1
|
Öğünç Keçeci Y, İncesu Z. Aglycemia induces apoptosis under hypoxic conditions in A549 cells. Cell Biochem Funct 2024; 42:e3983. [PMID: 38493450 DOI: 10.1002/cbf.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Many of the cancer cells produce energy with accelerated glycolysis and perform lactic acid production even under normoxic conditions called the "Warburg effect". Metabolism can directly or indirectly regulate the apoptotic mechanism so that cancer cells take advantage of reprogrammed metabolism to avoid apoptosis. The aim of this study is to examine the mechanism of apoptosis by incubating human lung carcinoma cells (A549) under different metabolic conditions in hypoxia or normoxia environments. A549 cells were incubated in the normoxic or hypoxic condition that contained 5 mM glucose (Glc 5), 25 mM glucose (Glc 25), or 10 mM galactose (OXPHOS/aglycemic), and the mechanism of apoptosis was investigated. In the hypoxia condition, the rate of early apoptosis in aglycemic OXPHOS cells was increased (15.5% ±7.1). In addition, the activity of caspase-3 (6.1% ± 0.9), caspase-9 (30.4% ± 0.9), and cytochrome c expression level increased; however, the mitochondrial membrane potential (51.9% ± 0.4) was found to be decreased. Changing the amount of oxygen in glycolytic cells had no effect on apoptosis. However, it has been determined that apoptosis is stimulated under hypoxia conditions in aglycemic cells in which galactose is used instead of glucose. Considering that the majority of cancer cells are hypoxic, these data are important in determining targets in therapeutic intervention.
Collapse
Affiliation(s)
- Yüksel Öğünç Keçeci
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zerrin İncesu
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
2
|
Suresh MV, Francis S, Aktay S, Kralovich G, Raghavendran K. Therapeutic potential of curcumin in ARDS and COVID-19. Clin Exp Pharmacol Physiol 2023; 50:267-276. [PMID: 36480131 PMCID: PMC9877870 DOI: 10.1111/1440-1681.13744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Curcumin is a safe, non-toxic, readily available and naturally occurring compound, an active constituent of Curcuma longa (turmeric). Curcumin could potentially treat diseases, but faces poor physicochemical and pharmacological characteristics. To overcome these limitations, we developed a stable, water-soluble formulation of curcumin called cyclodextrin-complexed curcumin (CDC). We have previously shown that direct delivery of CDC to the lung following lipopolysaccharides exposure reduces acute lung injury (ALI) and effectively reduces lung injury, inflammation and mortality in mice following Klebsiella pneumoniae. Recently, we found that administration of CDC led to a significant reduction in angiotensin-converting enzyme 2 and signal transducer and activator of transcription 3 expression in gene and protein levels following pneumonia, indicating its potential in treating coronavirus disease 2019 (COVID-19). In this review, we consider the clinical features of ALI and acute respiratory distress syndrome (ARDS) and the role of curcumin in modulating the pathogenesis of bacterial/viral-induced ARDS and COVID-19.
Collapse
Affiliation(s)
| | - Sairah Francis
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Georgia Kralovich
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
3
|
Akahori D, Inui N, Inoue Y, Yasui H, Hozumi H, Suzuki Y, Karayama M, Furuhashi K, Enomoto N, Fujisawa T, Suda T. Effect of Hypoxia on Pulmonary Endothelial Cells from Bleomycin-Induced Pulmonary Fibrosis Model Mice. Int J Mol Sci 2022; 23:ijms23168996. [PMID: 36012260 PMCID: PMC9408900 DOI: 10.3390/ijms23168996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a progressive and fatal disorder characterized by dysregulated repair after recurrent injury. Destruction of the lung architecture with excess extracellular matrix deposition induces respiratory failure with hypoxia and progressive dyspnea. The impact of hypoxia on pulmonary endothelial cells during pulmonary fibrogenesis is unclear. Using a magnetic-activated cell sorting system, pulmonary endothelial cells were isolated from a mouse model of pulmonary fibrosis induced by intratracheally administered bleomycin. When endothelial cells were exposed to hypoxic conditions, a hypoxia-inducible factor (HIF)-2α protein was detected in CD31- and α-smooth muscle actin (SMA)-positive cells. Levels of plasminogen activator inhibitor 1, von Willebrand factor, and matrix metalloproteinase 12 were increased in endothelial cells isolated from bleomycin-treated mice exposed to hypoxic conditions. When endothelial cells were cultured under hypoxic conditions, levels of fibrotic mediators, transforming growth factor-β and connective tissue growth factor, were elevated only in endothelial cells from bleomycin-treated and not from saline-treated lungs. The increased expression of α-SMA and mesenchymal markers and collagen production in bleomycin- or hypoxia-stimulated endothelial cells were further elevated in endothelial cells from bleomycin-treated mouse lungs cultured under hypoxic conditions. Exposure to hypoxia damaged endothelial cells and enhanced fibrogenesis-related damage in bleomycin-treated pulmonary endothelial cells.
Collapse
Affiliation(s)
- Daisuke Akahori
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Correspondence: ; Tel.: +81-53-435-2385
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan
| |
Collapse
|
4
|
Zhou W, Yu T, Hua Y, Hou Y, Ding Y, Nie H. Effects of Hypoxia on Respiratory Diseases: Perspective View of Epithelial Ion Transport. Am J Physiol Lung Cell Mol Physiol 2022; 323:L240-L250. [PMID: 35819839 DOI: 10.1152/ajplung.00065.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The balance of gas exchange and lung ventilation is essential for the maintenance of body homeostasis. There are many ion channels and transporters in respiratory epithelial cells, including epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator, and some transporters. These ion channels/transporters maintain the capacity of liquid layer on the surface of respiratory epithelial cells, and provide an immune barrier for the respiratory system to clear off foreign pathogens. However, in some harmful external environment and/or pathological conditions, the respiratory epithelium is prone to hypoxia, which would destroy the ion transport function of the epithelium and unbalance the homeostasis of internal environment, triggering a series of pathological reactions. Many respiratory diseases associated with hypoxia manifest an increased expression of hypoxia-inducible factor-1, which mediates the integrity of the epithelial barrier and affects epithelial ion transport function. It is important to study the relationship between hypoxia and ion transport function, whereas the mechanism of hypoxia-induced ion transport dysfunction in respiratory diseases is not clear. This review focuses on the relationship of hypoxia and respiratory diseases, as well as dysfunction of ion transport and tight junctions in respiratory epithelial cells under hypoxia.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Li W, Xiang Z, Xing Y, Li S, Shi S. Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury. Cell Death Dis 2022; 13:308. [PMID: 35387983 PMCID: PMC8986825 DOI: 10.1038/s41419-022-04770-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 11/09/2022]
Abstract
AbstractFerroptosis, a form of regulated cell death, plays an important role in acute kidney injury (AKI). Previous studies have shown that prolyl hydroxylase domain protein (PHD) inhibitors that activate HIF signaling provide strong protection against AKI, which is characterized by marked cell death. However, the relationship between PHD inhibition/HIF signaling and ferroptosis in AKI has not been elucidated. Here, we review recent studies to explore the issue. First, we will review the literature concerning the functions of HIF in promoting mitophagy, suppressing mitochondrial respiration and modulating redox homeostasis. Second, we will describe the current understanding of ferroptosis and its role in AKI, particularly from the perspective of mitochondrial dysfunction. Finally, we will discuss the possibility that mitochondria link PHD inhibition/HIF signaling and ferroptosis in AKI. In conclusion, we propose that HIF may protect renal cells against ferroptosis in AKI by reducing mitochondrial oxidative stress and damage.
Collapse
|
6
|
Suresh MV, Yalamanchili G, Rao TC, Aktay S, Kralovich A, Shah YM, Raghavendran K. Hypoxia‐inducible factor (HIF)‐1α‐induced regulation of lung injury in pulmonary aspiration is mediated through NF‐kB. FASEB Bioadv 2022; 4:309-328. [PMID: 35520392 PMCID: PMC9065579 DOI: 10.1096/fba.2021-00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/11/2022] Open
Abstract
Aspiration‐induced lung injury is a common grievance encountered in the intensive care unit (ICU). It is a significant risk factor for improving ventilator‐associated pneumonia (VAP) and acute respiratory distress syndrome (ARDS). Hypoxia‐inducible factor (HIF)‐1α is one of the primary transcription factors responsible for regulating the cellular response to changes in oxygen tension. Here, we sought to determine the role of HIF‐1α and specifically the role of type 2 alveolar epithelial cells in generating the acute inflammatory response following acid and particles (CASP) aspiration. Previous studies show HIF‐1 α is involved in regulating the hypoxia‐stimulated expression of MCP‐1 in mice and humans. The CASP was induced in C57BL/6, ODD‐Luc, HIF‐1α (+/+) control, and HIF‐1α conditional knockout (HIF‐1α (−/−) mice). Following an injury in ODD mice, explanted organs were subjected to IVIS imaging to measure the degree of hypoxia. HIF‐1α expression, BAL albumin, cytokines, and histology were measured following CASP. In C57BL/6 mice, the level of HIF‐1α was increased at 1 h after CASP. There were significantly increased levels of albumin and cytokines in C57BL/6 and ODD‐Luc mice lungs following CASP. HIF‐1α (+/+) mice given CASP demonstrated a synergistic increase in albumin leakage, increased pro‐inflammatory cytokines, and worse injury. MCP‐1 antibody neutralized HIF‐1α (+/+) mice showed reduced granuloma formation. The NF‐κB expression was increased substantially in the HIF‐1α (+/+) mice following CASP compared to HIF‐1α (−/−) mice. Our data collectively identify that HIF‐1α upregulation of the acute inflammatory response depends on NF‐κB following CASP.
