1
|
Merigo F, Lagni A, Boschi F, Bernardi P, Conti A, Plebani R, Romano M, Sorio C, Lotti V, Sbarbati A. Loss of CFTR Reverses Senescence Hallmarks in SARS-CoV-2 Infected Bronchial Epithelial Cells. Int J Mol Sci 2024; 25:6185. [PMID: 38892373 PMCID: PMC11172982 DOI: 10.3390/ijms25116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
SARS-CoV-2 infection has been recently shown to induce cellular senescence in vivo. A senescence-like phenotype has been reported in cystic fibrosis (CF) cellular models. Since the previously published data highlighted a low impact of SARS-CoV-2 on CFTR-defective cells, here we aimed to investigate the senescence hallmarks in SARS-CoV-2 infection in the context of a loss of CFTR expression/function. We infected WT and CFTR KO 16HBE14o-cells with SARS-CoV-2 and analyzed both the p21 and Ki67 expression using immunohistochemistry and viral and p21 gene expression using real-time PCR. Prior to SARS-CoV-2 infection, CFTR KO cells displayed a higher p21 and lower Ki67 expression than WT cells. We detected lipid accumulation in CFTR KO cells, identified as lipolysosomes and residual bodies at the subcellular/ultrastructure level. After SARS-CoV-2 infection, the situation reversed, with low p21 and high Ki67 expression, as well as reduced viral gene expression in CFTR KO cells. Thus, the activation of cellular senescence pathways in CFTR-defective cells was reversed by SARS-CoV-2 infection while they were activated in CFTR WT cells. These data uncover a different response of CF and non-CF bronchial epithelial cell models to SARS-CoV-2 infection and contribute to uncovering the molecular mechanisms behind the reduced clinical impact of COVID-19 in CF patients.
Collapse
Affiliation(s)
- Flavia Merigo
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.C.); (A.S.)
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy;
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Paolo Bernardi
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.C.); (A.S.)
| | - Anita Conti
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.C.); (A.S.)
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (R.P.); (M.R.)
| | - Mario Romano
- Laboratory of Molecular Medicine, Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (R.P.); (M.R.)
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy;
| | - Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy;
| | - Andrea Sbarbati
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.C.); (A.S.)
| |
Collapse
|
2
|
Ren J, Deng G, Li R, Jin X, Liu J, Li J, Gao Y, Zhang J, Wang X, Wang G. Possible pharmacological targets and mechanisms of sivelestat in protecting acute lung injury. Comput Biol Med 2024; 170:108080. [PMID: 38306776 DOI: 10.1016/j.compbiomed.2024.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a life-threatening syndrome induced by various diseases, including COVID-19. In the progression of ALI/ARDS, activated neutrophils play a central role by releasing various inflammatory mediators, including elastase. Sivelestat is a selective and competitive inhibitor of neutrophil elastase. Although its protective effects on attenuating ALI/ARDS have been confirmed in several models of lung injury, clinical trials have presented inconsistent results on its therapeutic efficacy. Therefore, in this report, we used a network pharmacology approach coupled with animal experimental validation to unravel the concrete therapeutic targets and biological mechanisms of sivelestat in treating ALI/ARDS. In bioinformatic analyses, we found 118 targets of sivelestat against ALI/ARDS, and identified six hub genes essential for sivelestat treatment of ALI/ARDS, namely ERBB2, GRB2, PTK2, PTPN11, ESR1, and CCND1. We also found that sivelestat targeted several genes expressed in human lung microvascular endothelial cells after lipopolysaccharide (LPS) treatment at 4 h (ICAM-1, PTGS2, RND1, BCL2A1, TNF, CA2, and ADORA2A), 8 h (ICAM-1, PTGS2, RND1, BCL2A1, MMP1, BDKRB1 and SLC40A1), and 24 h (ICAM-1). Further animal experiments showed that sivelestat was able to attenuate LPS-induced ALI by inhibiting the overexpression of ICAM-1, VCAM-1, and PTGS2 and increasing the phosphorylation of PTK2. Taken together, the bioinformatic findings and experimentative data indicate that the therapeutic effects of sivelestat against ALI/ARDS mainly focus on the early stage of ALI/ARDS by pharmacological modulation of inflammatory reaction, vascular endothelial injury, and cell apoptosis-related molecules.
Collapse
Affiliation(s)
- Jiajia Ren
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guorong Deng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuting Jin
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jueheng Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiamei Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaochuang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China.
| |
Collapse
|
3
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
4
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
5
|
Hudock KM, Collins MS, Imbrogno MA, Kramer EL, Brewington JJ, Ziady A, Zhang N, Snowball J, Xu Y, Carey BC, Horio Y, O’Grady SM, Kopras EJ, Meeker J, Morgan H, Ostmann AJ, Skala E, Siefert ME, Na CL, Davidson CR, Gollomp K, Mangalmurti N, Trapnell BC, Clancy JP. Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function. Front Immunol 2023; 13:1023553. [PMID: 36703990 PMCID: PMC9872031 DOI: 10.3389/fimmu.2022.1023553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Neutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NETs disrupt airway epithelial barrier function by decreasing transepithelial electrical resistance and increasing paracellular flux, partially by NET-induced airway cell apoptosis. NETs selectively impact the expression of tight junction genes claudins 4, 8 and 11. Bronchial epithelia exposed to NETs demonstrate visible gaps in E-cadherin staining, a decrease in full-length E-cadherin protein and the appearance of cleaved E-cadherin peptides. Pretreatment of NETs with alpha-1 antitrypsin (A1AT) inhibits NET serine protease activity, limits E-cadherin cleavage, decreases bronchial cell apoptosis and preserves epithelial integrity. In conclusion, NETs disrupt human airway epithelial barrier function through bronchial cell death and degradation of E-cadherin, which are limited by exogenous A1AT.
Collapse
Affiliation(s)
- K. M. Hudock
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: K. M. Hudock,
| | - M. S. Collins
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - M. A. Imbrogno
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - E. L. Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - J. J. Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - A. Ziady
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - N. Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - J. Snowball
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Y. Xu
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Divisions of Biomedical Informatics, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - B. C. Carey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Y. Horio
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto-shi, Kumamoto, Japan
| | - S. M. O’Grady
- Departments of Animal Science, University of Minnesota, St. Paul, MN, United States,Department of Integrative Biology and Physiology, University of Minnesota, St. Paul, MN, United States
| | - E. J. Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - J. Meeker
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - H. Morgan
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - A. J. Ostmann
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - E. Skala
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - M. E. Siefert
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - C. L. Na
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - C. R. Davidson
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - K. Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - N. Mangalmurti
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States,Pennsylvania Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - B. C. Trapnell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - J. P. Clancy
- Cystic Fibrosis Foundation, Bethesda, MD, United States
| |
Collapse
|
6
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. Proteolysis and Deficiency of α1-Proteinase Inhibitor in SARS-CoV-2 Infection. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2022; 16:271-291. [PMID: 36407837 PMCID: PMC9668222 DOI: 10.1134/s1990750822040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
The SARS-CoV-2 pandemic had stimulated the emergence of numerous publications on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), especially when it was found that the regions of high mortality corresponded to the regions with deficient α1-PI alleles. By analogy with the data obtained in the last century, when the first cause of the genetic deficiency of α1-antitrypsin leading to elastase activation in pulmonary emphysema was proven, it can be supposed that proteolysis hyperactivation in COVID-19 may be associated with the impaired functions of α1-PI. The purpose of this review was to systematize the scientific data and critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a therapeutic target. This review describes the proteinase-dependent stages of viral infection: the reception and penetration of the virus into a cell and the imbalance of the plasma aldosterone-angiotensin-renin, kinin, and blood clotting systems. The role of ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases in the virus tropism, the activation of proteolytic cascades in blood, and the COVID-19-dependent complications is considered. The scientific reports on α1-PI involvement in the SARS-CoV-2-induced inflammation, the relationship with the severity of infection and comorbidities were analyzed. Particular attention is paid to the acquired α1-PI deficiency in assessing the state of patients with proteolysis overactivation and chronic non-inflammatory diseases, which are accompanied by the risk factors for comorbidity progression and the long-term consequences of COVID-19. Essential data on the search and application of protease inhibitor drugs in the therapy for bronchopulmonary and cardiovascular pathologies were analyzed. The evidence of antiviral, anti-inflammatory, anticoagulant, and anti-apoptotic effects of α1-PI, as well as the prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders, are presented.
Collapse
Affiliation(s)
| | - L. V. Spirina
- Siberian State Medical University, 634050 Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| | - D. A. Dyakov
- Siberian State Medical University, 634050 Tomsk, Russia
| | | |
Collapse
|
7
|
Sun W, Zhang Y, Ren X, Cui L, Wang J, Ni X. In Silico Studies, Biological Activities, and Anti-human Pancreatic Cancer Potential of 6-Hydroxy-4-methylcoumarin and 2,5-Dihydroxyacetophenone as Flavonoid Compounds. J Oleo Sci 2022; 71:853-861. [PMID: 35661067 DOI: 10.5650/jos.ess22021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coronavirus is one of the RNA viruses with the largest genome; It is a group of viruses known to infect humans very little until the end of the 20th century, generally causing infection in animals (bird, cat, pig, mouse, horse, bat). It is the causative agent of 15-30% of seasonal lower and upper respiratory tract infections, and may rarely cause gastrointestinal and nervous system infections. We have obtained results for the collagenase and elastase enzymes were at the micromolar level. We obtained IC50 results for the collagenase enzyme for 6-hydroxy-4-methylcoumarin 257.22 ± 34.07 µM and for 2,5-dihydroxyacetophenone 74.46 ± 8.61 µM. 6-Hydroxy-4-methylcoumarin and 2,5-dihydroxyacetophenone were considered good inhibitors for elastase enzyme. Additionally, these compounds significantly decreased human pancreatic cancer cell viability from low doses. In addition, 100 µM dose of all compounds caused significant reductions in human pancreatic cancer cell viability. IC50 results (IC50: 10-50 µM) were better than control. In the otherwords, the docking results suggest that both compounds tend to have lower efficacy on the main protease targets of SARS-CoV-2 than standard compounds, (NL-1 and NL-2). The reason for this is that the standard compounds interact strongly and more frequently with the target proteins, and the surface areas they cover on the active surface are much larger than the small ligand molecules studied.
