1
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
2
|
β-Cryptoxanthin Attenuates Cigarette-Smoke-Induced Lung Lesions in the Absence of Carotenoid Cleavage Enzymes (BCO1/BCO2) in Mice. Molecules 2023; 28:molecules28031383. [PMID: 36771049 PMCID: PMC9920649 DOI: 10.3390/molecules28031383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
High dietary intake of β-cryptoxanthin (BCX, an oxygenated provitamin A carotenoid) is associated with a lower risk of lung disease in smokers. BCX can be cleaved by β-carotene-15,15'-oxygenase (BCO1) and β-carotene-9',10'-oxygenase (BCO2) to produce retinol and apo-10'-carotenoids. We investigated whether BCX has protective effects against cigarette smoke (CS)-induced lung injury, dependent or independent of BCO1/BCO2 and their metabolites. Both BCO1-/-/BCO2-/- double knockout mice (DKO) and wild type (WT) littermates were supplemented with BCX 14 days and then exposed to CS for an additional 14 days. CS exposure significantly induced macrophage and neutrophil infiltration in the lung tissues of mice, regardless of genotypes, compared to the non-exposed littermates. BCX treatment significantly inhibited CS-induced inflammatory cell infiltration, hyperplasia in the bronchial epithelium, and enlarged alveolar airspaces in both WT and DKO mice, regardless of sex. The protective effects of BCX were associated with lower expression of IL-6, TNF-α, and matrix metalloproteinases-2 and -9. BCX treatment led to a significant increase in hepatic BCX levels in DKO mice, but not in WT mice, which had significant increase in hepatic retinol concentration. No apo-10'-carotenoids were detected in any of the groups. In vitro BCX, at comparable doses of 3-OH-β-apo-10'-carotenal, was effective at inhibiting the lipopolysaccharide-induced inflammatory response in a human bronchial epithelial cell line. These data indicate that BCX can serve as an effective protective agent against CS-induced lung lesions in the absence of carotenoid cleavage enzymes.
Collapse
|
3
|
D’Anna SE, Maniscalco M, Cappello F, Carone M, Motta A, Balbi B, Ricciardolo FLM, Caramori G, Di Stefano A. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med 2021; 53:135-150. [PMID: 32997525 PMCID: PMC7877965 DOI: 10.1080/07853890.2020.1831050] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD) patients, bacterial and viral infections play a relevant role in worsening lung function and, therefore, favour disease progression. The inflammatory response to lung infections may become a specific indication of the bacterial and viral infections. We here review data on the bacterial-viral infections and related airways and lung parenchyma inflammation in stable and exacerbated COPD, focussing our attention on the prevalent molecular pathways in these different clinical conditions. The roles of macrophages, autophagy and NETosis are also briefly discussed in the context of lung infections in COPD. Controlling their combined response may restore a balanced lung homeostasis, reducing the risk of lung function decline. KEY MESSAGE Bacteria and viruses can influence the responses of the innate and adaptive immune system in the lung of chronic obstructive pulmonary disease (COPD) patients. The relationship between viruses and bacterial colonization, and the consequences of the imbalance of these components can modulate the inflammatory state of the COPD lung. The complex actions involving immune trigger cells, which activate innate and cell-mediated inflammatory responses, could be responsible for the clinical consequences of irreversible airflow limitation, lung remodelling and emphysema in COPD patients.
Collapse
Affiliation(s)
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), Istituto di Anatomia Umana e Istologia Università degli Studi di Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Bari, Bari, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Fabio L. M. Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, AOU San Luigi Gonzaga, Torino, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini morfologiche e funzionali (BIOMORF), Università degli studi di Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| |
Collapse
|
4
|
Zhang XF, Xiang SY, Lu J, Li Y, Zhao SJ, Jiang CW, Liu XG, Liu ZB, Zhang J. Electroacupuncture inhibits IL-17/IL-17R and post-receptor MAPK signaling pathways in a rat model of chronic obstructive pulmonary disease. Acupunct Med 2021; 39:663-672. [PMID: 33715422 DOI: 10.1177/0964528421996720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Interleukin (IL)-17, as a T-helper 17 cell (Th17) cytokine, plays a key role in chronic obstructive pulmonary disease (COPD) pathophysiology including chronic inflammation and airway obstruction, which lead to decreased pulmonary function. The aim of this study was to investigate the effect of acupuncture on IL-17, its receptor (IL-17R) and the mitogen-activated protein kinase (MAPK) signaling pathway, in a rat model of COPD. METHODS The COPD model was induced in Sprague Dawley rats by exposure to cigarette smoke for 12 weeks. The model rats were treated with electroacupuncture (EA) at BL13 and ST36. The lung function and histology of the rats were observed. IL-17, tumor necrosis factor (TNF)-α, and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and in plasma. The leukocytes and macrophages in the BALF were counted. The expression levels of IL-17R were assayed in lung tissue by real-time polymerase chain reaction (PCR), western blotting, and immunohistochemistry. MAPK signaling pathway molecules including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK)1/2 and p38, and their phosphorylated forms, were observed in the lung by western blotting. RESULTS Compared with the control group rats, lung function decreased and there was a severe inflammatory infiltration of the pulmonary parenchyma in the COPD rats. EA effectively improved lung function and alleviated the inflammatory infiltration in the lungs of COPD rats. EA also reversed the elevated total leukocyte and macrophage counts, the high levels of IL-17 and TNF-α, and the low IL-10 content in COPD rats. Meanwhile, EA downregulated the increased mRNA and protein expression of IL-17R, and significantly inhibited the elevated levels of phosphorylated JNK, ERK1/2, and p38 in the lungs of COPD rats. CONCLUSION Our results suggest that the protective effects of acupuncture therapy on the lungs of COPD rats are likely related to inhibition of IL-17/IL-17R and the post-receptor MAPK signaling pathways.
Collapse
Affiliation(s)
- Xin-Fang Zhang
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Shui-Ying Xiang
- Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Lu
- Department of Rehabilitation & Health Care, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Yin Li
- Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Shu-Jun Zhao
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chuan-Wei Jiang
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang-Guo Liu
- Department of Histology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zi-Bing Liu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.,Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Zhang
- Department of Immunology, Medical College of Nantong University, Nantong, China
| |
Collapse
|
5
|
Chan SMH, Cerni C, Passey S, Seow HJ, Bernardo I, van der Poel C, Dobric A, Brassington K, Selemidis S, Bozinovski S, Vlahos R. Cigarette Smoking Exacerbates Skeletal Muscle Injury without Compromising Its Regenerative Capacity. Am J Respir Cell Mol Biol 2020; 62:217-230. [PMID: 31461300 DOI: 10.1165/rcmb.2019-0106oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease negatively impacts quality of life and survival. Cigarette smoking (CS) is the major risk factor for chronic obstructive pulmonary disease and skeletal muscle dysfunction; however, how CS affects skeletal muscle function remains enigmatic. To examine the impact of CS on skeletal muscle inflammation and regeneration, male BALB/c mice were exposed to CS for 8 weeks before muscle injury was induced by barium chloride injection, and were maintained on the CS protocol for up to 21 days after injury. Barium chloride injection resulted in architectural damage to the tibialis anterior muscle, resulting in a decrease contractile function, which was worsened by CS exposure. CS exposure caused muscle atrophy (reduction in gross weight and myofiber cross-sectional area) and altered fiber type composition (31% reduction of oxidative fibers). Both contractile function and loss in myofiber cross-sectional area by CS exposure gradually recovered over time. Satellite cells are muscle stem cells that confer skeletal muscle the plasticity to adapt to changing demands. CS exposure blunted Pax7+ centralized nuclei within satellite cells and thus prevented the activation of these muscle stem cells. Finally, CS triggered muscle inflammation; in particular, there was an exacerbated recruitment of F4/80+ monocytic cells to the site of injury along with enhanced proinflammatory cytokine expression. In conclusion, CS exposure amplified the local inflammatory response at the site of skeletal muscle injury, and this was associated with impaired satellite cell activation, leading to a worsened muscle injury and contractile function without detectable impacts on the recovery outcomes.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Claudia Cerni
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Samantha Passey
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Huei Jiunn Seow
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Ivan Bernardo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Chris van der Poel
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Aleksandar Dobric
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| |
Collapse
|
6
|
Diminished stimulator of interferon genes production with cigarette smoke-exposure contributes to weakened anti-adenovirus vectors response and destruction of lung in chronic obstructive pulmonary disease model. Exp Cell Res 2019; 384:111545. [PMID: 31470016 DOI: 10.1016/j.yexcr.2019.111545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD) and dampens antiviral response, which increases viral infections and leads to COPD acute exacerbation (AECOPD). Adenovirus, a nonenveloped DNA virus, is linked with AECOPD, whose DNAs trigger innate immune response via interacting with pattern recognition receptors (PRRs). Stimulator of interferon genes (STING), as a cytosolic DNA sensor, participates in adenovirus-induced interferon β (IFNβ)-dependent antiviral response. STING is involved in various pulmonary diseases, but role of STING in pathogenesis of AECOPD is not well documented. In the present study, we explored relationship between STING and AECOPD induced by recombinant adenovirus vectors (rAdVs) and CS in wild type (WT) and STING-/- mice; and also characterized the inhibition of STING- IFNβ pathway in pulmonary epithelium exposed to cigarette smoke extract (CSE). We found that CS or CSE exposure alone dramatically inhibited STING expression, but not significantly effected IFNβ production. Moreover, CS or CSE-exposed significantly suppressed activation of STING-IFNβ pathway induced by rAdVs and suppressed clearance of rAdVs DNA. Inflammation, fibrosis and emphysema of lung tissues were exaggerated when treated with CS plus rAdVs, which further deteriorate in absences of STING. In A549 cells with knockdown of STING, we also observed enhancing apoptosis related to emphysema, especially CSE and adenovirus vectors in combination. Therefore, STING may play a protective role in preventing the progress of COPD.
