1
|
Bhat TA, Kalathil SG, Leigh N, Hutson A, Goniewicz ML, Thanavala YM. Do alternative tobacco products induce less adverse respiratory risk than cigarettes? Respir Res 2023; 24:261. [PMID: 37907902 PMCID: PMC10617138 DOI: 10.1186/s12931-023-02568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
RATIONALE Due to the relatively short existence of alternative tobacco products, gaps exist in our current understanding of their long-term respiratory health effects. We therefore undertook the first-ever side-by-side comparison of the impact of chronic inhalation of aerosols emitted from electronic cigarettes (EC) and heated tobacco products (HTP), and combustible cigarettes (CC) smoke. OBJECTIVES To evaluate the potential differential effects of alternative tobacco products on lung inflammatory responses and efficacy of vaccination in comparison to CC. METHODS Mice were exposed to emissions from EC, HTP, CC, or air for 8 weeks. BAL and lung tissue were analyzed for markers of inflammation, lung damage, and oxidative stress. Another group was exposed for 12 weeks and vaccinated and challenged with a bacterial respiratory infection. Antibody titers in BAL and sera and pulmonary bacterial clearance were assessed. MAIN RESULTS EC- and HTP-aerosols significantly augmented lung immune cell infiltrates equivalent to that achieved following CC-exposure. HTP and CC significantly increased neutrophil numbers compared to EC. All products augmented numbers of B cells, T cells, and pro-inflammatory IL17A+ T cells in the lungs. Decreased lung antioxidant activity and lung epithelial and endothelial damage was induced by all products. EC and HTP differentially augmented inflammatory cytokines/chemokines in the BAL. Generation of immunity following vaccination was impaired by EC and HTP but to a lesser extent than CC, with a CC > HTP > EC hierarchy of suppression of pulmonary bacterial clearance. CONCLUSIONS HTP and EC-aerosols induced a proinflammatory pulmonary microenvironment, lung damage, and suppressed efficacy of vaccination.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY, 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Suresh G Kalathil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY, 14263, USA
| | - Noel Leigh
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yasmin M Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY, 14263, USA.
| |
Collapse
|
2
|
Nishida Y, Yagi H, Ota M, Tanaka A, Sato K, Inoue T, Yamada S, Arakawa N, Ishige T, Kobayashi Y, Arakawa H, Takizawa T. Oxidative stress induces MUC5AC expression through mitochondrial damage-dependent STING signaling in human bronchial epithelial cells. FASEB Bioadv 2023; 5:171-181. [PMID: 37020748 PMCID: PMC10068767 DOI: 10.1096/fba.2022-00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress increases the production of the predominant mucin MUC5AC in airway epithelial cells and is implicated in the pathogenesis of bronchial asthma and chronic obstructive pulmonary disease. Oxidative stress impairs mitochondria, releasing mitochondrial DNA into the cytoplasm and inducing inflammation through the intracytoplasmic DNA sensor STING (stimulator of interferon genes). However, the role of innate immunity in mucin production remains unknown. We aimed to elucidate the role of innate immunity in mucin production in airway epithelial cells under oxidative stress. Human airway epithelial cell line (NCI-H292) and normal human bronchial epithelial cells were used to confirm MUC5AC expression levels by real-time PCR when stimulated with hydrogen peroxide (H2O2). MUC5AC transcriptional activity was increased and mitochondrial DNA was released into the cytosol by H2O2. Mitochondrial antioxidants were used to confirm the effects of mitochondrial oxidative stress where antioxidants inhibited the increase in MUC5AC transcriptional activity. Cyclic GMP-AMP synthase (cGAS) or STING knockout (KO) cells were generated to investigate their involvement. H2O2-induced MUC5AC expression was suppressed in STING KO cells, but not in cGAS KO cells. The epidermal growth factor receptor was comparably expressed in STING KO and wild-type cells. Thus, mitochondria and STING play important roles in mucin production in response to oxidative stress in airway epithelial cells.
Collapse
Affiliation(s)
- Yutaka Nishida
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Hisako Yagi
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Masaya Ota
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
- Department of PediatricsNiigata University Graduate School of MedicineNiigataJapan
| | - Atsushi Tanaka
- Department of Medicine, Research Institute of Medical SciencesYamagata UniversityYamagataJapan
| | - Koichiro Sato
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takaharu Inoue
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Satoshi Yamada
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Naoya Arakawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takashi Ishige
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Yasuko Kobayashi
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Hirokazu Arakawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takumi Takizawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| |
Collapse
|
3
|
The Tobacco Smoke Component, Acrolein, as a Major Culprit in Lung Diseases and Respiratory Cancers: Molecular Mechanisms of Acrolein Cytotoxic Activity. Cells 2023; 12:cells12060879. [PMID: 36980220 PMCID: PMC10047238 DOI: 10.3390/cells12060879] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer’s disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke’s most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.