Collapse
Affiliation(s)
- Wei Sun
- Cadre Health Care Department/Tumor Molecular Targeted Therapy Ward, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University
| | - Yong Zhang
- Department of Ultrasound, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University
| | - Xiaolu Ren
- Department of radiation oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University
| | - Lingzhi Cui
- Cadre Health Care Department/Tumor Molecular Targeted Therapy Ward, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University
| | - Jianguo Wang
- Cadre Health Care Department/Tumor Molecular Targeted Therapy Ward, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University
| | - Xiaohong Ni
- Department of Neurology, Huanggang Central Hospital
| |
Collapse
|
8
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. [Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:157-176. [PMID: 35717581 DOI: 10.18097/pbmc20226803157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 pandemia had stimulated the numerous publications emergence on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), primarily when it was found that high mortality in some regions corresponded to the regions with deficient α1-PI alleles. By analogy with the last century's data, when the root cause of the α1-antitrypsin, genetic deficiency leading to the elastase activation in pulmonary emphysema, was proven. It is evident that proteolysis hyperactivation in COVID-19 may be associated with α1-PI impaired functions. The purpose of this review is to systematize scientific data, critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a target in therapy. This review describes the proteinase-dependent stages of a viral infection: the reception and virus penetration into the cell, the plasma aldosterone-angiotensin-renin, kinins, blood clotting systems imbalance. The ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases role in the virus tropism, proteolytic cascades activation in blood, and the COVID-19-dependent complications is presented. The analysis of scientific reports on the α1-PI implementation in the SARS-CoV-2-induced inflammation, the links with the infection severity, and comorbidities were carried out. Particular attention is paid to the acquired α1-PI deficiency in assessing the patients with the proteolysis overactivation and chronic non-inflammatory diseases that are accompanied by the risk factors for the comorbidities progression, and the long-term consequences of COVID-19 initiation. Analyzed data on the search and proteases inhibitory drugs usage in the bronchopulmonary cardiovascular pathologies therapy are essential. It becomes evident the antiviral, anti-inflammatory, anticoagulant, anti-apoptotic effect of α1-PI. The prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders are presented.
Collapse
Affiliation(s)
| | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - D A Dyakov
- Siberian State Medical University, Tomsk, Russia
| | - N V Masunova
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
9
|
Walsh SW, Strauss JF. Pregnancy-specific expression of protease-activated receptor 1: a therapeutic target for prevention and treatment of preeclampsia? Am J Obstet Gynecol 2022; 226:S945-S953. [PMID: 35177224 PMCID: PMC8868505 DOI: 10.1016/j.ajog.2021.11.1367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Neutrophils extensively infiltrate maternal blood vessels in preeclampsia. This could explain why multiple organs are affected in this enigmatic disorder. Lipid peroxides produced by the placenta are probably the first factors that activate neutrophils as they circulate through the intervillous space, but then a second factor specific to pregnancy comes into play, protease-activated receptor 1. The only time neutrophils express protease-activated receptor 1 is during pregnancy. This means that neutrophils can be activated by a mechanism specific to pregnancy, that is, by proteases. Two proteases that are elevated in preeclampsia and activate protease-activated receptor 1 are matrix metalloproteinase-1 and neutrophil elastase. There is an 8-fold increase in vascular protease-activated receptor 1 expression in women with preeclampsia, and protease-activated receptor 1 is also expressed on the placenta, a pregnancy-specific tissue. The question arises if the pregnancy-specific expression of protease-activated receptor 1 is essential to the pathophysiology of preeclampsia. Protease activation of protease-activated receptor 1 in neutrophils of women with normal pregnancies causes activation of RhoA kinase. RhoA kinase phosphorylates nuclear factor-kappa B causing its translocation from the cytosol into the nucleus, increasing the expression of inflammatory genes. This signaling pathway is blocked by inhibition of either protease-activated receptor 1 or RhoA kinase activity. In contrast, neutrophils obtained from preeclamptic women are already activated, with nuclear factor-kappa B localized in the nucleus. Surprisingly, inhibition of either protease-activated receptor 1 or RhoA kinase results in an efflux of nuclear factor-kappa B from the nucleus back into the cytoplasm. Cyclooxygenase-2 seems to be a downstream mediator between protease-activated receptor 1 and RhoA kinase because aspirin inhibits the nuclear translocation of nuclear factor-kappa B and inhibits neutrophil production of superoxide, thromboxane, and tumor necrosis factor alpha. Currently, low-dose aspirin is the standard of care to prevent preeclampsia in high-risk women. Generally, the actions of low-dose aspirin are attributed to selective inhibition of maternal platelet thromboxane production. However, a recent study showed that beneficial effects extend to the placenta, where aspirin corrected the imbalance of increased thromboxane and reduced prostacyclin and oxidative stress. Selective inhibition of placental thromboxane is possible because thromboxane and prostacyclin are compartmentalized. Thromboxane is produced by trophoblast cells and prostacyclin by endothelial cells, so as aspirin crosses the placenta, its levels decline, sparing prostacyclin. Placental oxidative stress is attenuated because cyclooxygenase-2 inhibition decreases the generation of reactive oxygen species to decrease the formation of isoprostanes. The clinical manifestations of preeclampsia can be explained by protease activation of protease-activated receptor 1 in different tissues. In neutrophils, it can account for their activation and inflammatory response. In vascular tissue, protease-activated receptor 1 activation leads to enhanced vascular reactivity to angiotensin II to cause hypertension. In the placenta, it leads to oxidative stress, increased soluble fms-like tyrosine kinase, and thromboxane production. Activation of protease-activated receptor 1 on endothelial cells causes contraction, leading to edema and proteinuria, and activation on platelets leads to coagulation abnormalities. As proteases that activate protease-activated receptor 1 are elevated in the circulation of women with preeclampsia, consideration should be given to the inhibition of protease-activated receptor 1 as a treatment. Recently, The Food and Drug Administration (FDA) approved a protease-activated receptor 1 inhibitor, creating an opportunity to test whether protease-activated receptor 1 inhibition can prevent and/or treat preeclampsia, but a standard dose of aspirin might be just as effective by blocking its downstream actions.
Collapse
|
10
|
Chu SJ, Tang SE, Pao HP, Wu SY, Liao WI. Protease-Activated Receptor-1 Antagonist Protects Against Lung Ischemia/Reperfusion Injury. Front Pharmacol 2021; 12:752507. [PMID: 34658893 PMCID: PMC8514687 DOI: 10.3389/fphar.2021.752507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
Protease-activated receptor (PAR)-1 is a thrombin-activated receptor that plays an essential role in ischemia/reperfusion (IR)-induced acute inflammation. PAR-1 antagonists have been shown to alleviate injuries in various IR models. However, the effect of PAR-1 antagonists on IR-induced acute lung injury (ALI) has not yet been elucidated. This study aimed to investigate whether PAR-1 inhibition could attenuate lung IR injury. Lung IR was induced in an isolated perfused rat lung model. Male rats were treated with the specific PAR-1 antagonist SCH530348 (vorapaxar) or vehicle, followed by ischemia for 40 min and reperfusion for 60 min. To examine the role of PAR-1 and the mechanism of SCH530348 in lung IR injury, western blotting and immunohistochemical analysis of lung tissue were performed. In vitro, mouse lung epithelial cells (MLE-12) were treated with SCH530348 or vehicle and subjected to hypoxia-reoxygenation (HR). We found that SCH530348 decreased lung edema and neutrophil infiltration, attenuated thrombin production, reduced inflammatory factors, including cytokine-induced neutrophil chemoattractant-1, interleukin-6 and tumor necrosis factor-α, mitigated lung cell apoptosis, and downregulated the phosphoinositide 3-kinase (PI3K), nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in IR-injured lungs. In addition, SCH530348 prevented HR-induced NF-κB activation and inflammatory chemokine production in MLE12 cells. Our results demonstrate that SCH530348 exerts protective effects by blocking PAR-1 expression and modulating the downstream PI3K, NF-κB and MAPK pathways. These findings indicate that the PAR-1 antagonist protects against IR-induced ALI and is a potential therapeutic candidate for lung protection following IR injury.
Collapse
Affiliation(s)
- Shi-Jye Chu
- Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-En Tang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
12
|
Voynow JA, Shinbashi M. Neutrophil Elastase and Chronic Lung Disease. Biomolecules 2021; 11:biom11081065. [PMID: 34439732 PMCID: PMC8394930 DOI: 10.3390/biom11081065] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Neutrophil elastase (NE) is a major inflammatory protease released by neutrophils and is present in the airways of patients with cystic fibrosis (CF), chronic obstructive pulmonary disease, non-CF bronchiectasis, and bronchopulmonary dysplasia. Although NE facilitates leukocyte transmigration to the site of infection and is required for clearance of Gram-negative bacteria, it also activates inflammation when released into the airway milieu in chronic inflammatory airway diseases. NE exposure induces airway remodeling with increased mucin expression and secretion and impaired ciliary motility. NE interrupts epithelial repair by promoting cellular apoptosis and senescence and it activates inflammation directly by increasing cytokine expression and release, and indirectly by triggering extracellular trap release and exosome release, which magnify protease activity and inflammation in the airway. NE inhibits innate immune function by digesting opsonins and opsonin receptors, degrading innate immune proteins such as lactoferrin, and inhibiting macrophage phagocytosis. Importantly, NE-directed therapies have not yet been effective in preventing the pathologic sequelae of NE exposure, but new therapies are being developed that offer both direct antiprotease activity and multifunctional anti-inflammatory properties.
