1
|
Mutgan AC, Radic N, Valzano F, Crnkovic S, El-Merhie N, Evermann M, Hoetzenecker K, Foris V, Brcic L, Marsh LM, Tran-Lundmark K, Jandl K, Kwapiszewska G. A comprehensive map of proteoglycan expression and deposition in the pulmonary arterial wall in health and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L173-L188. [PMID: 38771138 DOI: 10.1152/ajplung.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Changes in the extracellular matrix of pulmonary arteries (PAs) are a key aspect of vascular remodeling in pulmonary hypertension (PH). Yet, our understanding of the alterations affecting the proteoglycan (PG) family remains limited. We sought to investigate the expression and spatial distribution of major vascular PGs in PAs from healthy individuals and various PH groups (chronic obstructive pulmonary disease: PH-COPD, pulmonary fibrosis: PH-PF, idiopathic: IPAH). PG regulation, deposition, and synthesis were notably heightened in IPAH, followed by PH-PF, with minor alterations in PH-COPD. Single-cell analysis unveiled cell-type and disease-specific PG regulation. Agrin expression, a basement membrane PG, was increased in IPAH, with PA endothelial cells (PAECs) identified as a major source. PA smooth muscle cells (PASMCs) mainly produced large-PGs, aggrecan and versican, and small-leucine-like proteoglycan (SLRP) biglycan, whereas the major PGs produced by adventitial fibroblasts were SLRP decorin and lumican. In IPAH and PF-PH, the neointima-forming PASMC population increased the expression of all investigated large-PGs and SLRPs, except fibroblast-predominant decorin (DCN). Expression of lumican, versican, and biglycan also positively correlated with collagen 1α1/1α2 expression in PASMCs in patients with IPAH and PH-PF. We demonstrated that transforming growth factor-beta (TGF-β) regulates versican and biglycan expression, indicating their contribution to vessel fibrosis in IPAH and PF-PH. We furthermore show that certain circulating PG levels display a disease-dependent pattern, with increased decorin and lumican across all patient groups, while versican was elevated in PH-COPD and IPAH and biglycan reduced in IPAH. These findings suggest unique compartment-specific PG regulation in different forms of PH, indicating distinct pathological processes.NEW & NOTEWORTHY Idiopathic pulmonary arterial hypertension (IPAH) pulmonary arteries (PAs) displayed the greatest proteoglycan (PG) changes, with PH associated with pulmonary fibrosis (PH-PF) and PH associated with chronic obstructive pulmonary disease (PH-COPD) following. Agrin, an endothelial cell-specific PG, was solely upregulated in IPAH. Among all cells, neo-intima-forming smooth muscle cells (SMCs) displayed the most significant PG increase. Increased levels of circulating decorin, lumican, and versican, mainly derived from SMCs, and adventitial fibroblasts, may serve as systemic indicators of pulmonary remodeling, reflecting perivascular fibrosis and neointima formation.
Collapse
MESH Headings
- Humans
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Proteoglycans/metabolism
- Male
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Female
- Middle Aged
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Vascular Remodeling
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Biglycan/metabolism
- Decorin/metabolism
- Adult
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- Lumican/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Slaven Crnkovic
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Natalia El-Merhie
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Matthias Evermann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- The Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
2
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
3
|
Cao S, Feng H, Yi H, Pan M, Lin L, Zhang YS, Feng Z, Liang W, Cai B, Li Q, Xiong Z, Shen Q, Ke M, Zhao X, Chen H, He Q, Min M, Cai Q, Liu H, Wang J, Pei D, Chen J, Ma Y. Single-cell RNA sequencing reveals the developmental program underlying proximal-distal patterning of the human lung at the embryonic stage. Cell Res 2023:10.1038/s41422-023-00802-6. [PMID: 37085732 PMCID: PMC10119843 DOI: 10.1038/s41422-023-00802-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.
Collapse
Affiliation(s)
- Shangtao Cao
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mengjie Pan
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yao Santo Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifang Liang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Zhi Xiong
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qingmei Shen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Minjing Ke
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Zhao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Huilin Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qina He
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Min
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Quanyou Cai
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
4
|
The Feasibility of Using the "Artery Sign" for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling. Diagnostics (Basel) 2022; 12:diagnostics12123059. [PMID: 36553068 PMCID: PMC9777140 DOI: 10.3390/diagnostics12123059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Electromagnetic navigation bronchoscopy (ENB) and robotic-assisted bronchoscopy (RAB) systems are used for pulmonary lesion sampling, and utilize a pre-procedural CT scan where an airway, or "bronchus sign", is used to map a pathway to the target lesion. However, up to 40% of pre-procedural CT's lack a "bronchus sign" partially due to surrounding emphysema or limitation in CT resolution. Recognizing that the branches of the pulmonary artery, lymphatics, and airways are often present together as the bronchovascular bundle, we postulate that a branch of the pulmonary artery ("artery sign") could be used for pathway mapping during navigation bronchoscopy when a "bronchus sign" is absent. Herein we describe the navigation success and safety of using the "artery sign" to create a pathway for pulmonary lesion sampling. METHODS We reviewed data on consecutive cases in which the "artery sign" was used for pre-procedural planning for conventional ENB (superDimension™, Medtronic) and RAB (Monarch™, Johnson & Johnson). Patients who underwent these procedures from July 2020 until July 2021 at the University of Minnesota Medical Center and from June 2018 until December 2019 at the University of Chicago Medical Center were included in this analysis (IRB #19-0011 for the University of Chicago and IRB #00013135 for the University of Minnesota). The primary outcome was navigation success, defined as successfully maneuvering the bronchoscope to the target lesion based on feedback from the navigation system. Secondary outcomes included navigation success based on radial EBUS imaging, pneumothorax, and bleeding rates. RESULTS A total of 30 patients were enrolled in this analysis. The median diameter of the lesions was 17 mm. The median distance of the lesion from the pleura was 5 mm. Eleven lesions were solid, 15 were pure ground glass, and 4 were mixed. All cases were planned successfully using the "artery sign" on either the superDimension™ ENB (n = 15) or the Monarch™ RAB (n = 15). Navigation to the target was successful for 29 lesions (96.7%) based on feedback from the navigation system (virtual target). Radial EBUS image was acquired in 27 cases (90%) [eccentric view in 13 (43.33%) and concentric view in 14 patients (46.66%)], while in 3 cases (10%) no r-EBUS view was obtained. Pneumothorax occurred in one case (3%). Significant airway bleeding was reported in one case (3%). CONCLUSIONS We describe the concept of using the "artery sign" as an alternative for planning EMN and RAB procedures when "bronchus sign" is absent. The navigation success based on virtual target or r-EBUS imaging is high and safety of sampling of such lesions compares favorably with prior reports. Prospective studies are needed to assess the impact of the "artery sign" on diagnostic yield.
Collapse
|
5
|
Crnkovic S, Valzano F, Fließer E, Gindlhuber J, Thekkekara Puthenparampil H, Basil M, Morley MP, Katzen J, Gschwandtner E, Klepetko W, Cantu E, Wolinski H, Olschewski H, Lindenmann J, Zhao YY, Morrisey EE, Marsh LM, Kwapiszewska G. Single-cell transcriptomics reveals skewed cellular communication and phenotypic shift in pulmonary artery remodeling. JCI Insight 2022; 7:153471. [PMID: 36099047 PMCID: PMC9714792 DOI: 10.1172/jci.insight.153471] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/12/2022] [Indexed: 02/04/2023] Open
Abstract
A central feature of progressive vascular remodeling is altered smooth muscle cell (SMC) homeostasis; however, the understanding of how different cell populations contribute to this process is limited. Here, we utilized single-cell RNA sequencing to provide insight into cellular composition changes within isolated pulmonary arteries (PAs) from pulmonary arterial hypertension and donor lungs. Our results revealed that remodeling skewed the balanced communication network between immune and structural cells, in particular SMCs. Comparative analysis with murine PAs showed that human PAs harbored heterogeneous SMC populations with an abundant intermediary cluster displaying a gradient transition between SMCs and adventitial fibroblasts. Transcriptionally distinct SMC populations were enriched in specific biological processes and could be differentiated into 4 major clusters: oxygen sensing (enriched in pericytes), contractile, synthetic, and fibroblast-like. End-stage remodeling was associated with phenotypic shift of preexisting SMC populations and accumulation of synthetic SMCs in neointima. Distinctly regulated genes in clusters built nonredundant regulatory hubs encompassing stress response and differentiation regulators. The current study provides a blueprint of cellular and molecular changes on a single-cell level that are defining the pathological vascular remodeling process.