Collapse
|
4
|
Singh P, Salman KA, Shameem M, Warsi MS. Withania somnifera (L.) Dunal as Add-On Therapy for COPD Patients: A Randomized, Placebo-Controlled, Double-Blind Study. Front Pharmacol 2022; 13:901710. [PMID: 35784687 PMCID: PMC9243480 DOI: 10.3389/fphar.2022.901710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: The current gold-standard therapies for chronic obstructive pulmonary disease (COPD) lack disease-modifying potential and exert adverse side effects. Moreover, COPD patients are at a higher risk of severe outcomes if they get infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, the cause of the current epidemic. This is the first study to document clinical research on an adaptogenic and steroidal activity–containing herb as a complementary medicine for COPD treatment. Objective: We aimed to evaluate the efficacy of Withania somnifera (L.) Dunal [Solanaceae] (WS) as an add-on therapy for COPD patients. Methods: A randomized, placebo-controlled, and double-blind clinical study was conducted. A total of 150 patients were randomly assigned to three groups: control, placebo, and WS group. In addition to conventional medicines, WS root capsules or starch capsules were given twice a day to the WS group and the placebo group, respectively. Their lung functioning, quality of life, exercise tolerance, systemic oxidative stress (OS), and systemic inflammation were assessed before and after 12 weeks of intervention. WS root phytochemicals were identified by LC-ESI-MS. The inhibitory activity of these phytochemicals against angiotensin-converting enzyme 2 (ACE-2); the SARS-CoV-2 receptor; myeloperoxidase (MPO); and interleukin-6 (IL-6) was evaluated by in silico docking to investigate the mechanism of action of WS. Results: The pulmonary functioning, quality of life, and exercise tolerance improved, and inflammation reduced notably the most in the WS group. Systemic oxidative stress subsided significantly only in the WS group. Although a minor placebo effect was observed in the SGRQ test, but it was not present in other tests. Withanolides found in the WS roots demonstrated substantial inhibitory activity against the proteins ACE-2, MPO, and IL-6, compared to that of a standard drug or known inhibitor. Moreover, FEV1% predicted had significant correlation with systemic antioxidative status (positive correlation) and malondialdehyde (MDA, negative correlation), suggesting that the antioxidative potential of WS has significant contribution to improving lung functioning. Conclusion: Our study clinically demonstrated that WS root when given along with conventional drugs ameliorated COPD significantly more in comparison to the conventional drugs alone, in GOLD 2 and 3 categories of COPD patients. In silico, it has potent inhibitory activity against SARS-CoV-2 receptor, ACE-2, MPO, and IL-6.
Collapse
Affiliation(s)
- Priyam Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
- *Correspondence: Priyam Singh,
| | - Khushtar Anwar Salman
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohammad Shameem
- Department of Tuberculosis and Respiratory Diseases, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Manevski M, Devadoss D, Long C, Singh SP, Nasser MW, Borchert GM, Nair MN, Rahman I, Sopori M, Chand HS. Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia. Front Immunol 2022; 13:803362. [PMID: 35774797 PMCID: PMC9237255 DOI: 10.3389/fimmu.2022.803362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Research Impact Cigarette smoke (CS) exposure is strongly associated with chronic obstructive pulmonary disease (COPD). In respiratory airways, CS exposure disrupts airway barrier functions, mucous/phlegm production, and basic immune responses of airway epithelial cells. Based on our recent identification of a specific immunomodulatory long noncoding RNA (lncRNA), we investigated its role in CS-induced responses in bronchial airways of cynomolgus macaque model of CS-induced COPD and in former smokers with and without COPD. The lncRNA was significantly upregulated in CS-induced macaque airways and in COPD airways that exhibited higher mucus expression and goblet cell hyperplasia. Experimental models of cells derived from COPD subjects recapitulated the augmented inflammation and mucus expression following the smoke challenge. Blocking of lncRNA expression in cell culture setting suppressed the smoke-induced and COPD-associated dysregulated mucoinflammatory response suggesting that this airway specific immunomodulatory lncRNA may represent a novel target to mitigate the smoke-mediated inflammation and mucus hyperexpression. Rationale In conducting airways, CS disrupts airway epithelial functions, mucociliary clearances, and innate immune responses that are primarily orchestrated by human bronchial epithelial cells (HBECs). Mucus hypersecretion and dysregulated immune response are the hallmarks of chronic bronchitis (CB) that is often exacerbated by CS. Notably, we recently identified a long noncoding RNA (lncRNA) antisense to ICAM-1 (LASI) that mediates airway epithelial responses. Objective To investigate the role of LASI lncRNA in CS-induced airway inflammation and mucin hyperexpression in an animal model of COPD, and in HBECs and lung tissues from former smokers with and without COPD. To interrogate LASI lncRNA role in CS-mediated airway mucoinflammatory responses by targeted gene editing. Methods Small airway tissue sections from cynomolgus macaques exposed to long-term mainstream CS, and those from former smokers with and without COPD were analyzed. The structured-illumination imaging, RNA fluorescence in-situ hybridization (FISH), and qRT-PCR were used to characterize lncRNA expression and the expression of inflammatory factors and airway mucins in a cell culture model of CS extract (CSE) exposure using HBECs from COPD (CHBEs) in comparison with cells from normal control (NHBEs) subjects. The protein levels of mucin MUC5AC, and inflammatory factors ICAM-1, and IL-6 were determined using specific ELISAs. RNA silencing was used to block LASI lncRNA expression and lentivirus encoding LASI lncRNA was used to achieve LASI overexpression (LASI-OE). Results Compared to controls, LASI lncRNA was upregulated in CS-exposed macaques and in COPD smoker airways, correlating with mucus hyperexpression and mucus cell hyperplasia in severe COPD airways. At baseline, the unstimulated CHBEs showed increased LASI lncRNA expression with higher expression of secretory mucin MUC5AC, and inflammatory factors, ICAM-1, and IL-6 compared to NHBEs. CSE exposure of CHBEs resulted in augmented inflammation and mucus expression compared to controls. While RNA silencing-mediated LASI knockdown suppressed the mucoinflammatory response, cells overexpressing LASI lncRNA showed elevated mRNA levels of inflammatory factors. Conclusions Altogether, LASI lncRNA may represent a novel target to control the smoke-mediated dysregulation in airway responses and COPD exacerbations.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Christopher Long
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Shashi P. Singh
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Glen M. Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL, United States
| | - Madhavan N. Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Mohan Sopori