Collapse
Affiliation(s)
- Judith A. Voynow
- Division of Pediatric Pulmonology, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Meagan Shinbashi
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
13
|
Walsh SW, Strauss JF. The Road to Low-Dose Aspirin Therapy for the Prevention of Preeclampsia Began with the Placenta. Int J Mol Sci 2021; 22:6985. [PMID: 34209594 PMCID: PMC8268135 DOI: 10.3390/ijms22136985] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
The road to low-dose aspirin therapy for the prevention of preeclampsia began in the 1980s with the discovery that there was increased thromboxane and decreased prostacyclin production in placentas of preeclamptic women. At the time, low-dose aspirin therapy was being used to prevent recurrent myocardial infarction and other thrombotic events based on its ability to selectively inhibit thromboxane synthesis without affecting prostacyclin synthesis. With the discovery that thromboxane was increased in preeclamptic women, it was reasonable to evaluate whether low-dose aspirin would be effective for preeclampsia prevention. The first clinical trials were very promising, but then two large multi-center trials dampened enthusiasm until meta-analysis studies showed aspirin was effective, but with caveats. Low-dose aspirin was most effective when started <16 weeks of gestation and at doses >100 mg/day. It was effective in reducing preterm preeclampsia, but not term preeclampsia, and patient compliance and patient weight were important variables. Despite the effectiveness of low-dose aspirin therapy in correcting the placental imbalance between thromboxane and prostacyclin and reducing oxidative stress, some aspirin-treated women still develop preeclampsia. Alterations in placental sphingolipids and hydroxyeicosatetraenoic acids not affected by aspirin, but with biologic actions that could cause preeclampsia, may explain treatment failures. Consideration should be given to aspirin's effect on neutrophils and pregnancy-specific expression of protease-activated receptor 1, as well as additional mechanisms of action to prevent preeclampsia.
Collapse
Affiliation(s)
- Scott W. Walsh
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
14
|
Sriram K, Insel PA. Proteinase-activated receptor 1: A target for repurposing in the treatment of COVID-19? Br J Pharmacol 2020; 177:4971-4974. [PMID: 32639031 PMCID: PMC7361899 DOI: 10.1111/bph.15194] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
In the search to rapidly identify effective therapies that will mitigate the morbidity and mortality of COVID‐19, attention has been directed towards the repurposing of existing drugs. Candidates for repurposing include drugs that target COVID‐19 pathobiology, including agents that alter angiotensin signalling. Recent data indicate that key findings in COVID‐19 patients include thrombosis and endotheliitis. Activation of proteinase‐activated receptor 1 (PAR1), in particular by the serine protease thrombin, is a critical element in platelet aggregation and coagulation. PAR1 activation also impacts on the actions of other cell types involved in COVID‐19 pathobiology, including endothelial cells, fibroblasts and pulmonary alveolar epithelial cells. Vorapaxar is an approved inhibitor of PAR1, used for treatment of patients with myocardial infarction or peripheral arterial disease. We discuss evidence for a possible beneficial role for vorapaxar in the treatment of COVID‐19 patients and other as‐yet non‐approved antagonists of PAR1 and proteinase‐activated receptor 4 (PAR4). Linked Articles This article is part of a themed issue on The Pharmacology of COVID‐19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Walsh SW, Nugent WH, Al Dulaimi M, Washington SL, Dacha P, Strauss JF. Proteases Activate Pregnancy Neutrophils by a Protease-Activated Receptor 1 Pathway: Epigenetic Implications for Preeclampsia. Reprod Sci 2020; 27:2115-2127. [PMID: 32542542 DOI: 10.1007/s43032-020-00232-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/04/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
We tested a novel hypothesis that elevated levels of proteases in the maternal circulation of preeclamptic women activate neutrophils due to their pregnancy-specific expression of protease-activated receptor 1 (PAR-1). Plasma was collected longitudinally from normal pregnant and preeclamptic women and analyzed for MMP-1 and neutrophil elastase. Neutrophils were isolated for culture and confocal microscopy. Omental fat was collected for immunohistochemistry. Circulating proteases were significantly elevated in preeclampsia. Confocal microscopy revealed that tet methylcytosine dioxygenase 2 (TET2), a DNA de-methylase, and p65 subunit of NF-κB were strongly localized to the nucleus of untreated neutrophils of preeclamptic women, but in untreated neutrophils of normal pregnant women they were restricted to the cytosol. Treatment of normal pregnancy neutrophils with proteases activated PAR-1, leading to activation of RhoA kinase (ROCK), which triggered translocation of TET2 and p65 from the cytosol into the nucleus, mimicking the nuclear localization in neutrophils of preeclamptic women. IL-8, an NF-κB-regulated gene, increased in association with TET2 and p65 nuclear localization. Co-treatment with inhibitors of PAR-1 or ROCK prevented nuclear translocation and IL-8 did not increase. Treatment of preeclamptic pregnancy neutrophils with inhibitors emptied the nucleus of TET2 and p65, mimicking the cytosolic localization of normal pregnancy neutrophils. Expression of PAR-1 and TET2 were markedly increased in omental fat vessels and neutrophils of preeclamptic women. We conclude that elevated levels of circulating proteases in preeclamptic women activate neutrophils due to their pregnancy-specific expression of PAR-1 and speculate that TET2 DNA de-methylation plays a role in the inflammatory response.
Collapse
Affiliation(s)
- Scott W Walsh
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0034, USA.
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0034, USA.
| | - William H Nugent
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0034, USA
| | - Marwah Al Dulaimi
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0034, USA
| | - Sonya L Washington
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0034, USA
| | - Phoebe Dacha
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0034, USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0034, USA
| |
Collapse
|
16
|
Boo HJ, Park SJ, Noh M, Min HY, Jeong LS, Lee HY. LJ-2698, an Adenosine A3 Receptor Antagonist, Alleviates Elastase-Induced Pulmonary Emphysema in Mice. Biomol Ther (Seoul) 2020; 28:250-258. [PMID: 32062956 PMCID: PMC7216744 DOI: 10.4062/biomolther.2019.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Emphysema, a major component of chronic obstructive pulmonary disease (COPD), is a leading cause of human death worldwide. The progressive deterioration of lung function that occurs in the disease is caused by chronic inflammation of the airway and destruction of the lung parenchyma. Despite the main impact of inflammation on the pathogenesis of emphysema, current therapeutic regimens mainly offer symptomatic relief and preservation of lung function with little therapeutic impact. In the present study, we aimed to discover novel therapeutics that suppress the pathogenesis of emphysema. Here, we show that LJ-2698, a novel and highly selective antagonist of the adenosine A3 receptor, a G protein-coupled receptor involved in various inflammatory diseases, significantly reversed the elastase-induced destructive changes in murine lungs. We found that LJ-2698 significantly prevented elastase-induced airspace enlargement, resulting in restoration of pulmonary function without causing any obvious changes in body weight in mice. LJ-2698 was found to inhibit matrix metalloproteinase activity and pulmonary cell apoptosis in the murine lung. LJ-2698 treatment induced increases in anti-inflammatory cytokines in macrophages at doses that displayed no significant cytotoxicity in normal cell lines derived from various organs. Treatment with LJ-2698 significantly increased the number of anti-inflammatory M2 macrophages in the lungs. These results implicate the adenosine A3 receptor in the pathogenesis of emphysema. Our findings also demonstrate the potential of LJ-2698 as a novel therapeutic/preventive agent in suppressing disease development with limited toxicity.
Collapse
Affiliation(s)
- Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - So Jung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Myungkyung Noh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Young Min
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Walsh SW, Nugent WH, Alam SMK, Washington SL, Teves M, Jefferson KK, Strauss JF. Protease Amplification of the Inflammatory Response Induced by Commensal Bacteria: Implications for Racial Disparity in Term and Preterm Birth. Reprod Sci 2020; 27:246-259. [PMID: 32046375 DOI: 10.1007/s43032-019-00011-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Decidual macrophages secrete proteases that activate protease-activated receptor 1 (PAR-1). We hypothesized that activation of the inflammatory response by bacteria is amplified by proteases, initiating labor. In addition, we hypothesized that commensal bacteria trigger an inflammatory response by activating NF-κB and TET methylcytosine dioxygenase 2 (TET2), a DNA de-methylase, via a protease amplified PAR-1, RhoA kinase (ROCK) pathway. To evaluate these hypotheses, we compared responses of mononuclear cells with Lactobacillus crispatus, prevalent in the vaginal microbiome of women of European ancestry, with L. iners and Fusobacterium nucleatum, which are more prevalent in vaginal samples collected from African-American women. Decidual tissue was collected at term not-in-labor (TNL), term labor (TL), spontaneous preterm labor (sPTL), and infected preterm labor (iPTL) and immunostained for PAR-1, TET2, and CD14. Mononuclear cells and THP-1 macrophage cells were treated with bacteria and elastase, a known activator of PAR-1. The inflammatory response was monitored by confocal microscopy of TET2 and the p65 subunit of NF-κB, as well as IL-8 production. Decidual staining for PAR-1, TET2, and CD14 increased TNL < TL < sPTL < iPTL. All treatments stimulated translocation of TET2 and p65 from the cytosol to the nucleus and increased IL-8, but L. iners and F. nucleatum caused more robust responses than L. crispatus. Inhibition of PAR-1 or ROCK prevented TET2 and p65 nuclear translocalization and increases in IL-8. Our findings demonstrate that proteases amplify the inflammatory response to commensal bacteria. The more robust response to bacteria prevalent in African-American women may contribute to racial disparities in preterm birth.