Collapse
|
7
|
Lin CR, Bahmed K, Criner GJ, Marchetti N, Tuder RM, Kelsen S, Bolla S, Mandapati C, Kosmider B. S100A8 Protects Human Primary Alveolar Type II Cells against Injury and Emphysema. Am J Respir Cell Mol Biol 2019; 60:299-307. [PMID: 30277795 PMCID: PMC6397980 DOI: 10.1165/rcmb.2018-0144oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary emphysema is characterized by alveolar wall destruction, and cigarette smoking is the main risk factor in this disease development. S100A8 is a member of the S100 protein family, with an oxidative stress-related and antiinflammatory role. The mechanisms of human alveolar type II (ATII) cell injury contributing to emphysema pathophysiology are not completely understood. We wanted to determine whether S100A8 can protect ATII cells against injury induced by cigarette smoke and this disease development. We used freshly isolated ATII cells from nonsmoking and smoking organ donors, as well as patients with emphysema to determine S100A8 function. S100A8 protein and mRNA levels were low in individuals with this disease and correlated with its severity as determined by using lung tissue from areas with mild and severe emphysema obtained from the same patient. Its expression negatively correlated with high oxidative stress as observed by 4-hydroxynonenal levels. We also detected decreased serine phosphorylation within S100A8 by PKAα in this disease. This correlated with increased S100A8 ubiquitination by SYVN1. Moreover, we cultured ATII cells isolated from nonsmokers followed by treatment with cigarette smoke extract. We found that this exposure upregulated S100A8 expression. We also confirmed the cytoprotective role of S100A8 against cell injury using gain- and loss-of-function approaches in vitro. S100A8 knockdown sensitized cells to apoptosis induced by cigarette smoke. In contrast, S100A8 overexpression rescued cell injury. Our results suggest that S100A8 protects ATII cells against injury and cigarette smoke-induced emphysema. Targeting S100A8 may provide a potential therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | - Karim Bahmed
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | - Rubin M. Tuder
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Steven Kelsen
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
| | | | | | - Beata Kosmider
- Department of Thoracic Medicine and Surgery
- Center for Inflammation, Translational and Clinical Lung Research, and
- Department of Physiology, Temple University, Philadelphia, Pennsylvania; and
| |
Collapse
|
8
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
9
|
Aggarwal T, Wadhwa R, Thapliyal N, Sharma K, Rani V, Maurya PK. Oxidative, inflammatory, genetic, and epigenetic biomarkers associated with chronic obstructive pulmonary disorder. J Cell Physiol 2018; 234:2067-2082. [DOI: 10.1002/jcp.27181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Taru Aggarwal
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | - Ridhima Wadhwa
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | | | - Kanishka Sharma
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Varsha Rani
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Pawan K. Maurya
- Amity Institute of Biotechnology, Amity UniversityNoida India
- Amity Education GroupOakdale, Long Island (Suffolk) New York
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of PsychiatryFederal University of São PauloSão Paulo Brazil
| |
Collapse
|
10
|
Berg T, Hegelund-Myrbäck T, Öckinger J, Zhou XH, Brännström M, Hagemann-Jensen M, Werkström V, Seidegård J, Grunewald J, Nord M, Gustavsson L. Expression of MATE1, P-gp, OCTN1 and OCTN2, in epithelial and immune cells in the lung of COPD and healthy individuals. Respir Res 2018; 19:68. [PMID: 29678179 PMCID: PMC5910606 DOI: 10.1186/s12931-018-0760-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/27/2018] [Indexed: 02/03/2023] Open
Abstract
Background Several inhaled drugs are dependent on organic cation transporters to cross cell membranes. To further evaluate their potential to impact on inhaled drug disposition, the localization of MATE1, P-gp, OCTN1 and OCTN2 were investigated in human lung. Methods Transporter proteins were analysed by immunohistochemistry in lung tissue from healthy subjects and COPD patients. Transporter mRNA was analysed by qPCR in lung tissue and in bronchoalveolar lavage (BAL) cells from smokers and non-smokers. Results We demonstrate for the first time MATE1 protein expression in the lung with localization to the apical side of bronchial and bronchiolar epithelial cells. Interestingly, MATE1 was strongly expressed in alveolar macrophages as demonstrated both in lung tissue and in BAL cells, and in inflammatory cells including CD3 positive T cells. P-gp, OCTN1 and OCTN2 were also expressed in the alveolar epithelial cells and in inflammatory cells including alveolar macrophages. In BAL cells from smokers, MATE1 and P-gp mRNA expression was significantly lower compared to cells from non-smokers whereas no difference was observed between COPD patients and healthy subjects. THP-1 cells were evaluated as a model for alveolar macrophages but did not reflect the transporter expression observed in BAL cells. Conclusions We conclude that MATE1, P-gp, OCTN1 and OCTN2 are expressed in pulmonary lung epithelium, in alveolar macrophages and in other inflammatory cells. This is important to consider in the development of drugs treating pulmonary disease as the transporters may impact drug disposition in the lung and consequently affect pharmacological efficacy and toxicity. Electronic supplementary material The online version of this article (10.1186/s12931-018-0760-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tove Hegelund-Myrbäck
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden.
| | - Johan Öckinger
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Hong Zhou
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Marie Brännström
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Michael Hagemann-Jensen
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Werkström
- Respiratory GMed, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Janeric Seidegård
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nord
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Global Patient Safety, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Lena Gustavsson
- Department of Drug Metabolism, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| |
Collapse
|
11
|
Dysregulated Functions of Lung Macrophage Populations in COPD. J Immunol Res 2018; 2018:2349045. [PMID: 29670919 PMCID: PMC5835245 DOI: 10.1155/2018/2349045] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 01/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD.
Collapse
|
12
|
Sriram KB, Cox AJ, Clancy RL, Slack MPE, Cripps AW. Nontypeable Haemophilus influenzae and chronic obstructive pulmonary disease: a review for clinicians. Crit Rev Microbiol 2017; 44:125-142. [PMID: 28539074 DOI: 10.1080/1040841x.2017.1329274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of morbidity and mortality worldwide. In the lower airways of COPD patients, bacterial infection is a common phenomenon and Haemophilus influenzae is the most commonly identified bacteria. Haemophilus influenzae is divided into typeable and nontypeable (NTHi) strains based on the presence or absence of a polysaccharide capsule. While NTHi is a common commensal in the human nasopharynx, it is associated with considerable inflammation when it is present in the lower airways of COPD patients, resulting in morbidity due to worsening symptoms and increased frequency of COPD exacerbations. Treatment of lower airway NTHi infection with antibiotics, though successful in the short term, does not offer long-term protection against reinfection, nor does it change the course of the disease. Hence, there has been much interest in the development of an effective NTHi vaccine. This review will summarize the current literature concerning the role of NTHi infections in COPD patients and the consequences of using prophylactic antibiotics in patients with COPD. There is particular focus on the rationale, findings of clinical studies and possible future directions of NTHi vaccines in patients with COPD.