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Hitendra S. Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
6
|
Lin Q, Zhang CF, Guo JL, Su JL, Guo ZK, Li HY. Involvement of NEAT1/PINK1-mediated mitophagy in chronic obstructive pulmonary disease induced by cigarette smoke or PM 2.5. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:277. [PMID: 35433942 PMCID: PMC9011272 DOI: 10.21037/atm-22-542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/14/2022] [Indexed: 11/06/2022]
Abstract
Background This study sought to explore the underlying mechanism of long non-coding ribonucleic acid nuclear enriched abundant transcript 1 (NEAT1) and PTEN-induced kinase 1 (PINK1)-mediated mitophagy in chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS) or fine particular matter (PM2.5). Methods In total, 30 male Wistar Rats were divided into the following 3 groups: (I) the COPD group exposed to CS (CSM); (II) the COPD group exposed to PM2.5 (PMM); and (III) the control (Ctrl) group. Pulmonary function, the enzyme-linked immunoassay analysis results, the histopathology results, and the ultrastructures of the lung tissues were examined in the 3 groups, and NEAT1 expression levels and the mitophagy-related protein PINK1, Parkin, LC3B, and p62 levels were assessed by quantitative reverse transcription PCR (RT-qPCR) and Western blotting. The A549 cells were transfected with small interfering ribonucleic acid (siRNA) targeting NEAT1, and subsequently stimulated with CS extract (CSE) and PM2.5 suspension (PMS). Mitochondrial dysfunction and enhanced mitophagy were observed, and the expression of the NEAT1/PINK1 pathway was assessed by RT-qPCR and Western blotting. Results Both the CSM and PMM groups had a lower tidal volume (VT), minute ventilation (MV), and a higher respiratory rate (f) than the Ctrl group. The interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha levels in the serum and bronchoalveolar lavage fluid of the CSM and PMM groups were significantly increased. The histological examination results revealed airway remodeling, the formation of pulmonary bullae, and emphysema in the CSM and PMM groups. Subsequently, the ultrastructures of the lung tissues in the CSM and PMM groups showed mitochondrial swelling and autophagosomes. Additionally, NEAT1 expression, the level of the mitophagy-related protein PINK1, Parkin, and the ratio of LC3-II/I increased synchronously. Further, NEAT1 siRNA blocked PINK1 expression, inhibited mitochondrial dysfunctions, and mitophagy activation in the A549 cells exposed to CSE or PMS. Conclusions Our results suggest that CS and PM2.5 exposure induce mitochondrial dysfunction, and the NEAT1/PINK1 pathway plays a critical role in the occurrence and development of COPD by regulating mitophagy.
Collapse
Affiliation(s)
- Qi Lin
- Department of Preventive Medicine, The School of Public Health, Fujian Medical University, Fuzhou, China.,Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, China.,Pharmaceutical and Medical Technology College, Putian University, Putian, China
| | - Chao-Feng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, China
| | - Jin-Ling Guo
- Pharmaceutical and Medical Technology College, Putian University, Putian, China
| | - Jian-Lin Su
- Pharmaceutical and Medical Technology College, Putian University, Putian, China
| | - Zhen-Kun Guo
- Department of Preventive Medicine, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huang-Yuan Li
- Department of Preventive Medicine, The School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Environmental Factors and Cancer, The School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
8
|
Haswell LE, Smart D, Jaunky T, Baxter A, Santopietro S, Meredith S, Camacho OM, Breheny D, Thorne D, Gaca MD. The development of an in vitro 3D model of goblet cell hyperplasia using MUC5AC expression and repeated whole aerosol exposures. Toxicol Lett 2021; 347:45-57. [PMID: 33892128 DOI: 10.1016/j.toxlet.2021.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Goblet cell hyperplasia and overproduction of airway mucin are characteristic features of the lung epithelium of smokers and COPD patients. Tobacco heating products (THPs) are a potentially less risky alternative to combustible cigarettes, and through continued use solus THPs may reduce smoking-related disease risk. Using the MucilAir™ in vitro lung model, a 6-week feasibility study was conducted investigating the effect of repeated cigarette smoke (1R6F), THP aerosol and air exposure. Tissues were exposed to nicotine-matched whole aerosol doses 3 times/week. Endpoints assessed were dosimetry, tight-junction integrity, cilia beat frequency (CBF) and active area (AA), cytokine secretion and airway mucin MUC5AC expression. Comparison of incubator and air exposed controls indicated exposures did not have a significant effect on the transepithelial electrical resistance (TEER), CBF and AA of the tissues. Cytokine secretion indicated clear differences in secretion patterns in response to 1R6F and THP exposure. 1R6F exposure resulted in a significant decrease in the TEER and AA (p=0.000 and p=0.000, respectively), and an increase in MUC5AC positive cells (p=0.002). Repeated THP exposure did not result in a significant change in MUC5AC positive cells. This study demonstrates repeated cigarette smoke whole aerosol exposure can induce these morphological changes in vitro.
Collapse
Affiliation(s)
- Linsey E Haswell
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - David Smart
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Tomasz Jaunky
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Baxter
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | | | - Stuart Meredith
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Oscar M Camacho
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna D Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
9
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
10
|
Duclos GE, Teixeira VH, Autissier P, Gesthalter YB, Reinders-Luinge MA, Terrano R, Dumas YM, Liu G, Mazzilli SA, Brandsma CA, van den Berge M, Janes SM, Timens W, Lenburg ME, Spira A, Campbell JD, Beane J. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. SCIENCE ADVANCES 2019; 5:eaaw3413. [PMID: 31844660 PMCID: PMC6905872 DOI: 10.1126/sciadv.aaw3413] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The human bronchial epithelium is composed of multiple distinct cell types that cooperate to defend against environmental insults. While studies have shown that smoking alters bronchial epithelial function and morphology, its precise effects on specific cell types and overall tissue composition are unclear. We used single-cell RNA sequencing to profile bronchial epithelial cells from six never and six current smokers. Unsupervised analyses led to the characterization of a set of toxin metabolism genes that localized to smoker ciliated cells, tissue remodeling associated with a loss of club cells and extensive goblet cell hyperplasia, and a previously unidentified peri-goblet epithelial subpopulation in smokers who expressed a marker of bronchial premalignant lesions. Our data demonstrate that smoke exposure drives a complex landscape of cellular alterations that may prime the human bronchial epithelium for disease.