Collapse
Affiliation(s)
- Scott W Walsh
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, P.O. Box 980034, Richmond, VA, 23298-0034, USA. .,Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0551, USA.
| | - William H Nugent
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - S M Khorshed Alam
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Sonya L Washington
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Maria Teves
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Kimberly K Jefferson
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0678, USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| |
Collapse
|
18
|
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Knowledge of the pathophysiology of organ failure in sepsis is crucial for optimizing the management and treatment of patients and for the development of potential new therapies. In clinical practice, six major organ systems - the cardiovascular (including the microcirculation), respiratory, renal, neurological, haematological and hepatic systems - can be assessed and monitored, whereas others, such as the gut, are less accessible. Over the past 2 decades, considerable amounts of new data have helped improve our understanding of sepsis pathophysiology, including the regulation of inflammatory pathways and the role played by immune suppression during sepsis. The effects of impaired cellular function, including mitochondrial dysfunction and altered cell death mechanisms, on the development of organ dysfunction are also being unravelled. Insights have been gained into interactions between key organs (such as the kidneys and the gut) and organ-organ crosstalk during sepsis. The important role of the microcirculation in sepsis is increasingly apparent, and new techniques have been developed that make it possible to visualize the microcirculation at the bedside, although these techniques are only research tools at present.
Collapse
Affiliation(s)
- Christophe Lelubre
- Laboratoire de Médecine Expérimentale (ULB 222 Unit), Université Libre de Bruxelles, CHU de Charleroi, A. Vésale Hospital, Montigny-Le-Tilleul, Belgium.,Department of Internal Medicine, CHU Charleroi - Hôpital Civil Marie Curie, Lodelinsart, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
19
|
Abstract
Regulated cell death is a major mechanism to eliminate damaged, infected, or superfluous cells. Previously, apoptosis was thought to be the only regulated cell death mechanism; however, new modalities of caspase-independent regulated cell death have been identified, including necroptosis, pyroptosis, and autophagic cell death. As an understanding of the cellular mechanisms that mediate regulated cell death continues to grow, there is increasing evidence that these pathways are implicated in the pathogenesis of many pulmonary disorders. This review summarizes our understanding of regulated cell death as it pertains to the pathogenesis of chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Maor Sauler
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| | - Isabel S Bazan
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| | - Patty J Lee
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
20
|
Hou HH, Wang HC, Cheng SL, Chen YF, Lu KZ, Yu CJ. MMP-12 activates protease-activated receptor-1, upregulates placenta growth factor, and leads to pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol 2018; 315:L432-L442. [PMID: 29722565 DOI: 10.1152/ajplung.00216.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Because of the expansion of aging and smoking populations, chronic obstructive pulmonary disease (COPD) is predicted to be the third leading cause of death worldwide in 2030. Therefore, it is pertinent to develop effective therapy to improve management for COPD. Cigarette smoke-mediated protease-antiprotease imbalance is a major pathogenic mechanism for COPD and results in massive pulmonary infiltration of neutrophils and macrophages, releasing excessive neutrophil elastase (NE) and matrix metalloproteinases (MMPs). Our previous studies indicated that placenta growth factor (PGF) and PGF-triggered downstream signaling molecules mediate NE-induced lung epithelial cell apoptosis, which is a major pathogenic mechanism for pulmonary emphysema. However, the relationship between MMP-directed COPD and PGF remains elusive. We hypothesize that MMPs may upregulate PGF expression and be involved in MMP-mediated pathogenesis of COPD. In this study, we demonstrate that only MMP-12 can increase the expression of PGF by increasing early-growth response protein 1 (Egr-1) level through the activation of protease-activated receptor 1 (PAR-1). The PGF-mediated downstream signaling molecules drive caspase-3 and caspase-9-dependent apoptosis in bronchial epithelial cells. Both the upregulation of PGF by MMP-12 and PGF downstream signaling molecules with pulmonary apoptosis and emphysema were also demonstrated in animals. Given these findings, we suggest that both human COPD-associated elastases, NE, and MMP-12, upregulate PGF expression and promote the progression of emphysema and COPD.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital , Taiwan.,Department of Chemical Engineering and Materials Science, Yuan-Ze University , Taiwan
| | - Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin Branch , Taiwan
| | - Kai-Zen Lu
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| |
Collapse
|
21
|
Walsh SW, Nugent WH, Solotskaya AV, Anderson CD, Grider JR, Strauss JF. Matrix Metalloprotease-1 and Elastase Are Novel Uterotonic Agents Acting Through Protease-Activated Receptor 1. Reprod Sci 2017; 25:1058-1066. [PMID: 28954603 DOI: 10.1177/1933719117732162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) and neutrophil elastase are proteolytic enzymes involved in tissue remodeling, but a role for them as uterotonic agents has not been considered. However, both these proteases activate protease-activated receptor 1 (PAR-1) that mediates thrombin-induced contractions. Matrix metalloproteinase-1 and elastase are products of neutrophils that infiltrate intrauterine tissues at the time of labor, so we tested the hypothesis that these proteases might be novel uterotonic agents acting via PAR-1. Decidual tissue was collected from fetal membranes of term not-in-labor (TNL), term labor (TL), and preterm labor (PTL) women and analyzed for gene and protein expression of MMP-1 and neutrophil elastase. Contractile effects of MMP-1 and elastase were tested with uterine strips of day 19 and 20 gestation rats. Expression of MMP-1 and neutrophil elastase was increased in TL and PTL as compared to TNL. Expression of both the pro- and active enzymes of MMP-1 increased progressively from TNL to TL to PTL. Tumor necrosis factor-α, a neutrophil product, increased MMP-1 in decidual and myometrial cells. Both MMP-1 and elastase stimulated strong contractions of myometrial strips, which were prevented by inhibition of PAR-1 and inhibition of inositol trisphosphate receptor or calcium channel blockade. Indomethacin did not prevent protease-induced contractions. These data suggest that MMP-1 and neutrophil elastase may be important but heretofore unrecognized players in stimulating uterine contractions at the time of labor, and they may explain why indomethacin delays, but does not prevent, PTL because indomethacin inhibits the prostaglandin component but not the protease component of labor.
Collapse
Affiliation(s)
- Scott W Walsh
- 1 Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,2 Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William H Nugent
- 1 Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Anna V Solotskaya
- 1 Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles D Anderson
- 2 Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Grider
- 2 Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jerome F Strauss
- 1 Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
22
|
Grechowa I, Horke S, Wallrath A, Vahl C, Dorweiler B. Human neutrophil elastase induces endothelial cell apoptosis by activating the PERK‐CHOP branch of the unfolded protein response. FASEB J 2017; 31:3868-3881. [DOI: 10.1096/fj.201700012r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Irina Grechowa
- Division of Vascular SurgeryDepartment of Cardiothoracic and Vascular SurgeryUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
- Institute of PharmacologyUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| | - Sven Horke
- Institute of PharmacologyUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
- Center for Thrombosis and HemostasisUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| | - Anja Wallrath
- Division of Vascular SurgeryDepartment of Cardiothoracic and Vascular SurgeryUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| | - Christian‐Friedrich Vahl
- Division of Vascular SurgeryDepartment of Cardiothoracic and Vascular SurgeryUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| | - Bernhard Dorweiler
- Division of Vascular SurgeryDepartment of Cardiothoracic and Vascular SurgeryUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| |
Collapse
|
23
|
Marcos-López M, Espinosa Ruiz C, Rodger HD, O'Connor I, MacCarthy E, Esteban MÁ. Local and systemic humoral immune response in farmed Atlantic salmon (Salmo salar L.) under a natural amoebic gill disease outbreak. FISH & SHELLFISH IMMUNOLOGY 2017; 66:207-216. [PMID: 28501445 DOI: 10.1016/j.fsi.2017.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Amoebic gill disease (AGD), caused by the protozoan parasite Neoparamoeba perurans, is one of the most significant infectious diseases for Atlantic salmon (Salmo salar L.) mariculture. The present study investigated the humoral immune response (both local in gill mucus and systemic in serum) of farmed Atlantic salmon naturally infected with N. perurans in commercial sea pens, at two different stages of the disease and after freshwater treatment. Parameters analysed included activity of immune related enzymes (i.e. lysozyme, peroxidase, protease, anti-protease, esterase, alkaline phosphatase), IgM levels, and the terminal carbohydrate profile in the gill mucus. Overall, greater variations between groups were noted in the immune parameters determined in gill mucus than the equivalent in the serum. In gill mucus, IgM levels and peroxidase, lysozyme, esterase and protease activities were decreased in fish showing longer exposure time to the infection and higher disease severity, then showed a sequential increase after treatment. Results obtained highlight the capacity of gills to elicit a local response to the infection, indicate an impaired immune response at the later stages of the disease, and show partial reestablishment of the host immune status after freshwater treatment. In addition to providing data on the humoral response to AGD, this study increases knowledge on gill mucosal humoral immunity, since some of the parameters were analysed for the first time in gill mucus.
Collapse
Affiliation(s)
- Mar Marcos-López
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co. Galway, Ireland; FishVet Group Ireland, Unit 7b Oranmore Business Park, Oranmore, Co. Galway, Ireland.
| | - Cristóbal Espinosa Ruiz
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Hamish D Rodger
- FishVet Group Ireland, Unit 7b Oranmore Business Park, Oranmore, Co. Galway, Ireland
| | - Ian O'Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co. Galway, Ireland
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co. Galway, Ireland
| | - M Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
24
|
Dong D, Zhou NN, Liu RX, Xiong JW, Pan H, Sun SQ, Ma L, Wang R. Sarsasapogenin-AA13 inhibits LPS-induced inflammatory responses in macrophage cells in vitro and relieves dimethylbenzene-induced ear edema in mice. Acta Pharmacol Sin 2017; 38:699-709. [PMID: 28239159 DOI: 10.1038/aps.2016.180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Sarsasapogenin-AA13 (AA13) is a novel synthetic derivative of sarsasapogenin extracted from the Chinese herb Rhizoma Anemarrhenae. In this study we investigated the effects of AA13 on lipopolysaccharide (LPS)-induced production of inflammatory factors in macrophage cells and the anti-inflammatory activity of AA13 in an inflammatory model of dimethylbenzene-induced ear edema. Macrophage cells (RAW264.7 cells and mouse peritoneal macrophages) were exposed to LPS (1 μg/mL); pretreatment with AA13 (5-20 μmol/L) dose-dependently inhibited LPS-induced production of NO, TNF-α and PGE2, and LPS-stimulated expression levels of COX-2 and iNOS. Furthermore, pretreatment with AA13 dose-dependently suppressed LPS-stimulated phosphorylation of p38 and JNK, but had no effect on ERK in RAW264.7 cells. Moreover, pretreatment with AA13 inhibited LPS-induced activation of the nuclear factor (NF)-κB in RAW264.7 cells. The in vivo anti-inflammatory activity of AA13 was demonstrated in a mouse inflammatory model: pre-treatment with either AA13 (20 mg·kg-1·d-1, ig) or a positive control antifani (10 mg·kg-1·d-1, ig) for 3 d significantly relieved dimethylbenzene-induced ear edema. Our results demonstrate that AA13 effectively inhibit LPS-induced inflammatory responses in macrophage cells in vitro and relieve dimethylbenzene-induced ear edema in vivo.