Collapse
Affiliation(s)
| | | | - Tejeshwar C. Rao
- Department of Cell, Developmental, and Integrative Biology The University of Alabama at Birmingham Birmingham UK
| | - Sinan Aktay
- Department of Surgery University of Michigan Ann Arbor Michigan USA
| | - Alex Kralovich
- Department of Surgery University of Michigan Ann Arbor Michigan USA
| | - Yatrik M. Shah
- Molecular & Integrative Physiology University of Michigan Ann Arbor Michigan USA
| | | |
Collapse
|
7
|
Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CLH, Lai MKP, Fann DY, Arumugam TV. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17:4. [PMID: 35000611 PMCID: PMC8744307 DOI: 10.1186/s13024-021-00506-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
There is an increasing prevalence of Vascular Cognitive Impairment (VCI) worldwide, and several studies have suggested that Chronic Cerebral Hypoperfusion (CCH) plays a critical role in disease onset and progression. However, there is a limited understanding of the underlying pathophysiology of VCI, especially in relation to CCH. Neuroinflammation is a significant contributor in the progression of VCI as increased systemic levels of the proinflammatory cytokine interleukin-1β (IL-1β) has been extensively reported in VCI patients. Recently it has been established that CCH can activate the inflammasome signaling pathways, involving NLRP3 and AIM2 inflammasomes that critically regulate IL-1β production. Given that neuroinflammation is an early event in VCI, it is important that we understand its molecular and cellular mechanisms to enable development of disease-modifying treatments to reduce the structural brain damage and cognitive deficits that are observed clinically in the elderly. Hence, this review aims to provide a comprehensive insight into the molecular and cellular mechanisms involved in the pathogenesis of CCH-induced inflammasome signaling in VCI.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K. P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
8
|
Hypoxia-Inducible Factor Signaling in Inflammatory Lung Injury and Repair. Cells 2022; 11:cells11020183. [PMID: 35053299 PMCID: PMC8774273 DOI: 10.3390/cells11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory lung injury is characterized by lung endothelial cell (LEC) death, alveolar epithelial cell (AEC) death, LEC-LEC junction weakening, and leukocyte infiltration, which together disrupt nutrient and oxygen transport. Subsequently, lung vascular repair is characterized by LEC and AEC regeneration and LEC-LEC junction re-annealing, which restores nutrient and oxygen delivery to the injured tissue. Pulmonary hypoxia is a characteristic feature of several inflammatory lung conditions, including acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and severe coronavirus disease 2019 (COVID-19). The vascular response to hypoxia is controlled primarily by the hypoxia-inducible transcription factors (HIFs) 1 and 2. These transcription factors control the expression of a wide variety of target genes, which in turn mediate key pathophysiological processes including cell survival, differentiation, migration, and proliferation. HIF signaling in pulmonary cell types such as LECs and AECs, as well as infiltrating leukocytes, tightly regulates inflammatory lung injury and repair, in a manner that is dependent upon HIF isoform, cell type, and injury stimulus. The aim of this review is to describe the HIF-dependent regulation of inflammatory lung injury and vascular repair. The review will also discuss potential areas for future study and highlight putative targets for inflammatory lung conditions such as ALI/ARDS and severe COVID-19. In the development of HIF-targeted therapies to reduce inflammatory lung injury and/or enhance pulmonary vascular repair, it will be vital to consider HIF isoform- and cell-specificity, off-target side-effects, and the timing and delivery strategy of the therapeutic intervention.
Collapse
|
9
|
Romero Y, Aquino-Gálvez A. Hypoxia in Cancer and Fibrosis: Part of the Problem and Part of the Solution. Int J Mol Sci 2021; 22:8335. [PMID: 34361103 PMCID: PMC8348404 DOI: 10.3390/ijms22158335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptive responses to hypoxia are involved in the progression of lung cancer and pulmonary fibrosis. However, it has not been pointed out that hypoxia may be the link between these diseases. As tumors or scars expand, a lack of oxygen results in the activation of the hypoxia response, promoting cell survival even during chronic conditions. The role of hypoxia-inducible factors (HIFs) as master regulators of this adaptation is crucial in both lung cancer and idiopathic pulmonary fibrosis, which have shown the active transcriptional signature of this pathway. Emerging evidence suggests that interconnected feedback loops such as metabolic changes, fibroblast differentiation or extracellular matrix remodeling contribute to HIF overactivation, making it an irreversible phenomenon. This review will focus on the role of HIF signaling and its possible overlapping in order to identify new opportunities in therapy and regeneration.
Collapse
Affiliation(s)
- Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Arnoldo Aquino-Gálvez
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico
| |
Collapse
|
10
|
Mitroshina EV, Savyuk MO, Ponimaskin E, Vedunova MV. Hypoxia-Inducible Factor (HIF) in Ischemic Stroke and Neurodegenerative Disease. Front Cell Dev Biol 2021; 9:703084. [PMID: 34395432 PMCID: PMC8355741 DOI: 10.3389/fcell.2021.703084] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is one of the most common pathological conditions, which can be induced by multiple events, including ischemic injury, trauma, inflammation, tumors, etc. The body's adaptation to hypoxia is a highly important phenomenon in both health and disease. Most cellular responses to hypoxia are associated with a family of transcription factors called hypoxia-inducible factors (HIFs), which induce the expression of a wide range of genes that help cells adapt to a hypoxic environment. Basic mechanisms of adaptation to hypoxia, and particularly HIF functions, have being extensively studied over recent decades, leading to the 2019 Nobel Prize in Physiology or Medicine. Based on their pivotal physiological importance, HIFs are attracting increasing attention as a new potential target for treating a large number of hypoxia-associated diseases. Most of the experimental work related to HIFs has focused on roles in the liver and kidney. However, increasing evidence clearly demonstrates that HIF-based responses represent an universal adaptation mechanism in all tissue types, including the central nervous system (CNS). In the CNS, HIFs are critically involved in the regulation of neurogenesis, nerve cell differentiation, and neuronal apoptosis. In this mini-review, we provide an overview of the complex role of HIF-1 in the adaptation of neurons and glia cells to hypoxia, with a focus on its potential involvement into various neuronal pathologies and on its possible role as a novel therapeutic target.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Savyuk
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Evgeni Ponimaskin
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
- Department of Cellular Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Maria V. Vedunova
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
11
|
Mpekoulis G, Frakolaki E, Taka S, Ioannidis A, Vassiliou AG, Kalliampakou KI, Patas K, Karakasiliotis I, Aidinis V, Chatzipanagiotou S, Angelakis E, Vassilacopoulou D, Vassilaki N. Alteration of L-Dopa decarboxylase expression in SARS-CoV-2 infection and its association with the interferon-inducible ACE2 isoform. PLoS One 2021; 16:e0253458. [PMID: 34185793 PMCID: PMC8241096 DOI: 10.1371/journal.pone.0253458] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, Athens, Greece
| | | | - Kostas Patas
- Department of Medical Biopathology, Medical School, University of Athens, Eginition Hospital, Athens, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vassilis Aidinis
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Medical School, University of Athens, Eginition Hospital, Athens, Greece
| | - Emmanouil Angelakis
- Department of Diagnostics, Hellenic Pasteur Institute, Athens, Greece
- Aix Marseille Univ, IRD, IHU Méditerranée Infection, VITROME, Marseille, France
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
12
|
Kuiper-Makris C, Selle J, Nüsken E, Dötsch J, Alejandre Alcazar MA. Perinatal Nutritional and Metabolic Pathways: Early Origins of Chronic Lung Diseases. Front Med (Lausanne) 2021; 8:667315. [PMID: 34211985 PMCID: PMC8239134 DOI: 10.3389/fmed.2021.667315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lung development is not completed at birth, but expands beyond infancy, rendering the lung highly susceptible to injury. Exposure to various influences during a critical window of organ growth can interfere with the finely-tuned process of development and induce pathological processes with aberrant alveolarization and long-term structural and functional sequelae. This concept of developmental origins of chronic disease has been coined as perinatal programming. Some adverse perinatal factors, including prematurity along with respiratory support, are well-recognized to induce bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease that is characterized by arrest of alveolar and microvascular formation as well as lung matrix remodeling. While the pathogenesis of various experimental models focus on oxygen toxicity, mechanical ventilation and inflammation, the role of nutrition before and after birth remain poorly investigated. There is accumulating clinical and experimental evidence that intrauterine growth restriction (IUGR) as a consequence of limited nutritive supply due to placental insufficiency or maternal malnutrition is a major risk factor for BPD and impaired lung function later in life. In contrast, a surplus of nutrition with perinatal maternal obesity, accelerated postnatal weight gain and early childhood obesity is associated with wheezing and adverse clinical course of chronic lung diseases, such as asthma. While the link between perinatal nutrition and lung health has been described, the underlying mechanisms remain poorly understood. There are initial data showing that inflammatory and nutrient sensing processes are involved in programming of alveolarization, pulmonary angiogenesis, and composition of extracellular matrix. Here, we provide a comprehensive overview of the current knowledge regarding the impact of perinatal metabolism and nutrition on the lung and beyond the cardiopulmonary system as well as possible mechanisms determining the individual susceptibility to CLD early in life. We aim to emphasize the importance of unraveling the mechanisms of perinatal metabolic programming to develop novel preventive and therapeutic avenues.
Collapse
Affiliation(s)
- Celien Kuiper-Makris
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A. Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Member of the German Centre for Lung Research (DZL), Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Gießen, Germany
| |
Collapse
|
13
|
Zuo L, Wijegunawardana D. Redox Role of ROS and Inflammation in Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:187-204. [PMID: 34019270 DOI: 10.1007/978-3-030-68748-9_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), either derived from exogenous sources or overproduced endogenously, can disrupt the body's antioxidant defenses leading to compromised redox homeostasis. The lungs are highly susceptible to ROS-mediated damage. Oxidative stress (OS) caused by this redox imbalance leads to the pathogenesis of multiple pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). OS causes damage to important cellular components in terms of lipid peroxidation, protein oxidation, and DNA histone modification. Inflammation further enhances ROS production inducing changes in transcriptional factors which mediate cellular stress response pathways. This deviation from normal cell function contributes to the detrimental pathological characteristics often seen in pulmonary diseases. Although antioxidant therapies are feasible approaches in alleviating OS-related lung impairment, a comprehensive understanding of the updated role of ROS in pulmonary inflammation is vital for the development of optimal treatments. In this chapter, we review the major pulmonary diseases-including COPD, asthma, ARDS, COVID-19, and lung cancer-as well as their association with ROS.