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jürgen Gindlhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | | | - Maria Basil
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mike P. Morley
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy Katzen
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisabeth Gschwandtner
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heimo Wolinski
- Institute of Molecular Biosciences and,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | | | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA.,Departments of Pediatrics, Pharmacology, and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Edward E. Morrisey
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and,Institute of Lung Health, German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
6
|
Chen B, Jin Y, Pool CM, Liu Y, Nelin LD. Hypoxic pulmonary endothelial cells release epidermal growth factor leading to vascular smooth muscle cell arginase-2 expression and proliferation. Physiol Rep 2022; 10:e15342. [PMID: 35674115 PMCID: PMC9175134 DOI: 10.14814/phy2.15342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 05/01/2023] Open
Abstract
The hallmark of pulmonary hypertension (PH) is vascular remodeling. We have previously shown that human pulmonary microvascular endothelial cells (hPMVEC) respond to hypoxia with epidermal growth factor (EGF) mediated activation of the receptor tyrosine kinase, EGF receptor (EGFR), resulting in arginase-2 (Arg2)-dependent proliferation. We hypothesized that the release of EGF by hPMVEC could result in the proliferation of human pulmonary arterial smooth muscle cells (hPASMC) via activation of EGFR on the hPASMC leading to Arg2 up-regulation. To test this hypothesis, we used conditioned media (CM) from hPMVEC grown either in normoxia (NCM) or hypoxia (HCM). Human PASMC were incubated in normoxia with either HCM or NCM, and HCM caused significant induction of Arg2 and viable cell numbers. When HCM was generated with either an EGF-neutralizing antibody or an EGFR blocking antibody the resulting HCM did not induce Arg2 or increase viable cell numbers in hPASMC. Adding an EGFR blocking antibody to HCM, prevented the HCM-induced increase in Arg2 and viable cell numbers. HCM induced robust phosphorylation of hPASMC EGFR. When hPASMC were transfected with siRNA against EGFR the HCM-induced increase in viable cell numbers was prevented. When hPASMC were treated with the arginase antagonist nor-NOHA, the HCM-induced increase in viable cell numbers was prevented. These data suggest that hypoxic hPMVEC releases EGF, which activates hPASMC EGFR leading to Arg2 protein expression and an increase in viable cell numbers. We speculate that EGF neutralizing antibodies or EGFR blocking antibodies represent potential therapeutics to prevent and/or attenuate vascular remodeling in PH associated with hypoxia.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Yi Jin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Caitlyn M. Pool
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Yusen Liu
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Leif D. Nelin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
7
|
Jain A, Giesinger RE, Dakshinamurti S, ElSayed Y, Jankov RP, Weisz DE, Lakshminrusimha S, Mitra S, Mazwi ML, Ting J, Narvey M, McNamara PJ. Care of the critically ill neonate with hypoxemic respiratory failure and acute pulmonary hypertension: framework for practice based on consensus opinion of neonatal hemodynamics working group. J Perinatol 2022; 42:3-13. [PMID: 35013586 DOI: 10.1038/s41372-021-01296-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Circulatory transition after birth presents a critical period whereby the pulmonary vascular bed and right ventricle must adapt to rapidly changing loading conditions. Failure of postnatal transition may present as hypoxemic respiratory failure, with disordered pulmonary and systemic blood flow. In this review, we present the biological and clinical contributors to pathophysiology and present a management framework.
Collapse
Affiliation(s)
- Amish Jain
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | - Yasser ElSayed
- Department of Pediatrics, University of Manitoba, Winnipeg, MB, Canada
| | - Robert P Jankov
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Dany E Weisz
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Souvik Mitra
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Mjaye L Mazwi
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Joseph Ting
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Michael Narvey
- Department of Pediatrics, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
8
|
NOX1 and NOX2: two enzymes that promote endothelial-to-mesenchymal transition induced by melanoma conditioned media. Pharmacol Res 2022; 177:106097. [DOI: 10.1016/j.phrs.2022.106097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022]
|
9
|
Gao C, Xu WZ, Li ZH, Chen L. Analysis of bronchial and vascular patterns in left upper lobes to explore the genesis of mediastinal lingular artery and its influence on pulmonary anatomical variation. J Cardiothorac Surg 2021; 16:306. [PMID: 34663402 PMCID: PMC8522199 DOI: 10.1186/s13019-021-01682-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For thoracic surgeons, three-dimensional computed tomography bronchography and angiography (3-DCTBA) is a convenient way to analyze pulmonary variations before segmentectomy. Mediastinal lingular artery (MLA) is one of the representative variations. METHODS The 3-DCTBA data of left upper lobe (LUL) were collected from patients who underwent pulmonary surgery from January 2018 to December 2019. We reviewed the patterns of bronchi and pulmonary vessels and grouped them according to different classifications. RESULTS Among all the 404 cases of 3-DCTBA, mediastinal lingular artery (MLA) was found in 107 cases (26.49%). The patterns of B3 and the vein in left upper division (LUD) are distinct between mediastinal (M-type) group and interlobar (IL-type) group. The patterns of bronchi and veins in lingular division, as well as the pattern of pulmonary artery in LUD, have no differences between M-type and IL-type groups. CONCLUSIONS Mediastinal lingular artery is speculated to originate from the variation of B3, and the MLA independently influences the venous pattern in LUD in turn.
Collapse
Affiliation(s)
- Chuan Gao
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China
| | - Wen-Zheng Xu
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhi-Hua Li
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
10
|
Jin ZW, Hayashi S, Murakami G, Wilting J, Rodríguez-Vázquez JF, Abe S. Left/right difference in the course and division of the pulmonary arterial branches in the lung upper lobe: A study using human embryos and early fetuses. J Anat 2020; 237:854-860. [PMID: 32706936 DOI: 10.1111/joa.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
Although left/right differences in a configuration of the pulmonary artery (PA) and its branches are well known, there is little information as to when and how such differences are established. Examination of serial sagittal sections of 25 embryos and fetuses at 6-7 weeks of gestation demonstrated that, at O'Rahilly stages 18-20, the right earliest first branch of PA originated in the anterior side of the upper lobar bronchus and overlay the upper bronchi, in contrast to the left branch which was located posteriorly and constricted medially by the upper posterior bronchus B1 + 2b. The right earliest branch was most likely to correspond to the future superior trunk, while the left branch might be a lingual artery. At stages 21-23, the upper posterior parenchyma was still underdeveloped in the left lung, since the ductus arteriosus and the left common cardinal vein seemed to make the left upper thoracic cavity narrow. Conversely, in the right lung, the thick S2 seemed to require a double arterial supply from both the superior and inferior arterial trunks. On the left, A3 originated at the lung apex and took a long descending course along the lung anterior surface. This high position of A3 might soon be corrected by an increased volume of S3. Overall, in contrast to the lower and middle lobes, early-developed branches of the PA did not accompany upper segmental and subsegmental bronchi. A mechanism "differential growth" seemed to explain how to correct the fetal morphology to provide the adult morphology with variations.
