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Institute of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiu-Yao Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Allergy and Clinical Immunology Research (ACIR) Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,China Medical University Children Hospital, Taichung, Taiwan. .,Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
28
|
Awji EG, Chand H, Bruse S, Smith KR, Colby JK, Mebratu Y, Levy BD, Tesfaigzi Y. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am J Respir Cell Mol Biol 2015; 52:377-86. [PMID: 25137396 DOI: 10.1165/rcmb.2014-0142oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m(3) WS for 2 h/d, to 250 mg/m(3) cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation.
Collapse
Affiliation(s)
- Elias G Awji
- 1 COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Itoga M, Konno Y, Moritoki Y, Saito Y, Ito W, Tamaki M, Kobayashi Y, Kayaba H, Kikuchi Y, Chihara J, Takeda M, Ueki S, Hirokawa M. G-protein-coupled estrogen receptor agonist suppresses airway inflammation in a mouse model of asthma through IL-10. PLoS One 2015; 10:e0123210. [PMID: 25826377 PMCID: PMC4380451 DOI: 10.1371/journal.pone.0123210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/28/2015] [Indexed: 02/06/2023] Open
Abstract
Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the cell membrane. Although GPER is associated with immunoregulatory functions of estrogen, the pathophysiological role of GPER in allergic inflammatory lung disease has not been examined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an airway challenge phase, followed by histological and biochemical examination. Strikingly, administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammatory cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also decreased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+ regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-10 production. G-1-induced amelioration of airway inflammation and IgE production were abolished in IL-10-deficient mice. Taken together, these results indicate that extended GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-producing lymphocyte population. The current results have potential importance for understanding the mechanistic aspects of function of estrogen in allergic inflammatory response.
Collapse
Affiliation(s)
- Masamichi Itoga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036–8562, Japan
| | - Yasunori Konno
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Division of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yukiko Saito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Wataru Ito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Nagareyama Tobu Clinic, 909–1 Nazukari, Nagareyama City, Chiba, 270–0145, Japan
| | - Mami Tamaki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yoshiki Kobayashi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Otolaryngology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573–1010, Japan
| | - Hiroyuki Kayaba
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036–8562, Japan
| | - Yuta Kikuchi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Junichi Chihara
- Soseikai General Hospital, 101 Shimotoba Hiroosacho, Fushimi-ku, Kyoto City, Kyoto, 612–8473, Japan
| | - Masahide Takeda
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- * E-mail: (SU); (MT)
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- * E-mail: (SU); (MT)
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| |
Collapse
|
30
|
Sohn SH, Lee JM, Park S, Yoo H, Kang JW, Shin D, Jung KH, Lee YS, Cho J, Bae H. The inflammasome accelerates radiation-induced lung inflammation and fibrosis in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:917-926. [PMID: 25805627 DOI: 10.1016/j.etap.2015.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
Although lung inflammation and fibrosis are well-documented dose-limiting side effects of lung irradiation, the mechanisms underlying these pathologies are unknown. An improved mechanistic understanding of radiation-induced pneumonitis is a prerequisite for the development of more effective radiotherapy; this was the rationale for the current study. Mouse lungs were focally irradiated with 75 Gy. The numbers of neutrophils, lymphocytes, macrophages, and total cells in the bronchoalveolar lavage fluid were counted, and pro-inflammatory cytokine levels were measured. Histological analysis and immunohistochemical staining for Tgf-β1 and Cd68 (a macrophage-specific protein) was also performed. After irradiation, mice developed pneumonitis, and exhibited higher numbers of neutrophils, lymphocytes, eosinophils, macrophages, and total cells compared to controls. In addition, inflammasome (Nlrp3, and caspase 1, Il1a, and Il1β), adhesion molecule (Vcam1), and cytokine (Il6) genes were significantly upregulated in the IR group. Cd68 and Tgfb1 proteins were significantly increased after irradiation. Upregulation of Cd68 and Tgfb1 correlates with the onset of radiation-induced pneumonitis and fibrosis. In addition, radiation-induced pneumonitis and fibrosis are accompanied by upregulation of phenotypic markers of inflammasome activity. Our findings have implications for the onset and exacerbation of damage in normal lung tissue.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Min Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Soojin Park
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyun Yoo
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Wook Kang
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dasom Shin
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyung-Hwa Jung
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Yun-Sil Lee
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
31
|
Abstract