Collapse
Affiliation(s)
- Li Zuo
- College of Arts and Sciences, Molecular Physiology and Biophysics Lab, University of Maine, Presque Isle Campus, Presque Isle, ME, USA. .,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
14
|
Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8871476. [PMID: 33282113 PMCID: PMC7685819 DOI: 10.1155/2020/8871476] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extrapulmonary injury factors. Presently, excessive inflammation in the lung and the apoptosis of alveolar epithelial cells are considered to be the key factors in the pathogenesis of ALI. Hypoxia-inducible factor-1 (HIF-1) is an oxygen-dependent conversion activator that is closely related to the activity of reactive oxygen species (ROS). HIF-1 has been shown to play an important role in ALI and can be used as a potential therapeutic target for ALI. This manuscript will introduce the progress of HIF-1 in ALI and explore the feasibility of applying inhibitors of HIF-1 to ALI, which brings hope for the treatment of ALI.
Collapse
|
15
|
Chronic mild hypoxia accelerates recovery from preexisting EAE by enhancing vascular integrity and apoptosis of infiltrated monocytes. Proc Natl Acad Sci U S A 2020; 117:11126-11135. [PMID: 32371484 DOI: 10.1073/pnas.1920935117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While several studies have shown that hypoxic preconditioning suppresses development of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), no one has yet examined the important clinically relevant question of whether mild hypoxia can impact the progression of preexisting disease. Using a relapsing-remitting model of EAE, here we demonstrate that when applied to preexisting disease, chronic mild hypoxia (CMH, 10% O2) markedly accelerates clinical recovery, leading to long-term stable reductions in clinical score. At the histological level, CMH led to significant reductions in vascular disruption, leukocyte accumulation, and demyelination. Spinal cord blood vessels of CMH-treated mice showed reduced expression of the endothelial activation molecule VCAM-1 but increased expression of the endothelial tight junction proteins ZO-1 and occludin, key mechanisms underlying vascular integrity. Interestingly, while equal numbers of inflammatory leukocytes were present in the spinal cord at peak disease (day 14 postimmunization; i.e., 3 d after CMH started), apoptotic removal of infiltrated leukocytes during the remission phase was markedly accelerated in CMH-treated mice, as determined by increased numbers of monocytes positive for TUNEL and cleaved caspase-3. The enhanced monocyte apoptosis in CMH-treated mice was paralleled by increased numbers of HIF-1α+ monocytes, suggesting that CMH enhances monocyte removal by amplifying the hypoxic stress manifest within monocytes in acute inflammatory lesions. These data demonstrate that mild hypoxia promotes recovery from preexisting inflammatory demyelinating disease and suggest that this protection is primarily the result of enhanced vascular integrity and accelerated apoptosis of infiltrated monocytes.
Collapse
|
16
|
Yadegari M, Sellami M, Riahy S, Mirdar S, Hamidian G, Saeidi A, Abderrahman AB, Hackney AC, Zouhal H. Supplementation of Adiantum capillus-veneris Modulates Alveolar Apoptosis under Hypoxia Condition in Wistar Rats Exposed to Exercise. ACTA ACUST UNITED AC 2019; 55:medicina55070401. [PMID: 31340610 PMCID: PMC6681305 DOI: 10.3390/medicina55070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Several studies have reported that some conditions such as exercise and hypoxia induce DNA damage and dysfunction and apoptosis. Some plant foods contain numerous bioactive compounds and anti-inflammatory properties that can help fight DNA damage. Therefore, the current study evaluated the effect of supplementation of Adiantum capillus-veneris (ACV) extract on Bax/B-cell lymphoma 2 (Bcl-2) ratio apoptotic index and remodeling of pulmonary alveolar epithelial cells in lung tissue of healthy Wistar rats during stressful conditions (hypoxia). Materials and Methods: Twenty-seven Wistar male rats (four-week old, 72 ± 9 g) were randomly assigned into three groups: normoxic, sedentary, and not-supplemented (NG, n = 9); exercise and hypoxia and not-supplemented (HE, n = 9); and exercise and hypoxia and supplemented group (HS, n = 9). The NG remained sedentary in the normoxia environment for nine weeks. The HE group participated in a high-intensity (IT) program for six weeks, then remained sedentary in the hypoxia environment for three weeks. The low-pressure chamber simulated a ~2800 M altitude 24 h/d. HS participated in IT, then entered and remained sedentary in the hypoxia environment for three weeks, and they consumed 500 mg per kg of body weight ACV extract. Results: The Bax/Bcl-2 ratio of the HE group increased significantly (+50.27%, p ≤ 0.05), the average number of type I pneumocytes was reduced significantly (−18.85%, p ≤ 0.05), and the average number of type II pneumocytes was increased significantly (+14.69%, p ≤ 0.05). Also, after three weeks of consuming the ACV extract, the HS group in comparison with the HE group had their Bax/Bcl-2 ratio reduced significantly (−24.27%, p ≤ 0.05), the average number of type I pneumocytes increased significantly (+10.15%, p ≤ 0.05), and the average number of type II pneumocytes reduced significantly (−7.18%, p ≤ 0.05). Conclusion: The findings show that after three weeks of hypoxia following six weeks of high-intensity interval training in Wistar rats, the Bax/Bcl-2 ratio and the number of type II pneumocytes were increased and the number of type I pneumocytes was reduced significantly. These results strongly suggest that an apoptosis state was induced in the lung parenchyma, and consuming ACV extract modulated this state.
Collapse
Affiliation(s)
- Mehdi Yadegari
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences,University of Mazandaran, Babolsar 4741613534, Iran
| | - Maha Sellami
- Sport Science Program (SSP), College of Arts and Sciences (CAS), Qatar University, Doha 2713, Qatar
| | - Simin Riahy
- Faculty of Aerospace Medicine and Subsurface, Army Medical University, Tehran 611/14185, Iran
| | - Shadmehr Mirdar
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences,University of Mazandaran, Babolsar 4741613534, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Ayoub Saeidi
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran 1983969411, Iran
| | | | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hassane Zouhal
- Laboratoire M2S, University of Rennes, EA 1274, F-35000 Rennes, France.
| |
Collapse
|
17
|
Gautam Y, Afanador Y, Abebe T, López JE, Mersha TB. Genome-wide analysis revealed sex-specific gene expression in asthmatics. Hum Mol Genet 2019; 28:2600-2614. [PMID: 31095684 DOI: 10.1093/hmg/ddz074] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023] Open
Abstract
Global gene-expression analysis has shown remarkable difference between males and females in response to exposure to many diseases. Nevertheless, gene expression studies in asthmatics have so far focused on sex-combined analysis, ignoring inherent variabilities between the sexes, which potentially drive disparities in asthma prevalence. The objectives of this study were to identify (1) sex-specific differentially expressed genes (DEGs), (2) genes that show sex-interaction effects and (3) sex-specific pathways and networks enriched in asthma risk. We analyzed 711 males and 689 females and more than 2.8 million transcripts covering 20 000 genes leveraged from five different tissues and cell types (i.e. epithelial, blood, induced sputum, T cells and lymphoblastoids). Using tissue-specific meta-analysis, we identified 439 male- and 297 female-specific DEGs in all cell types, with 32 genes in common. By linking DEGs to the genome-wide association study (GWAS) catalog and the lung and blood eQTL annotation data from GTEx, we identified four male-specific genes (FBXL7, ITPR3 and RAD51B from epithelial tissue and ALOX15 from blood) and one female-specific gene (HLA-DQA1 from epithelial tissue) that are disregulated during asthma. The hypoxia-inducible factor 1 signaling pathway was enriched only in males, and IL-17 and chemokine signaling pathways were enriched in females. The cytokine-cytokine signaling pathway was enriched in both sexes. The presence of sex-specific genes and pathways demonstrates that sex-combined analysis does not identify genes preferentially expressed in each sex in response to diseases. Linking DEG and molecular eQTLs to GWAS catalog represents an important avenue for identifying biologically and clinically relevant genes.
Collapse
Affiliation(s)
- Yadu Gautam
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Yashira Afanador
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Tilahun Abebe
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - Javier E López
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
18
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
19
|
Molecular Characterization of Hypoxic Alveolar Epithelial Cells After Lung Contusion Indicates an Important Role for HIF-1α. Ann Surg 2019; 267:382-391. [PMID: 27811509 DOI: 10.1097/sla.0000000000002070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To understand the fate and regulation of hypoxic type II alveolar epithelial cells (AECs) after lung contusion (LC). BACKGROUND LC due to thoracic trauma is a major risk factor for the development of acute respiratory distress syndrome. AECs have recently been implicated as a primary driver of inflammation in LC. The main pathological consequence of LC is hypoxia, and a key mediator of adaptation to hypoxia is hypoxia-inducible factor (HIF)-1. We have recently published that HIF-1α is a major driver of acute inflammation after LC through type II AEC. METHODS LC was induced in wild-type mice (C57BL/6), luciferase-based hypoxia reporter mice (ODD-Luc), and HIF-1α conditional knockout mice. The degree of hypoxia was assessed using hypoxyprobe and in vivo imaging system. The fate of hypoxic AEC was evaluated by luciferase dual staining with caspases-3 and Ki-67, terminal deoxynucleotidyl transferase dUTP nick end labeling, and flow cytometry with ApoStat. NLRP-3 expression was determined by western blot. Laser capture microdissection was used to isolate AECs in vivo, and collected RNA was analyzed by Q-PCR for HIF-related pathways. RESULTS Global hypoxia was present after LC, but hypoxic foci were not uniform. Hypoxic AECs preferentially undergo apoptosis. There were significant reductions in NLRP-3 in HIF-1α conditional knockout mice. The expression of proteins involved in HIF-related pathways and inflammasome activation were significantly increased in hypoxic AECs. CONCLUSIONS These are the first in vivo data to identify, isolate, and characterize hypoxic AECs. HIF-1α regulation through hypoxic AECs is critical to the initiation of acute inflammation after LC.