Collapse
|
25
|
Garratt LW, Sutanto EN, Ling KM, Looi K, Iosifidis T, Martinovich KM, Shaw NC, Buckley AG, Kicic-Starcevich E, Lannigan FJ, Knight DA, Stick SM, Kicic A. Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase. Am J Respir Cell Mol Biol 2016. [PMID: 26221769 DOI: 10.1165/rcmb.2015-0074oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.
Collapse
Affiliation(s)
- Luke W Garratt
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute
| | - Erika N Sutanto
- 2 Telethon Kids Institute.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | | | - Kevin Looi
- 1 School of Paediatrics and Child Health
| | - Thomas Iosifidis
- 1 School of Paediatrics and Child Health.,4 Centre for Cell Therapy and Regenerative Medicine, and
| | | | | | - Alysia G Buckley
- 2 Telethon Kids Institute.,5 Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Elizabeth Kicic-Starcevich
- 2 Telethon Kids Institute.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Francis J Lannigan
- 1 School of Paediatrics and Child Health.,6 School of Medicine, Notre Dame University, Fremantle, Perth, Western Australia, Australia
| | - Darryl A Knight
- 7 School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,8 Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,9 Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen M Stick
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute.,4 Centre for Cell Therapy and Regenerative Medicine, and.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Anthony Kicic
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute.,4 Centre for Cell Therapy and Regenerative Medicine, and.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,10 Department of Respiratory Medicine, Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia; and.,11 Murdoch Childrens Research Institute, Parkville, Melbourne, Victoria, Australia
| | | |
Collapse
|
26
|
The role of neutrophils in inflammation resolution. Semin Immunol 2016; 28:137-45. [DOI: 10.1016/j.smim.2016.03.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/29/2023]
|
27
|
Jiang Y, Yu L, Wang MH. N-trans-feruloyltyramine inhibits LPS-induced NO and PGE2 production in RAW 264.7 macrophages: Involvement of AP-1 and MAP kinase signalling pathways. Chem Biol Interact 2015; 235:56-62. [DOI: 10.1016/j.cbi.2015.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/09/2015] [Accepted: 03/27/2015] [Indexed: 12/31/2022]
|
28
|
Hou HH, Cheng SL, Chung KP, Wei SC, Tsao PN, Lu HH, Wang HC, Yu CJ. PlGF mediates neutrophil elastase-induced airway epithelial cell apoptosis and emphysema. Respir Res 2014; 15:106. [PMID: 25186164 PMCID: PMC4267747 DOI: 10.1186/s12931-014-0106-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/21/2014] [Indexed: 11/25/2022] Open
Abstract
Background Chronic pulmonary obstructive disease (COPD) has become the fourth leading cause of death worldwide. Cigarette smoking induces neutrophil elastase (NE) and contributes to COPD, but the detailed mechanisms involved are not fully established. In an animal model of pulmonary emphysema, there are increased expressions of placenta growth factor (PlGF) and lung epithelial (LE) cell apoptosis. This study hypothesized that excessive NE may up-regulate PlGF and that PlGF-induced LE apoptosis mediates the pathogenesis of pulmonary emphysema. Methods Human bronchial epithelial cells, BEAS-2B, and primary mouse type II alveolar epithelial cells were treated with NE. The PlGF promoter activity was examined by luciferase activity assay, while PlGF expression and secretion were evaluated by RT-PCR, Western blotting, and ELISA. Both cell lines were treated with PlGF to evaluate its effects and the downstream signaling pathways leading to LE cell apoptosis. PlGF knockout and wild-type mice were instilled with NE to determine the roles of PlGF and its downstream molecules in NE-promoted mice pulmonary apoptosis and emphysema phenotype. Results The transcriptional factor, early growth response gene-1, was involved in the NE-promoted PlGF promoter activity, and the expression and secretion of PlGF mRNA and protein in LE cells. PlGF-induced LE cell apoptosis and NE-induced mice pulmonary apoptosis and emphysema were mediated by the downstream c-Jun N-terminal kinase (JNK) and protein kinase C (PKC)δ signaling pathways. Conclusion The NE-PlGF-JNK/PKCδ pathway contributes to the pathogenesis of LE cell apoptosis and emphysema. PlGF and its downstream signaling molecules may be potential therapeutic targets for COPD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0106-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Departments of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan.
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan. .,Department of Chemical Engineering and Materials Science, Yuan-Ze University, Taoyuan, Taiwan.
| | - Kuei-Pin Chung
- Departments of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| | - Shu-Chen Wei
- Departments of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| | - Po-Nien Tsao
- Departments of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| | - Hsuan-Hsuan Lu
- Departments of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan.
| | - Hao-Chien Wang
- Departments of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan.
| | - Chong-Jen Yu
- Departments of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan.
| |
Collapse
|
29
|
Atanelishvili I, Liang J, Akter T, Spyropoulos DD, Silver RM, Bogatkevich GS. Thrombin increases lung fibroblast survival while promoting alveolar epithelial cell apoptosis via the endoplasmic reticulum stress marker, CCAAT enhancer-binding homologous protein. Am J Respir Cell Mol Biol 2014; 50:893-902. [PMID: 24279877 DOI: 10.1165/rcmb.2013-0317oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Apoptosis of alveolar epithelial cells (AECs) and survival of lung fibroblasts are critical events in the pathogenesis of pulmonary fibrosis; however, mechanisms underlying the apoptosis of AECs and the resistance of lung fibroblasts to apoptosis remain obscure. Herein, we demonstrate that the fate of these two cell types depends on the expression of CCAAT enhancer-binding homologous protein (CHOP). We observed that thrombin, which is overexpressed in scleroderma (SSc; systemic sclerosis) and other interstitial lung diseases (ILDs), increases the expression of CHOP in primary AECs and in A549 cells via an Ets1-dependent pathway. In addition, thrombin activates caspase-3 in AECs and induces apoptosis of these cells in a CHOP-dependent manner. In contrast, thrombin decreases endoplasmic reticulum stress-induced CHOP in lung fibroblasts through Myc-dependent mechanisms and protects such cells from apoptosis. Furthermore, when lung fibroblasts are transfected with recombinant CHOP, they then undergo apoptosis, even in the presence of thrombin, suggesting that CHOP signaling pathways are downstream of thrombin. In accordance with the differential effects of thrombin on AECs and lung fibroblasts, we observed strong expression of CHOP in AECs in fibrotic lung tissue isolated from patients with SSc-associated ILD (SSc-ILD), but not in lung myofibroblasts nor in normal lung tissue. Expression of CHOP in SSc lung is accompanied by positive staining for the thrombin receptor, protease-activated receptor-1, and for terminal deoxynucleotidyl transferase dUTP nick end labeling, suggesting roles for both thrombin and CHOP in AEC apoptosis in SSc-ILD. We conclude that regulation of CHOP by thrombin directs AECs toward apoptosis while promoting survival of lung fibroblasts, ultimately contributing to the persistent fibroproliferation seen in SSc-ILD and other fibrosing lung diseases.
Collapse
|
30
|
Hou HH, Cheng SL, Chung KP, Kuo MYP, Yeh CC, Chang BE, Lu HH, Wang HC, Yu CJ. Elastase induces lung epithelial cell autophagy through placental growth factor: a new insight of emphysema pathogenesis. Autophagy 2014; 10:1509-21. [PMID: 24988221 DOI: 10.4161/auto.29190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Department of Internal Medicine; National Taiwan University Hospital; Taiwan; Department of Internal Medicine; College of Medicine; National Taiwan University; Taiwan
| | - Shih-Lung Cheng
- Department of Internal Medicine; Far Eastern Memorial Hospital; Taiwan; Department of Chemical Engineering and Materials Science; Yuan-Ze University; Taiwan
| | - Kuei-Pin Chung
- Department of Laboratory Medicine; National Taiwan University Hospital; Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taiwan; Department of Dentistry; National Taiwan University Hospital; National Taiwan University; Taiwan
| | - Cheng-Chang Yeh
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taiwan; Department of Dentistry; National Taiwan University Hospital; National Taiwan University; Taiwan
| | - Bei-En Chang
- Graduate Institute of Oral Biology; School of Dentistry; National Taiwan University; Taiwan
| | - Hsuan-Hsuan Lu
- Department of Internal Medicine; National Taiwan University Hospital; Taiwan; Department of Internal Medicine; College of Medicine; National Taiwan University; Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine; National Taiwan University Hospital; Taiwan; Department of Internal Medicine; College of Medicine; National Taiwan University; Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine; National Taiwan University Hospital; Taiwan; Department of Internal Medicine; College of Medicine; National Taiwan University; Taiwan
| |
Collapse
|
31
|
Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 2014; 29:19-36. [PMID: 24557875 DOI: 10.1007/s11011-013-9435-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) is classified by the World Health Organization as a disorder of the central nervous system. ME/cfs is an neuro-immune disorder accompanied by chronic low-grade inflammation, increased levels of oxidative and nitrosative stress (O&NS), O&NS-mediated damage to fatty acids, DNA and proteins, autoimmune reactions directed against neoantigens and brain disorders. Mitochondrial dysfunctions have been found in ME/cfs, e.g. lowered ATP production, impaired oxidative phosphorylation and mitochondrial damage. This paper reviews the pathways that may explain mitochondrial dysfunctions in ME/cfs. Increased levels of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-α, and elastase, and increased O&NS may inhibit mitochondrial respiration, decrease the activities of the electron transport chain and mitochondrial membrane potential, increase mitochondrial membrane permeability, interfere with ATP production and cause mitochondrial shutdown. The activated O&NS pathways may additionally lead to damage of mitochondrial DNA and membranes thus decreasing membrane fluidity. Lowered levels of antioxidants, zinc and coenzyme Q10, and ω3 polyunsaturated fatty acids in ME/cfs may further aggravate the activated immuno-inflammatory and O&NS pathways. Therefore, it may be concluded that immuno-inflammatory and O&NS pathways may play a role in the mitochondrial dysfunctions and consequently the bioenergetic abnormalities seen in patients with ME/cfs. Defects in ATP production and the electron transport complex, in turn, are associated with an elevated production of superoxide and hydrogen peroxide in mitochondria creating adaptive and synergistic damage. It is argued that mitochondrial dysfunctions, e.g. lowered ATP production, may play a role in the onset of ME/cfs symptoms, e.g. fatigue and post exertional malaise, and may explain in part the central metabolic abnormalities observed in ME/cfs, e.g. glucose hypometabolism and cerebral hypoperfusion.