Collapse
Affiliation(s)
- Krishna Bajee Sriram
- a Department of Respiratory Medicine , Gold Coast University Hospital, Gold Coast Health , Southport , Australia.,b Griffith University School of Medicine , Southport , Australia
| | - Amanda J Cox
- c Menzies Health Institute , Griffith University School of Medical Science , Gold Coast , Australia
| | - Robert L Clancy
- d Faculty of Health and Medicine , University of Newcastle , Callaghan , Australia
| | - Mary P E Slack
- b Griffith University School of Medicine , Southport , Australia
| | - Allan W Cripps
- b Griffith University School of Medicine , Southport , Australia
| |
Collapse
|
13
|
Leung JM, Tiew PY, Mac Aogáin M, Budden KF, Yong VFL, Thomas SS, Pethe K, Hansbro PM, Chotirmall SH. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology 2017; 22:634-650. [PMID: 28342288 PMCID: PMC7169176 DOI: 10.1111/resp.13032] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/16/2022]
Abstract
COPD is a major global concern, increasingly so in the context of ageing populations. The role of infections in disease pathogenesis and progression is known to be important, yet the mechanisms involved remain to be fully elucidated. While COPD pathogens such as Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae are strongly associated with acute exacerbations of COPD (AECOPD), the clinical relevance of these pathogens in stable COPD patients remains unclear. Immune responses in stable and colonized COPD patients are comparable to those detected in AECOPD, supporting a role for chronic colonization in COPD pathogenesis through perpetuation of deleterious immune responses. Advances in molecular diagnostics and metagenomics now allow the assessment of microbe-COPD interactions with unprecedented personalization and precision, revealing changes in microbiota associated with the COPD disease state. As microbial changes associated with AECOPD, disease severity and therapeutic intervention become apparent, a renewed focus has been placed on the microbiology of COPD and the characterization of the lung microbiome in both its acute and chronic states. Characterization of bacterial, viral and fungal microbiota as part of the lung microbiome has the potential to reveal previously unrecognized prognostic markers of COPD that predict disease outcome or infection susceptibility. Addressing such knowledge gaps will ultimately lead to a more complete understanding of the microbe-host interplay in COPD. This will permit clearer distinctions between acute and chronic infections and more granular patient stratification that will enable better management of these features and of COPD.
Collapse
Affiliation(s)
- Janice M. Leung
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
- Division of Respiratory Medicine, St Paul's HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Pei Yee Tiew
- Department of Respiratory and Critical Care MedicineSingapore General HospitalSingapore
| | - Micheál Mac Aogáin
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Kurtis F. Budden
- Priority Research Centre for Healthy LungsUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNewcastleNew South WalesAustralia
| | | | - Sangeeta S. Thomas
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Kevin Pethe
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Philip M. Hansbro
- Priority Research Centre for Healthy LungsUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNewcastleNew South WalesAustralia
| | | |
Collapse
|
14
|
Neutrophilic Inflammation in the Immune Responses of Chronic Obstructive Pulmonary Disease: Lessons from Animal Models. J Immunol Res 2017; 2017:7915975. [PMID: 28536707 PMCID: PMC5426078 DOI: 10.1155/2017/7915975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, which is characterized by chronic bronchitis, destruction of small airways, and enlargement/disorganization of alveoli. It is generally accepted that the neutrophilic airway inflammation observed in the lungs of COPD patients is intrinsically linked to the tissue destruction and alveolar airspace enlargement, leading to disease progression. Animal models play an important role in studying the underlying mechanisms of COPD as they address questions involving integrated whole body responses. This review aims to summarize the current animal models of COPD, focusing on their advantages and disadvantages on immune responses and neutrophilic inflammation. Also, we propose a potential new animal model of COPD, which may mimic the most characteristics of human COPD pathogenesis, including persistent moderate-to-high levels of neutrophilic inflammation.
Collapse
|
15
|
|
16
|
De Cunto G, Lunghi B, Bartalesi B, Cavarra E, Fineschi S, Ulivieri C, Lungarella G, Lucattelli M. Severe Reduction in Number and Function of Peripheral T Cells Does Not Afford Protection toward Emphysema and Bronchial Remodeling Induced in Mice by Cigarette Smoke. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1814-1824. [PMID: 27157991 DOI: 10.1016/j.ajpath.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022]
Abstract
The protein Lck (p56(Lck)) is a Src family tyrosine kinase expressed at all stages of thymocyte development and is required for maturation of T cells. The targeted disruption of Lck gene in mice results in severe block in thymocyte maturation with substantial reduction in the development of CD4(+)CD8(+) thymocytes, severe reduction of peripheral T cells, and disruption of T-cell receptor signaling with defective function of T-cell responses. To investigate the role of T lymphocyte in the development of cigarette smoke-induced pulmonary changes, Lck(-/-) mice and corresponding congenic wild-type mice were chronically exposed to cigarette smoke, and their lungs were analyzed by biochemical, immunologic, and morphometric methods. Smoking mice from both genotypes showed disseminated foci of emphysema and large areas of goblet cell metaplasia in bronchial and bronchiolar epithelium. Morphometric evaluation of lung changes and lung elastin determination confirmed that mice from both genotypes showed the same degree of emphysematous lesions. Thus, cigarette smoke exposure in the presence of severe reduction in number and function of peripheral T cells does not influence the development of pulmonary changes induced by cigarette smoke. The data obtained suggest that innate immunity is a leading actor in the early development of pulmonary changes in smoking mice and that the adaptive immune response may play a role at later stages.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Benedetta Lunghi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Fineschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
17
|
Miyajima A, Ohashi H, Fujishiro A, Matsuoka Y, Hiramatsu A, Hirota T. Effects of All trans-Retinoic Acid on Alveolar Regeneration in Dexamethasone-Induced Emphysema Models and Its Relationship to Exposure in ICR and FVB Mice. Biol Pharm Bull 2016; 39:927-34. [DOI: 10.1248/bpb.b15-00704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Miyajima
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hideaki Ohashi
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Anri Fujishiro
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yuka Matsuoka
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Ayumi Hiramatsu
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Takashi Hirota
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
18
|
Yu JH, Long L, Luo ZX, Li LM, You JR. Anti-inflammatory role of microRNA let-7c in LPS treated alveolar macrophages by targeting STAT3. ASIAN PAC J TROP MED 2016; 9:72-5. [DOI: 10.1016/j.apjtm.2015.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 11/17/2022] Open
|
19
|
King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med 2015. [PMID: 26220864 PMCID: PMC4518022 DOI: 10.1186/s40169-015-0068-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by lung inflammation that persists after smoking cessation. This inflammation is heterogeneous but the key inflammatory cell types involved are macrophages, neutrophils and T cells. Other lung cells may also produce inflammatory mediators, particularly the epithelial cells. The main inflammatory mediators include tumor necrosis factor alpha, interleukin-1, interleukin-6, reactive oxygen species and proteases. COPD is also associated with systemic inflammation and there is a markedly increased risk of cardiovascular disease (particularly coronary artery disease) and lung cancer in patients with COPD. There is strong associative evidence that the inflammatory cells/mediators in COPD are also relevant to the development of cardiovascular disease and lung cancer. There are a large number of potential inhibitors of inflammation in COPD that may well have beneficial effects for these comorbidities. This is a not well-understood area and there is a requirement for more definitive clinical and mechanistic studies to define the relationship between the inflammatory process of COPD and cardiovascular disease and lung cancer.
Collapse
Affiliation(s)
- Paul T King
- Monash Lung and Sleep, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, 3168, Australia,
| |
Collapse
|
20
|
Saturni S, Contoli M, Spanevello A, Papi A. Models of Respiratory Infections: Virus-Induced Asthma Exacerbations and Beyond. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:525-33. [PMID: 26333698 PMCID: PMC4605924 DOI: 10.4168/aair.2015.7.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 12/20/2022]
Abstract
Respiratory infections are one of the main health problems worldwide. They are a challenging field of study due to an intricate relationship between the pathogenicity of microbes and the host's defenses. To better understand mechanisms of respiratory infections, different models have been developed. A model is the reproduction of a disease in a system that mimics human pathophysiology. For this reason, the best models should closely resemble real-life conditions. Thus, the human model is the best. However, human models of respiratory infections have some disadvantages that limit their role. Therefore, other models, including animal, in vitro, and mathematical ones, have been developed. We will discuss advantages and limitations of available models and focus on models of viral infections as triggers of asthma exacerbations, viral infections being one of the most frequent causes of exacerbating disease. Future studies should focus on the interrelation of various models.