Collapse
|
20
|
Delbrel E, Soumare A, Naguez A, Label R, Bernard O, Bruhat A, Fafournoux P, Tremblais G, Marchant D, Gille T, Bernaudin JF, Callard P, Kambouchner M, Martinod E, Valeyre D, Uzunhan Y, Planès C, Boncoeur E. HIF-1α triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells, a key event in pulmonary fibrosis. Sci Rep 2018; 8:17939. [PMID: 30560874 PMCID: PMC6299072 DOI: 10.1038/s41598-018-36063-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic Reticulum (ER) stress of alveolar epithelial cells (AECs) is recognized as a key event of cell dysfunction in pulmonary fibrosis (PF). However, the mechanisms leading to AECs ER stress and ensuing unfolded protein response (UPR) pathways in idiopathic PF (IPF) remain unclear. We hypothesized that alveolar hypoxic microenvironment would generate ER stress and AECs apoptosis through the hypoxia-inducible factor-1α (HIF-1α). Combining ex vivo, in vivo and in vitro experiments, we investigated the effects of hypoxia on the UPR pathways and ER stress-mediated apoptosis, and consecutively the mechanisms linking hypoxia, HIF-1α, UPR and apoptosis. HIF-1α and the pro-apoptotic ER stress marker C/EBP homologous protein (CHOP) were co-expressed in hyperplastic AECs from bleomycin-treated mice and IPF lungs, not in controls. Hypoxic exposure of rat lungs or primary rat AECs induced HIF-1α, CHOP and apoptosis markers expression. In primary AECs, hypoxia activated UPR pathways. Pharmacological ER stress inhibitors and pharmacological inhibition or silencing of HIF-1α both prevented hypoxia-induced upregulation of CHOP and apoptosis. Interestingly, overexpression of HIF-1α in normoxic AECs increased UPR pathways transcription factors activities, and CHOP expression. These results indicate that hypoxia and HIF-1α can trigger ER stress and CHOP-mediated apoptosis in AECs, suggesting their potential contribution to the development of IPF.
Collapse
Affiliation(s)
- Eva Delbrel
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Abdoulaye Soumare
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Adnan Naguez
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Rabab Label
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Alain Bruhat
- Institut National de la Recherche Agronomique (INRA), UMR-1019 Nutrition Humaine, Centre INRA Auvergne Rhône-Alpes, Clermont Auvergne Université, 63122, Saint Genès Champanelle, France
| | - Pierre Fafournoux
- Institut National de la Recherche Agronomique (INRA), UMR-1019 Nutrition Humaine, Centre INRA Auvergne Rhône-Alpes, Clermont Auvergne Université, 63122, Saint Genès Champanelle, France
| | - Geoffrey Tremblais
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Dominique Marchant
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Jean-François Bernaudin
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France.,Sorbonne Université, Faculté de Médecine, 75013, Paris, France
| | - Patrice Callard
- Sorbonne Université, Faculté de Médecine, 75013, Paris, France
| | | | - Emmanuel Martinod
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Dominique Valeyre
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.
| |
Collapse
|
21
|
Human Mesenchymal Stem Cell Secretome from Bone Marrow or Adipose-Derived Tissue Sources for Treatment of Hypoxia-Induced Pulmonary Epithelial Injury. Int J Mol Sci 2018; 19:ijms19102996. [PMID: 30274394 PMCID: PMC6212866 DOI: 10.3390/ijms19102996] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Alveolar epithelial dysfunction induced by hypoxic stress plays a significant role in the pathological process of lung ischemia-reperfusion injury (IRI). Mesenchymal stem cell (MSC) therapies have demonstrated efficacy in exerting protective immunomodulatory effects, thereby reducing airway inflammation in several pulmonary diseases. Aim: This study assesses the protective effects of MSC secretome from different cell sources, human bone marrow (BMSC) and adipose tissue (ADSC), in attenuating hypoxia-induced cellular stress and inflammation in pulmonary epithelial cells. Methods: Pulmonary epithelial cells, primary rat alveolar epithelial cells (AEC) and A549 cell line were pre-treated with BMSC, or ADSC conditioned medium (CM) and subjected to hypoxia for 24 h. Results: Both MSC-CM improved cell viability, reduced secretion of pro-inflammatory mediators and enhanced IL-10 anti-inflammatory cytokine production in hypoxic injured primary rat AECs. ADSC-CM reduced hypoxic cellular injury by mechanisms which include: inhibition of p38 MAPK phosphorylation and nuclear translocation of subunits in primary AECs. Both MSC-CM enhanced translocation of Bcl-2 to the nucleus, expression of cytoprotective glucose-regulated proteins (GRP) and restored matrix metalloproteinases (MMP) function, thereby promoting repair and cellular homeostasis, whereas inhibition of GRP chaperones was detrimental to cell survival. Conclusions: Elucidation of the protective mechanisms exerted by the MSC secretome is an essential step for maximizing the therapeutic effects, in addition to developing therapeutic targets-specific strategies for various pulmonary syndromes.
Collapse
|
22
|
The Impact of Moderate Chronic Hypoxia and Hyperoxia on the Level of Apoptotic and Autophagic Proteins in Myocardial Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5786742. [PMID: 30186545 PMCID: PMC6116398 DOI: 10.1155/2018/5786742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
The redox imbalance and the consequent oxidative stress have been implicated in many pathological conditions, including cardiovascular diseases. The lack or the excess of O2 supply can alter the redox balance. The aim of the present study was to understand the heart responses to prolonged hypoxia or hyperoxia and how such situations may activate survival mechanisms or trigger cell death. Seven-week-old Foxn1 mice were exposed to hypoxia (10% O2), normoxia (21% O2), or hyperoxia (30% O2) for 28 days, then the heart tissue was excised and analyzed. The alterations in redox balance, housekeeping protein levels, and autophagic and apoptotic process regulation were studied. The D-ROM test demonstrated an increased oxidative stress in the hypoxic group compared to the hyperoxic group. The level of hypoxia inducible factor-1 (HIF-1α) was increased by hypoxia while HIF-2α was not affected by treatments. Chronic hypoxia activated the biochemical markers of autophagy, and we observed elevated levels of Beclin-1 while LC3B-II and p62 were constant. Nevertheless, we measured significantly enhanced number of TUNEL-positive cells and higher Bax/Bcl2 ratio in hyperoxia with respect to hypoxia. Surprisingly, our results revealed alterations in the level of housekeeping proteins. The expression of α-tubulin, total-actin, and GAPDH was increased in the hypoxic group while decreased in the hyperoxic group. These findings suggest that autophagy is induced in the heart under hypoxia, which may serve as a protective mechanism in response to enhanced oxidative stress. While prolonged hypoxia-induced autophagy leads to reduced heart apoptosis, low autophagic level in hyperoxia failed to prevent the excessive DNA fragmentation.
Collapse
|
23
|
de Queiroz KB, dos Santos Fontes Pereira T, Araújo MSS, Gomez RS, Coimbra RS. Resveratrol Acts Anti-Inflammatory and Neuroprotective in an Infant Rat Model of Pneumococcal Meningitis by Modulating the Hippocampal miRNome. Mol Neurobiol 2018; 55:8869-8884. [DOI: 10.1007/s12035-018-1037-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/23/2018] [Indexed: 12/21/2022]
|
24
|
Intermittent Hypoxia Increases the Severity of Bleomycin-Induced Lung Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1240192. [PMID: 29725493 PMCID: PMC5872634 DOI: 10.1155/2018/1240192] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 01/02/2023]
Abstract
Background Severe obstructive sleep apnea (OSA) with chronic intermittent hypoxia (IH) is common in idiopathic pulmonary fibrosis (IPF). Here, we evaluated the impact of IH on bleomycin- (BLM-) induced pulmonary fibrosis in mice. Methods C57BL/6J mice received intratracheal BLM or saline and were exposed to IH (40 cycles/hour; FiO2 nadir: 6%; 8 hours/day) or intermittent air (IA). In the four experimental groups, we evaluated (i) survival; (ii) alveolar inflammation, pulmonary edema, lung oxidative stress, and antioxidant enzymes; (iii) lung cell apoptosis; and (iv) pulmonary fibrosis. Results Survival at day 21 was lower in the BLM-IH group (p < 0.05). Pulmonary fibrosis was more severe at day 21 in BLM-IH mice, as assessed by lung collagen content (p = 0.02) and histology. At day 4, BLM-IH mice developed a more severe neutrophilic alveolitis, (p < 0.001). Lung oxidative stress was observed, and superoxide dismutase and glutathione peroxidase expression was decreased in BLM-IH mice (p < 0.05 versus BLM-IA group). At day 8, pulmonary edema was observed and lung cell apoptosis was increased in the BLM-IH group. Conclusion These results show that exposure to chronic IH increases mortality, lung inflammation, and lung fibrosis in BLM-treated mice. This study raises the question of the worsening impact of severe OSA in IPF patients.
Collapse
|
25
|
Tishevskaya NV, Babaeva AG, Gevorkyan NM. Effect of lymphocyte morphogenetic activity on organism reactivity and resistibility. Russ J Dev Biol 2018. [DOI: 10.1134/s106236041801006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Bernard O, Jeny F, Uzunhan Y, Dondi E, Terfous R, Label R, Sutton A, Larghero J, Vanneaux V, Nunes H, Boncoeur E, Planès C, Dard N. Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling. Am J Physiol Lung Cell Mol Physiol 2017; 314:L360-L371. [PMID: 29167125 DOI: 10.1152/ajplung.00153.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Distal lung diseases, such as pulmonary fibrosis or acute lung injury, are commonly associated with local alveolar hypoxia that may be deleterious through the stimulation of alveolar epithelial cell (AEC) apoptosis. In various murine models of alveolar injury, administration of allogenic human mesenchymal stem cells (hMSCs) exerts an overall protective paracrine effect, limiting lung inflammation and fibrosis. However, the precise mechanisms on lung cells themselves remain poorly understood. Here, we investigated whether hMSC-conditioned medium (hMSC-CM) would protect AECs from hypoxia-induced apoptosis and explored the mechanisms involved in this cytoprotective effect. Exposure of rat primary AECs to hypoxia (1.5% O2 for 24 h) resulted in hypoxia-inducible factor (HIF)-1α protein stabilization, partly dependent on reactive oxygen species (ROS) accumulation, and in a twofold increase in AEC apoptosis that was prevented by the HIF inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole and the antioxidant drug N-acetyl cysteine. Incubation of AECs with hMSC-CM significantly reduced hypoxia-induced apoptosis. hMSC-CM decreased HIF-1α protein expression, as well as ROS accumulation through an increase in antioxidant enzyme activities. Expression of Bnip3 and CHOP, two proapoptotic targets of HIF-1α and ROS pathways, respectively, was suppressed by hMSC-CM, while Bcl-2 expression was restored. The paracrine protective effect of hMSC was partly dependent on keratinocyte growth factor and hepatocyte growth factor secretion, preventing ROS and HIF-1α accumulation.