Collapse
Affiliation(s)
- Grant E. Duclos
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vitor H. Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Patrick Autissier
- Boston University Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| | - Yaron B. Gesthalter
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Marjan A. Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Robert Terrano
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yves M. Dumas
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah A. Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, Netherlands
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Marc E. Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Johnson & Johnson Innovation, Cambridge, MA, USA
| | - Joshua D. Campbell
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer Beane
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Dickinson JD, Sweeter JM, Staab EB, Nelson AJ, Bailey KL, Warren KJ, Jaramillo AM, Dickey BF, Poole JA. MyD88 controls airway epithelial Muc5ac expression during TLR activation conditions from agricultural organic dust exposure. Am J Physiol Lung Cell Mol Physiol 2019; 316:L334-L347. [PMID: 30358438 PMCID: PMC6397350 DOI: 10.1152/ajplung.00206.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/04/2023] Open
Abstract
Inflammation from airborne microbes can overwhelm compensatory mucociliary clearance mechanisms, leading to mucous cell metaplasia. Toll-like receptor (TLR) activation via myeloid differentiation factor 88 (MyD88) signaling is central to pathogen responses. We have previously shown that agricultural organic dust extract (ODE), with abundant microbial component diversity, activates TLR-induced airway inflammation. With the use of an established model, C57BL/6J wild-type (WT) and global MyD88 knockout (KO) mice were treated with intranasal inhalation of ODE or saline, daily for 1 wk. ODE primarily increased mucin (Muc)5ac levels relative to Muc5b. Compared with ODE-challenged WT mice, ODE-challenged, MyD88-deficient mice demonstrated significantly increased Muc5ac immunostaining, protein levels by immunoblot, and expression by quantitative PCR. The enhanced Muc5ac levels in MyD88-deficient mice were not explained by differences in the differentiation program of airway secretory cells in naïve mice. Increased Muc5ac levels in MyD88-deficient mice were also not explained by augmented inflammation, IL-17A, or neutrophil elastase levels. Furthermore, the enhanced airway mucins in the MyD88-deficient mice were not due to defective secretion, as the mucin secretory capacity of MyD88-KO mice remained intact. Finally, ODE-induced Muc5ac levels were enhanced in MyD88-deficient airway epithelial cells in vitro. In conclusion, MyD88 deficiency enhances airway mucous cell metaplasia under environments with high TLR activation.
Collapse
Affiliation(s)
- John D Dickinson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Jenea M Sweeter
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Elizabeth B Staab
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Amy J Nelson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Kristina L Bailey
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Kristi J Warren
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Ana Maria Jaramillo
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Burton F Dickey
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Jill A Poole
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
12
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Diao X, Zhou J, Wang S, Ma X. Upregulation of miR-132 contributes to the pathophysiology of COPD via targeting SOCS5. Exp Mol Pathol 2018; 105:285-292. [PMID: 30292646 DOI: 10.1016/j.yexmp.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
The role of microRNAs has been recently identified in chronic obstructive pulmonary disease (COPD). This study aimed to examine the role of miR-132 in the pathophysiology of COPD and to explore the underlying molecular mechanisms of miR-132 in COPD. MiR-132 and suppressor of cytokine signaling 5 (SOCS5) mRNA expression were detected by qRT-PCR. The number of CD4+ and CD8+ T cells was analyzed by flow cytometry. SOCS5 and epidermal growth factor receptor (EGFR) protein levels were determined by western blot. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) concentrations were measured by ELISA. MiR-132 expression was up-regulated in the serum from COPD patients and smokers compared with nonsmoker controls. The number of CD8+ T cells was significantly increased in the serum from COPD patients and smokers. MiR-132 expression was negatively correlated with FEV1/FVC%, and positively correlated with CD8+ T cells (%). MiR-132 overexpression repressed SOCS5 expression via directly targeting SOCS5 3'UTR in human monocyte-like cells (THP-1), which was confirmed by luciferase reporter assay. MiR-132 overexpression increased EGFR protein levels and the concentrations of inflammatory cytokines (IL-1β and TNF-α) in THP-1 cells, and these effects were attenuated by enforced expression of SOCS5. Further, cigarette smoke extract (CSE) treatment up-regulated miR-132 expression, down-regulated SOCS5 expression, and increased inflammatory cytokines levels, which was attenuated by miR-132 knockdown in THP-1 cells. Consistent findings were also found in the human bronchial epithelial cells (BEAS-2B). Collectively, our data implicated that miR-132 may promote inflammation in THP-1 and BEAS-2B cells at least via targeting SOCS5 in COPD.