Collapse
Affiliation(s)
- Zhe Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shogo Hayashi
- Department of Anatomy, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Gen Murakami
- Division of Internal Medicine, Jikoukai Clinic of Home Visit, Sapporo, Japan
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, School of Medicine, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
11
|
Ren B, Rose JB, Liu Y, Jaskular-Sztul R, Contreras C, Beck A, Chen H. Heterogeneity of Vascular Endothelial Cells, De Novo Arteriogenesis and Therapeutic Implications in Pancreatic Neuroendocrine Tumors. J Clin Med 2019; 8:jcm8111980. [PMID: 31739580 PMCID: PMC6912347 DOI: 10.3390/jcm8111980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriogenesis supplies oxygen and nutrients in the tumor microenvironment (TME), which may play an important role in tumor growth and metastasis. Pancreatic neuroendocrine tumors (pNETs) are the second most common pancreatic malignancy and are frequently metastatic on presentation. Nearly a third of pNETs secrete bioactive substances causing debilitating symptoms. Current treatment options for metastatic pNETs are limited. Importantly, these tumors are highly vascularized and heterogeneous neoplasms, in which the heterogeneity of vascular endothelial cells (ECs) and de novo arteriogenesis may be critical for their progression. Current anti-angiogenetic targeted treatments have not shown substantial clinical benefits, and they are poorly tolerated. This review article describes EC heterogeneity and heterogeneous tumor-associated ECs (TAECs) in the TME and emphasizes the concept of de novo arteriogenesis in the TME. The authors also emphasize the challenges of current antiangiogenic therapy in pNETs and discuss the potential of tumor arteriogenesis as a novel therapeutic target. Finally, the authors prospect the clinical potential of targeting the FoxO1-CD36-Notch pathway that is associated with both pNET progression and arteriogenesis and provide insights into the clinical implications of targeting plasticity of cancer stem cells (CSCs) and vascular niche, particularly the arteriolar niche within the TME in pNETs, which will also provide insights into other types of cancer, including breast cancer, lung cancer, and malignant melanoma.
Collapse
Affiliation(s)
- Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition & Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Science Program of the Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| | - J. Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Renata Jaskular-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Carlo Contreras
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam Beck
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Science Program of the Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Sabbineni H, Verma A, Artham S, Anderson D, Amaka O, Liu F, Narayanan SP, Somanath PR. Pharmacological inhibition of β-catenin prevents EndMT in vitro and vascular remodeling in vivo resulting from endothelial Akt1 suppression. Biochem Pharmacol 2019; 164:205-215. [PMID: 30991049 DOI: 10.1016/j.bcp.2019.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
Endothelial to mesenchymal transition (EndMT), where endothelial cells acquire mesenchymal characteristics has been implicated in several cardiopulmonary, vascular and fibrotic diseases. The most commonly studied molecular mechanisms involved in EndMT include TGFβ, Notch, interleukin, and interferon-γ signaling. As of today, the contributions of Akt1, an important mediator of TGFβ signaling and a key regulator of endothelial barrier function to EndMT remains unclear. By using the ShRNA based gene silencing approach and endothelial-specific inducible Akt1 knockdown (ECKOAkt1) mice, we studied the role of Akt1 in EndMT in vitro and pathological vascular remodeling in vivo. Stable, Akt1 silenced (ShAkt1) human microvascular endothelial cells (HMECs) indicated increased expression of mesenchymal markers such as N-cadherin and α-SMA, phosphorylation of Smad2/3, cellular stress via activation of p38 MAP Kinase and the loss of endothelial nitric oxide synthase (eNOS) accompanied by a change in the morphology of HMECs in vitro and co-localization of endothelial and mesenchymal markers promoting EndMT in vivo. EndMT as a result of Akt1 loss was associated with increased expression of TGFβ2, a potent inducer of EndMT and mesenchymal transcription factors Snail1, and FoxC2. We observed that hypoxia-induced lung vascular remodeling is exacerbated in ECKOAkt1 mice, which was reversed by pharmacological inhibition of β-catenin. Thus, we provide novel insights into the role of Akt1-mediated β-catenin signaling in EndMT and pathological vascular remodeling, and present β-catenin as a potential target for therapy for various cardiopulmonary diseases involving vascular remodeling.
Collapse
Affiliation(s)
- Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Daniel Anderson
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Oge Amaka
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Subhadra P Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
13
|
Hao YM, Yuan HQ, Ren Z, Qu SL, Liu LS, Dang-HengWei, Yin K, Fu M, Jiang ZS. Endothelial to mesenchymal transition in atherosclerotic vascular remodeling. Clin Chim Acta 2018; 490:34-38. [PMID: 30571947 DOI: 10.1016/j.cca.2018.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Endothelial cells are the main components of the heart, blood vessels, and lymphatic vessels, which play an important role in regulating the physiological functions of the cardiovascular system. Endothelial dysfunction is involved in a variety of acute and chronic cardiovascular diseases. As a special type of epithelial-mesenchymal transition (EMT), endothelium to mesenchymal transition (EndMT) regulates the transformation of endothelial cells into mesenchymal cells accompanied by changes in the expression of various transcription factors and cytokines, which is closely related to vascular endothelial injury, vascular remodeling, myocardial fibrosis and valvar disease. Endothelial cells undergoing EndMT lose their endothelial characteristics and undergo a transition toward a more mesenchymal-like phenotype. However, the molecular mechanism of EndMT remains unclear. EndMT, as a type of endothelial dysfunction, can cause vascular remodeling which is a major determinant of atherosclerotic luminal area. Therefore, exploring the important signaling pathways in the process of EndMT may provide novel therapeutic strategies for treating atherosclerotic diseases.
Collapse
Affiliation(s)
- Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Dang-HengWei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Kai Yin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China; Research Lab of Translational Medicine, Medical School, University of South China, Hengyang 421001, PR China
| | - Mingui Fu
- Department of Biomedical Science, Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
14
|
Li A, Peng W, Xia X, Li R, Wang Y, Wei D. Endothelial-to-Mesenchymal Transition: A Potential Mechanism for Atherosclerosis Plaque Progression and Destabilization. DNA Cell Biol 2017; 36:883-891. [PMID: 28920704 DOI: 10.1089/dna.2017.3779] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. EndMT is associated with fibroproliferative diseases, such as cancer progression and metastasis and cardiac and kidney fibrosis, and this condition has been extensively investigated over the past decade. Recently, studies showed that EndMT contributes to the initiation and progression of atherosclerotic lesion and plaque destabilization. Unstable atherosclerotic plaque rupture and subsequent thrombosis are the main pathological causes of acute cardiovascular events. EndMT is plastic and reversible. Therefore, our enhanced understanding on the mechanisms controlling EndMT and its roles in the atherosclerosis plaque progression and instability may provide a basis for the development of novel therapeutic strategies to stabilize and reverse atherosclerotic plaques.
Collapse
Affiliation(s)
- Afang Li
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China
| | - Wenxi Peng
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China
| | - Xiaodan Xia
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China .,2 Affiliated Nanhua Hospital of University of South China , Hengyang, China
| | - Rongqing Li
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China
| | - Yu Wang
- 3 Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Dangheng Wei
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China
| |
Collapse
|
15
|
Endothelial to mesenchymal transition in the cardiovascular system. Life Sci 2017; 184:95-102. [PMID: 28716564 DOI: 10.1016/j.lfs.2017.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
Endothelial to mesenchymal transition (EndMT) is a special type of epithelial to mesenchymal transition. It is a process that is characterized by the loss of features of endothelial cells and acquisition of specific markers of mesenchymal cells. A variety of stimuli, such as inflammation, growth factors, and hypoxia, regulate EndMT through various signaling pathways and intracellular transcription factors. It has been demonstrated that epigenetic modifications are also involved in this process. Recent studies have identified the essential role of EndMT in the cardiovascular system. EndMT contributes to steps in cardiovascular development, such as cardiac valve formation and septation, as well as the pathogenesis of various cardiovascular disorders, such as congenital heart disease, myocardial fibrosis, myocardial infarction and pulmonary arterial hypertension. Thus, comprehensive understanding of the underlying mechanisms of EndMT will provide novel therapeutic strategies to overcome congenital heart disease due to abnormal development and other cardiovascular diseases. This review will focus on summarizing the currently understood signaling pathways and epigenetic modifications involved in the regulation of EndMT and the role of EndMT in pathophysiological conditions of the cardiovascular system.
Collapse
|
16
|
de Wijs-Meijler DP, Duncker DJ, Tibboel D, Schermuly RT, Weissmann N, Merkus D, Reiss IK. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system. Pulm Circ 2017; 7:55-66. [PMID: 28680565 PMCID: PMC5448552 DOI: 10.1086/689748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called "fetal or perinatal programming." Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future.