Collapse
Affiliation(s)
- Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Florence Jeny
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Elisabetta Dondi
- Institut National de la Santé et de la Recherche Médicale, UMR 978, Bobigny, France
| | - Rahma Terfous
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Rabab Label
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Angela Sutton
- Institut National de la Santé et de la Recherche Médicale, UMR 1148, Laboratory for Vascular Translational Science, UFR Santé Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, Groupe Biothérapies et Glycoconjugués, Bobigny, France
| | - Jérôme Larghero
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et Centre d'Investigation Clinique de Biothérapies, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris , France
| | - Valérie Vanneaux
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et Centre d'Investigation Clinique de Biothérapies, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris , France
| | - Hilario Nunes
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Nicolas Dard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| |
Collapse
|
27
|
Liu LL, Li D, He YL, Zhou YZ, Gong SH, Wu LY, Zhao YQ, Huang X, Zhao T, Xu L, Wu KW, Li MG, Zhu LL, Fan M. miR-210 protects renal cell against hypoxia-induced apoptosis by targeting HIF-1 alpha. Mol Med 2017; 23:258-271. [PMID: 29387863 DOI: 10.2119/molmed.2017.00013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
The kidney is vulnerable to hypoxia-induced injury. One of the mechanisms underlying this phenomenon is cell apoptosis triggered by hypoxia-inducible factor-1-alpha (HIF-1α) activation. MicroRNA-210 (miR-210) is known to be induced by HIF-1α and can regulate various pathological processes, but its role in hypoxic kidney injury remains unclear. Here, in both kinds of rat systemic hypoxia and local kidney hypoxia models, we found miR-210 levels were upregulated significantly in injured kidney, especially in renal tubular cells. A similar increase was observed in hypoxia-treated human renal tubular HK-2 cells. We also verified that miR-210 can directly suppress HIF-1α expression by targeting the 3' untranslated region (UTR) of HIF-1α mRNA in HK-2 cells in severe hypoxia. Accordingly, miR-210 overexpression caused significant inhibition of the HIF-1α pathway and attenuated apoptosis caused by hypoxia, while miR-210 knockdown exerted the opposite effect. Taken together, our findings verify that miR-210 is involved in the molecular response in hypoxic kidney lesions in vivo and attenuates hypoxia-induced renal tubular cell apoptosis by targeting HIF-1α directly and suppressing HIF-1α pathway activation in vitro.
Collapse
Affiliation(s)
- Li-Li Liu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China.,Navy Aviation and Diving Medical Center, Navy General Hospital of PLA, Beijing, China
| | - Dahu Li
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Yun-Ling He
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Yan-Zhao Zhou
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Sheng-Hui Gong
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Li-Ying Wu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Yong-Qi Zhao
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Xin Huang
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Tong Zhao
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Lun Xu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Kui-Wu Wu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China
| | - Ming-Gao Li
- Navy Aviation and Diving Medical Center, Navy General Hospital of PLA, Beijing, China
| | - Ling-Ling Zhu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ming Fan
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
28
|
McClendon J, Jansing NL, Redente EF, Gandjeva A, Ito Y, Colgan SP, Ahmad A, Riches DWH, Chapman HA, Mason RJ, Tuder RM, Zemans RL. Hypoxia-Inducible Factor 1α Signaling Promotes Repair of the Alveolar Epithelium after Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1772-1786. [PMID: 28618253 PMCID: PMC5530913 DOI: 10.1016/j.ajpath.2017.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/20/2017] [Indexed: 01/09/2023]
Abstract
During the acute respiratory distress syndrome, epithelial cells, primarily alveolar type (AT) I cells, die and slough off, resulting in enhanced permeability. ATII cells proliferate and spread onto the denuded basement membrane to reseal the barrier. Repair of the alveolar epithelium is critical for clinical recovery; however, mechanisms underlying ATII cell proliferation and spreading are not well understood. We hypothesized that hypoxia-inducible factor (HIF)1α promotes proliferation and spreading of ATII cells during repair after lung injury. Mice were treated with lipopolysaccharide or hydrochloric acid. HIF activation in ATII cells after injury was demonstrated by increased luciferase activity in oxygen degradation domain-Luc (HIF reporter) mice and expression of the HIF1α target gene GLUT1. ATII cell proliferation during repair was attenuated in ATII cell-specific HIF1α knockout (SftpcCreERT2+/-;HIF1αf/f) mice. The HIF target vascular endothelial growth factor promoted ATII cell proliferation in vitro and after lung injury in vivo. In the scratch wound assay of cell spreading, HIF stabilization accelerated, whereas HIF1α shRNA delayed wound closure. SDF1 and its receptor, CXCR4, were found to be HIF1α-regulated genes in ATII cells and were up-regulated during lung injury. Stromal cell-derived factor 1/CXCR4 inhibition impaired cell spreading and delayed the resolution of permeability after lung injury. We conclude that HIF1α is activated in ATII cells after lung injury and promotes proliferation and spreading during repair.
Collapse
Affiliation(s)
- Jazalle McClendon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Nicole L Jansing
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Elizabeth F Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Department of Research, Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Aneta Gandjeva
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Yoko Ito
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Integrated Department of Immunology, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David W H Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California
| | - Robert J Mason
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
29
|
Ning HJ, Yuan HB, Xu HT, He XY. Propofol reduces hypoxia‑induced autophagic cell death through downregulating HIF 1α in alveolar epithelial type II cells of rats. Mol Med Rep 2017; 16:1509-1515. [PMID: 28586054 DOI: 10.3892/mmr.2017.6697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Propofol (2,6‑diisopropylphenol) exerts protective effects on alveolar epithelial type II (ATII) cells, partly through attenuating hypoxia‑induced apoptosis. Autophagy is involved in the activation of apoptosis. Therefore, the present study investigated the modulating effect of propofol against autophagy in ATII cells under hypoxia. Western blot analysis was performed to detect the protein expression of the autophagy molecular marker, microtubule‑associated protein 1 light chain 3 (LC3)‑II, under various conditions. The effects of propofol on the accumulation of other autophagy‑associated proteins and apoptosis‑associated proteins were also determined using western blot analysis. The interactions between proteins were determined by co‑immunoprecipitation. Apoptosis of the ATII cells was monitored using FITC‑conjugated AV/PI staining. Furthermore, hypoxia‑inducible factor 1α (HIF 1α) small interfering (si) RNA was designed to construct si‑HIF 1α ATII cells. The efficiency of interference was measured using reverse transcription‑quantitative polymerase chain reaction and western blot analyses. Following pre‑treatment with propofol, the hypoxia‑induced accumulation of LC3‑II, HIF 1α and B‑cell lymphoma‑2 interacting protein 3 (Bnip3) were markedly decreased, accompanied with the activation of mammalian target of rapamycin. In addition, cleaved‑poly ADP‑ribose polymerase was suppressed, and hypoxia‑induced autophagic cell death was inhibited by propofol pre‑treatment. HIF 1α was inhibited by si‑HIF 1α, which simultaneously suppressed Bnip3 and LC3‑II under hypoxia. Taken together, propofol reduced hypoxia‑induced autophagic cell death through reducing the expression of HIF 1α in ATII cells, indicating a novel strategy for modulating autophagy via propofol in hypoxic ATII cells.
Collapse
Affiliation(s)
- Hui-Jie Ning
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Hong-Bin Yuan
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai-Tao Xu
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xing-Ying He
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
30
|
Yogic breathing practices improve lung functions of competitive young swimmers. J Ayurveda Integr Med 2017; 8:99-104. [PMID: 28601355 PMCID: PMC5496990 DOI: 10.1016/j.jaim.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/06/2016] [Accepted: 12/10/2016] [Indexed: 11/21/2022] Open
Abstract
Background Resistive breathing practices are known to improve endurance and performance in competitive swimmers. However, the effect of Pranayama or Yogic Breathing Practices (YBP) in improving respiratory endurance and performance of competitive swimmers remains un-investigated. Objectives To study effects of yogic breathing practices on lung functions of swimmers. Material and methods Twenty seven national and international competitive swimmers of the age range 13–20 years, with 8.29 ± 2.9 years of competitive swimming experience and practicing swimming for 9.58 ± 1.81 km everyday, were assigned randomly to either an experimental (YBP) or to wait list control group (no intervention). Outcome measures were taken on day 1 and day 30 and included (1) spirometry to measure lung function, (2) Sport Anxiety Scale-2 (SAS-2) to measure the antecedents and consequences of cognitive and somatic trait anxiety of sport performance and (3) number of strokes per breath to measure performance. The YBP group practiced a prescribed set of Yogic Breathing Practices – Sectional Breathing (Vibhagiya Pranayama), Yogic Bellows Breathing (Bhastrika Pranayama) and Alternate Nostril Breathing with Voluntary Internal Breath Holding (Nadi Shodhana with Anthar kumbhaka) for half an hour, five days a week for one month. Results There was a significant improvement in the YBP group as compared to control group in maximal voluntary ventilation (p = 0.038), forced vital capacity (p = 0.026) and number of strokes per breath (p = 0.001). Conclusion The findings suggest that YBP helps to enhance respiratory endurance in competitive swimmers.