Collapse
Affiliation(s)
- Xin Diao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China.
| | - Jing Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China
| | - Xuan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China
| |
Collapse
|
14
|
Hussain SS, George S, Singh S, Jayant R, Hu CA, Sopori M, Chand HS. A Small Molecule BH3-mimetic Suppresses Cigarette Smoke-Induced Mucous Expression in Airway Epithelial Cells. Sci Rep 2018; 8:13796. [PMID: 30218002 PMCID: PMC6138652 DOI: 10.1038/s41598-018-32114-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/03/2018] [Indexed: 01/07/2023] Open
Abstract
Cigarette smoke (CS) exposure is one of the primary risk factors associated with the chronic mucous hypersecretion (CMH). The antiapoptotic protein, Bcl-2 sustains hyperplastic mucous cells, and the airway epithelium of ex-smokers with CMH as well as mice exposed to chronic CS showed increased Bcl-2 expression. Therefore, we investigated whether Bcl-2 plays a role in CS-induced mucous expression. Primary airway epithelial cells (AECs) of murine and human origin were treated with CS extract (CSE), and there was a concentration- and time-dependent increase in secretory mucin (MUC5AC), mucous regulator (SPDEF) and Bcl-2 expression. Using differentiated human AECs cultured on air-liquid interface, EGFR and ERK1/2 pathways were interrogated. Bcl-2 activity was blocked using a small molecule BH3 mimetic ABT-263 that disrupts the Bcl-2 interaction with pro-apoptotic proteins. The ABT-263 treatment resulted in the downregulation of CSE-induced mucus expression and disrupted the EGFR-signaling while inducing the apoptosis and the pro-apoptotic protein, Bik expression. This strategy significantly suppressed the mainstream CS-induced mucous phenotype in a 3-D human airway epithelium model. Therefore, the present study suggests that CS induces Bcl-2 expression to help promote mucous cell survival; and small molecule BH3 mimetics targeting Bcl-2 could be useful in suppressing the CS-induced mucous response.
Collapse
Affiliation(s)
- Shah S Hussain
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL - 33199, USA
| | - Shebin George
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL - 33199, USA
| | - Shashi Singh
- Lovelace Respiratory Research Institute, Albuquerque, NM - 87108, USA
| | - Rahul Jayant
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL - 33199, USA
| | - Chien-An Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM - 87131, USA
| | - Mohan Sopori
- Lovelace Respiratory Research Institute, Albuquerque, NM - 87108, USA
| | - Hitendra S Chand
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL - 33199, USA.
| |
Collapse
|
15
|
Advani J, Subbannayya Y, Patel K, Khan AA, Patil AH, Jain AP, Solanki HS, Radhakrishnan A, Pinto SM, Sahasrabuddhe NA, Thomas JK, Mathur PP, Nair BG, Chang X, Prasad TSK, Sidransky D, Gowda H, Chatterjee A. Long-Term Cigarette Smoke Exposure and Changes in MiRNA Expression and Proteome in Non-Small-Cell Lung Cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:390-403. [PMID: 28692419 DOI: 10.1089/omi.2017.0045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic exposure to cigarette smoke markedly increases the risk for lung cancer. Regulation of gene expression at the post-transcriptional level by miRNAs influences a variety of cancer-related interactomes. Yet, relatively little is known on the effects of long-term cigarette smoke exposure on miRNA expression and gene regulation. NCI-H292 (H292) is a cell line sensitive to cigarette smoke with mucoepidermoid characteristics in culture. We report, in this study, original observations on long-term (12 months) cigarette smoke effects in the H292 cell line, using microarray-based miRNA expression profiling, and stable isotopic labeling with amino acids in cell culture-based quantitative proteomic analysis. We identified 112 upregulated and 147 downregulated miRNAs (by twofold) in cigarette smoke-treated H292 cells. The liquid chromatography-tandem mass spectrometry analysis identified 3,959 proteins, of which, 303 proteins were overexpressed and 112 proteins downregulated (by twofold). We observed 39 miRNA target pairs (proven targets) that were differentially expressed in response to chronic cigarette smoke exposure. Gene ontology analysis of the target proteins revealed enrichment of proteins in biological processes driving metabolism, cell communication, and nucleic acid metabolism. Pathway analysis revealed the enrichment of phagosome maturation, antigen presentation pathway, nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, and cholesterol biosynthesis pathways in cigarette smoke-exposed cells. In conclusion, this report makes an important contribution to knowledge on molecular changes in a lung cell line in response to long term cigarette smoke exposure. The findings might inform future strategies for drug target, biomarker and diagnostics innovation in lung cancer, and clinical oncology. These observations also call for further research on the extent to which continuing or stopping cigarette smoking in patients diagnosed with lung cancer translates into molecular and clinical outcomes.
Collapse
Affiliation(s)
- Jayshree Advani
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Yashwanth Subbannayya
- 2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Krishna Patel
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Aafaque Ahmad Khan
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Arun H Patil
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Ankit P Jain
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Hitendra S Solanki
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | | | - Sneha M Pinto
- 2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | | | - Joji K Thomas
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | - Bipin G Nair
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Xiaofei Chang
- 5 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - T S Keshava Prasad
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - David Sidransky
- 5 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Harsha Gowda
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Aditi Chatterjee
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| |
Collapse
|
16
|
Bhat TA, Kalathil SG, Bogner PN, Miller A, Lehmann PV, Thatcher TH, Phipps RP, Sime PJ, Thanavala Y. Secondhand Smoke Induces Inflammation and Impairs Immunity to Respiratory Infections. THE JOURNAL OF IMMUNOLOGY 2018; 200:2927-2940. [PMID: 29555783 DOI: 10.4049/jimmunol.1701417] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