Collapse
|
32
|
Hou HH, Cheng SL, Liu HT, Yang FZ, Wang HC, Yu CJ. Elastase induced lung epithelial cell apoptosis and emphysema through placenta growth factor. Cell Death Dis 2013; 4:e793. [PMID: 24008737 PMCID: PMC3789187 DOI: 10.1038/cddis.2013.329] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 01/22/2023]
Abstract
Chronic pulmonary obstructive disease (COPD) is the fourth leading cause of death worldwide, however, the pathogenic factors and mechanisms are not fully understood. Pulmonary emphysema is one of the major components of COPD and is thought to result from oxidative stress, chronic inflammation, protease–antiprotease imbalance and lung epithelial (LE) cell apoptosis. In our previous studies, COPD patients were noted to have higher levels of placenta growth factor (PlGF) in serum and bronchoalveolar lavage fluid than controls. In addition, transgenic mice overexpressing PlGF developed pulmonary emphysema and exposure to PlGF in LE cells induced apoptosis. Furthermore, intratracheal instillation of porcine pancreatic elastase (PPE) on to PlGF wild type mice induced emphysema, but not in PlGF knockout mice. Therefore, we hypothesized that PPE generates pulmonary emphysema through the upregulation of PlGF expression in LE cells. The elevation of PlGF then leads to LE cell apoptosis. In the present study, we investigated whether PPE induces PlGF expression, whether PlGF induces apoptosis and whether the downstream mechanisms of PlGF are related to LE cell apoptosis. We found that PPE increased PlGF secretion and expression both in vivo and in vitro. Moreover, PlGF-induced LE cell apoptosis and PPE-induced emphysema in the mice were mediated by c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways. Given these findings, we suggest that the increase in PlGF and PlGF-induced JNK and p38 MAPK pathways contribute to PPE-induced LE cell apoptosis and emphysema. Regulatory control of PlGF and agents against its downstream signals may be potential therapeutic targets for COPD.
Collapse
Affiliation(s)
- H H Hou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Cottrell GS. Roles of proteolysis in regulation of GPCR function. Br J Pharmacol 2013; 168:576-90. [PMID: 23043558 DOI: 10.1111/j.1476-5381.2012.02234.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/03/2012] [Accepted: 09/24/2012] [Indexed: 12/18/2022] Open
Abstract
The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects on biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors, or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating GPCRs. At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevent signalling. Conversely, cell-surface peptidases can also generate bioactive peptides, which directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signalling. Certain peptidases can signal directly to cells, by cleaving GPCR to initiate intracellular signalling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signalling and mediate down-regulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signalling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signalling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signalling in disease.
Collapse
Affiliation(s)
- G S Cottrell
- Reading School of Pharmacy, University of Reading, Reading, UK.
| |
Collapse
|
34
|
|
35
|
Salvador LA, Taori K, Biggs JS, Jakoncic J, Ostrov DA, Paul VJ, Luesch H. Potent elastase inhibitors from cyanobacteria: structural basis and mechanisms mediating cytoprotective and anti-inflammatory effects in bronchial epithelial cells. J Med Chem 2013; 56:1276-90. [PMID: 23350733 DOI: 10.1021/jm3017305] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We discovered new structural diversity to a prevalent, yet medicinally underappreciated, cyanobacterial protease inhibitor scaffold and undertook comprehensive protease profiling to reveal potent and selective elastase inhibition. Structure-activity relationship (SAR) studies and X-ray cocrystal structure analysis allowed a detailed assessment of critical and tunable structural elements. To realize the therapeutic potential of these cyclodepsipeptides, we probed the cellular effects of a novel and representative family member, symplostatin 5 (1), which attenuated the downstream cellular effects of elastase in an epithelial lung airway model system, alleviating clinical hallmarks of chronic pulmonary diseases such as cell death, cell detachment, and inflammation. This compound attenuated the effects of elastase on receptor activation, proteolytic processing of the adhesion protein ICAM-1, NF-κB activation, and transcriptomic changes, including the expression of pro-inflammatory cytokines IL1A, IL1B, and IL8. Compound 1 exhibited activity comparable to the clinically approved elastase inhibitor sivelestat in short-term assays and demonstrated superior sustained activity in longer-term assays.
Collapse
Affiliation(s)
- Lilibeth A Salvador
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Fischer BM, Wong JK, Degan S, Kummarapurugu AB, Zheng S, Haridass P, Voynow JA. Increased expression of senescence markers in cystic fibrosis airways. Am J Physiol Lung Cell Mol Physiol 2013; 304:L394-400. [PMID: 23316069 DOI: 10.1152/ajplung.00091.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF and control subjects expressed markers of senescence, including p16(INK4a) (p16), a cyclin-dependent kinase inhibitor, phospho-Histone H2A.X (γH2A.X), and phospho-checkpoint 2 kinase (phospho-Chk2), which are also DNA damage response markers. Compared with airway epithelium from control subjects, CF airway epithelium had increased levels of expression of all three senescence markers. We hypothesized that the high load of NE in the CF airway triggers epithelial senescence by upregulating expression of p16, which inhibits cyclin-dependent kinase 4 (CDK4). Normal human bronchial epithelial (NHBE) cells, cultured in air-liquid interface were treated with NE (0, 200, and 500 nM) to induce visible injury. Total cell lysates were collected and evaluated by Western analysis for p16 protein expression and CDK4 kinase activity. NE significantly increased p16 expression and decreased CDK4 kinase activity in NHBE cells. These results support the concept that NE triggers expression of senescence markers in CF airway epithelial cells.
Collapse
Affiliation(s)
- Bernard M Fischer
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Karli R, Alacam H, Duran L, Alici O, Kati C, Karli A, Guzel A. Analysis of the protective biochemical and pathologic effects of aminoguanidine on an experimental aspiration pneumonitis model induced by bile acids. Curr Ther Res Clin Exp 2012; 73:207-19. [PMID: 24653522 DOI: 10.1016/j.curtheres.2012.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gastroesophageal reflux (GER) is a common clinical pathology detected in childhood. Bile acids (BAs) are present in reflux and cause various pathologies in the esophagus, the larynx, and the lungs. OBJECTIVE We aimed to show if aminoguanidine (AG) contributes to the biochemical and histopathologic treatment of experimental aspiration pneumonitis induced by BAs. METHODS Twenty-eight female Sprague Dawley rats were used. There were 4 groups in the study: (1) group aspirated with 0.9% saline (n = 7), (2) group aspirated with 0.9% saline and treated with AG (n = 7), (3) group aspirated with a solution of 10 mg/kg taurocholic acid and 5 mg/kg taurochenodeoxycholate (n = 7), and (4) group aspirated with BA and treated with AG (n = 7). The saline and BA solutions were administered as 1 mL/kg intratracheally. The AG was administered intraperitoneally twice a day at a 150 mg/kg dose for 7 days. The different histopathologic and biochemical parameters were analyzed. RESULTS Clara cell protein 16 and malondialdehyde levels were found to be significantly higher in the BA group than in the group where saline was administered; however, they were significantly lower in the BA + AG group than in the BA group. The total superoxide dismutase activity decreased significantly in the BA group compared with the group where saline was administered. A significant increase in superoxide dismutase activity was observed in the BA + AG group when compared with the group where only BA was administered. When the group where BA was administered solely was compared with the group where saline was administered, peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar histiocytes, interstitial fibrosis, and granuloma were significantly higher in the BA group than in the saline group. When the BA + AG group was compared with the BA group, peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar histiocytes, interstitial fibrosis, and granuloma were found to be significantly lower. CONCLUSIONS Oxidant stress increases and antioxidant capacity decreases in pneumonitis induced by BAs. AG administration as an antioxidant helps in recovery, both biochemically and histopathologically. Consequently, AG seems to be an alternative that should be considered in a conservative approach to treating aspiration pneumonitis.