Collapse
Affiliation(s)
- Sara Saturni
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Antonio Spanevello
- Department of Respiratory Diseases, Fondazione Maugeri, Tradate, University of Varese, Italy
| | - Alberto Papi
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
21
|
Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:995-1013. [PMID: 26082624 PMCID: PMC4459624 DOI: 10.2147/copd.s82518] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major cause of death and morbidity worldwide, is characterized by expiratory airflow limitation that is not fully reversible, deregulated chronic inflammation, and emphysematous destruction of the lungs. Despite the fact that COPD is a steadily growing global healthcare problem, the conventional therapies remain palliative, and regenerative approaches for disease management are not available yet. We aim to provide an overview of key reviews, experimental, and clinical studies addressing lung emphysema development and repair mechanisms published in the past decade. Novel aspects discussed herein include integral revision of the literature focused on lung microflora changes in COPD, autoimmune component of the disease, and environmental risk factors other than cigarette smoke. The time span of studies on COPD, including emphysema, chronic bronchitis, and asthmatic bronchitis, covers almost 200 years, and several crucial mechanisms of COPD pathogenesis are described and studied. However, we still lack the holistic understanding of COPD development and the exact picture of the time-course and interplay of the events during stable, exacerbated, corticosteroid-treated COPD states, and transitions in-between. Several generally recognized mechanisms will be discussed shortly herein, ie, unregulated inflammation, proteolysis/antiproteolysis imbalance, and destroyed repair mechanisms, while novel topics such as deviated microbiota, air pollutants-related damage, and autoimmune process within the lung tissue will be discussed more extensively. Considerable influx of new data from the clinic, in vivo and in vitro studies stimulate to search for novel concise explanation and holistic understanding of COPD nowadays.
Collapse
Affiliation(s)
- Edvardas Bagdonas
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Jovile Raudoniute
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Ieva Bruzauskaite
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Ruta Aldonyte
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
22
|
King PT, Sharma R. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi). J Immunol Res 2015; 2015:706376. [PMID: 26114124 PMCID: PMC4465770 DOI: 10.1155/2015/706376] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b) are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi) are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Monash University Department of Medicine, Monash Medical Centre, Melbourne, VIC 3168, Australia
| | - Roleen Sharma
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Monash University Department of Medicine, Monash Medical Centre, Melbourne, VIC 3168, Australia
| |
Collapse
|
23
|
Kurotani R, Shima R, Miyano Y, Sakahara S, Matsumoto Y, Shibata Y, Abe H, Kimura S. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation. Acta Histochem Cytochem 2015; 48:61-8. [PMID: 26019375 PMCID: PMC4427566 DOI: 10.1267/ahc.14065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/21/2015] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels.
Collapse
Affiliation(s)
- Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Reika Shima
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yuki Miyano
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Satoshi Sakahara
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoshie Matsumoto
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health
| |
Collapse
|
24
|
Aoshiba K, Tsuji T, Itoh M, Yamaguchi K, Nakamura H. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease. Respiration 2015; 89:243-52. [PMID: 25677028 DOI: 10.1159/000369861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.
Collapse
Affiliation(s)
- Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Japan
| | | | | | | | | |
Collapse
|
25
|
Fischer WA, Drummond MB, Merlo CA, Thomas DL, Brown R, Mehta SH, Wise RA, Kirk GD. Hepatitis C virus infection is not an independent risk factor for obstructive lung disease. COPD 2014; 11:10-6. [PMID: 23862666 PMCID: PMC4302731 DOI: 10.3109/15412555.2013.800854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several epidemiological studies have suggested that hepatitis C virus (HCV) infection is associated with the presence of obstructive lung disease (OLD). However, there is a strong link between HCV infection and tobacco abuse, a major risk factor for the development of OLD. In this study we analyzed clinical, laboratory and spirometric data from 1068 study participants to assess whether HCV infection, viremia, or HCV-associated end organ damage were associated with OLD. Demographics, risk behavior, serologic status for HCV and HIV, and spirometric measurements were collected from a cross-sectional analysis of the Acquired Immunodeficiency Syndrome (AIDS) Linked to the IntraVenous Experience (ALIVE) study, an observational cohort of IDUs followed in Baltimore, MD since 1988. Of 1,068 participants, 890 (83%) were HCV positive and 174 (16%) met spirometric criteria for OLD. Factors independently associated with OLD were age and BMI. HCV infection, viral load and HCV-associated end organ damage were similar in participants with and without OLD. In summary, there was no independent association between markers of HCV exposure, chronicity, viremia, or HCV-associated end-organ damage with OLD. Our findings support the strong correlation between HCV status, injection drug use, and smoking. These data suggest that HCV may not be a sole contributor to the increased prevalence of OLD described in previous studies of HCV-infected individuals.
Collapse
Affiliation(s)
- William A. Fischer
- Division of Pulmonary and Critical Care, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael B. Drummond
- Division of Pulmonary and Critical Care, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christian A. Merlo
- Division of Pulmonary and Critical Care, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David L. Thomas
- Division of Infectious Diseases, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Brown
- Departments of Anesthesiology/Critical Care Medicine; Environmental Health Sciences, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Shruti H. Mehta
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert A. Wise
- Division of Pulmonary and Critical Care, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Greg D. Kirk
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Abstract
Chronic obstructive pulmonary disease is associated with chronic inflammation affecting predominantly lung parenchyma and peripheral airways and results in largely irreversible and progressive airflow limitation. This inflammation is characterized by increased numbers of alveolar macrophages, neutrophils, and T lymphocytes, which are recruited from the circulation. Oxidative stress plays a key role in driving this inflammation. The pulmonary inflammation may enhance the development and growth of lung cancer. The peripheral inflammation extends into the circulation, resulting in systemic inflammation with the same inflammatory proteins. Systemic inflammation may worsen comorbidities. Treatment of pulmonary inflammation may therefore have beneficial effects.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
27
|
Chan YR, Chen K, Duncan SR, Lathrop KL, Latoche JD, Logar AJ, Pociask DA, Wahlberg BJ, Ray P, Ray A, Pilewski JM, Kolls JK. Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes. J Allergy Clin Immunol 2013; 131:1117-29, 1129.e1-5. [PMID: 22795370 PMCID: PMC3488163 DOI: 10.1016/j.jaci.2012.05.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND IL-17 is an important cytokine signature of the TH differentiation pathway TH17. This T-cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remain to be completely characterized. OBJECTIVE We set out to determine the frequency of TH17 cells in patients with cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. METHODS Explanted lungs from patients undergoing transplantation or organ donors (CF samples=18; non-CF, nonbronchiectatic samples=10) were collected. Hilar nodes and parenchymal lung tissue were processed and examined for TH17 signature by using immunofluorescence and quantitative real-time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus species. Cytokine profiles and staining with flow cytometry were used to assess the reactivity of these cells to antigen stimulation. RESULTS We found a strong IL-17 phenotype in patients with CF compared with that seen in control subjects without CF. Within this tissue, we found pathogenic antigen-responsive CD4+IL-17+ cells. There were double-positive IL-17+IL-22+ cells [TH17(22)], and the IL-22+ population had a higher proportion of memory characteristics. Antigen-specific TH17 responses were stronger in the draining lymph nodes compared with those seen in matched parenchymal lungs. CONCLUSION Inducible proliferation of TH17(22) with memory cell characteristics is seen in the lungs of patients with CF. The function of these individual subpopulations will require further study regarding their development. T cells are likely not the exclusive producers of IL-17 and IL-22, and this will require further characterization.