Past epidemiological observations and recent molecular studies suggest that chronic obstructive pulmonary disease (COPD) and lung cancer are closely related diseases, resulting from overlapping genetic susceptibility and exposure to aero-pollutants, primarily cigarette smoke. Statistics from the American Lung Association and American Cancer Society reveal that mortality from COPD and lung cancer are lowest in Hispanic subjects and generally highest in African American subjects, with mortality in non-Hispanic white subjects and Asian subjects in between. This observation, described as the “Hispanic paradox”, persists after adjusting for confounding variables, notably smoking exposure and sociodemographic factors. While differences in genetic predisposition might underlie this observation, differences in diet remain a possible explanation. Such a hypothesis is supported by the observation that a diet high in fruit and vegetables has been shown to confer a protective effect on both COPD and lung cancer. In this article, we hypothesise that a diet rich in legumes may explain, in part, the Hispanic paradox, given the traditionally high consumption of legumes (beans and lentils) by Hispanic subjects. Legumes are very high in fibre and have recently been shown to attenuate systemic inflammation significantly, which has previously been linked to susceptibility to COPD and lung cancer in large prospective studies. A similar protective effect could be attributed to the consumption of soy products (from soybeans) in Asian subjects, for whom a lower incidence of COPD and lung cancer has also been reported. This hypothesis requires confirmation in cohort studies and randomised control trials, where the effects of diet on outcomes can be carefully examined in a prospective study design.
Collapse
Affiliation(s)
- Robert P Young
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand. School of Biological Sciences, University of Auckland, Auckland, New Zealand Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand. School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Raewyn J Hopkins
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand. School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Fossum SL, Mutolo MJ, Yang R, Dang H, O'Neal WK, Knowles MR, Leir SH, Harris A. Ets homologous factor regulates pathways controlling response to injury in airway epithelial cells. Nucleic Acids Res 2014; 42:13588-98. [PMID: 25414352 PMCID: PMC4267623 DOI: 10.1093/nar/gku1146] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ets homologous factor (EHF) is an Ets family transcription factor expressed in many epithelial cell types including those lining the respiratory system. Disruption of the airway epithelium is central to many lung diseases, and a network of transcription factors coordinates its normal function. EHF can act as a transcriptional activator or a repressor, though its targets in lung epithelial cells are largely uncharacterized. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq), showed that the majority of EHF binding sites in lung epithelial cells are intergenic or intronic and coincide with putative enhancers, marked by specific histone modifications. EHF occupies many genomic sites that are close to genes involved in intercellular and cell–matrix adhesion. RNA-seq after EHF depletion or overexpression showed significant alterations in the expression of genes involved in response to wounding. EHF knockdown also targeted genes in pathways of epithelial development and differentiation and locomotory behavior. These changes in gene expression coincided with alterations in cellular phenotype including slowed wound closure and increased transepithelial resistance. Our data suggest that EHF regulates gene pathways critical for epithelial response to injury, including those involved in maintenance of barrier function, inflammation and efficient wound repair.
Collapse
Affiliation(s)
- Sara L Fossum
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael J Mutolo
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
| | - Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R Knowles
- Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
33
|
IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 2014; 111:E3641-9. [PMID: 25136113 DOI: 10.1073/pnas.1409781111] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pseudostratified airway epithelium of the lung contains a balanced proportion of multiciliated and secretory luminal cells that are maintained and regenerated by a population of basal stem cells. However, little is known about how these processes are modulated in vivo, and about the potential role of cytokine signaling between stem and progenitor cells and their niche. Using a clonal 3D organoid assay, we found that IL-6 stimulated, and Stat3 inhibitors reduced, the generation of ciliated vs. secretory cells from basal cells. Gain-of-function and loss-of-function studies with cultured mouse and human basal cells suggest that IL-6/Stat3 signaling promotes ciliogenesis at multiple levels, including increases in multicilin gene and forkhead box protein J1 expression and inhibition of the Notch pathway. To test the role of IL-6 in vivo genetically, we followed the regeneration of mouse tracheal epithelium after ablation of luminal cells by inhaled SO2. Stat3 is activated in basal cells and their daughters early in the repair process, correlating with an increase in Il-6 expression in platelet-derived growth factor receptor alpha(+) mesenchymal cells in the stroma. Conditional deletion in basal cells of suppressor of cytokine signaling 3, encoding a negative regulator of the Stat3 pathway, results in an increase in multiciliated cells at the expense of secretory and basal cells. By contrast, Il-6 null mice regenerate fewer ciliated cells and an increased number of secretory cells after injury. The results support a model in which IL-6, produced in the reparative niche, functions to enhance the differentiation of basal cells, and thereby acts as a "friend" to promote airway repair rather than a "foe."