Collapse
Affiliation(s)
- Rifat Karli
- Department of Otorhinolaryngology, Ondokuz Mayis University, Samsun, Turkey
| | - Hasan Alacam
- Department of Medical Biochemistry, Ondokuz Mayis University, Samsun, Turkey
| | - Latif Duran
- Department of Emergency Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Omer Alici
- Department of Pathology, Samsun Education and Research Hospital, Samsun, Turkey
| | - Celal Kati
- Department of Otorhinolaryngology, Ondokuz Mayis University, Samsun, Turkey
| | - Arzu Karli
- Department of Pediatric Infection, Ondokuz Mayis University, Samsun, Turkey
| | - Ahmet Guzel
- Department of Pediatrics, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
38
|
de Oliveira-Santos J, Abreu Nunes V, Cruz-Silva I, Praxedes-Garcia P, Gozzo AJ, Rydlewski M, González YG, Nader HB, Araújo MDS. Glycosaminoglycans Modify Elastase Action In Vitro and Enhance Elastase-Induced Cell Death in Cultured Fibroblasts. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/973983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human neutrophil elastase (HNE) has been shown to be involved on death of different cell types, including epithelial lung cells, which is related to several pulmonary diseases. Since HNE activity may be influenced by extracellular matrix (ECM) molecules such as glycosaminoglycans (GAGs), and fibroblasts are the most common ECM-producing cells of lung connective tissue, the aim of this work was to verify if HNE can induce fibroblast death and to study the enzyme modulation by GAGs. HNE-like activity was mimicked by using human neutrophils conditioned medium (NCM). Heparan sulfate and chondroitin 6-sulfate reduce the enzyme activity and modify its secondary structure. NCM reduced cell viability, and this effect was higher in the presence of those GAGs. NCM also increased DNA fragmentation, suggesting the occurrence of apoptosis, but without influence of GAGs. These results can contribute to the understanding of HNE modulation in physio- and pathological processes where this enzyme is involved.
Collapse
Affiliation(s)
- José de Oliveira-Santos
- Departamento de Bioquímica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Viviane Abreu Nunes
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 03828-000 São Paulo, SP, Brazil
| | - Ilana Cruz-Silva
- Departamento de Bioquímica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | | | - Andrezza Justino Gozzo
- Departamento de Bioquímica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Mariana Rydlewski
- Departamento de Bioquímica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Yamile González González
- Centro de Estúdio de Proteínas, Facultad de Biología, Universidad de la Habana, Calle 25 No. 455 Vedado, Ciudad de La Habana, Cuba
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Mariana da Silva Araújo
- Departamento de Bioquímica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| |
Collapse
|
39
|
Alaçam H, Karlı R, Alıcı Ö, Avcı B, Güzel A, Kozan A, Mertoğlu C, Murat N, Şalış O, Güzel A, Şahin M. The effects of α-tocopherol on oxidative damage and serum levels of Clara cell protein 16 in aspiration pneumonitis induced by bile acids. Hum Exp Toxicol 2012; 32:53-61. [DOI: 10.1177/0960327112459531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our aim in this study is to examine the effects of α-tocopherol (AT) on rats with aspiration pneumonitis induced with bile acids (BAs). The animals were divided in to four groups, namely saline group ( n = 7), saline + AT group ( n = 7), BA group ( n = 7), and BA + AT group ( n = 7). Saline and BA groups aspirated intratracheally with 1 ml/kg saline and 1 ml/kg bile acids, respectively. AT was given at 20 mg/kg/day dosage for 7 days to the groups. AT group was given 20 mg/kg/day AT for 7 days. Malondialdehyde (MDA), Clara cell protein 16 (CC-16), catalase (CAT), superoxide dismutase (SOD), as well as peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar histiocytes, and necrosis were evaluated. The CAT activity of the BA group was significantly lower than the saline group. In the BA + AT group, there was a significant increase in SOD and CAT activities when compared with that of the BA group. The CC-16 and MDA contents in the BA group were significantly higher than in the saline group. The CC-16 and MDA levels of the BA + AT group were significantly lower than BA group. Histopathologic changes were seen in BA group, and there was a significant decrease in the BA + AT group. In conclusion, AT might be beneficial in the treatment of aspiration pneumonitis induced by BAs because AT decreased oxidative damage and resulted in a decrease in CC-16 levels.
Collapse
Affiliation(s)
- H Alaçam
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - R Karlı
- Department of Otorhinolaryngology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ö Alıcı
- Department of Pathology, Samsun Education and Research Hospital, Samsun, Turkey
| | - B Avcı
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - A Güzel
- Department of Chest Disease, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - A Kozan
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - C Mertoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - N Murat
- Department of Statistics, Ondokuz Mayıs University, Samsun, Turkey
| | - O Şalış
- Mental Health and Diseases Hospital, Samsun, Turkey
| | - A Güzel
- Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - M Şahin
- Department of Medical Biochemistry, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
40
|
Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:11. [PMID: 22824096 PMCID: PMC3443459 DOI: 10.1186/1755-1536-5-11] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
41
|
Ruwanpura SM, McLeod L, Miller A, Jones J, Vlahos R, Ramm G, Longano A, Bardin PG, Bozinovski S, Anderson GP, Jenkins BJ. Deregulated Stat3 signaling dissociates pulmonary inflammation from emphysema in gp130 mutant mice. Am J Physiol Lung Cell Mol Physiol 2012; 302:L627-39. [DOI: 10.1152/ajplung.00285.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)-6 is a potent immunomodulatory cytokine that is associated with emphysema, a major component of chronic obstructive pulmonary disease (COPD). IL-6 signaling via the gp130 coreceptor is coupled to multiple signaling pathways, especially the latent transcription factor signal transducer and activator of transcription (Stat)3. However, the pathological role of endogenous gp130-dependent Stat3 activation in emphysema is ill defined. To elucidate the role of the IL-6/gp130/Stat3 signaling axis in the cellular and molecular pathogenesis of emphysema, we employed a genetic complementation strategy using emphysematous gp130F/F mice displaying hyperactivation of endogenous Stat3 that were interbred with mice to impede Stat3 activity. Resected human lung tissue from patients with COPD and COPD-free individuals was also evaluated by immunohistochemistry. Genetic reduction of Stat3 hyperactivity in gp130F/F: Stat3 −/+ mice prevented lung inflammation and excessive protease activity; however, emphysema still developed. In support of these findings, Stat3 activation levels in human lung tissue correlated with the extent of pulmonary inflammation but not airflow obstruction in COPD. Furthermore, COPD lung tissue displayed increased levels of IL-6 and apoptotic alveolar cells, supporting our previous observation that increased endogenous IL-6 expression in the lungs of gp130F/F mice contributes to emphysema by promoting alveolar cell apoptosis. Collectively, our data suggest that IL-6 promotes emphysema via upregulation of Stat3-independent apoptosis, whereas IL-6 induction of lung inflammation occurs via Stat3. We propose that while discrete targeting of Stat3 may alleviate pulmonary inflammation, global targeting of IL-6 potentially represents a therapeutically advantageous approach to combat COPD phenotypes where emphysema predominates.
Collapse
Affiliation(s)
- Saleela M. Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Alistair Miller
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| | - Jessica Jones
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Ross Vlahos
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Monash Micro Imaging, School of Biomedical Sciences, Monash University; and
| | | | - Philip G. Bardin
- Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Steven Bozinovski
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Gary P. Anderson
- Departments of Medicine and Pharmacology, University of Melbourne, Parkville
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton
| |
Collapse
|
42
|
Sparkenbaugh EM, Ganey PE, Roth RA. Hypoxia sensitization of hepatocytes to neutrophil elastase-mediated cell death depends on MAPKs and HIF-1α. Am J Physiol Gastrointest Liver Physiol 2012; 302:G748-57. [PMID: 22223132 PMCID: PMC3330781 DOI: 10.1152/ajpgi.00409.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/02/2012] [Indexed: 01/31/2023]
Abstract
The liver is sensitive to pathological conditions associated with tissue hypoxia (Hx) and the presence of activated neutrophils that secrete the serine protease elastase (EL). We demonstrated previously that cotreatment of rat hepatocytes with nontoxic levels of Hx and EL caused synergistic cell death. Hx is sensed by hypoxia-inducible factor (HIF)-1α, a transcription factor that heterodimerizes with HIF-1β/aryl hydrocarbon receptor nuclear translocator and directs expression of many genes, including the pro-cell death gene Bcl-2/adenovirus E1B-interacting protein 3 (BNIP3). Since cell death from EL or Hx also requires MAPK activation, we tested the hypothesis that the cytotoxic interaction of Hx and EL depends on MAPK and HIF-1α signaling. Treatment of Hepa1c1c7 cells with EL in the presence of Hx (2% O(2)) resulted in synergistic cell death. EL reduced phosphorylated ERK in O(2)-replete and Hx-exposed cells, and ERK inhibition enhanced the cytotoxicity of EL alone. Hx-EL cotreatment caused an additive increase in phosphorylated p38, and p38 inhibition attenuated cell death caused by this cotreatment. EL enhanced Hx-induced HIF-1α accumulation and transcription of the HIF-1α-mediated cell death gene BNIP3, and p38 inhibition attenuated BNIP3 expression and production. Cytotoxicity and BNIP3 expression from EL-Hx cotreatment were reduced in HIF-1β-deficient HepaC4 cells compared with Hepa1c1c7 cells. These results suggest that p38 signaling contributes to Hx-EL cotreatment-induced cell death via modulation of HIF-1α-mediated gene transcription. Finally, lipid peroxidation was enhanced in Hx-EL-cotreated cells compared with cells treated with EL or Hx alone. Vitamin E treatment attenuated lipid peroxidation and protected cells from the cytotoxicity of Hx and EL, suggesting that lipid peroxidation plays a role.