Despite advocacy to reduce smoking-related diseases, >1 billion people worldwide continue to smoke. Smoking is immunosuppressive and an important etiological factor in the development of several human disorders including respiratory diseases like chronic obstructive pulmonary disease. However, there is a critical gap in the knowledge of the role of secondhand smoke (SHS) in inflammation and immunity. We therefore studied the influence of SHS on pulmonary inflammation and immune responses to respiratory infection by nontypeable Haemophilus influenzae (NTHI) recurrently found in chronic obstructive pulmonary disease patients. Chronic SHS-exposed mice were chronically infected with NTHI and pulmonary inflammation was evaluated by histology. Immune cell numbers and cytokines were measured by flow cytometry and ELISA, respectively. Chronic SHS exposure impaired NTHI P6 Ag-specific B and T cell responses following chronic NTHI infection as measured by ELISPOT assays, reduced the production of Abs in serum and bronchoalveolar lavage, and enhanced albumin leak into the bronchoalveolar lavage as determined by ELISA. Histopathological examination of lungs revealed lymphocytic accumulation surrounding airways and bronchovasculature following chronic SHS exposure and chronic infection. Chronic SHS exposure enhanced the levels of inflammatory cytokines IL-17A, IL-6, IL-1β, and TNF-α in the lungs, and impaired the generation of adaptive immunity following either chronic infection or P6 vaccination. Chronic SHS exposure diminished bacterial clearance from the lungs after acute NTHI challenge, whereas P6 vaccination improved clearance equivalent to the level seen in air-exposed, non-vaccinated mice. Our study provides unequivocal evidence that SHS exposure has long-term detrimental effects on the pulmonary inflammatory microenvironment and immunity to infection and vaccination.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and
| | - Richard P Phipps
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
17
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
18
|
Solanki HS, Advani J, Khan AA, Radhakrishnan A, Sahasrabuddhe NA, Pinto SM, Chang X, Prasad TSK, Mathur PP, Sidransky D, Gowda H, Chatterjee A. Chronic Cigarette Smoke Mediated Global Changes in Lung Mucoepidermoid Cells: A Phosphoproteomic Analysis. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:474-487. [PMID: 28816646 PMCID: PMC5583567 DOI: 10.1089/omi.2017.0090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteomics analysis of chronic cigarette smoke exposure is a rapidly emerging postgenomics research field. While smoking is a major cause of lung cancer, functional studies using proteomics approaches could enrich our mechanistic understanding of the elusive lung cancer global molecular signaling and cigarette smoke relationship. We report in this study on a stable isotope labeling by amino acids in cell culture-based quantitative phosphoproteomic analysis of a human lung mucoepidermoid carcinoma cell line, H292 cells, chronically exposed to cigarette smoke. Using high resolution Orbitrap Velos mass spectrometer, we identified the hyperphosphorylation of 493 sites, which corresponds to 341 proteins and 195 hypophosphorylated sites, mapping to 142 proteins upon smoke exposure (2.0-fold change). We report differential phosphorylation of multiple kinases, including PAK6, EPHA4, LYN, mitogen-activated protein kinase, and phosphatases, including TMEM55B, PTPN14, TIGAR, among others, in response to chronic cigarette smoke exposure. Bioinformatics analysis revealed that the molecules differentially phosphorylated upon chronic exposure of cigarette smoke are associated with PI3K/AKT/mTOR and CDC42-PAK signaling pathways. These signaling networks are involved in multiple cellular processes, including cell polarity, cytoskeletal remodeling, cellular migration, protein synthesis, autophagy, and apoptosis. The present study contributes to emerging proteomics insights on cigarette smoke mediated global signaling in lung cells, which in turn may aid in development of precision medicine therapeutics and postgenomics biomarkers.
Collapse
Affiliation(s)
- Hitendra S. Solanki
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | | | - Sneha M. Pinto
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
- NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| |
Collapse
|
19
|
Shi Q, Boots AW, Maas L, Veith C, van Kuijk K, Haenen GR, Godschalk RW, Van Schooten FJ. Effect of interleukin (IL)-8 on benzo[a]pyrene metabolism and DNA damage in human lung epithelial cells. Toxicology 2017; 381:64-74. [PMID: 28238931 DOI: 10.1016/j.tox.2017.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/22/2017] [Indexed: 01/02/2023]
Abstract
It has been well established that inflammation and concurrent mutagenic exposures drive the carcinogenic process in a synergistic way. To elucidate the role of the inflammatory cytokine IL-8 in this process, we studied its effect on the activation and deactivation of the chemical mutagen benzo[a]pyrene B[a]P in the immortalized pulmonary BEAS-2B cell line. After 24h incubation with B[a]P in the presence or absence of IL-8, the B[a]P induced cytochrome P450 1A1 and 1B1 (CYP1A1 and CYP1B1) gene expression and CYP1A1 enzyme activity was significantly higher in the presence of the cytokine. Consistent with these findings, we observed higher concentration of the metabolite B[a]P-7,8-diol under concurrent IL-8 treatment conditions. Interestingly, we also found higher concentrations of unmetabolized B[a]P. To explain this, we examined the downstream effects of IL-8 on NADPH oxidases (NOXes). IL-8 lowered the intracellular NADPH level, but this effect could not explain the changes in B[a]P metabolism. IL-8 also significantly depleted intracellular glutathione (GSH), which also resulted in enhanced levels of unmetabolized B[a]P, but increased concentrations of the metabolite B[a]P-7,8-diol. No differences in B[a]P-DNA adducts level were found between B[a]P and B[a]P combined with IL-8, and this might be due to a 3-fold increase in nucleotide excision repair (NER) after IL-8 treatment. These findings suggest that IL-8 increased the formation of B[a]P-7,8-diol despite an overall delayed B[a]P metabolism via depletion of GSH, but DNA damage levels were unaffected due to an increase in NER capacity.