Collapse
|
34
|
Santos LMO, Cervilha DADB, Cabral LDM, Garcia ÉKI, Teixeira VP, Brito JM, Moriya HT, Soncini R. Bronchial responsiveness in an elastase-induced mouse model of emphysema. Respir Physiol Neurobiol 2014; 194:9-14. [DOI: 10.1016/j.resp.2014.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/21/2022]
|
35
|
Effect of tumor necrosis factor family member LIGHT (TNFSF14) on the activation of basophils and eosinophils interacting with bronchial epithelial cells. Mediators Inflamm 2014; 2014:136463. [PMID: 24782592 PMCID: PMC3982468 DOI: 10.1155/2014/136463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/09/2014] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Allergic asthma can cause airway structural remodeling, involving the accumulation of extracellular matrix and thickening of smooth muscle. Tumor necrosis factor (TNF) family ligand LIGHT (TNFSF14) is a cytokine that binds herpesvirus entry mediator (HVEM)/TNFRSF14 and lymphotoxin β receptor (LTβR). LIGHT induces asthmatic cytokine IL-13 and fibrogenic cytokine transforming growth factor-β release from allergic asthma-related eosinophils expressing HVEM and alveolar macrophages expressing LTβR, respectively, thereby playing crucial roles in asthmatic airway remodeling. In this study, we investigated the effects of LIGHT on the coculture of human basophils/eosinophils and bronchial epithelial BEAS-2B cells. The expression of adhesion molecules, cytokines/chemokines, and matrix metalloproteinases (MMP) was measured by flow cytometry, multiplex, assay or ELISA. Results showed that LIGHT could significantly promote intercellular adhesion, cell surface expression of intercellular adhesion molecule-1, release of airway remodeling-related IL-6, CXCL8, and MMP-9 from BEAS-2B cells upon interaction with basophils/eosinophils, probably via the intercellular interaction, cell surface receptors HVEM and LTβR on BEAS-2B cells, and extracellular signal-regulated kinase, p38 mitogen activated protein kinase, and NF-κB signaling pathways. The above results, therefore, enhance our understanding of the immunopathological roles of LIGHT in allergic asthma and shed light on the potential therapeutic targets for airway remodeling.
Collapse
|
36
|
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN INFLAMMATION 2013; 2013:512103. [PMID: 24381786 PMCID: PMC3870656 DOI: 10.1155/2013/512103] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
37
|
Caramaschi P, Biasi D, Caimmi C, Barausse G, Gatti D, Ferrari M, Pieropan S, Sabbagh D, Adami S. Relationship between body composition and both cardiovascular risk factors and lung function in systemic sclerosis. Clin Rheumatol 2013; 33:77-82. [PMID: 24052413 DOI: 10.1007/s10067-013-2388-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 12/14/2022]
Abstract
The aims of this study were to evaluate body composition in systemic sclerosis (SSc) and to assess its association with the traditional risk factors for atherosclerosis and parameters of lung function. Eighty-six patients affected by SSc (13 men and 73 women, mean age 58.5 years, mean disease duration 10.7 years, 31 with diffuse form and 55 with limited pattern) underwent evaluation of body composition using a dual-energy X-ray (DXA) fan beam densitometer (GE Lunar iDXA) in order to assess total and regional body fat mass and fat-free mass. Clinical features, pulmonary function parameters, and the concomitant presence of the traditional cardiovascular risk factors were recorded. Android fat resulted to be higher in SSc patients with coexistence of hypercholesterolemia (P = 0.021), hypertension (P = 0.028), and overweight/obesity (P < 0.001) and positively correlated with body mass index (P < 0.001). Forced vital capacity (FVC) was inversely correlated with android fat (P = 0.034) and with the android fat/gynoid fat ratio (P = 0.013) and positively correlated with android lean (P = 0.041); the correlations were improved when FVC data were adjusted for sex, age, disease duration, and smoking habits (P = 0.010 for android fat, P = 0.010 for android fat/gynoid fat ratio, P = 0.011 for android lean). In this study, we showed that visceral abdominal fat, measured by DXA, is correlated with the main cardiovascular risk factors and lung volumes in SSc patients. Longitudinal studies are needed to evaluate if decrease of abdominal fat would improve lung function.