Collapse
Affiliation(s)
- Yvonne R Chan
- Division of Pulmonary, Allergy and Critical Care Medicine, the Eye and Ear Institute, University of Pittsburgh, and the Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goldklang MP, Marks SM, D'Armiento JM. Second hand smoke and COPD: lessons from animal studies. Front Physiol 2013; 4:30. [PMID: 23450717 PMCID: PMC3583033 DOI: 10.3389/fphys.2013.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 02/07/2013] [Indexed: 12/25/2022] Open
Abstract
Exposure to second hand smoke is a major cause of chronic obstructive pulmonary disease (COPD) in the non-smoker. In this review we explore the use of animal smoke exposure models and their insight into disease pathogenesis. The methods of smoke exposure, including exposure delivery systems, are described. Key findings from the acute and chronic smoke exposure models are outlined, including descriptions of the inflammation processes, proteases involved, oxidative stress, and apoptosis. Finally, alternatives to rodent models of lung disease are presented.
Collapse
|
29
|
Iskandar AR, Liu C, Smith DE, Hu KQ, Choi SW, Ausman LM, Wang XD. β-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice. Cancer Prev Res (Phila) 2012; 6:309-20. [PMID: 23275008 DOI: 10.1158/1940-6207.capr-12-0368] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nicotine, a large constituent of cigarette smoke, is associated with an increased risk of lung cancer, but the data supporting this relationship are inconsistent. Here, we found that nicotine treatment not only induced emphysema but also increased both lung tumor multiplicity and volume in 4-nitrosamino-1-(3-pyridyl)-1-butanone (NNK)-initiated lung cancer in A/J mice. This tumor-promoting effect of nicotine was accompanied by significant reductions in survival probability and lung Sirtuin 1 (SIRT1) expression, which has been proposed as a tumor suppressor. The decreased level of SIRT1 was associated with increased levels of AKT phosphorylation and interleukin (il)-6 mRNA but decreased tumor suppressor p53 and retinoic acid receptor (RAR)-β mRNA levels in the lungs. Using this mouse model, we then determined whether β-cryptoxanthin (BCX), a xanthophyll that is strongly associated with a reduced risk of lung cancer in several cohort studies, can inhibit nicotine-induced emphysema and lung tumorigenesis. We found that BCX supplementation at two different doses was associated with reductions of the nicotine-promoted lung tumor multiplicity and volume, as well as emphysema in mice treated with both NNK and nicotine. Moreover, BCX supplementation restored the nicotine-suppressed expression of lung SIRT1, p53, and RAR-β to that of the control group, increased survival probability, and decreased the levels of lung il-6 mRNA and phosphorylation of AKT. The present study indicates that BCX is a preventive agent against emphysema and lung cancer with SIRT1 as a potential target. In addition, our study establishes a relevant animal lung cancer model for studying tumor growth within emphysematous microenvironments.
Collapse
Affiliation(s)
- Anita R Iskandar
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Muyal JP, Muyal V, Kotnala S, Kumar D, Bhardwaj H. Therapeutic potential of growth factors in pulmonary emphysematous condition. Lung 2012; 191:147-63. [PMID: 23161370 DOI: 10.1007/s00408-012-9438-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/04/2012] [Indexed: 02/02/2023]
Abstract
Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease (COPD), which is characterized by progressive destruction of alveolar parenchyma with persistent inflammation of the small airways. Such destruction in the distal respiratory tract is irreversible and irreparable. All-trans-retinoic acid was suggested as a novel therapy for regeneration of lost alveoli in emphysema. However, profound discrepancies were evident between studies. At present, no effective therapeutic options are available that allow for the regeneration of lost alveoli in emphysematous human lungs. Recently, some reports on rodent's models have suggested the beneficial effects of various growth factors toward alveolar maintenance and repair processes.
Collapse
Affiliation(s)
- Jai Prakash Muyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, India.
| | | | | | | | | |
Collapse
|
31
|
Beasley V, Joshi PV, Singanayagam A, Molyneaux PL, Johnston SL, Mallia P. Lung microbiology and exacerbations in COPD. Int J Chron Obstruct Pulmon Dis 2012; 7:555-69. [PMID: 22969296 PMCID: PMC3437812 DOI: 10.2147/copd.s28286] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory condition in adults and is characterized by progressive airflow limitation that is not fully reversible. The main etiological agents linked with COPD are cigarette smoking and biomass exposure but respiratory infection is believed to play a major role in the pathogenesis of both stable COPD and in acute exacerbations. Acute exacerbations are associated with more rapid decline in lung function and impaired quality of life and are the major causes of morbidity and mortality in COPD. Preventing exacerbations is a major therapeutic goal but currently available treatments for exacerbations are not very effective. Historically, bacteria were considered the main infective cause of exacerbations but with the development of new diagnostic techniques, respiratory viruses are also frequently detected in COPD exacerbations. This article aims to provide a state-of-the art review of current knowledge regarding the role of infection in COPD, highlight the areas of ongoing debate and controversy, and outline emerging technologies and therapies that will influence future diagnostic and therapeutic pathways in COPD.
Collapse
|
32
|
Ezzeldin N, Shalaby A, Saad-Hussein A, Ezzeldin H, El Lebedy D, Farouk H, Kandil DM. Association of TNF-α -308G/A, SP-B 1580 C/T, IL-13 -1055 C/T gene polymorphisms and latent adenoviral infection with chronic obstructive pulmonary disease in an Egyptian population. Arch Med Sci 2012; 8:286-95. [PMID: 22662002 PMCID: PMC3361041 DOI: 10.5114/aoms.2012.28556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/15/2011] [Accepted: 03/10/2011] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death. The most common cause of COPD is smoking. There is evidence suggesting that genetic factors influence COPD susceptibility and variants in several candidate genes have been significantly associated with COPD. In this study, we aimed to investigate the possible association of the TNF-α -308, SPB+1580, IL-13 -1055 gene polymorphisms and latent adenovirus C infection with COPD in an Egyptian population. MATERIAL AND METHODS Our study included 115 subjects (75 smokers with COPD, 25 resistant smokers and 15 non-smokers) who were subjected to spirometric measurements, identification of adenovirus C and genotyping of TNF-α -308G/A, SP-B+1580 C/T and IL-13 -1055 C/T polymorphisms by real-time PCR. RESULTS The adenovirus C gene was identified in all subjects. The distribution of TNF-α genotypes showed no significant differences between different groups. However, homozygous A genotype was associated with a significant decrease in FEV(1), FEV(1)/FVC and FEF25/75% of predicted in COPD (p < 0.05). As regards SP-B genotypes, resistant smokers had a significantly higher homozygous T genotype frequency compared to COPD and non smokers (p = 0.005). Interleukin 13 genotypes showed no significant difference between different groups. There was a significant decrease in FEF25/75% of predicted in T allele carriers in COPD patients (p = 0.001). CONCLUSIONS The COPD is a disease caused by the interaction of combined genes and environmental influences, in the presence of smoking and latent adenovirus C infection, TNF-α -308A, SPB +1580 T and IL-13 -1055 T polymorphisms predispose to the development of COPD.
Collapse
Affiliation(s)
- Nada Ezzeldin
- Chest Diseases, National Research Centre, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
33
|
Al-Obaidi S, Mathew TC, Dean E. Exercise may offset nicotine-induced injury in lung tissue: A preliminary histological study based on a rat model. Exp Lung Res 2012; 38:211-21. [DOI: 10.3109/01902148.2012.666331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Singanayagam A, Joshi PV, Mallia P, Johnston SL. Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Med 2012; 10:27. [PMID: 22420941 PMCID: PMC3353868 DOI: 10.1186/1741-7015-10-27] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/15/2012] [Indexed: 12/30/2022] Open
Abstract
Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | |
Collapse
|
35
|
Wu Y, Kotzer CJ, Makrogiannis S, Logan GA, Haley H, Barnette MS, Sarkar SK. A noninvasive [99mTc]DTPA SPECT/CT imaging methodology as a measure of lung permeability in a guinea pig model of COPD. Mol Imaging Biol 2012; 13:923-9. [PMID: 20838905 DOI: 10.1007/s11307-010-0423-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The purposes of this study are (1) to develop an efficient aerosol inhalation system for the delivery of [(99m)Tc]DTPA aerosol into guinea pig airways with high uniformity for measuring lung clearance using SPECT/CT imaging, as a measure of lung permeability, and (2) to use [(99m)Tc]DTPA studies in guinea pig model of chronic obstructive pulmonary disease (COPD) to determine its usefulness in studying pathogenesis of COPD. PROCEDURE We developed an aerosol delivery system and single-photon emission computed tomography (SPECT) imaging method to measure the pulmonary clearance rate in anesthetized guinea pigs. In this system, an 830-cc rebreather exposure chamber was filled with oxygen immediately before a 5 min [(99m)Tc]DTPA (4-5 mCi/mL) aerosol exposure. The rebreather included a top mounted AeroNeb micro pump nebulizer, a nose-only exposure tube, and rear evacuation port. An 830-cc rebreather exposure chamber was filled with oxygen immediately before 5 min [(99m)Tc]DTPA (4 ∼ 5 mCi/mL) aerosol exposure. One control and one cigarette smoking group were studied. RESULTS Images showed high and uniform lung deposition and the mean clearance rate was increased by 37% in smoking group. CONCLUSIONS The combined SPECT/CT imaging method developed here can be used for serial evaluation of lung function and its response to drug therapy in guinea pig model of COPD.