Collapse
|
43
|
Gugerell A, Schossleitner K, Wolbank S, Nürnberger S, Redl H, Gulle H, Goppelt A, Bittner M, Pasteiner W. High thrombin concentrations in fibrin sealants induce apoptosis in human keratinocytes. J Biomed Mater Res A 2012; 100:1239-47. [PMID: 22359340 DOI: 10.1002/jbm.a.34007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/13/2011] [Accepted: 10/17/2011] [Indexed: 11/10/2022]
Abstract
Over the last century many studies have been performed to assess the impact of fibrin sealant (FS) components on cells. Because of the noncovalent bonding of thrombin to fibrin during fibrin clot formation, we wanted to further evaluate the impact of fibrin bound thrombin on cell viability. Initially, we quantified the activity of thrombin in three different, commercially available FS. This information was used to prepare fibrin clots covering a range of thrombin concentrations from 4 to 820 IU mL(-1), but which were identical with respect to all other constituents. Although these fibrin clots did not differ in their three-dimensional structure, clots prepared with highly concentrated thrombin (820 IU mL(-1)) failed to support adhesion and spreading of primary human keratinocytes (NHEK). The number of attached cells was also significantly reduced on high thrombin activity clots. We hypothesized that these observations are not only the consequence of decreased proliferation but of apoptotic mechanisms, since the expression of cleaved caspase 3 and 7 was strongly enhanced on fibrin clots with high thrombin activity. This was accompanied by an induction of expression of Trail-R2 which is a receptor known to mediate apoptosis signals. Blocking of thrombin activity by hirudin led to an improvement of cell morphology and to an increase in number of attached cells. In addition, the induction of caspase 3 and 7 was also reduced. Thus, here we report for the first time that fibrin bound thrombin does not only decrease proliferation (as already published by others), it also does induce NHEK apoptosis when present at high concentrations.
Collapse
|
44
|
Fujino N, Kubo H, Suzuki T, He M, Suzuki T, Yamada M, Takahashi T, Ota C, Yamaya M. Administration of a specific inhibitor of neutrophil elastase attenuates pulmonary fibrosis after acute lung injury in mice. Exp Lung Res 2011; 38:28-36. [PMID: 22148910 DOI: 10.3109/01902148.2011.633306] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Excess production of neutrophil elastase contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the role of neutrophil elastase in the repair process following ALI/ARDS is not well understood. The objective of this study was to evaluate the effect of neutrophil elastase on the process of tissue repair after acute lung injury in mice. C57BL/6 mice were exposed to sublethal irradiation followed by intranasal instillation of lipopolysaccharide (LPS) to generate a model of impaired lung repair. The authors assessed the histopathology, lung mechanics, and total lung collagen content 7 days after irradiation and/or LPS-induced injury with daily administration of a neutrophil elastase inhibitor. The number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) was also evaluated. In addition, the concentration of activated transforming growth factor (TGF)-β1 in the BALF and the expression of phospho-SMAD2/3 were investigated. Irradiated and LPS-treated mice developed pulmonary fibrosis after injury. The neutrophil elastase inhibitor significantly decreased the collagen deposition in lung parenchyma and improved the static lung compliance of injured lungs. Administration of the neutrophil elastase inhibitor also decreased the accumulation of neutrophils in the BALF, TGF-β1 activation, and expression of phospho-SMAD2/3. The authors conclude that inhibiting neutrophil elastase protects against the development of lung fibrosis after acute injury. In addition, these data suggest that this neutrophil elastase inhibitor has therapeutic potential for the fibroproliferative phase of ALI/ARDS.
Collapse
Affiliation(s)
- Naoya Fujino
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis 2011; 6:413-21. [PMID: 21857781 PMCID: PMC3157944 DOI: 10.2147/copd.s10770] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Indexed: 01/07/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) exhibit dominant features of chronic bronchitis, emphysema, and/or asthma, with a common phenotype of airflow obstruction. COPD pulmonary physiology reflects the sum of pathological changes in COPD, which can occur in large central airways, small peripheral airways, and the lung parenchyma. Quantitative or high-resolution computed tomography is used as a surrogate measure for assessment of disease progression. Different biological or molecular markers have been reported that reflect the mechanistic or pathogenic triad of inflammation, proteases, and oxidants and correspond to the different aspects of COPD histopathology. Similar to the pathogenic triad markers, genetic variations or polymorphisms have also been linked to COPD-associated inflammation, protease–antiprotease imbalance, and oxidative stress. Furthermore, in recent years, there have been reports identifying aging-associated mechanistic markers as downstream consequences of the pathogenic triad in the lungs from COPD patients. For this review, the authors have limited their discussion to a review of mechanistic markers and genetic variations and their association with COPD histopathology and disease status.
Collapse
Affiliation(s)
- Bernard M Fischer
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
46
|
Wada H, Habe K. Neutrophil elastase affects not only tissue damage, but it also regulates hematopoiesis. Thromb Res 2011; 128:205-6. [PMID: 21762963 DOI: 10.1016/j.thromres.2011.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 05/26/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
47
|
Perl M, Lomas-Neira J, Venet F, Chung CS, Ayala A. Pathogenesis of indirect (secondary) acute lung injury. Expert Rev Respir Med 2011; 5:115-26. [PMID: 21348592 DOI: 10.1586/ers.10.92] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
At present, therapeutic interventions to treat acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) remain largely limited to lung-protective strategies, as no real molecular-pathophysiologic-driven therapeutic intervention has yet become available. This is in part the result of the heterogeneous nature of the etiological processes that contribute to the state of ALI/ARDS. This article sets out to understand the development of ALI resulting from indirect pulmonary insults, such as extrapulmonary sepsis and trauma, shock, burn injury or mass transfusion, as opposed to direct pulmonary challenges, such as pneumonia, aspiration or lung contusion. Here, we consider not only the experimental and clinical data concerning the roles of various immune (neutrophil, macrophage, lymphocyte and dendritic) as well as nonimmune (epithelial and endothelial) cells in orchestrating the development of ALI resulting from indirect pulmonary stimuli, but also how these cell populations might be targeted therapeutically.
Collapse
Affiliation(s)
- Mario Perl
- Department of Traumatology, Hand and Reconstructive Surgery, University of Ulm Medical School, Ulm, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
Airway mucins are the major molecular constituents of mucus. Mucus forms the first barrier to invading organisms in the airways and is an important defense mechanism of the lung. We confirm that mucin concentrations are significantly decreased in airway secretions of subjects with cystic fibrosis (CF) who have chronic Pseudomonas aeruginosa infection. In sputum from CF subjects without a history of P. aeruginosa, we found no significant difference in the mucin concentration compared to mucus from normal controls. We demonstrate that mucins can be degraded by synthetic human neutrophil elastase (HNE) and P. aeruginosa elastase B (pseudolysin) and that degradation was inhibited by serine proteases inhibitors (diisopropyl fluorophosphates [DFP], phenylmethylsulfonyl fluoride [PMSF], and 1-chloro-3-tosylamido-7-amino-2-heptanone HCl [TLCK]). The mucin concentration in airway secretions from CF subjects is similar to that for normal subjects until there is infection by P. aeruginosa, and after that, the mucin concentration decreases dramatically. This is most likely due to degradation by serine proteases. The loss of this mucin barrier may contribute to chronic airway infection in the CF airway.
Collapse
|
49
|
Local regulation of neutrophil elastase activity by endogenous α1-antitrypsin in lipopolysaccharide-primed hematological cells. Thromb Res 2011; 128:283-92. [PMID: 21624645 DOI: 10.1016/j.thromres.2011.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/14/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022]
Abstract
Neutrophil elastase released from activated neutrophils contributes in combating bacterial infection. While chronic inflammation results in anemia and decreased bone marrow activities, little is known about the effect of neutrophil elastase on hematological cell growth in severe inflammatory states. Here, we demonstrated that α1-antitrypsin, a physiological inhibitor of neutrophil elastase, functions as a regulator for cell growth by neutralizing neutrophil elastase activity in lipopolysaccharide-primed hematological cells. HL-60 cells were resistant to neutrophil elastase, as they also expressed α1-antitrypsin. The growth of HL-60 cells transduced with a LentiLox-short hairpin α1-antitrypsin vector was significantly suppressed by neutrophil elastase or lipopolysaccharide. When CD34(+) progenitor cells were differentiated towards a granulocytic lineage, they concomitantly expressed neutrophil elastase and α1-antitrypsin and prevented neutrophil elastase-induced growth inhibition. These results suggest that granulocytes might protect themselves from neutrophil elastase-induced cellular damage by efficiently neutralizing its activity through the simultaneous secretion of endogenous α1-antitrypsin.
Collapse
|
50
|
Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, DeFea KA, Bouvier M, Hollenberg MD. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem 2011; 286:24638-48. [PMID: 21576245 DOI: 10.1074/jbc.m110.201988] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human neutrophil proteinases (elastase, proteinase-3, and cathepsin-G) are released at sites of acute inflammation. We hypothesized that these inflammation-associated proteinases can affect cell signaling by targeting proteinase-activated receptor-2 (PAR(2)). The PAR family of G protein-coupled receptors is triggered by a unique mechanism involving the proteolytic unmasking of an N-terminal self-activating tethered ligand (TL). Proteinases can either activate PAR signaling by unmasking the TL sequence or disarm the receptor for subsequent enzyme activation by cleaving downstream from the TL sequence. We found that none of neutrophil elastase, cathepsin-G, and proteinase-3 can activate G(q)-coupled PAR(2) calcium signaling; but all of these proteinases can disarm PAR(2), releasing the N-terminal TL sequence, thereby preventing G(q)-coupled PAR(2) signaling by trypsin. Interestingly, elastase (but neither cathepsin-G nor proteinase-3) causes a TL-independent PAR(2)-mediated activation of MAPK that, unlike the canonical trypsin activation, does not involve either receptor internalization or recruitment of β-arrestin. Cleavage of synthetic peptides derived from the extracellular N terminus of PAR(2), downstream of the TL sequence, demonstrated distinct proteolytic sites for all three neutrophil-derived enzymes. We conclude that in inflammation, neutrophil proteinases can modulate PAR(2) signaling by preventing/disarming the G(q)/calcium signal pathway and, via elastase, can selectively activate the p44/42 MAPK pathway. Our data illustrate a new mode of PAR regulation that involves biased PAR(2) signaling by neutrophil elastase and a disarming/silencing effect of cathepsin-G and proteinase-3.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|