Collapse
Affiliation(s)
- Daphne P. de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Intensive Care Unit, Department of Pediatric Surgery, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph T. Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Gao Y, Cornfield DN, Stenmark KR, Thébaud B, Abman SH, Raj JU. Unique aspects of the developing lung circulation: structural development and regulation of vasomotor tone. Pulm Circ 2017; 6:407-425. [PMID: 27942377 DOI: 10.1086/688890] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current knowledge on lung vasculogenesis and angiogenesis during normal lung development and the regulation of fetal and postnatal pulmonary vascular tone. In comparison to that of the adult, the pulmonary circulation of the fetus and newborn displays many unique characteristics. Moreover, altered development of pulmonary vasculature plays a more prominent role in compromised pulmonary vasoreactivity than in the adult. Clinically, a better understanding of the developmental changes in pulmonary vasculature and vasomotor tone and the mechanisms that are disrupted in disease states can lead to the development of new therapies for lung diseases characterized by impaired alveolar structure and pulmonary hypertension.
Collapse
Affiliation(s)
- Yuangsheng Gao
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - David N Cornfield
- Section of Pulmonary and Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Kurt R Stenmark
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute; and Children's Hospital of Eastern Ontario Research Institute; University of Ottawa, Ottawa, Ontario, Canada
| | - Steven H Abman
- Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - J Usha Raj
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Wen W, Yan L, Dunquan X. Role of ROS/Kv/HIF Axis in the Development of Hypoxia-Induced Pulmonary Hypertension. ACTA ACUST UNITED AC 2017; 32:253-259. [DOI: 10.24920/j1001-9294.2017.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Onuki T, Kanzaki M, Wachi N, Isaka T, Sakamoto K, Maeda H, Oyama K, Murasugi M. Do the lung segments exist continuously from the early stage of the embryonic period as units? Interact Cardiovasc Thorac Surg 2016; 23:26-30. [PMID: 27034097 DOI: 10.1093/icvts/ivw030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Although various types of segmentectomy are frequently performed for resecting lung tumours at present, there is no clear answer to the question what kind of segmentectomy would be more efficient for performing lymphadenectomy. Learning the embryological mechanism of the segment formation could be one of the methods for selecting the surgical procedure. To investigate the developmental mechanism of the lung, this study focused on 'sharing structure', a unique 3D structure consisting of the bronchi and pulmonary arteries. In the structure, two arteries from different directions, after straddling the bronchus in the central part, share one bronchial tree at the peripheral part. METHODS Using computed tomography data obtained before segmentectomy, this study observed the 'sharing structure' in 193 left and right upper lobe cases. This study investigated the relationship between the segmental arterial types and the straddled bronchi, which were straddled by the pulmonary arteries found in the centre of the sharing structure. RESULTS In the right upper lobes, the straddled bronchi were anterior segmental bronchi. In the left upper lobes, however, the straddled bronchi of the lingular interlobar pulmonary artery type contained no anterior segmental bronchi. But, the straddled bronchi of lingular mediastinal pulmonary artery type contained anterior segmental bronchi in all cases. CONCLUSIONS Although pulmonary arteries in almost all sharing structures in the right upper lobes straddled anterior bronchi, those in mediastinal type and interlobar type in the left upper lobe were found to straddle the anterior and apicoposterior bronchi, respectively. These findings indicated that the interlobar type was speculated to be rotating mediastinal type backward in the embryonic period. This study strongly suggested a new concept that 'the lung segments never continuously exist from the early stage of the embryonic period as units, but they are only simple units artificially named by their prevailing bronchial branching patterns'. Therefore, during segmentectomy including lymphadenectomy for pulmonary tumours, the retrieval of the branching patters of pulmonary arteries could allow the segmentectomy to become more efficient with considering the formations of lung lobes.
Collapse
Affiliation(s)
- Takamasa Onuki
- Department of Surgery I, Tokyo Women's Medical University, Tokyo, Japan
| | - Masato Kanzaki
- Department of Surgery I, Tokyo Women's Medical University, Tokyo, Japan
| | - Naoko Wachi
- Department of Surgery I, Tokyo Women's Medical University, Tokyo, Japan
| | - Tamami Isaka
- Department of Surgery I, Tokyo Women's Medical University, Tokyo, Japan
| | - Kei Sakamoto
- Department of Surgery I, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideyuki Maeda
- Department of Surgery I, Tokyo Women's Medical University, Tokyo, Japan
| | - Kunihiro Oyama
- Department of Surgery I, Tokyo Women's Medical University, Tokyo, Japan
| | - Masahide Murasugi
- Department of Surgery I, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
20
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Kim M, Woo JJ, An JK, Jung YY, Choi YS. A Pulmonary Sequestered Segment with an Aberrant Pulmonary Arterial Supply: A Case of Unique Anomaly. Korean J Radiol 2016; 17:302-5. [PMID: 26957918 PMCID: PMC4781772 DOI: 10.3348/kjr.2016.17.2.302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/28/2015] [Indexed: 11/15/2022] Open
Abstract
We presented a rare case of a 64-year-old man with a combined anomaly of the bronchus and pulmonary artery that was detected incidentally. Computed tomography showed a hyperlucent, aerated sequestered segment of the right lower lung with an independent ectopic bronchus, which had no connection to the other airway. The affected segment was supplied by its own aberrant pulmonary artery branch from the right pulmonary trunk. This anomaly cannot be classified with any of the previously reported anomalies.
Collapse
Affiliation(s)
- Minchul Kim
- Department of Radiology, Eulji Hospital, Eulji University, Seoul 01830, Korea
| | - Jeong Joo Woo
- Department of Radiology, Eulji Hospital, Eulji University, Seoul 01830, Korea
| | - Jin Kyung An
- Department of Radiology, Eulji Hospital, Eulji University, Seoul 01830, Korea
| | - Yoon Young Jung
- Department of Radiology, Eulji Hospital, Eulji University, Seoul 01830, Korea
| | - Yun Sun Choi
- Department of Radiology, Eulji Hospital, Eulji University, Seoul 01830, Korea
| |
Collapse
|
22
|
|
23
|
Ma H, Xu D, Wu Y, Ma Y, Li Z. To decipher the hypoxic pulmonary hypertension: Vascular heterogeneity and the hypothesis of hypoxic responsive threshold. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2015. [DOI: 10.1016/j.jmhi.2015.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Abstract
Interstitial lung disease (ILD) encompasses a large and diverse group of pathological conditions that share similar clinical, radiological and pathological manifestations, despite potentially having quite different aetiologies and comorbidities. Idiopathic pulmonary fibrosis (IPF) represents probably the most aggressive form of ILD and systemic sclerosis is a multiorgan fibrotic disease frequently associated with ILD. Although the aetiology of these disorders remains unknown, in this review we analyse the pathogenic mechanisms by cell of interest (fibroblast, fibrocyte, myofibroblast, endothelial and alveolar epithelial cells and immune competent cells). New insights into the complex cellular contributions and interactions will be provided, comparing the role of cell subsets in the pathogenesis of IPF and systemic sclerosis. Distinct cell populations contribute to the complex pathogenesis of IPF and systemic sclerosis-associated ILDhttp://ow.ly/AjFaz
Collapse
|
25
|
van Soldt BJ, Metscher BD, Poelmann RE, Vervust B, Vonk FJ, Müller GB, Richardson MK. Heterochrony and early left-right asymmetry in the development of the cardiorespiratory system of snakes. PLoS One 2015; 10:e116416. [PMID: 25555231 PMCID: PMC4282204 DOI: 10.1371/journal.pone.0116416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/21/2014] [Indexed: 01/19/2023] Open
Abstract
Snake lungs show a remarkable diversity of organ asymmetries. The right lung is always fully developed, while the left lung is either absent, vestigial, or well-developed (but smaller than the right). A 'tracheal lung' is present in some taxa. These asymmetries are reflected in the pulmonary arteries. Lung asymmetry is known to appear at early stages of development in Thamnophis radix and Natrix natrix. Unfortunately, there is no developmental data on snakes with a well-developed or absent left lung. We examine the adult and developmental morphology of the lung and pulmonary arteries in the snakes Python curtus breitensteini, Pantherophis guttata guttata, Elaphe obsoleta spiloides, Calloselasma rhodostoma and Causus rhombeatus using gross dissection, MicroCT scanning and 3D reconstruction. We find that the right and tracheal lung develop similarly in these species. By contrast, the left lung either: (1) fails to develop; (2) elongates more slowly and aborts early without (2a) or with (2b) subsequent development of faveoli; (3) or develops normally. A right pulmonary artery always develops, but the left develops only if the left lung develops. No pulmonary artery develops in relation to the tracheal lung. We conclude that heterochrony in lung bud development contributes to lung asymmetry in several snake taxa. Secondly, the development of the pulmonary arteries is asymmetric at early stages, possibly because the splanchnic plexus fails to develop when the left lung is reduced. Finally, some changes in the topography of the pulmonary arteries are consequent on ontogenetic displacement of the heart down the body. Our findings show that the left-right asymmetry in the cardiorespiratory system of snakes is expressed early in development and may become phenotypically expressed through heterochronic shifts in growth, and changes in axial relations of organs and vessels. We propose a step-wise model for reduction of the left lung during snake evolution.