Collapse
|
38
|
Interleukin-6 neutralization alleviates pulmonary inflammation in mice exposed to cigarette smoke and poly(I:C). Clin Sci (Lond) 2013; 125:483-93. [PMID: 23738811 DOI: 10.1042/cs20130110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Increased systemic and pulmonary levels of IL-6 (interleukin-6) are associated with the severity of exacerbations and decline of lung function in patients with COPD (chronic obstructive pulmonary disease). Whether IL-6 is directly involved or plays a bystander role in the pathophysiology of COPD remains unclear. Here we hypothesized that neutralizing circulating levels of IL-6 would modulate episodes of acute pulmonary inflammation following CS (cigarette smoke) exposure and virus-like challenges. For this purpose, we used a model where C57BL/6 mice were exposed to CS twice daily via a nose-only system, and concomitant periodic intranasal challenge with poly(I:C), a synthetic ligand for TLR3 (Toll-like receptor 3) that mimics the encounter with double stranded RNA that is carried by influenza-like viruses. This protocol recapitulates several aspects of acute pulmonary inflammation associated with COPD, including prominent airway neutrophilia, insensitivity to steroid treatment and increased levels of several inflammatory cytokines in BAL (bronchoalveolar lavage) samples. Although IL-6-deficient mice exposed to CS/poly(I:C) developed pulmonary inflammation similar to WT (wild-type) controls, WT mice exposed to CS/poly(I:C) and treated intraperitoneally with IL-6-neutralizing antibodies showed significantly lower blood counts of lymphocytes and monocytes, lower BAL levels of IL-6 and CXCL1 (CXC chemokine ligand 1)/KC (keratinocyte chemoattractant), as well as reduced numbers of BAL neutrophils, lymphocytes and macrophages. Our results thus indicate that the systemic neutralization of IL-6 significantly reduces CS/poly(I:C)-induced pulmonary inflammation, which may be a relevant approach to the treatment of episodes of acute pulmonary inflammation associated with COPD.
Collapse
|
39
|
Young RP, Hopkins RJ. Interleukin-6 and statin therapy: potential role in the management of COPD. Respir Res 2013; 14:74. [PMID: 23865731 PMCID: PMC3718655 DOI: 10.1186/1465-9921-14-74] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
|
40
|
The effects of Gamijinhae-tang on elastase/lipopolysaccharide-induced lung inflammation in an animal model of acute lung injury. Altern Ther Health Med 2013; 13:176. [PMID: 23866260 PMCID: PMC3722031 DOI: 10.1186/1472-6882-13-176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 07/15/2013] [Indexed: 12/23/2022]
Abstract
Background Gamijinhae-tang (GJHT) has long been used in Korea to treat respiratory diseases. The therapeutic effect of GJHT is likely associated with its anti-inflammatory activity. However, the precise mechanisms underlying its effects are unknown. This study was conducted to evaluate the protective effects of GJHT in a porcine pancreatic elastase (PPE) and lipopolysaccharide(LPS) induced animal model of acute lung injury (ALI). Methods In this study, mice were intranasally exposed to PPE and LPS for 4 weeks to induce chronic obstructive pulmonary disease (COPD)-like lung inflammation. Two hours prior to PPE and LPS administration, the treatment group was administered GJHT extracts via an oral injection. The numbers of neutrophils, lymphocytes, macrophages and total cells in the bronchoalveolar lavage (BAL) fluid were counted, and pro-inflammatory cytokines were also measured. For histologic analysis, hematoxylin and eosin (H&E) stains and periodic acid-Schiff (PAS) stains were evaluated. Results After inducing ALI by treating mice with PPE and LPS for 4 weeks, the numbers of neutrophils, lymphocytes and total cells were significantly lower in the GJHT group than in the ALI group. In addition, the IL-1β and IL-6 levels were significantly decreased in the GJHT group. The histological results also demonstrated the attenuation effect of GJHT on PPE- and LPS-induced lung inflammation. Conclusions The results of this study indicate that GJHT has significantly reduces PPE- and LPS-induced lung inflammation. The remarkable protective effects of GJHT suggest its therapeutic potential in COPD treatment.