Collapse
|
31
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
32
|
Devraj G, Beerlage C, Brüne B, Kempf VAJ. Hypoxia and HIF-1 activation in bacterial infections. Microbes Infect 2016; 19:144-156. [PMID: 27903434 DOI: 10.1016/j.micinf.2016.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
For most of the living beings, oxygen is one of the essential elements required to sustain life. Deprivation of oxygen causes tissue hypoxia and this severely affects host cell and organ functions. Tissue hypoxia is a prominent microenvironmental condition occurring in infections and there is a body of evidence that hypoxia and inflammation are interconnected with each other. The primary key factor mediating the mammalian hypoxic response is hypoxia inducible factor (HIF)-1, which regulates oxygen homeostasis on cellular, tissue and organism level. Recent studies show that HIF-1 plays a central role in angiogenesis, cancer and cardiovascular disease but also in bacterial infections. Activation of HIF-1 depends on the nature of the pathogen and the characteristics of infections in certain hosts. Up to date, it is not completely clear whether the phenomenon of HIF-1 activation in infections has a protective or detrimental effect on the host. In this review, we give an overview of whether and how hypoxia and HIF-1 affect the course of infections.
Collapse
Affiliation(s)
- Gayatri Devraj
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Christiane Beerlage
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I - Pathobiochemistry, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Stella GM, Gentile A, Baderacchi A, Meloni F, Milan M, Benvenuti S. Ockham's razor for the MET-driven invasive growth linking idiopathic pulmonary fibrosis and cancer. J Transl Med 2016; 14:256. [PMID: 27590450 PMCID: PMC5010719 DOI: 10.1186/s12967-016-1008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) identifies a specific lung disorder characterized by chronic, progressive fibrosing interstitial pneumonia of unknown etiology, which lacks effective treatment. According to the current pathogenic perspective, the aberrant proliferative events in IPF resemble those occurring during malignant transformation. MAIN BODY Receptor tyrosine kinases (RTK) are known to be key players in cancer onset and progression. It has been demonstrated that RTK expression is sometimes also altered and even druggable in IPF. One example of an RTK-the MET proto-oncogene-is a key regulator of invasive growth. This physiological genetic program supports embryonic development and post-natal organ regeneration, as well as cooperating in the evolution of cancer metastasis when aberrantly activated. Growing evidence sustains that MET activation may collaborate in maintaining tissue plasticity and the regenerative potential that characterizes IPF. CONCLUSION The present work aims to elucidate-by applying the logic of simplicity-the bio-molecular mechanisms involved in MET activation in IPF. This clarification is crucial to accurately design MET blockade strategies within a fully personalized approach to IPF.
Collapse
Affiliation(s)
- Giulia M. Stella
- Pneumology Unit, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Piazzale Golgi 19, 27100 Pavia, Italy
- Investigational Clinical Oncology (INCO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Alessandra Gentile
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Alice Baderacchi
- Investigational Clinical Oncology (INCO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Federica Meloni
- Pneumology Unit, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Piazzale Golgi 19, 27100 Pavia, Italy
| | - Melissa Milan
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Silvia Benvenuti
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| |
Collapse
|
34
|
Mahey S, Kumar R, Arora R, Mahajan J, Arora S, Bhardwaj R, Thukral AK. Effect of cobalt(II) chloride hexahydrate on some human cancer cell lines. SPRINGERPLUS 2016; 5:930. [PMID: 27386374 PMCID: PMC4929113 DOI: 10.1186/s40064-016-2405-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 12/23/2022]
Abstract
The present study investigates the anti-proliferative and apoptosis inducing mechanism of CoCl2·6H2O in PC-3 cancer cell line. Preliminary, three different forms of cobalt i.e., cobaltous (CoCl2·6H2O), macro-Co(II,III) oxide and nano-Co(II,III) oxide were screened for antiproliferative activity in PC-3 cell line. The CoCl2·6H2O being the most effective antiproliferative agent, hence it was further tested against lung (A549), prostrate (PC-3) and brain (IMR-32) cell lines. Human embryonic kidney cell line (293T) was used as a normal cell line to compare the toxicity of CoCl2·6H2O. The CoCl2·6H2O induced morphological and anatomical changes in PC-3 cancer cell which were studied using light, confocal and scanning electron microscopy. The lactate dehydrogenase was estimated which showed mild necrotic mode of cell death. The Annexin/PI staining confirmed the apoptotic mode of cell death in PC-3 cells. Further, production of reaction of reactive oxygen species and changes in mitochondrial membrane potential was also assessed spectrofluorimetrically. The cell cycle arrest was also investigated using flow cytometery. Finally, the caspase activity was estimated in CoCl2·6H2O treated PC-3 cancer cell line. Interestingly, it was found that CoCl2·6H2O induces more cell death in cancerous cells as compared to normal non-cancerous cells. These findings presented CoCl2·6H2O as potential antiproliferative agent.
Collapse
Affiliation(s)
- Sonia Mahey
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakesh Kumar
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
- />Department of Botany, DAV University, Jalandhar, Punjab 144012 India
| | - Rohit Arora
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Jyoti Mahajan
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Saroj Arora
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Renu Bhardwaj
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Ashwani Kumar Thukral
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
35
|
Arabzadeh E, Mirdar S, Fathi Z. Measurement of levels of lung HIF-1α protein in response to tapering for 14- and 21-day with nigella sativa supplementation in maturing rat, with histological study. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0223-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Lee DD, Schwarz MA. Adapted approach to profile genes while reconciling Vegf-a mRNA expression in the developing and injured lung. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1202-11. [PMID: 25868151 DOI: 10.1152/ajplung.00053.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 12/12/2022] Open
Abstract
During lung development and injury, messenger RNA (mRNA) transcript levels of genes fluctuate over both space and time. Quantitative PCR (qPCR) is a highly sensitive, widely used technique to measure the mRNA levels. The sensitivity of this technique can be disadvantageous and errors amplified when each qPCR assay is not validated. In contrast to other organs, lungs have high RNase activity, resulting in less than optimal RNA integrity. We implemented a strategy to address these limitations in developing and injured lungs. Parameters were established and a filter designed that optimized amplicon length and included or excluded samples based on RNA integrity. This approach was illustrated and validated by measuring mRNA levels including Vegf-a in newborn mouse lungs that were injured by 85% oxygen (hyperoxia) for 12 days and compared with control (normoxia). We demonstrate that, in contrast to contradictory Vegf-a expression when normalized to the least suitable housekeeping genes, application of this filter and normalization to most suitable three housekeeping genes, Hprt, Eef2, and Rpl13a, gave reproducible Vegf-a expression, thus corroborating the sample filter. Accordingly, both short amplicon length and proper normalization to ranked, evaluated genes minimized erroneous fluctuation and qPCR amplification issues associated with nonideal RNA integrity in injured and developing lungs. Furthermore, our work uncovers how RNA integrity, purity, amplicon length, and discovery of stable candidate reference genes enhance precision of qPCR results and utilizes the advantages of qPCR in developmental studies.
Collapse
Affiliation(s)
- Daniel D Lee
- Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| |
Collapse
|
37
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 2014; 148:66-84. [PMID: 25476109 DOI: 10.1016/j.pharmthera.2014.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
Abstract
Pressure overload causes an accumulation of homocysteine in the heart, which is accompanied by copper depletion through the formation of copper-homocysteine complexes and the excretion of the complexes. Copper supplementation recovers cytochrome c oxidase (CCO) activity and promotes myocardial angiogenesis, along with the regression of cardiac hypertrophy and the recovery of cardiac contractile function. Increased copper availability is responsible for the recovery of CCO activity. Copper promoted expression of angiogenesis factors including vascular endothelial growth factor (VEGF) in endothelial cells is responsible for angiogenesis. VEGF receptor-2 (VEGFR-2) is critical for hypertrophic growth of cardiomyocytes and VEGFR-1 is essential for the regression of cardiomyocyte hypertrophy. Copper, through promoting VEGF production and suppressing VEGFR-2, switches the VEGF signaling pathway from VEGFR-2-dependent to VEGFR-1-dependent, leading to the regression of cardiomyocyte hypertrophy. Copper is also required for hypoxia-inducible factor-1 (HIF-1) transcriptional activity, acting on the interaction between HIF-1 and the hypoxia responsible element and the formation of HIF-1 transcriptional complex by inhibiting the factor inhibiting HIF-1. Therefore, therapeutic targets for copper supplementation-induced regression of cardiac hypertrophy include: (1) the recovery of copper availability for CCO and other critical cellular events; (2) the activation of HIF-1 transcriptional complex leading to the promotion of angiogenesis in the endothelial cells by VEGF and other factors; (3) the activation of VEGFR-1-dependent regression signaling pathway in the cardiomyocytes; and (4) the inhibition of VEGFR-2 through post-translational regulation in the hypertrophic cardiomyocytes. Future studies should focus on target-specific delivery of copper for the development of clinical application.
Collapse
Affiliation(s)
- Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen Yin
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
38
|
Epithelial-mesenchymal transition of A549 cells is enhanced by co-cultured with THP-1 macrophages under hypoxic conditions. Biochem Biophys Res Commun 2014; 453:804-9. [PMID: 25445593 DOI: 10.1016/j.bbrc.2014.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF). In this study, we investigated EMT of human pulmonary epithelial-derived cells (A549). A549 cells was either cultured by itself or co-cultured with THP-1 macrophages under normoxic (21% O2) and hypoxic (2% O2) conditions. We evaluated the presence of EMT by determining the expression of EMT markers, E-cadherin, vimentin, and fibronectin. To determine the role of TGF-β1 and IL-1β in EMT of the A549 cells, we analyzed the effects of blocking their activity with TGF-β1 inhibitor or IL-1β neutralizing antibody respectively. The A549 cells presented EMT when they were co-cultured with THP-1 macrophages. The EMT of the A549 cells co-cultured with THP-1 macrophages was exacerbated under hypoxia. In addition, the EMT were prevented by the addition of TGF-β1 type I receptor kinase inhibitor. The hypoxic condition increased the mRNA levels of TGF-β1 in A549 cells and THP-1 macrophages and that of IL-1β in THP-1 macrophages when each cells were co-cultured. Anti-IL-1β neutralizing antibody attenuated TGF-β1 secretion in co-culture media under hypoxic conditions. Thus, the IL-1β from THP-1 macrophages up-regulated the TGF-β1 from A549 cells and THP-1 macrophages, and then the TGF-β1 from both cells induced and promoted the EMT of A549 cells when they were co-cultured under hypoxia. Together, these results demonstrate that the interaction between type II pneumocytes and macrophages under hypoxia is necessary for the development of pulmonary fibrosis.