Collapse
Affiliation(s)
| | - Brian D. Metscher
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - Robert E. Poelmann
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Vervust
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Freek J. Vonk
- Institute of Biology, University of Leiden, Leiden, the Netherlands
- NCB Naturalis, Leiden, the Netherlands
| | - Gerd B. Müller
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
26
|
Onuki T, Kanzaki M, Kikkawa T, Isaka T, Sakamoto K, Oyama K, Murasugi M. New findings on the three-dimensional anatomical relations between the bronchi and pulmonary blood vessels at the pulmonary hilum. Clin Anat 2014; 28:506-11. [DOI: 10.1002/ca.22486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Takamasa Onuki
- Department of Surgery; Tokyo Women's Medical University; 8-1 Kawada-chou Shinjuku-ku Tokyo 162-0054 Japan
| | - Masato Kanzaki
- Department of Surgery; Tokyo Women's Medical University; 8-1 Kawada-chou Shinjuku-ku Tokyo 162-0054 Japan
| | - Takuma Kikkawa
- Department of Surgery; Tokyo Women's Medical University; 8-1 Kawada-chou Shinjuku-ku Tokyo 162-0054 Japan
| | - Tamami Isaka
- Department of Surgery; Tokyo Women's Medical University; 8-1 Kawada-chou Shinjuku-ku Tokyo 162-0054 Japan
| | - Kei Sakamoto
- Department of Surgery; Tokyo Women's Medical University; 8-1 Kawada-chou Shinjuku-ku Tokyo 162-0054 Japan
| | - Kunihiro Oyama
- Department of Surgery; Tokyo Women's Medical University; 8-1 Kawada-chou Shinjuku-ku Tokyo 162-0054 Japan
| | - Masahide Murasugi
- Department of Surgery; Tokyo Women's Medical University; 8-1 Kawada-chou Shinjuku-ku Tokyo 162-0054 Japan
| |
Collapse
|
27
|
Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 2014; 21:1926-42. [PMID: 24350610 PMCID: PMC4202910 DOI: 10.1089/ars.2013.5785] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. RECENT ADVANCES PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. CRITICAL ISSUES General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. FUTURE DIRECTIONS Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center , Sacramento, California
| | | |
Collapse
|
28
|
Abman SH, Baker C, Gien J, Mourani P, Galambos C. The Robyn Barst Memorial Lecture: Differences between the fetal, newborn, and adult pulmonary circulations: relevance for age-specific therapies (2013 Grover Conference series). Pulm Circ 2014; 4:424-40. [PMID: 25621156 PMCID: PMC4278602 DOI: 10.1086/677371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/30/2014] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) contributes to poor outcomes in diverse diseases in newborns, infants, and children. Many aspects of pediatric PAH parallel the pathophysiology and disease courses observed in adult patients; however, critical maturational differences exist that contribute to distinct outcomes and therapeutic responses in children. In comparison with adult PAH, disruption of lung vascular growth and development, or angiogenesis, plays an especially prominent role in the pathobiology of pediatric PAH. In children, abnormalities of lung vascular development have consequences well beyond the adverse hemodynamic effects of PAH alone. The developing endothelium also plays critical roles in development of the distal airspace, establishing lung surface area for gas exchange and maintenance of lung structure throughout postnatal life through angiocrine signaling. Impaired functional and structural adaptations of the pulmonary circulation during the transition from fetal to postnatal life contribute significantly to poor outcomes in such disorders as persistent pulmonary hypertension of the newborn, congenital diaphragmatic hernia, bronchopulmonary dysplasia, Down syndrome, and forms of congenital heart disease. In addition, several studies support the hypothesis that early perinatal events that alter lung vascular growth or function may set the stage for increased susceptibility to PAH in adult patients ("fetal programming"). Thus, insights into basic mechanisms underlying unique features of the developing pulmonary circulation, especially as related to preservation of endothelial survival and function, may provide unique therapeutic windows and distinct strategies to improve short- and long-term outcomes of children with PAH.
Collapse
Affiliation(s)
- Steven H. Abman
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Christopher Baker
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Jason Gien
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Peter Mourani
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Csaba Galambos
- Department of Pathology, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
29
|
Papamatheakis DG, Blood AB, Kim JH, Wilson SM. Antenatal hypoxia and pulmonary vascular function and remodeling. Curr Vasc Pharmacol 2014; 11:616-40. [PMID: 24063380 DOI: 10.2174/1570161111311050006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/12/2012] [Indexed: 01/02/2023]
Abstract
This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression.
Collapse
Affiliation(s)
- Demosthenes G Papamatheakis
- Center for Perinatal Biology, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, 92350 CA, USA.
| | | | | | | |
Collapse
|
30
|
Gilmont RR, Raghavan S, Somara S, Bitar KN. Bioengineering of physiologically functional intrinsically innervated human internal anal sphincter constructs. Tissue Eng Part A 2014; 20:1603-11. [PMID: 24328537 DOI: 10.1089/ten.tea.2013.0422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Muscle replacement for patients suffering from extensive tissue loss or dysfunction is a major objective of regenerative medicine. To achieve functional status, bioengineered muscle replacement constructs require innervation. Here we describe a method to bioengineer functionally innervated gut smooth muscle constructs using neuronal progenitor cells and smooth muscle cells isolated and cultured from intestinal tissues of adult human donors. These constructs expressed markers for contractile smooth muscle, glial cells, and mature neuronal populations. The constructs responded appropriately to physiologically relevant neurotransmitters, and neural network integration was demonstrated by responses to electrical field stimulation. The ability of enteric neuroprogenitor cells to differentiate into neuronal populations provides enormous potential for functional innervation of a variety of bioengineered muscle constructs in addition to gut. Functionally innervated muscle constructs offer a regenerative medicine-based therapeutic approach for neuromuscular replacement after trauma or degenerative disorders.
Collapse
Affiliation(s)
- Robert R Gilmont
- 1 Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
31
|
Pereda J, Sulz L, San Martin S, Godoy-Guzmán C. The human lung during the embryonic period: vasculogenesis and primitive erythroblasts circulation. J Anat 2013; 222:487-94. [PMID: 23520979 DOI: 10.1111/joa.12042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 12/11/2022] Open
Abstract
Vascularization and blood cell circulation are crucial steps during lung development. However, how blood vessels are generated and when lung circulation is initiated is still a matter of debate. A morpho-functional analysis of pulmonary vasculature was done using human lung samples between 31 and 56 days post-fertilization (pf). The immunolocalization and expression of CD31, CD34, FLT-1, KDR and the vascular growth factor (VEGF) were investigated. The results showed that at day 31 pf, a capillary plexus is already installed, and a few primitive erythroblasts were seen for the first time within the lumen of some blood vessels. Around day 45 pf, an increase in the amount of primitive erythroblasts was detected in the parenchyma surrounding the distal segment of the bronchial tree. The expression of FLT-1, KDR, CD31 and CD34 was observed in endothelial cells of the capillary plexus and the VEGF was detected in the endodermal epithelium. Our results support the hypothesis that the initial formation of the capillary plexus around the tip of the growing airway bud occurs by vasculogenesis, probably regulated by VEGF and KDR. We also showed a very early onset of blood circulation, starting from day 34 pf, concomitant with the generation of new lung buds. In addition, the increasing number of primitive erythroblasts from week 6 onward, associated with a change in the shape of the blood vessels, suggests a remodeling process and that the generation of new distal vessels at the tip of the lung bud occurs mainly by a process of angiogenesis.