Collapse
|
41
|
Lu Y, Feng L, Feng L, Nyunt MS, Yap KB, Ng TP. Systemic inflammation, depression and obstructive pulmonary function: a population-based study. Respir Res 2013; 14:53. [PMID: 23676005 PMCID: PMC3656806 DOI: 10.1186/1465-9921-14-53] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/07/2013] [Indexed: 01/25/2023] Open
Abstract
Background Levels of Interleukin-6 (IL-6) and C-creative protein (CRP) indicating systemic inflammation are known to be elevated in chronic diseases including chronic obstructive pulmonary disease (COPD) and depression. Comorbid depression is common in patients with COPD, but no studies have investigated whether proinflammatory cytokines mediate the association between pulmonary function and depressive symptoms in healthy individuals with no known history of obstructive pulmonary diseases. Methods In a population-based sample (n = 2077) of individuals aged 55 and above with no known history of obstructive pulmonary disease in the Singapore Longitudinal Ageing Study (SLAS), we analyzed the relationships between IL-6 and CRP, depressive symptoms (GDS-15 ≥5) and obstructive pulmonary function (FEV1% predicted and FEV1/FVC% predicted). Results High serum levels of IL-6 and CRP were associated with greater prevalence of depressive symptoms (p < 0.05). High IL-6, high CRP and depressive symptoms were independently associated with decreased FEV1% predicted and FEV1/FVC% predicted after adjusting for smoking status, BMI and number of chronic inflammatory diseases. Increasing grades of combination of inflammatory markers and/or depressive symptoms was associated with progressive increases in pulmonary obstruction. In hierarchical models, the significant association of depressive symptoms with pulmonary obstruction was reduced by the presence of IL-6 and CRP. Conclusions This study found for the first time an association of depressive symptoms and pulmonary function in older adults which appeared to be partly mediated by proinflammatory cytokines. Further studies should be conducted to investigate proinflammatory immune markers and depressive symptoms as potential phenotypic indicators for chronic obstructive airway disorders in older adults.
Collapse
Affiliation(s)
- Yanxia Lu
- Gerontological Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, and Department of Psychological Medicine, National University Hospital System, NUHS Tower Block, 9th Floor, 1E Kent Ridge Road, 119228 Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
42
|
Al-Muhsen S, Letuve S, Vazquez-Tello A, Pureza MA, Al-Jahdali H, Bahammam AS, Hamid Q, Halwani R. Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils. Respir Res 2013; 14:34. [PMID: 23496774 PMCID: PMC3602055 DOI: 10.1186/1465-9921-14-34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/07/2013] [Indexed: 01/08/2023] Open
Abstract
Background Subepithelial fibrosis is one of the most critical structural changes affecting bronchial airway function during asthma. Eosinophils have been shown to contribute to the production of pro-fibrotic cytokines, TGF-β and IL-11, however, the mechanism regulating this process is not fully understood. Objective In this report, we investigated whether cytokines associated with inflammation during asthma may induce eosinophils to produce pro-fibrotic cytokines. Methods Eosinophils were isolated from peripheral blood of 10 asthmatics and 10 normal control subjects. Eosinophils were stimulated with Th1, Th2 and Th17 cytokines and the production of TGF-β and IL-11 was determined using real time PCR and ELISA assays. Results The basal expression levels of eosinophil derived TGF-β and IL-11 cytokines were comparable between asthmatic and healthy individuals. Stimulating eosinophils with Th1 and Th2 cytokines did not induce expression of pro-fibrotic cytokines. However, stimulating eosinophils with Th17 cytokines resulted in the enhancement of TGF-β and IL-11 expression in asthmatic but not healthy individuals. This effect of IL-17 on eosinophils was dependent on p38 MAPK activation as inhibiting the phosphorylation of p38 MAPK, but not other kinases, inhibited IL-17 induced pro-fibrotic cytokine release. Conclusions Th17 cytokines might contribute to airway fibrosis during asthma by enhancing production of eosinophil derived pro-fibrotic cytokines. Preventing the release of pro-fibrotic cytokines by blocking the effect of Th17 cytokines on eosinophils may prove to be beneficial in controlling fibrosis for disorders with IL-17 driven inflammation such as allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Saleh Al-Muhsen