Collapse
|
39
|
Abstract
The reduction or cessation of the blood supply to an organ results in tissue ischemia. Ischemia can cause significant tissue damage, and is observed as a result of a thrombosis, as part of a disease process, and during surgery. However, the restoration of the blood supply often causes more damage to the tissue than the ischemic episode itself. Research is therefore focused on identifying the cellular pathways involved in the protection of organs from the damage incurred by this process of ischemia reperfusion (I/R). The hypoxia-inducible factors (HIFs) are a family of heterodimeric transcription factors that are stabilized during ischemia. The genes that are expressed downstream of HIF activity enhance oxygen-independent ATP generation, cell survival, and angiogenesis, amongst other phenotypes. They are, therefore, important factors in the protection of tissues from I/R injury. Interestingly, a number of the mechanisms already known to induce organ protection against I/R injury, including preconditioning, postconditioning, and activation of signaling pathways such as adenosine receptor signaling, converge on the HIF system. This review describes the evidence for HIFs playing a role in I/R protection mediated by these factors, highlights areas that require further study, and discuss whether HIFs themselves are good therapeutic targets for protecting tissues from I/R injury.
Collapse
Affiliation(s)
- Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
Safaeian L, Abed A, Vaseghi G. The role of Bcl-2 family proteins in pulmonary fibrosis. Eur J Pharmacol 2014; 741:281-9. [PMID: 25058906 DOI: 10.1016/j.ejphar.2014.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/17/2022]
Abstract
Pulmonary fibrosis is characterized by epithelial injury, abnormal tissue repair, fibroproliferation and loss of pulmonary function as a result of a complex interaction of multiple cellular and molecular processes. There is accumulating evidence in support of a role for apoptosis in the pathogenesis of interstitial lung diseases. The Bcl-2 (B-cell lymphoma-2) family of proteins, which consists of antiapoptotic and pro-apoptotic members, is a critical regulator for apoptosis and development of pulmonary fibrosis. The association between Bcl-2 family members and various pathways and mediators has been also described in the pulmonary fibrosis. This article reviews the recent advances regarding the roles of Bcl-2 family as the apoptosis-regulatory factors in pulmonary fibrosis from human tissue studies, animal models, ex vivo and in vitro studies. Further understanding of apoptosis signaling regulation through Bcl-2 family proteins in the lung tissue may lead to better design of new therapeutic interventions for pulmonary fibrosis.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Avenue, Isfahan, Iran.
| | - Alireza Abed
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Avenue, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Bodempudi V, Hergert P, Smith K, Xia H, Herrera J, Peterson M, Khalil W, Kahm J, Bitterman PB, Henke CA. miR-210 promotes IPF fibroblast proliferation in response to hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 307:L283-94. [PMID: 24951777 DOI: 10.1152/ajplung.00069.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless spread of fibroblasts from scarred alveoli into adjacent alveolar units, resulting in progressive hypoxia and death by asphyxiation. Although hypoxia is a prominent clinical feature of IPF, the role of hypoxia as a driver of the progressive fibrotic nature of the disease has not been explored. Here, we demonstrate that hypoxia robustly stimulates the proliferation of IPF fibroblasts. We found that miR-210 expression markedly increases in IPF fibroblasts in response to hypoxia and that knockdown of miR-210 decreases hypoxia-induced IPF fibroblast proliferation. Silencing hypoxia-inducible factor (HIF)-2α inhibits the hypoxia-mediated increase in miR-210 expression and blocks IPF fibroblast proliferation, indicating that HIF-2α is upstream of miR-210. We demonstrate that the miR-210 downstream target MNT is repressed in hypoxic IPF fibroblasts and that knockdown of miR-210 increases MNT expression. Overexpression of MNT inhibits hypoxia-induced IPF fibroblast proliferation. Together, these data indicate that hypoxia potently stimulates miR-210 expression via HIF-2α, and high miR-210 expression drives fibroblast proliferation by repressing the c-myc inhibitor, MNT. In situ analysis of IPF lung tissue demonstrates miR-210 expression in a similar distribution with HIF-2α and the hypoxic marker carbonic anhydrase-IX in cells within the IPF fibrotic reticulum. Our results raise the possibility that a pathological feed-forward loop exists in the IPF lung, in which hypoxia promotes IPF fibroblast proliferation via stimulation of miR-210 expression, which in turn worsens hypoxia.
Collapse
Affiliation(s)
- Vidya Bodempudi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Polla Hergert
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Herrera
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Mark Peterson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Wajahat Khalil
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Judy Kahm
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
42
|
Zhang H, Okamoto M, Panzhinskiy E, Zawada WM, Das M. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells. Am J Physiol Cell Physiol 2014; 306:C648-58. [PMID: 24500281 PMCID: PMC3962599 DOI: 10.1152/ajpcell.00351.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022]
Abstract
Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases.
Collapse
Affiliation(s)
- Hanying Zhang
- Department of Animal Sciences, University of Wyoming, Laramie, Wyoming
| | | | | | | | | |
Collapse
|
43
|
Lottes RG, Newton DA, Spyropoulos DD, Baatz JE. Alveolar type II cells maintain bioenergetic homeostasis in hypoxia through metabolic and molecular adaptation. Am J Physiol Lung Cell Mol Physiol 2014; 306:L947-55. [PMID: 24682450 DOI: 10.1152/ajplung.00298.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although many lung diseases are associated with hypoxia, alveolar type II epithelial (ATII) cell impairment, and pulmonary surfactant dysfunction, the effects of O(2) limitation on metabolic pathways necessary to maintain cellular energy in ATII cells have not been studied extensively. This report presents results of targeted assays aimed at identifying specific metabolic processes that contribute to energy homeostasis using primary ATII cells and a model ATII cell line, mouse lung epithelial 15 (MLE-15), cultured in normoxic and hypoxic conditions. MLEs cultured in normoxia demonstrated a robust O(2) consumption rate (OCR) coupled to ATP generation and limited extracellular lactate production, indicating reliance on oxidative phosphorylation for ATP production. Pharmacological uncoupling of respiration increased OCR in normoxic cultures to 175% of basal levels, indicating significant spare respiratory capacity. However, when exposed to hypoxia for 20 h, basal O(2) consumption fell to 60% of normoxic rates, and cells maintained only ∼50% of normoxic spare respiratory capacity, indicating suppression of mitochondrial function, although intracellular ATP levels remained at near normoxic levels. Moreover, while hypoxic exposure stimulated glycogen synthesis and storage in MLE-15, glycolytic rate (as measured by lactate generation) was not significantly increased in the cells, despite enhanced expression of several enzymes related to glycolysis. These results were largely recapitulated in murine primary ATII, demonstrating MLE-15 suitability for modeling ATII metabolism. The ability of ATII cells to maintain ATP levels in hypoxia without enhancing glycolysis suggests that these cells are exceptionally efficient at conserving ATP to maintain bioenergetic homeostasis under O(2) limitation.
Collapse
Affiliation(s)
- Robyn G Lottes
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolia; and
| | - Danforth A Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolia; and
| | - Demetri D Spyropoulos
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolia
| | - John E Baatz
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolia; and
| |
Collapse
|
44
|
Pawlus MR, Hu CJ. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell Signal 2013; 25:1895-903. [PMID: 23707522 PMCID: PMC3700616 DOI: 10.1016/j.cellsig.2013.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022]
Abstract
Hypoxia is a prevalent attribute of the solid tumor microenvironment that promotes the expression of genes through posttranslational modifications and stabilization of alpha subunits (HIF1α and HIF2α) of hypoxia-inducible factors (HIFs). Despite significant similarities, HIF1 (HIF1α/ARNT) and HIF2 (HIF2α/ARNT) activate common as well as unique target genes and exhibit different functions in cancer biology. More surprisingly, accumulating data indicates that the HIF1- and/or HIF2-mediated hypoxia responses can be oncogenic as well as tumor suppressive. While the role of HIF in the hypoxia response is well established, recent data support the concept that HIF is necessary, but not sufficient for the hypoxic response. Other transcription factors that are activated by hypoxia are also required for the HIF-mediated hypoxia response. HIFs, other transcription factors, co-factors and RNA poll II recruited by HIF and other transcription factors form multifactorial enhanceosome complexes on the promoters of HIF target genes to activate hypoxia inducible genes. Importantly, HIF1 or HIF2 requires distinct partners in activating HIF1 or HIF2 target genes. Because HIF enhanceosome formation is required for the gene activation and distinct functions of HIF1 and HIF2 in tumor biology, disruption of the HIF1 or HIF2 specific enhanceosome complex may prove to be a beneficial strategy in tumor treatment in which tumor growth is specifically dependent upon HIF1 or HIF2 activity.