Collapse
Affiliation(s)
- J Pereda
- Departamento de Embriología Humana, Escuela de Medicina, Universidad de Santiago de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
32
|
Alphonse RS, Rajabali S, Thébaud B. Lung injury in preterm neonates: the role and therapeutic potential of stem cells. Antioxid Redox Signal 2012; 17:1013-40. [PMID: 22400813 DOI: 10.1089/ars.2011.4267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Continuous improvements in perinatal care have allowed the survival of ever more premature infants, making the task of protecting the extremely immature lung from injury increasingly challenging. Premature infants at risk of developing chronic lung disease or bronchopulmonary dysplasia (BPD) are now born at the late canalicular stage of lung development, just when the airways become juxtaposed to the lung vasculature and when gas-exchange becomes possible. Readily available strategies, including improved antenatal management (education, regionalization, steroids, and antibiotics), together with exogenous surfactant and exclusive/early noninvasive ventilatory support, will likely decrease the incidence/severity of BPD over the next few years. Nonetheless, because of the extreme immaturity of the developing lung, the extent to which disruption of lung growth after prematurity and neonatal management lead to an earlier or more aggravated decline in respiratory function in later life is a matter of concern. Consequently, much more needs to be learned about the mechanisms of lung development, injury, and repair. Recent insight into stem cell biology has sparked interest for stem cells to repair damaged organs. This review summarizes the exciting potential of stem cell-based therapies for lung diseases in general and BPD in particular.
Collapse
|
33
|
Sluiter I, van der Horst I, van der Voorn P, Boerema-de Munck A, Buscop-van Kempen M, de Krijger R, Tibboel D, Reiss I, Rottier RJ. Premature differentiation of vascular smooth muscle cells in human congenital diaphragmatic hernia. Exp Mol Pathol 2012; 94:195-202. [PMID: 23018129 DOI: 10.1016/j.yexmp.2012.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a rare congenital anomaly characterized by the herniation of abdominal organs into the chest cavity. The high mortality and morbidity of CDH patients are primarily caused by the associated pulmonary hypertension (PH), characterized by the thickening of the vascular media and adventitia. The media consist of heterogeneous populations of vascular smooth muscle cells (VSMC), ranging from synthetic to the characteristic contractile cells. VSMCs are influenced by developmental and environmental cues and may play a role in the development of the structural changes observed in CDH patients. Therefore, we hypothesized that the distribution of the VSMC populations may already be different at the origin of CDH development. METHODOLOGY We analyzed the protein expression of specific markers associated with synthetic and contractile VSMC phenotypes in human lungs at different developmental stages. Next, we compared lungs of premature and term CDH patients, as well as patients with lung hypoplasia due to renal agenesis or PROM, with age-matched controls. RESULTS Synthetic and contractile VSMCs are distributed in a temporal and spatial specific pattern along the proximodistal axis of the lung. CDH patients have more abundant contractile VSMCs which are also more distally distributed. This different distribution pattern is already observed from 19 weeks of gestation onwards. CONCLUSION Our data suggest that the more extensive distribution of contractile VSMCs is associated with an early maturation of the pulmonary vasculature, contrasting the concept that CDH might be the result of delayed maturation of the epithelium.
Collapse
Affiliation(s)
- Ilona Sluiter
- Department of Pediatric Surgery, Erasmus MC Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Godoy-Guzmán C, San Martin S, Pereda J. Proteoglycan and collagen expression during human air conducting system development. Eur J Histochem 2012; 56:e29. [PMID: 23027345 PMCID: PMC3493975 DOI: 10.4081/ejh.2012.e29] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 05/04/2012] [Accepted: 01/12/2012] [Indexed: 11/22/2022] Open
Abstract
The lung is formed from a bud that grows and divides in a dichotomous way. A bud is a new growth center which is determined by epithelial-mesenchymal interactions where proteins of the extracellular matrix (ECM) might be involved. To understand this protein participation during human lung development, we examined the expression and distribution of proteoglycans in relation to the different types of collagens during the period in which the air conducting system is installed. Using light microscopy and immunohistochemistry we evaluate the expression of collagens (I, III and VI) and proteoglycans (decorin, biglycan and lumican) between 8 to 10 weeks post fertilization and 11 to 14 weeks of gestational age of human embryo and fetus lungs. We show that decorin, lumican and all the collagen types investigated were expressed at the epithelium-mesenchymal interface, forming a sleeve around the bronchiolar ducts. In addition, biglycan was expressed in both the endothelial cells and the smooth muscle of the blood vessels. Thus, the similar distribution pattern of collagen and proteoglycans in the early developmental stages of the human lung may be closely related to the process of dichotomous division of the bronchial tree. This study provides a new insight concerning the participation of collagens and proteoglycans in the epithelial-mesenchymal interface during the period in which the air conducting system is installed in the human fetal lung.
Collapse
Affiliation(s)
- C Godoy-Guzmán
- Department of Human Embryology, School of Medicine, Universidad de Santiago de Chile, Usach, Santiago.
| | | | | |
Collapse
|
35
|
Ornitz DM, Yin Y. Signaling networks regulating development of the lower respiratory tract. Cold Spring Harb Perspect Biol 2012; 4:4/5/a008318. [PMID: 22550231 DOI: 10.1101/cshperspect.a008318] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lungs serve the primary function of air-blood gas exchange in all mammals and in terrestrial vertebrates. Efficient gas exchange requires a large surface area that provides intimate contact between the atmosphere and the circulatory system. To achieve this, the lung contains a branched conducting system (the bronchial tree) and specialized air-blood gas exchange units (the alveoli). The conducting system brings air from the external environment to the alveoli and functions to protect the lung from debris that could obstruct airways, from entry of pathogens, and from excessive loss of fluids. The distal lung enables efficient exchange of gas between the alveoli and the conducting system and between the alveoli and the circulatory system. In this article, we highlight developmental and physiological mechanisms that specify, pattern, and regulate morphogenesis of this complex and essential organ. Recent advances have begun to define molecular mechanisms that control many of the important processes required for lung organogenesis; however, many questions remain. A deeper understanding of these molecular mechanisms will aid in the diagnosis and treatment of congenital lung disease and in the development of strategies to enhance the reparative response of the lung to injury and eventually permit regeneration of functional lung tissue.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
36
|
Yamamoto Y, Baldwin HS, Prince LS. Endothelial differentiation by multipotent fetal mouse lung mesenchymal cells. Stem Cells Dev 2011; 21:1455-65. [PMID: 22008017 DOI: 10.1089/scd.2011.0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During fetal lung development, cells within the mesenchyme differentiate into vascular endothelia. This process of vasculogenesis gives rise to the cells that will eventually form the alveolar capillary bed. The cellular mechanisms regulating lung vasculogenesis are poorly understood, partly due to the lack of experimental systems that model this process. Here, we have developed and characterized a novel fetal mouse lung cell model of mesenchymal to endothelial differentiation. Using mesenchymal cells from the lungs of embryonal day 15 Immortomice, we show that endothelial growth media containing fibroblast growth factor-2 and vascular endothelial growth factor can stimulate formation of vascular endothelial cells in culture. These newly formed endothelial cells retain plasticity, as removing endothelial growth media causes loss of vascular markers and renewed formation of α-smooth muscle actin positive stress fibers. Cells with the highest Flk-1 expression differentiated into endothelia more efficiently. Individual mesenchymal cell clones had varied ability to acquire an endothelial phenotype. These fetal lung mesenchymal cells were multipotent, capable of differentiating into not only vascular endothelia, but also osteogenic and chondrongenic cell lineages. Our data establish a cell culture model for mesenchymal to endothelial differentiation that could prove useful for future mechanistic studies in the process of vasculogenesis both during normal development and in the pathogenesis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Yasutoshi Yamamoto
- Division of Neonatology, Department of Pediatrics, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
37
|
Yamamoto M, Abe SI, Rodríguez-Vázquez JF, Fujimiya M, Murakami G, Ide Y. Immunohistochemical distribution of desmin in the human fetal heart. J Anat 2011; 219:253-8. [PMID: 21496015 PMCID: PMC3162244 DOI: 10.1111/j.1469-7580.2011.01382.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2011] [Indexed: 11/29/2022] Open
Abstract
Desmin is a member of the intermediate filaments, which play crucial roles in the maturation, maintenance and recovery of muscle fibers. Its expression has been examined in human cardiac muscle, rat and chicken, but its spatial distribution in the human fetal heart has not been described. The present study investigated desmin expression in the human fetal heart and associated great vessels in 14 mid-term fetuses from 9 to 18 weeks of gestation. Immunoreactivity for myosin heavy chain (MHC) and alpha smooth muscle actin (α-SMA), as well as neuron-specific enolase (NSE), was also examined. Increased expression of desmin from 9 to 18 weeks was clearly localized in the atrial wall, the proximal portions of the pulmonary vein and vena cava, and around the atrioventricular node. Desmin-positive structures were also positive for MHC. Meanwhile, the great vessels were also positive for α-SMA. The distribution of desmin exhibited a pattern quite different from that described in previous studies of rat and chicken. Thus, desmin in the human fetal heart does not seem to play a general role in myocardial differentiation but rather a specific role closely related to the maturation of the α-isozyme of MHC. Desmin expression in the developing fetal heart also appeared to be induced by mechanical stress due to the involvement of venous walls against the atrium.