Collapse
Affiliation(s)
- Yanjun Wu
- Molecular Imaging Center of Excellence, R&D, GlaxoSmithKline, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Jartti T, Hedman K, Jartti L, Ruuskanen O, Allander T, Söderlund-Venermo M. Human bocavirus-the first 5 years. Rev Med Virol 2011; 22:46-64. [PMID: 22038931 DOI: 10.1002/rmv.720] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 12/17/2022]
Abstract
Four species of human bocavirus (HBoV) have been recently discovered and classified in the Bocavirus genus (family Parvoviridae, subfamily Parvovirinae). Although detected both in respiratory and stool samples worldwide, HBoV1 is predominantly a respiratory pathogen, whereas HBoV2, HBoV3, and HBoV4 have been found mainly in stool. A variety of signs and symptoms have been described in patients with HBoV infection including rhinitis, pharyngitis, cough, dyspnea, wheezing, pneumonia, acute otitis media, fever, nausea, vomiting, and diarrhea. Many of these potential manifestations have not been systematically explored, and they have been questioned because of high HBoV co-infection rates in symptomatic subjects and high HBoV detection rates in asymptomatic subjects. However, evidence is mounting to show that HBoV1 is an important cause of lower respiratory tract illness. The best currently available diagnostic approaches are quantitative PCR and serology. This concise review summarizes the current clinical knowledge on HBoV species.
Collapse
Affiliation(s)
- Tuomas Jartti
- Department of Pediatrics, Turku University Hospital, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
37
|
Jartti L, Langen H, Söderlund-Venermo M, Vuorinen T, Ruuskanen O, Jartti T. New respiratory viruses and the elderly. Open Respir Med J 2011; 5:61-9. [PMID: 21760867 PMCID: PMC3134957 DOI: 10.2174/1874306401105010061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 04/04/2011] [Accepted: 05/17/2011] [Indexed: 12/21/2022] Open
Abstract
The diagnostics of respiratory viral infections has improved markedly during the last 15 years with the development of PCR techniques. Since 1997, several new respiratory viruses and their subgroups have been discovered: influenza A viruses H5N1 and H1N1, human metapneumovirus, coronaviruses SARS, NL63 and HKU1, human bocavirus, human rhinoviruses C and D and potential respiratory pathogens, the KI and WU polyomaviruses and the torque teno virus. The detection of previously known viruses has also improved. Currently, a viral cause of respiratory illness is almost exclusively identifiable in children, but in the elderly, the detection rates of a viral etiology are below 40%, and this holds also true for exacerbations of chronic respiratory illnesses. The new viruses cause respiratory symptoms like the common cold, cough, bronchitis, bronchiolitis, exacerbations of asthma and chronic obstructive pulmonary disease and pneumonia. Acute respiratory failure may occur. These viruses are distributed throughout the globe and affect people of all ages. Data regarding these viruses and the elderly are scarce. This review introduces these new viruses and reviews their clinical significance, especially with regard to the elderly population.
Collapse
Affiliation(s)
- Laura Jartti
- Department of Geriatrics, Turku City Hospital, Turku, Finland
| | | | | | - Tytti Vuorinen
- Department of Virology, University of Turku, Turku, Finland
| | - Olli Ruuskanen
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Tuomas Jartti
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
38
|
Gregory SM, Nazir SA, Metcalf JP. Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol 2011; 6:357-374. [PMID: 21738557 DOI: 10.2217/fvl.11.6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenovirus (AdV) is a common cause of respiratory illness in both children and adults. Respiratory symptoms can range from those of the common cold to severe pneumonia. Infection can also cause significant disease in the immunocompromised and among immunocompetent subjects in close quarters. Fortunately, infection with AdV in the normal host is generally mild. This is one reason why its initial use as a gene-therapy vector appeared to be so promising. Unfortunately, both innate and adaptive responses to the virus have limited the development of AdV vectors as a tool of gene therapy by increasing toxicity and limiting duration of transgene expression. This article will focus on the innate immune response to infection with wild-type AdV and exposure to AdV gene-therapy vectors. As much of the known information relates to the pulmonary inflammatory response, this organ system will be emphasized. This article will also discuss how that understanding has led to the creation of new vectors for use in gene therapy.
Collapse
Affiliation(s)
- Seth M Gregory
- Division of Pulmonary & Critical Care Medicine of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
39
|
Dogan OT, Elagoz S, Ozsahin SL, Epozturk K, Tuncer E, Akkurt I. Pulmonary toxicity of chronic exposure to tobacco and biomass smoke in rats. Clinics (Sao Paulo) 2011; 66:1081-7. [PMID: 21808879 PMCID: PMC3129947 DOI: 10.1590/s1807-59322011000600027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The objective of this study was to examine the separate and combined effects of tobacco and biomass smoke exposure on pulmonary histopathology in rats. INTRODUCTION In addition to smoking, indoor pollution in developing countries contributes to the development of respiratory diseases. METHODS Twenty-eight adult rats were divided into four groups as follows: control group (Group I, no exposure to tobacco or biomass smoke), exposed to tobacco smoke (Group II), exposed to biomass smoke (Group III), and combined exposure to tobacco and biomass smoke (Group IV). After six months the rats in all four groups were sacrificed. Lung tissue samples were examined under light microscopy. The severity of pathological changes was scored. RESULTS Group II differed from Group I in all histopathological alterations except intraparenchymal vascular thrombosis. There was no statistically significant difference in histopathological changes between the subjects exposed exclusively to tobacco smoke (Group II) and those with combined exposure to tobacco and biomass smoke (Group IV). The histopathological changes observed in Group IV were found to be more severe than those in subjects exposed exclusively to biomass smoke (Group III). DISCUSSION Chronic exposure to tobacco and biomass smoke caused an increase in severity and types of lung injury. CONCLUSION Exposure to cigarette smoke caused serious damage to the respiratory system, particularly with concomitant exposure to biomass smoke.
Collapse
Affiliation(s)
- Omer Tamer Dogan
- Department of Chest Diseases, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Stevenson CS, Birrell MA. Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther 2010; 130:93-105. [PMID: 21074553 DOI: 10.1016/j.pharmthera.2010.10.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 12/18/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are complex inflammatory airway diseases characterised by airflow obstruction that remain leading causes of hospitalization and death worldwide. Animal modelling systems that accurately reflect disease pathophysiology continue to be essential to the development of new therapies for both conditions. In this review, we describe preclinical in vivo models that recapitulate many of the features of asthma and COPD. Specifically, we discuss the pro's and con's of the standard models and highlight recently developed systems designed to more accurately reflect the complexity of both diseases. For instance, clinically relevant allergens (i.e. house dust mite) are now being used to mimic the inflammatory changes and airway remodelling that result after chronic allergen exposures. Additionally, systems are being developed to mimic steroid-resistant and viral exacerbations of allergic inflammation - aspects of asthma where there is an acute need for new therapies. Similarly, COPD models have evolved to align with the improved clinical understanding of the factors contributing to disease progression. This includes using cigarette smoke to model not only airway inflammation and remodelling, but some systemic changes (e.g. hypertension and skeletal muscle alterations) that are thought to influence disease. Further, mouse genetics are being exploited to gain insights into the genetics of COPD susceptibility. The new models of asthma and COPD described herein demonstrate that improved clinical understanding of the diseases and better preclinical models is an iterative process that will hopefully lead to therapies that can effectively manage severe asthma and COPD.