Collapse
Affiliation(s)
- Matthew R. Pawlus
- Molecular Biology Graduate Program University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cheng-Jun Hu
- Molecular Biology Graduate Program University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Craniofacial Biology University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
45
|
GPER mediates cardiotropic effects in spontaneously hypertensive rat hearts. PLoS One 2013; 8:e69322. [PMID: 23950890 PMCID: PMC3739764 DOI: 10.1371/journal.pone.0069322] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/12/2013] [Indexed: 01/17/2023] Open
Abstract
Estrogens promote beneficial effects in the cardiovascular system mainly through the estrogen receptor (ER)α and ERβ, which act as ligand-gated transcription factors. Recently, the G protein-coupled estrogen receptor (GPER) has been implicated in the estrogenic signaling in diverse tissues, including the cardiovascular system. In this study, we demonstrate that left ventricles of male Spontaneously Hypertensive Rats (SHR) express higher levels of GPER compared to normotensive Wistar Kyoto (WKY) rats. In addition, we show that the selective GPER agonist G-1 induces negative inotropic and lusitropic effects to a higher extent in isolated and Langendorff perfused hearts of male SHR compared to WKY rats. These cardiotropic effects elicited by G-1 involved the GPER/eNOS transduction signaling, as determined by using the GPER antagonist G15 and the eNOS inhibitor L-NIO. Similarly, the G-1 induced activation of ERK1/2, AKT, GSK3β, c-Jun and eNOS was abrogated by G15, while L-NIO prevented only the eNOS phosphorylation. In hypoxic Langendorff perfused WKY rat heart preparations, we also found an increased expression of GPER along with that of the hypoxic mediator HIF-1α and the fibrotic marker CTGF. Interestingly, G15 and L-NIO prevented the ability of G-1 to down-regulate the expression of both HIF-1α and CTGF, which were found expressed to a higher extent in SHR compared to WKY rat hearts. Collectively, the present study provides novel data into the potential role played by GPER in hypertensive disease on the basis of its involvement in myocardial inotropism and lusitropism as well as the expression of the apoptotic HIF-1α and fibrotic CTGF factors. Hence, GPER may be considered as a useful target in the treatment of some cardiac dysfunctions associated with stressful conditions like the essential hypertension.
Collapse
|
46
|
Sun W, Yin X, Wang Y, Tan Y, Cai L, Wang B, Cai J, Fu Y. Intermittent hypoxia-induced renal antioxidants and oxidative damage in male mice: hormetic dose response. Dose Response 2012; 11:385-400. [PMID: 23983666 DOI: 10.2203/dose-response.12-027.cai] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obstructive sleep apnea causes cardiovascular disease via chronic intermittent hypoxia (IH), which may be related to oxidative stress. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important cellular defense mechanism against oxidative stress by regulating its down-stream multiple antioxidants. The present study was to define whether IH can induce renal pathogenic damage and if so, whether Nrf2 and its down-stream antioxidants are involved in IH-induced pathogenic changes. Mice were culled for exposure to intermittent air as control or IH that consisted of 20.9% O2/ 8% O2 FIO2 alternation cycles (30 episodes per h) with 20 seconds at the nadir FIO2 for 12 h a day during daylight. Short-term IH exposure (3 - 7 days) induced significant increases in renal inflammatory response and antioxidant levels along with a reduction of the spontaneous content of malondialdehyde while long-term IH exposure (8 weeks) induced a significant decrease of antioxidant levels and significant increases of renal inflammation, oxidative damage, cell death, and fibrosis. This study suggests that IH induces a hormetic response, i.e.: short-term IH exposure is able to induce a protective response to protect the kidney from oxidative damage while long-term IH exposure is able to induce a damage effect on the kidney.
Collapse
Affiliation(s)
- Weixia Sun
- The First Hospital of Jilin University, China and KCHRI at the Department of Pediatrics, University of Louisville, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yao L, Nie X, Shi S, Song S, Hao X, Li S, Zhu D. Reciprocal regulation of HIF-1α and 15-LO/15-HETE promotes anti-apoptosis process in pulmonary artery smooth muscle cells during hypoxia. Prostaglandins Other Lipid Mediat 2012; 99:96-106. [PMID: 22982617 DOI: 10.1016/j.prostaglandins.2012.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/03/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022]
Abstract
15-Hydroxyeicosatetraenoic acid, a predominant metabolic product of arachidonic acid (AA) catalyzed by 15-lipoxygenase (15-LO), plays an important role in hypoxic pulmonary arterial hypertension (PAH). Hypoxia-inducible factor-1α (HIF-1α) as a critical oxygen-sensitive transcriptional factor participates in many physiological and pathological processes including PAH. Therefore, it is possible that there may be some connections between HIF-1α and 15-LO/15-HETE in hypoxic pulmonary artery smooth muscle cells. Our results showed that HIF-1α inhibitor or siRNA reduced hypoxia-induced upregulation of 15-LO and endogenous 15-HETE, meanwhile HIF-1α expression and transcriptional activity were induced by 15-HETE under both normoxic and hypoxic conditions. It suggests there exists a potential positive feedback regulatory loop between HIF-1α and 15-LO/15-HETE. Furthermore, cell viability assay and several cell apoptosis assays, including TUNEL assay, Western blot, nuclear morphology determination, mitochondrial potential analysis, indicated that blocking HIF-1α induced apoptosis, decreased cell viability and suppressed the anti-apoptosis effects of 15-HETE. Taken together, our data indicate that upregulation of 15-LO/15-HETE in response to hypoxia may be partially mediated by HIF-1α which is also regulated by 15-HETE in a positive feedback manner, and HIF-1α can effectively inhibit pulmonary artery smooth muscle cells apoptosis which leads to vascular remodeling. The feedback loop between HIF-1α and 15-LO/15-HETE would obviously reinforce hypoxia-induced anti-apoptosis effect and may become a novel target of therapy in PAH.
Collapse
Affiliation(s)
- Lan Yao
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Propofol attenuates hypoxia-induced apoptosis in alveolar epithelial type II cells through down-regulating hypoxia-inducible factor-1α. Injury 2012; 43:279-83. [PMID: 21703615 DOI: 10.1016/j.injury.2011.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 05/25/2011] [Indexed: 02/02/2023]
Abstract
To investigate the protective effect of propofol against hypoxia-induced apoptosis in alveolar epithelial type II (ATII) cells and to explore whether hypoxia-inducible factor-1α (HIF-1α) is involved in this process. Primary cultured rat ATII cells were randomly assigned to one of the following four groups, namely, Group C: treated under normoxia (21% O(2)), Group P(20): treated with propofol (20 μM) under normoxia (21% O(2)), Group H: treated under hypoxia (5% O(2)), and Group P(20)-H: pre-treated with propofol (20 μM) before hypoxia exposure (5% O(2)). Apoptosis in ATII cells was detected by Annexin V-FITC binding using FACScan. Expressions of HIF-1α and Bnip3L mRNA and protein in ATII cells were examined by quantitative real-time polymerase chain reaction and Western blotting analysis, respectively. Hypoxia exposure (Group H) significantly increased HIF-1α protein expression (P<0.01 vs. Group C) and significantly promoted apoptosis in ATII cells (P<0.01 vs. Group C). Expression of Bnip3L, a target gene of HIF-1α, was also significantly increased at both mRNA and protein levels in response to hypoxia (P<0.01 vs. Group C). Pretreatment with propofol (20 μM, Group P(20)-H) significantly decreased HIF-1α protein expression (P<0.01 vs. Group H) and significantly inhibited apoptosis in ATII cells (P<0.01 vs. Group H), accompanied by decreased expression of Bnip3L at both mRNA and protein levels (P<0.01 vs. Group H). Propofol (20 μM) can attenuate hypoxia-induced apoptosis in ATII cells and inhibit HIF-1α-hypoxia responsive element (HRE) axis involving Bnip3L, which may partly mediate the cytoprotective effects of propofol.
Collapse
|
49
|
Angiotensinogen gene transcription in pulmonary fibrosis. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:875910. [PMID: 22500179 PMCID: PMC3303555 DOI: 10.1155/2012/875910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/08/2011] [Indexed: 12/24/2022]
Abstract
An established body of literature supports the hypothesis that activation of a local tissue angiotensin (ANG) system in the extravascular tissue compartment of the lungs is required for lung fibrogenesis. Transcriptional activation of the angiotensinogen (AGT) gene is believed to be a critical and necessary step in this activation. This paper summarizes the data in support of this theory and discusses transcriptional regulation of AGT, with an emphasis on lung AGT synthesis as a determinant of fibrosis severity. Genetic data linking AGT polymorphisms to the severity of disease in Idiopathic Pulmonary Fibrosis are also discussed.
Collapse
|
50
|
Watts KD, McColley SA. Elevated vascular endothelial growth factor is correlated with elevated erythropoietin in stable, young cystic fibrosis patients. Pediatr Pulmonol 2011; 46:683-7. [PMID: 21365780 DOI: 10.1002/ppul.21428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/02/2010] [Accepted: 11/11/2010] [Indexed: 11/06/2022]
Abstract
Angiogenesis is an important mechanism of airway remodeling in lung disease. We previously demonstrated that serum vascular endothelial growth factor (VEGF) is elevated in cystic fibrosis (CF) patients and declines with therapy for pulmonary exacerbation. We hypothesized that VEGF is elevated early in the course of CF and is associated with markers of tissue hypoxia. A prospective, single-visit evaluation of thirty stable infants and children with CF was performed. Serum was analyzed for VEGF and for other markers of tissue hypoxia (erythropoietin (EPO), insulin-like growth factor binding protein-1 (IGFBP-1)) and for inflammatory mediators (IL-1 beta, IL-6, IL-8, and tumor necrosis factor alpha (TNFα)) using Meso Scale multi-spot serum immunoassays. Measurements were correlated between assay groups; and with age in months and pulmonary function (FEV0.5 or FEV1). VEGF, EPO, TNFα and IL-8 were elevated compared to published normative values. VEGF levels were not significantly correlated with any inflammatory mediators. However, VEGF correlated with EPO (r=0.505; P<0.05). There was no correlation between lung function and markers of inflammation or tissue hypoxia. VEGF is elevated in young, stable infants and children suggesting angiogenesis as a contributing mechanism for early lung disease in CF. VEGF elevation does not show significant correlation with inflammatory mediators known to be increased in CF, but is significantly correlated with EPO levels. We propose that VEGF elevation and angiogenesis contribute to early lung disease and may result from a direct tissue hypoxia pathway in CF.
Collapse
Affiliation(s)
- Kimberly Danieli Watts
- The Division of Pulmonary Medicine, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, IL 60614, USA.
| | | |
Collapse
|