Collapse
|
38
|
Cheung C, Sinha S. Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J Mol Cell Cardiol 2011; 51:651-64. [PMID: 21816157 DOI: 10.1016/j.yjmcc.2011.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022]
Abstract
Ischemic diseases remain one of the major causes of morbidity and mortality throughout the world. In recent clinical trials on cell-based therapies, the use of adult stem and progenitor cells only elicited marginal benefits. Therapeutic neovascularisation is the Holy Grail for ischemic tissue recovery. There is compelling evidence from animal transplantation studies that the inclusion of mural cells in addition to endothelial cells (ECs) can enhance the formation of functional blood vessels. Vascular smooth muscle cells (SMCs) and pericytes are essential for the stabilisation of nascent immature endothelial tubes. Despite the intense interest in the utility of human embryonic stem cells (ESCs) for vascular regenerative medicine, ESC-derived vascular SMCs have received much less attention than ECs. This review begins with developmental insights into a range of smooth muscle progenitors from studies on embryos and ESC differentiation systems. We then summarise the methods of derivation of smooth muscle progenitors and cells from human ESCs. The primary emphasis is on the inherent heterogeneity of smooth muscle progenitors and cells and the limitations of current in vitro characterisation. Essential transplantation issues such as the type and source of therapeutic cells, mode of cell delivery, measures to enhance cell viability, putative mechanisms of benefit and long-term tracking of cell fate are also discussed. Finally, we highlight the challenges of clinical compatibility and scaling up for medical use in order to eventually realise the goal of human ESC-based vascular regenerative medicine.
Collapse
Affiliation(s)
- Christine Cheung
- The Anne McLaren Laboratory for Regenerative Medicine, West Forvie Building, Forvie Site, University of Cambridge, Robinson Way, Cambridge CB2 0SZ, UK
| | | |
Collapse
|
39
|
Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary Hypertension and Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2011; 45:1-15. [DOI: 10.1165/rcmb.2010-0365tr] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Rawlins EL. The building blocks of mammalian lung development. Dev Dyn 2010; 240:463-76. [PMID: 21337459 DOI: 10.1002/dvdy.22482] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 01/26/2023] Open
Abstract
Progress has recently been made in identifying progenitor cell populations in the embryonic lung. Some progenitor cell types have been definitively identified by lineage-tracing studies. However, others are not as well characterized and their existence is inferred on the basis of lung morphology, or mutant phenotypes. Here, I focus on lung development after the specification of the initial lung primordium. The evidence for various lung embryonic progenitor cell types is discussed and future experiments are suggested. The regulation of progenitor proliferation in the embryonic lung, and its coordinate control with morphogenesis, is also discussed. In addition, the relationship between embryonic and adult lung progenitors is considered.
Collapse
Affiliation(s)
- Emma L Rawlins
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
41
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
42
|
Carey WA, Taylor GD, Dean WB, Bristow JD. Tenascin-C deficiency attenuates TGF-ß-mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 299:L785-93. [PMID: 20833777 DOI: 10.1152/ajplung.00385.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein of unknown function that is highly expressed in adult lung parenchyma following acute lung injury (ALI). Here we report that mice lacking TNC are protected from interstitial fibrosis in the bleomycin model of ALI. Three weeks after exposure to bleomycin, TNC-null mice had accumulated 85% less lung collagen than wild-type mice. The lung interstitium of TNC-null mice also appeared to contain fewer myofibroblasts and fewer cells with intranuclear Smad-2/3 staining, suggesting impaired TGF-β activation or signaling. In vitro, TNC-null lung fibroblasts exposed to constitutively active TGF-β expressed less α-smooth muscle actin and deposited less collagen I into the matrix than wild-type cells. Impaired TGF-β responsiveness was correlated with dramatically reduced Smad-3 protein levels and diminished nuclear translocation of Smad-2 and Smad-3 in TGF-β-exposed TNC-null cells. Reduced Smad-3 in TNC-null cells reflects both decreased transcript abundance and enhanced ubiquitin-proteasome-mediated protein degradation. Together, these studies suggest that TNC is essential for maximal TGF-β action after ALI. The clearance of TNC that normally follows ALI may restrain TGF-β action during lung healing, whereas prolonged or exaggerated TNC expression may facilitate TGF-β action and fibrosis after ALI.
Collapse
Affiliation(s)
- William A Carey
- Cardiovascular Research Institute, University of California, San Francisco, USA.
| | | | | | | |
Collapse
|
43
|
Murakami K, Mathew R, Huang J, Farahani R, Peng H, Olson SC, Etlinger JD. Smurf1 ubiquitin ligase causes downregulation of BMP receptors and is induced in monocrotaline and hypoxia models of pulmonary arterial hypertension. Exp Biol Med (Maywood) 2010; 235:805-13. [PMID: 20558834 DOI: 10.1258/ebm.2010.009383] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reduced bone morphogenetic protein (BMP) receptor (BMPR) expression and BMP signaling have been implicated in vascular cell proliferation and remodeling associated with pulmonary arterial hypertension (PAH). The low penetrance of the BMPR II disease gene in familial PAH suggests that additional genetic or environmental factors are involved in clinical manifestation of PAH. Smurf1 ubiquitin ligase, together with inhibitory SMAD 6/7, forms a negative feedback loop for the attenuation of BMP signals by downregulating BMPR and signaling molecules and, in addition, functions in the integration of MAPK/Ras mitogenic pathways. The present study found that Smurf1 was significantly elevated in pulmonary arteries of monocrotaline and hypoxia-induced PAH rats. In the pulmonary artery of hypoxia-exposed mice, elevation of Smurf1 and SMAD7 was correlated with reduced expression of BMPR II protein. Over-expression of Smurf1 in cultured cells induced ubiquitination and degradation of BMPR I and II whereas ligase-inactive Smurf1 reduced ubiquitination and elevated their protein levels, thus serving a dominant-negative function. Smurf1-induced receptor degradation was inhibited by both proteasomal and lysosomal inhibitors. Thus, Smurf1 reduces steady-state levels of BMPRs by ubiquitination and subsequent degradation involving proteasomes and lysosomes. Therefore, these results show that Smurf1 induction could be a key event for triggering downregulation of BMP signaling and causing vascular cell proliferation and remodeling in PAH and that abrogating Smurf1 function could be a strategy for PAH therapeutics.