Collapse
|
41
|
Cicko S, Lucattelli M, Müller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Dürk T, Zissel G, Boeynaems JM, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. THE JOURNAL OF IMMUNOLOGY 2010; 185:688-97. [PMID: 20519655 DOI: 10.4049/jimmunol.0904042] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular ATP acts as a "danger signal" and can induce inflammation by binding to purinergic receptors. Chronic obstructive pulmonary disease is one of the most common inflammatory diseases associated with cigarette smoke inhalation, but the underlying mechanisms are incompletely understood. In this study, we show that endogenous pulmonary ATP levels are increased in a mouse model of smoke-induced acute lung inflammation and emphysema. ATP neutralization or nonspecific P2R-blockade markedly reduced smoke-induced lung inflammation and emphysema. We detected an upregulation the purinergic receptors subtypes on neutrophils (e.g., P2Y2R), macrophages, and lung tissue from animals with smoke-induced lung inflammation. By using P2Y(2)R deficient ((-/-)) animals, we show that ATP induces the recruitment of blood neutrophils to the lungs via P2Y(2)R. Moreover, P2Y(2)R deficient animals had a reduced pulmonary inflammation following acute smoke-exposure. A series of experiments with P2Y(2)R(-/-) and wild type chimera animals revealed that P2Y(2)R expression on hematopoietic cell plays the pivotal role in the observed effect. We demonstrate, for the first time, that endogenous ATP contributes to smoke-induced lung inflammation and then development of emphysema via activation of the purinergic receptor subtypes, such as P2Y(2)R.
Collapse
Affiliation(s)
- Sanja Cicko
- Department of Pulmonary Medicine, University Hospital, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
D'Armiento JM, Scharf SM, Roth MD, Connett JE, Ghio A, Sternberg D, Goldin JG, Louis TA, Mao JT, O'Connor GT, Ramsdell JW, Ries AL, Schluger NW, Sciurba FC, Skeans MA, Voelker H, Walter RE, Wendt CH, Weinmann GG, Wise RA, Foronjy RF. Eosinophil and T cell markers predict functional decline in COPD patients. Respir Res 2009; 10:113. [PMID: 19925666 PMCID: PMC2785783 DOI: 10.1186/1465-9921-10-113] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/19/2009] [Indexed: 12/12/2022] Open
Abstract
Background The major marker utilized to monitor COPD patients is forced expiratory volume in one second (FEV1). However, asingle measurement of FEV1 cannot reliably predict subsequent decline. Recent studies indicate that T lymphocytes and eosinophils are important determinants of disease stability in COPD. We therefore measured cytokine levels in the lung lavage fluid and plasma of COPD patients in order to determine if the levels of T cell or eosinophil related cytokines were predictive of the future course of the disease. Methods Baseline lung lavage and plasma samples were collected from COPD subjects with moderately severe airway obstruction and emphysematous changes on chest CT. The study participants were former smokers who had not had a disease exacerbation within the past six months or used steroids within the past two months. Those subjects who demonstrated stable disease over the following six months (ΔFEV1 % predicted = 4.7 ± 7.2; N = 34) were retrospectively compared with study participants who experienced a rapid decline in lung function (ΔFEV1 % predicted = -16.0 ± 6.0; N = 16) during the same time period and with normal controls (N = 11). Plasma and lung lavage cytokines were measured from clinical samples using the Luminex multiplex kit which enabled the simultaneous measurement of several T cell and eosinophil related cytokines. Results and Discussion Stable COPD participants had significantly higher plasma IL-2 levels compared to participants with rapidly progressive COPD (p = 0.04). In contrast, plasma eotaxin-1 levels were significantly lower in stable COPD subjects compared to normal controls (p < 0.03). In addition, lung lavage eotaxin-1 levels were significantly higher in rapidly progressive COPD participants compared to both normal controls (p < 0.02) and stable COPD participants (p < 0.05). Conclusion These findings indicate that IL-2 and eotaxin-1 levels may be important markers of disease stability in advanced emphysema patients. Prospective studies will need to confirm whether measuring IL-2 or eotaxin-1 can identify patients at risk for rapid disease progression.
Collapse
|
43
|
Ling SH, van Eeden SF. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2009; 4:233-43. [PMID: 19554194 PMCID: PMC2699820 DOI: 10.2147/copd.s5098] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Indexed: 11/26/2022] Open
Abstract
Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM) air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD) resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.
Collapse
Affiliation(s)
- Sean H Ling
- James Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
44
|
Perl AKT, Gale E. FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol 2009; 297:L299-308. [PMID: 19502291 DOI: 10.1152/ajplung.00008.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Normal alveolarization has been studied in rodents using detailed morphometric techniques and loss of function approaches for growth factors and their receptors. However, it remains unclear how these growth factors direct the formation of secondary septae. We have previously developed a transgenic mouse model in which expression of a soluble dominant-negative FGF receptor (dnFGFR) in the prenatal period results in reduced alveolar septae formation and subsequent alveolar simplification. Retinoic acid (RA), a biologically active derivative of vitamin A, can induce regeneration of alveoli in adult rodents. In this study, we demonstrate that RA induces alveolar reseptation in this transgenic mouse model and that realveolarization in adult mice is FGF dependent. Proliferation in the lung parenchyma, an essential prerequisite for lung regrowth was enhanced after 14 days of RA treatment and was not influenced by dnFGFR expression. During normal lung development, formation of secondary septae is associated with the transient presence of alpha-smooth muscle actin (alphaSMA)-positive interstitial myofibroblasts. One week after completion of RA treatment, alphaSMA expression was detected in interstitial fibroblasts, supporting the concept that RA-initiated realveolarization recapitulates aspects of septation that occur during normal lung development. Expression of dnFGFR blocked realveolarization with increased PDGF receptor-alpha (PDGFRalpha)-positive cells and decreased alphaSMA-positive cells. Taken together, our data demonstrate that FGF signaling is required for the induction of alphaSMA in the PDGFRalpha-positive myofibroblast progenitor and the progression of alveolar regeneration.
Collapse
Affiliation(s)
- Anne-Karina T Perl
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Ohio, USA.
| | | |
Collapse
|
45
|
Kim SE, Thanh Thuy TT, Lee JH, Ro JY, Bae YA, Kong Y, Ahn JY, Lee DS, Oh YM, Lee SD, Lee YS. Simvastatin inhibits induction of matrix metalloproteinase-9 in rat alveolar macrophages exposed to cigarette smoke extract. Exp Mol Med 2009; 41:277-87. [PMID: 19299917 PMCID: PMC2679231 DOI: 10.3858/emm.2009.41.4.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2008] [Indexed: 11/04/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) may play an important role in emphysematous change in chronic obstructive pulmonary disease (COPD), one of the leading causes of mortality and morbidity worldwide. We previously reported that simvastatin, an inhibitor of HMG-CoA reductase, attenuates emphysematous change and MMP-9 induction in the lungs of rats exposed to cigarette smoke. However, it remained uncertain how cigarette smoke induced MMP-9 and how simvastatin inhibited cigarette smoke-induced MMP-9 expression in alveolar macrophages (AMs), a major source of MMP-9 in the lungs of COPD patients. Presently, we examined the related signaling for MMP-9 induction and the inhibitory mechanism of simvastatin on MMP-9 induction in AMs exposed to cigarette smoke extract (CSE). In isolated rat AMs, CSE induced MMP-9 expression and phosphorylation of ERK and Akt. A chemical inhibitor of MEK1/2 or PI3K reduced phosphorylation of ERK or Akt, respectively, and also inhibited CSE-mediated MMP-9 induction. Simvastatin reduced CSE-mediated MMP-9 induction, and simvastatin-mediated inhibition was reversed by farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP). Similar to simvastatin, inhibition of FPP transferase or GGPP transferase suppressed CSE-mediated MMP-9 induction. Simvastatin attenuated CSE-mediated activation of RAS and phosphorylation of ERK, Akt, p65, IkappaB, and nuclear AP-1 or NF-kappaB activity. Taken together, these results suggest that simvastatin may inhibit CSE-mediated MMP-9 induction, primarily by blocking prenylation of RAS in the signaling pathways, in which Raf-MEK-ERK, PI3K/Akt, AP-1, and IkappaB-NF-kappaB are involved.