Collapse
Affiliation(s)
- Q Shi
- Departement of Pharmacology & Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - A W Boots
- Departement of Pharmacology & Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - L Maas
- Departement of Pharmacology & Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - C Veith
- Departement of Pharmacology & Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - K van Kuijk
- Departement of Pharmacology & Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - G R Haenen
- Departement of Pharmacology & Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - R W Godschalk
- Departement of Pharmacology & Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - F J Van Schooten
- Departement of Pharmacology & Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Sun X, Liang J, Yao X, Lu C, Zhong T, Hong X, Wang X, Xu W, Gu M, Tang J. The activation of EGFR promotes myocardial tumor necrosis factor-α production and cardiac failure in endotoxemia. Oncotarget 2016; 6:35478-95. [PMID: 26486084 PMCID: PMC4742119 DOI: 10.18632/oncotarget.6071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/29/2022] Open
Abstract
To study the effect of EGFR activation on the generation of TNF-α and the occurrence of cardiac dysfuncetion during sepsis, PD168393 and erlotinib (both are EGFR inhibitors) were applied to decreased the production of TNF-α and phosphrylation of ERK1/2 and p38 induced by LPS in cardiomyocytes. These results were further proved by specifically knocked down the expression of EGFR in vitro. Both TAPI-1, a TNF-α converting enzyme (TACE) inhibitor, and TGF-α neutralizing antibody could inhibit the activation of EGFR and the generation of TNF-α mRNA after LPS treatment. The increase of TGF-α in response to LPS could also be suppressed by TAPI-1. On the other hand, exogenous TGF-α increased the expression of TNF-α mRNA and partially reversed the inhibitory effect of TAPI-1 on expression of TNF-α mRNA in response to LPS indicating that the transactivation of EGFR by LPS in cardiomyocytes needs the help of TACE and TGF-α. In endotoxemic mice, inhibition the activation of EGFR not only decreased TNF-α production in the myocardium but also improved left ventricular pump function and ameliorated cardiac dysfunction and ultimately improved survival rate. All these results provided a new insight of how EGFR regulation the production of TNF-α in cardiomyocytes and a potential new target for the treatment of cardiac dysfunction in sepsis.
Collapse
Affiliation(s)
- Xuegang Sun
- The Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiani Liang
- The Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqing Yao
- The Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China
| | - Chunhua Lu
- The Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianyu Zhong
- The Department of Laboratory Medicine, First Affiliated Hospital of Ganna Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyang Hong
- The Department of Intensive Care Unit, BaYi Children's Hospital, Beijing Military General Hospital, Beijing, China
| | - Xiaofei Wang
- The Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenjuan Xu
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Miaoning Gu
- The Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Tang
- The Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: Results from in vitro and in vivo studies with bromelain and N-acetylcysteine. Oncotarget 2016; 6:33329-44. [PMID: 26436698 PMCID: PMC4741769 DOI: 10.18632/oncotarget.5259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/18/2015] [Indexed: 01/02/2023] Open
Abstract
Aberrant expression of membrane-associated and secreted mucins, as evident in epithelial tumors, is known to facilitate tumor growth, progression and metastasis, and to provide protection against adverse growth conditions, chemotherapy and immune surveillance. Emerging evidence provides support for the oncogenic role of MUC1 in gastrointestinal carcinomas and relates its expression to an invasive phenotype. Similarly, mucinous differentiation of gastrointestinal tumors, in particular increased or de novo expression of MUC2 and/or MUC5AC, is widely believed to imply an adverse clinicopathological feature. Through formation of viscous gels, too, MUC2 and MUC5AC significantly contribute to the biology and pathogenesis of mucin-secreting gastrointestinal tumors. Here, we investigated the mucin-depleting effects of bromelain (BR) and N-acetylcysteine (NAC), in nine different regimens as single or combination therapy, in in vitro (MKN45, KATOIII and LS174T cell lines) and in vivo (female nude mice bearing intraperitoneal MKN45 and LS174T) settings. The inhibitory effects of the treatment on cancer cell growth and proliferation were also evaluated in vivo. Our results suggest that a combination of BR and NAC with dual effects on growth and mucin products of mucin-expressing tumor cells is a promising candidate towards the development of novel approaches to gastrointestinal malignancies with the involvement of mucin pathology. This capability supports the use of this combination formulation in locoregional approaches for reducing the adverse effects of the aberrantly secreted gel-forming mucins, as in pseudomyxoma peritonei and similar pathologies with ectopic production of mucin.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Anahid Ehteda
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - Winston Liauw
- Cancer Care Center, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| | - David L Morris
- Department of Surgery, St George Hospital, The University of New South Wales, Kogarah, Sydney NSW 2217, Australia
| |
Collapse
|
22
|
Zhou JS, Zhao Y, Zhou HB, Wang Y, Wu YF, Li ZY, Xuan NX, Zhang C, Hua W, Ying SM, Li W, Shen HH, Chen ZH. Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1042-52. [PMID: 27036871 DOI: 10.1152/ajplung.00418.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
Mucus hypersecretion is a common pathological feature of chronic airway inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, the molecular basis for this condition remains incompletely understood. We have previously demonstrated a critical role of autophagy in COPD pathogenesis through mediating apoptosis of lung epithelial cells. In this study, we aimed to investigate the function of autophagy as well as its upstream and downstream signals in cigarette smoke-induced mucus production in human bronchial epithelial (HBE) cells and in mouse airways. Cigarette smoke extract (CSE), as well as the classical autophagy inducers starvation or Torin-1, significantly triggered MUC5AC expression, and inhibition of autophagy markedly attenuated CSE-induced mucus production. The CSE-induced autophagy was mediated by mitochondrial reactive oxygen species (mitoROS), which regulated mucin expression through the JNK and activator protein-1 pathway. Epidermal growth factor receptor (EGFR) was also required for CSE-induced MUC5AC in HBE cells, but it exerted inconsiderable effects on the autophagy-JNK signaling cascade. Airways of mice with dysfunctional autophagy-related genes displayed a markedly reduced number of goblet cells and attenuated levels of Muc5ac in response to cigarette smoke exposure. These results altogether suggest that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagy inhibition as a novel therapeutic strategy for chronic airway diseases.