Collapse
Affiliation(s)
- Koko Murakami
- The Center for Pulmonary Hypertension Translational Research, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Morimoto M, Liu Z, Cheng HT, Winters N, Bader D, Kopan R. Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci 2010; 123:213-24. [PMID: 20048339 DOI: 10.1242/jcs.058669] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung development is the result of complex interactions between four tissues: epithelium, mesenchyme, mesothelium and endothelium. We marked the lineages experiencing Notch1 activation in these four cellular compartments during lung development and complemented this analysis by comparing the cell fate choices made in the absence of RBPjkappa, the essential DNA binding partner of all Notch receptors. In the mesenchyme, RBPjkappa was required for the recruitment and specification of arterial vascular smooth muscle cells (vSMC) and for regulating mesothelial epithelial-mesenchymal transition (EMT), but no adverse affects were observed in mice lacking mesenchymal RBPjkappa. We provide indirect evidence that this is due to vSMC rescue by endothelial-mesenchymal transition (EnMT). In the epithelium, we show that Notch1 activation was most probably induced by Foxj1-expressing cells, which suggests that Notch1-mediated lateral inhibition regulates the selection of Clara cells at the expense of ciliated cells. Unexpectedly, and in contrast to Pofut1-null epithelium, Hes1 expression was only marginally reduced in RBPjkappa-null epithelium, with a corresponding minimal effect on pulmonary neuroendocrine cell fate selection. Collectively, the primary roles for canonical Notch signaling in lung development are in selection of Clara cell fate and in vSMC recruitment. These analyses suggest that the impact of gamma-secretase inhibitors on branching in vitro reflect a non-cell autonomous contribution from endothelial or vSMC-derived signals.
Collapse
Affiliation(s)
- Mitsuru Morimoto
- Department of Developmental Biology and Division of Dermatology, Washington University School of Medicine, Box 8103, Saint Louis, MO 63110-1095, USA
| | | | | | | | | | | |
Collapse
|
45
|
Chen S, Ursell PC, Adatia I, Hislop AA, Giannikopoulos P, Hornberger LK. Prenatal diagnosis of primary pulmonary hypoplasia in fraternal twins. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2010; 35:113-116. [PMID: 20033995 DOI: 10.1002/uog.7520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Primary pulmonary hypoplasia is a rare, usually lethal, condition presenting only after birth without other congenital abnormalities. We describe the first case of fraternal twins diagnosed prenatally with primary pulmonary hypoplasia. Both had diffuse hypoplasia of the pulmonary arteries initially identified by fetal echocardiography and confirmed at autopsy following termination. These cases permit examination of the histopathology of this disease in the fetal stage of development.
Collapse
Affiliation(s)
- S Chen
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Lung development is orchestrated by highly integrated morphogenic programs of interrelated patterns of gene and protein expression. Injury to the developing lung in the canalicular and saccular phases of lung development alters subsequent alveolar and vascular development resulting in simplified alveolar structures, dysmorphic capillary configuration, variable interstitial cellularity and fibroproliferation that are characteristic of the 'new' bronchopulmonary dysplasia (BPD). Fetal and neonatal infection, abnormal stretch of the developing airways and alveoli, altered expression of surfactant proteins (or genetically altered proteins), polymorphisms of genes encoding for vascular endothelial growth factors, and reactive oxygen species result in imparied gas exchange in the developing lung. However, the 'new' BPD represents only one form of neonatal chronic lung disease and the consistent use of both the physiologic definition and severity scale would provide greater accuracy in determining the impact of the disease currently defined by its treatment. Our present labelling of the clinical state of oxygen supplementation and/or ventilatory support at 36 weeks' postmenstrual age and the histopathologic severity of alveolar arrest and vascular 'simplification' may not always be predictive of the degree of altered lung development and thus longer-term pulmonary function evaluations are needed to determine the impact of this disorder in specific infants. The proposed role of novel molecular therapies, and the combined effects of currently established therapies, as well as exogenous surfactant and inhaled nitric oxide or repetitive surfactant dosing, on the severity and incidence of new BPD hold considerable promise for reducing the long-term pulmonary morbidity among infants delivered prematurely.
Collapse
|
47
|
Arciniegas E, Neves CY, Carrillo LM, Zambrano EA, Ramírez R. Endothelial-Mesenchymal Transition Occurs during Embryonic Pulmonary Artery Development. ACTA ACUST UNITED AC 2009; 12:193-200. [PMID: 16162442 DOI: 10.1080/10623320500227283] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pulmonary vascular remodeling is a process generally associated with pulmonary hypertension that involves intimal thickening, medial hyperthrophy, and plexiform lesions. Morphological studies during pulmonary hypertension have indicated that intimal thickening consists of immature smooth muscle cells (SMCs) associated with determined extracellular matrix components, suggesting an important role for these cells in vascular lesions. Controversy exists regarding the nature and origin of the cells conforming the intimal thickenings. In this study, the authors characterized the in vivo phenotype of the cells located in the pulmonary artery wall during the advanced stages of chicken embryo development and examined whether intimal thickenings are present in such stages. Immunolabeling of cryosections demonstrated presence of intimal thickenings composed of mesenchymal cells that may arise from the endothelium. These cells persist either as nonmuscle throughout the development, or possibly convert to cells expressing alpha -smooth muscle actin (alpha-SM actin). To determine whether pulmonary endothelial cells undergo a transition to mesenchymal cells, the authors used pulmonary artery explants from 10- to 11-day-old chicken embryos and found that explanted endothelial cells detached from the monolayer and acquired mesenchymal characteristics. Some of these cells maintained immunoreactivity for von Willebrand factor (vWF), whereas other jointly lost vWF and gained alpha -SM actin expression (transitional cells), suggesting conversion to SMCs. Therefore, these findings strongly support the authors' in vivo observations and demonstrate that embryonic pulmonary endothelial cells undergo a transition to mesenchymal cells and participate in intimal thickening formation and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Enrique Arciniegas
- Laboratorio de Microscopía Electrónica, Servicio Autónomo Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | | | |
Collapse
|
48
|
Tuder RM, Abman SH, Braun T, Capron F, Stevens T, Thistlethwaite PA, Haworth SG. Development and Pathology of Pulmonary Hypertension. J Am Coll Cardiol 2009; 54:S3-S9. [DOI: 10.1016/j.jacc.2009.04.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/15/2009] [Indexed: 01/23/2023]
|
49
|
Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 2008; 105:16626-30. [PMID: 18922767 DOI: 10.1073/pnas.0808649105] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During mouse development, the sophisticated vascular network of the lung is established from embryonic day (E) approximately 10.5 and continues to develop postnatally. This network is composed of endothelial cells enclosed by vascular smooth muscle, pericytes, and other mesenchymal cells. Recent in vivo lineage labeling studies in the developing heart and intestine suggest that some of the vascular smooth muscle cells arise from the surface mesothelium. In the developing lung, the Wilm's tumor 1 gene (Wt1) is expressed only in the mesothelial cells. Therefore, we lineage-labeled the mesothelium in vivo by using a Wt1-Cre transgene in combination with either Rosa26R(lacZ), Rosa26R(CAG-hPLAP), or Rosa26R(EYFP) reporter alleles. In all three cases, cells derived from lineage-labeled mesothelium are found inside the lung and as smooth muscle actin (SMA) and PDGF receptor-beta positive cells in the walls of pulmonary blood vessels. To corroborate this finding, we used 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester "mixed isomers" (CCFSE) dye to label mesothelial cells on the surface of the embryonic lung. Over the course of 72-h culture, dye-labeled cells also appear within the lung mesenchyme. Together, our data provide evidence that mesothelial cells serve as a source of vascular smooth muscle cells in the developing lung and suggest that a conserved mechanism applies to the development of blood vessels in all coelomic organs.
Collapse
|
50
|
Loscertales M, Mikels AJ, Hu JKH, Donahoe PK, Roberts DJ. Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development 2008; 135:1365-76. [PMID: 18305003 DOI: 10.1242/dev.010504] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Wnt5a is an important factor patterning many aspects of early development, including the lung. We find pulmonary non-canonical Wnt5a uses Ror2 to control patterning of both distal air and vascular tubulogenesis (alveolarization). Lungs with mis/overexpressed Wnt5a develop with severe pulmonary hypoplasia associated with altered expression patterns of Shh, L-CAM, fibronectin, VEGF and Flk1. This hypoplastic phenotype is rescued by either replacement of the Shh protein or inhibition of fibronectin function. We find that the effect of Wnt5a on vascular patterning is likely to be through fibronectin-mediated VEGF signaling. These results demonstrate the pivotal role of Wnt5a in directing the essential coordinated development of pulmonary airway and vasculature, by affecting fibronectin levels directly, and by affecting the fibronectin pattern of expression through its regulation of Shh. Data herein suggest that Wnt5a functions in mid-pulmonary patterning (during alveolarization), and is distinct from the Wnt canonical pathway which is more important in earlier lung development.
Collapse
Affiliation(s)
- Maria Loscertales
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|