- Asthma Research Chair and Prince Naif Center for Immunology Research, Department of Paediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci U S A 2012; 109:16648-53. [PMID: 23011799 DOI: 10.1073/pnas.1204151109] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orosomucoid like 3 (ORMDL3) has been strongly linked with asthma in genetic association studies, but its function in asthma is unknown. We demonstrate that in mice ORMDL3 is an allergen and cytokine (IL-4 or IL-13) inducible endoplasmic reticulum (ER) gene expressed predominantly in airway epithelial cells. Allergen challenge induces a 127-fold increase in ORMDL3 mRNA in bronchial epithelium in WT mice, with lesser 15-fold increases in ORMDL-2 and no changes in ORMDL-1. Studies of STAT-6-deficient mice demonstrated that ORMDL3 mRNA induction highly depends on STAT-6. Transfection of ORMDL3 in human bronchial epithelial cells in vitro induced expression of metalloproteases (MMP-9, ADAM-8), CC chemokines (CCL-20), CXC chemokines (IL-8, CXCL-10, CXCL-11), oligoadenylate synthetases (OAS) genes, and selectively activated activating transcription factor 6 (ATF6), an unfolded protein response (UPR) pathway transcription factor. siRNA knockdown of ATF-6α in lung epithelial cells inhibited expression of SERCA2b, which has been implicated in airway remodeling in asthma. In addition, transfection of ORMDL3 in lung epithelial cells activated ATF6α and induced SERCA2b. These studies provide evidence of the inducible nature of ORMDL3 ER expression in particular in bronchial epithelial cells and suggest an ER UPR pathway through which ORMDL3 may be linked to asthma.
Collapse
|
44
|
Gunst SJ, Panettieri RA. Last Word on Point: Alterations in airway smooth muscle phenotype do cause airway hyperresponsiveness in asthma. J Appl Physiol (1985) 2012; 113:847. [PMID: 22942224 PMCID: PMC8526335 DOI: 10.1152/japplphysiol.00714.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Hirota R, Nakamura H, Bhatti SA, Ngatu NR, Muzembo BA, Dumavibhat N, Eitoku M, Sawamura M, Suganuma N. Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice. Inhal Toxicol 2012; 24:373-81. [PMID: 22564095 DOI: 10.3109/08958378.2012.675528] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Limonene is one of the main flavonoids which is reported to inhibit the inflammatory response by suppressing the production of reactive oxygen species. The aim of this study was to evaluate whether limonene can inhibit Dermatophagoides farinae-induced airway hyperresponsiveness (AHR), eosinophilic infiltration and other histological changes in the lung, T helper (Th) 2 cytokine production and airway remodeling in a mice model of asthma. Treatment with limonene significantly reduced the levels of IL-5, IL-13, eotaxin, MCP-1, and TGF-β₁ in bronchoalveolar lavage fluid. The goblet cell metaplasia, thickness of airway smooth muscle, and airway fibrosis were markedly decreased in limonene-treated mice. Furthermore, AHR to acetylcholine was significantly abrogated in limonene-treated mice. These results indicate that limonene has a potential to reduce airway remodeling and AHR in asthma model.
Collapse
Affiliation(s)
- Ryoji Hirota
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko, Nankoku, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Birru RL, Di YP. Pathogenic mechanism of second hand smoke induced inflammation and COPD. Front Physiol 2012; 3:348. [PMID: 22973236 PMCID: PMC3428782 DOI: 10.3389/fphys.2012.00348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/09/2012] [Indexed: 01/22/2023] Open
Abstract
Second hand smoke (SHS) introduces thousands of toxic chemicals into the lung, including carcinogens and oxidants, which cause direct airway epithelium tissue destruction. It can also illicit indirect damage through its effect on signaling pathways related to tissue cell repair and by the abnormal induction of inflammation into the lung. After repeated exposure to SHS, these symptoms can lead to the development of pulmonary inflammatory disorders, including chronic obstructive pulmonary disease (COPD). COPD is a severe pulmonary disease characterized by chronic inflammation and irreversible tissue destruction. There is no causal cure, as the mechanism behind the development and progression of the disease is still unknown. Recent discoveries implicate genetic predisposition associated with inflammatory response contributed to the development of COPD, linked to irregular innate and adaptive immunity, as well as a risk factor for cancer. The use of animal models for both cigarette smoke (CS) and SHS associated in vivo experiments has been crucial in elucidating the pathogenic mechanisms and genetic components involved in inflammation-related development of COPD.