Collapse
Affiliation(s)
- Sang Eun Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Morimoto K, Gosselink J, Kartono A, Hogg JC, Hayashi S, Ogawa E. Adenovirus E1A regulates lung epithelial ICAM-1 expression by interacting with transcriptional regulators at its promoter. Am J Physiol Lung Cell Mol Physiol 2008; 296:L361-71. [PMID: 19112102 DOI: 10.1152/ajplung.90331.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We focused on the regulation of inflammatory mediator expression by adenovirus E1A in lung epithelial cells and the role of this viral protein in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously reported that E1A, a well-known regulator of host genes, increased ICAM-1 expression in human bronchial epithelial (HBE) and A549 cells in response to LPS stimulation. In this report, we clarified the mechanism of this regulation. We found NF-kappaB translocation to the nucleus after LPS stimulation in both E1A-positive and -negative HBE cells. ICAM-1 promoter reporter constructs revealed that a mutation in the proximal NF-kappaB binding site completely inhibited increased transcription, whereas the mutation in a distal site did not. We analyzed the participation of E1A in transcriptional complex formation at this promoter using chromatin immunoprecipitation. In E1A-positive HBE and A549 cells, LPS stimulation increased ICAM-1 promoter immunoprecipitation by NF-kappaB p65 and p300 but not activator protein-1 antibodies with a concomitant increase by the E1A antibody. No increase was found in E1A-negative cells except in HBE cells with p65 antibody. The association of E1A with the increased promoter immunoprecipitation with p300 was also observed after TNF-alpha stimulation of A549 cells. These results suggest that adenovirus E1A regulates the ICAM-1 promoter through its proximal NF-kappaB binding site, most likely by interacting with the transcriptional complex that forms at this site. E1A regulation of the LPS response may play a role in acute exacerbations as a consequence of bacterial infections in COPD.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Respiratory syncytial virus (RSV) is predominantly recognized as a pediatric pathogen although sensitive molecular diagnostic techniques have led to its more frequent detection in some adult settings. In some studies RSV has been detected just as frequently in stable chronic obstructive pulmonary disease (COPD) patients as in those suffering disease exacerbations, leading to the suggestion that RSV may persist in COPD. Although some studies have found negligible RSV in stable COPD, others have detected RSV in one-quarter to one-third of stable COPD samples. Possible reasons for this discrepancy are explored within the article. A relationship between RSV detection and increased disease severity, including rate of decline in lung function and systemic/airway inflammation, has been found on both occasions it has been sought. Susceptibility to persistent RSV infection could involve both host and viral factors. Cigarette smoking and COPD are likely to result in impaired antiviral immunity, and RSV is capable of evading immune responses by inducing skewed type 2 T-helper cell responses, antagonizing antiviral cytokines, mimicking chemokines, inhibiting apoptosis, and entering immune-privileged cells such as pulmonary neurons. It can also escape an established immune response through antigenic drift. This article examines current evidence regarding persistence of RSV in COPD and its possible mechanisms. We also discuss various roles for RSV persistence in COPD pathogenesis. Further elucidation of the contribution of persistent RSV to the pathogenesis of COPD requires interventional studies. Persistence of RSV in COPD may have direct relevance to the pathogenesis of childhood diseases such as postbronchiolitic wheeze and asthma.
Collapse
|
48
|
Martorana PA, Lunghi B, Lucattelli M, De Cunto G, Beume R, Lungarella G. Effect of roflumilast on inflammatory cells in the lungs of cigarette smoke-exposed mice. BMC Pulm Med 2008; 8:17. [PMID: 18755021 PMCID: PMC2533284 DOI: 10.1186/1471-2466-8-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/28/2008] [Indexed: 12/02/2022] Open
Abstract
Background We reported that roflumilast, a phosphodiesterase 4 inhibitor, given orally at 5 mg/kg to mice prevented the development of emphysema in a chronic model of cigarette smoke exposure, while at 1 mg/kg was ineffective. Here we investigated the effects of roflumilast on the volume density (VV) of the inflammatory cells present in the lungs after chronic cigarette smoke exposure. Methods Slides were obtained from blocks of the previous study and VV was assessed immunohistochemically and by point counting using a grid with 48 points, a 20× objective and a computer screen for a final magnification of 580×. Neutrophils were marked with myeloperoxidase antibody, macrophages with Mac-3, dendritic cells with fascin, B-lymphocytes with B220, CD4+ T-cells with CD4+ antibody, and CD8+T-cells with CD8-α. The significance of the differences was calculated using one-way analysis of variance. Results Chronic smoke exposure increased neutrophil VV by 97%, macrophage by 107%, dendritic cell by 217%, B-lymphocyte by 436%, CD4+ by 524%, and CD8+ by 417%. The higher dose of roflumilast prevented the increase in neutrophil VV by 78%, macrophage by 82%, dendritic cell by 48%, B-lymphocyte by 100%, CD4+ by 98% and CD8+ VV by 88%. The lower dose of roflumilast did not prevent the increase in neutrophil, macrophage and B-cell VV but prevented dendritic cells by 42%, CD4+ by 55%, and CD8+ by 91%. Conclusion These results indicate (i) chronic exposure to cigarette smoke in mice results in a significant recruitment into the lung of inflammatory cells of both the innate and adaptive immune system; (ii) roflumilast at the higher dose exerts a protective effect against the recruitment of all these cells and at the lower dose against the recruitment of dendritic cells and T-lymphocytes; (iii) these findings underline the role of innate immunity in the development of pulmonary emphysema and (iiii) support previous results indicating that the inflammatory cells of the adaptive immune system do not play a central role in the development of cigarette smoke induced emphysema in mice.
Collapse
Affiliation(s)
- Piero A Martorana
- Department of Physiopathology and Experimental Medicine, University of Siena, Siena, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Christensen PJ, Preston AM, Ling T, Du M, Fields WB, Curtis JL, Beck JM. Pneumocystis murina infection and cigarette smoke exposure interact to cause increased organism burden, development of airspace enlargement, and pulmonary inflammation in mice. Infect Immun 2008; 76:3481-90. [PMID: 18490462 PMCID: PMC2493196 DOI: 10.1128/iai.00165-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/08/2008] [Accepted: 05/11/2008] [Indexed: 11/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by the presence of airflow obstruction and lung destruction with airspace enlargement. In addition to cigarette smoking, respiratory pathogens play a role in pathogenesis, but specific organisms are not always identified. Recent reports demonstrate associations between the detection of Pneumocystis jirovecii DNA in lung specimens or respiratory secretions and the presence of emphysema in COPD patients. Additionally, human immunodeficiency virus-infected individuals who smoke cigarettes develop early emphysema, but a role for P. jirovecii in pathogenesis remains speculative. We developed a new experimental model using immunocompetent mice to test the interaction of cigarette smoke exposure and environmentally acquired Pneumocystis murina infection in vivo. We hypothesized that cigarette smoke and P. murina would interact to cause increases in total lung capacity, airspace enlargement, and pulmonary inflammation. We found that exposure to cigarette smoke significantly increases the lung organism burden of P. murina. Pulmonary infection with P. murina, combined with cigarette smoke exposure, results in changes in pulmonary function and airspace enlargement characteristic of pulmonary emphysema. P. murina and cigarette smoke exposure interact to cause increased lung inflammatory cell accumulation. These findings establish a novel animal model system to explore the role of Pneumocystis species in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Paul J Christensen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Galambos C, Demello DE. Regulation of alveologenesis: clinical implications of impaired growth. Pathology 2008; 40:124-40. [PMID: 18203035 DOI: 10.1080/00313020701818981] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During its development that begins in intrauterine life, the lung is transformed from a simple epithelial lined sac that emerges from the foregut into a complex arrangement of blood vessels, airways, and alveoli that make up the mature lung structure. This remarkable transformation that continues for several years postnatally, is achieved by the influence of several genes, transcription factors, growth factors and hormones upon the cells and proteins of the lung bud. A seminal event in this process is the formation of the air-blood barrier within the alveolar wall, an evolutionary modification that permits independent air-breathing existence in mammals. Molecular biological techniques have enabled elucidation of the mechanistic pathways contributing to alveologenesis and have provided probable molecular bases for examples of impaired alveologenesis encountered by the paediatric pathologist.
Collapse
Affiliation(s)
- Csaba Galambos
- Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|