Collapse
Affiliation(s)
- Rahel L Birru
- Department of Environmental and Occupational Health, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|
47
|
Hannink JDC, van Hees HWH, Dekhuijzen PNR, van Helvoort HAC, Heijdra YF. Non-invasive ventilation abolishes the IL-6 response to exercise in muscle-wasted COPD patients: A pilot study. Scand J Med Sci Sports 2012; 24:136-43. [DOI: 10.1111/j.1600-0838.2012.01484.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2012] [Indexed: 01/10/2023]
Affiliation(s)
- J. D. C. Hannink
- Department of Pulmonary Diseases; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - H. W. H. van Hees
- Department of Pulmonary Diseases; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - P. N. R. Dekhuijzen
- Department of Pulmonary Diseases; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - H. A. C van Helvoort
- Department of Pulmonary Diseases; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Y. F. Heijdra
- Department of Pulmonary Diseases; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
48
|
O'Donoghue RJJ, Knight DA, Richards CD, Prêle CM, Lau HL, Jarnicki AG, Jones J, Bozinovski S, Vlahos R, Thiem S, McKenzie BS, Wang B, Stumbles P, Laurent GJ, McAnulty RJ, Rose-John S, Zhu HJ, Anderson GP, Ernst MR, Mutsaers SE. Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis. EMBO Mol Med 2012; 4:939-51. [PMID: 22684844 PMCID: PMC3491826 DOI: 10.1002/emmm.201100604] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/16/2012] [Accepted: 05/09/2012] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis.
Collapse
Affiliation(s)
- Robert J J O'Donoghue
- Ludwig Institute for Cancer Research, Melbourne - Parkville Branch, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ruwanpura SM, McLeod L, Miller A, Jones J, Vlahos R, Ramm G, Longano A, Bardin PG, Bozinovski S, Anderson GP, Jenkins BJ. Deregulated Stat3 signaling dissociates pulmonary inflammation from emphysema in gp130 mutant mice. Am J Physiol Lung Cell Mol Physiol 2012; 302:L627-39. [DOI: 10.1152/ajplung.00285.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)-6 is a potent immunomodulatory cytokine that is associated with emphysema, a major component of chronic obstructive pulmonary disease (COPD). IL-6 signaling via the gp130 coreceptor is coupled to multiple signaling pathways, especially the latent transcription factor signal transducer and activator of transcription (Stat)3. However, the pathological role of endogenous gp130-dependent Stat3 activation in emphysema is ill defined. To elucidate the role of the IL-6/gp130/Stat3 signaling axis in the cellular and molecular pathogenesis of emphysema, we employed a genetic complementation strategy using emphysematous gp130F/F mice displaying hyperactivation of endogenous Stat3 that were interbred with mice to impede Stat3 activity. Resected human lung tissue from patients with COPD and COPD-free individuals was also evaluated by immunohistochemistry. Genetic reduction of Stat3 hyperactivity in gp130F/F: Stat3 −/+ mice prevented lung inflammation and excessive protease activity; however, emphysema still developed. In support of these findings, Stat3 activation levels in human lung tissue correlated with the extent of pulmonary inflammation but not airflow obstruction in COPD. Furthermore, COPD lung tissue displayed increased levels of IL-6 and apoptotic alveolar cells, supporting our previous observation that increased endogenous IL-6 expression in the lungs of gp130F/F mice contributes to emphysema by promoting alveolar cell apoptosis. Collectively, our data suggest that IL-6 promotes emphysema via upregulation of Stat3-independent apoptosis, whereas IL-6 induction of lung inflammation occurs via Stat3. We propose that while discrete targeting of Stat3 may alleviate pulmonary inflammation, global targeting of IL-6 potentially represents a therapeutically advantageous approach to combat COPD phenotypes where emphysema predominates.
Collapse
Affiliation(s)
- Saleela M. Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Alistair Miller
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Jessica Jones
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Ross Vlahos
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Monash Micro Imaging, School of Biomedical Sciences, Monash University; and
| | | | - Philip G. Bardin
- Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Steven Bozinovski
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Gary P. Anderson
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| |
Collapse
|
50
|
|