Collapse
Affiliation(s)
- Jie-Sen Zhou
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Hong-Bin Zhou
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Yin-Fang Wu
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Zhou-Yang Li
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Nan-Xia Xuan
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Wen Hua
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Song-Min Ying
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and State Key Lab of Respiratory Disease, Guangzhou, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| |
Collapse
|
23
|
Popruzhenko ТV, Boris SP. [Salivation in children during anticancer chemotherapy]. STOMATOLOGII︠A︡ 2016; 95:30-33. [PMID: 27239994 DOI: 10.17116/stomat201695230-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study aimed to assess the needs and options for salivation management in children treated with antileukemic chemotherapy. In a preliminary cross-sectional study the saliva flow rate and viscosity were evaluated in 75 leukemic children that received chemotherapy with methotrexate in low dose (44 people, 44 episode, group 1), or in high-dose (31 people, 42 episode, group 2), and in 25 healthy children (group 3). Then, 26 children were randomly divided into two groups in the 70 episodes course of high-dosed chemotherapy, and received acetylcysteine (A) or only standard oral management (S) for 1-10 day of treatment. Parameters of salivation and children performance (Lansky et al.) were evaluated. Mann-Whitney U-test was used for analysis. In group 1, 2 and 3 the flow rate (Me [LQ/HQ]) was 0.5 [0.3; 0.8]; 0.9 [0.6; 1.2] and 0.5 [0.3; 0.6] ml/min respectively (p1-3>0.05; p<0.01; p1-2<0.05). Viscosity levels in group 1, 2 and 3 were 2.75 [3.67; 3.67], 10.05 [5.3; 26.0] and 3.9 [2.7; 6.5] unites respectively (p1-3>0.05; p2, 3<0.01; p1, 2<0.01). In group A and S the flow rate was 2.7 [0.5; 4.1] and 0.4 [0.1; 2.2] ml/min (р<0.05); viscosity was 1.5 [1.2; 4.1] and 6.4 [5.3; 8.1] unites (р<0.001), performance Lansky index was 80 [65; 90] and 70 [60; 80] (р<0.01) respectively. Salivation dysfunction complicates the chemotherapy with high-dosed methotrexate in children: it is indicated by high viscosity combined with elevated flow rate. Acetylcysteine normalizes saliva viscosity and improves children's performance.
Collapse
Affiliation(s)
- Т V Popruzhenko
- Belarusian State Medical University, Minsk, Belarus', National Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus'
| | - S P Boris
- Belarusian State Medical University, Minsk, Belarus', National Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus'
| |
Collapse
|
24
|
Homma T, Kato A, Sakashita M, Norton JE, Suh LA, Carter RG, Schleimer RP. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors. Am J Respir Cell Mol Biol 2016; 52:471-81. [PMID: 25180535 DOI: 10.1165/rcmb.2014-0240oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Tetsuya Homma
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | | | | | | | | | | | | |
Collapse
|
25
|
Kanai K, Koarai A, Shishikura Y, Sugiura H, Ichikawa T, Kikuchi T, Akamatsu K, Hirano T, Nakanishi M, Matsunaga K, Minakata Y, Ichinose M. Cigarette smoke augments MUC5AC production via the TLR3-EGFR pathway in airway epithelial cells. Respir Investig 2015; 53:137-48. [PMID: 26100173 DOI: 10.1016/j.resinv.2015.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/05/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Viral infections are a major cause of chronic obstructive pulmonary disease (COPD) exacerbations. Toll-like receptor 3 (TLR3) reacts with double-stranded RNA (dsRNA) and participates in the immune response after viral infection. In the present study, we examined whether cigarette smoke, which is involved in the pathogenesis of COPD, enhances mucin production via the TLR3-epidermal growth factor receptor (EGFR) pathway in airway epithelial cells. METHODS We studied the effects of cigarette smoke extract (CSE) on signal transduction and the production of mucin 5AC (MUC5AC) in NCI-H292 cells and differentiated primary human bronchial epithelial cells stimulated with a synthetic dsRNA analogue, polyinosinic-polycytidylic acid [poly(I:C)], used as a TLR3 ligand. RESULTS CSE significantly potentiated the production of MUC5AC in epithelial cells stimulated with poly(I:C). Antibodies to EGFR or EGFR ligands inhibited CSE-augmented MUC5AC release in poly(I:C)-treated cells. Treatment with poly(I:C) or CSE alone increased the phosphorylation of EGFR and extracellular signal-regulated kinase (ERK). However, after poly(I:C) stimulation, CSE did not enhance EGFR phosphorylation, but did augment ERK phosphorylation. EGFR inhibitors and an ERK inhibitor inhibited the augmented release of MUC5AC. In addition, treatment with N-acetylcysteine, an antioxidant, inhibited the CSE-augmented phosphorylation of ERK and MUC5AC. CONCLUSIONS These data show that cigarette smoke increases TLR3-stimulated MUC5AC production in airway epithelial cells, mainly via ERK signaling. The effect might be mediated in part by oxidative stress. Modulation of this pathway might be a therapeutic target for viral-induced mucin overproduction in COPD exacerbation.
Collapse
Affiliation(s)
- Kuninobu Kanai
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Yutaka Shishikura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Tomohiro Ichikawa
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Takashi Kikuchi
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Keiichiro Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Tsunahiko Hirano
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Masanori Nakanishi
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Kazuto Matsunaga
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Yoshiaki Minakata
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
26
|
Dickinson JD, Alevy Y, Malvin NP, Patel KK, Gunsten SP, Holtzman MJ, Stappenbeck TS, Brody SL. IL13 activates autophagy to regulate secretion in airway epithelial cells. Autophagy 2015; 12:397-409. [PMID: 26062017 DOI: 10.1080/15548627.2015.1056967] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.
Collapse
Affiliation(s)
- John D Dickinson
- a Department of Medicine , Washington University , St. Louis , MO , USA
| | - Yael Alevy
- a Department of Medicine , Washington University , St. Louis , MO , USA
| | - Nicole P Malvin
- b Department of Pathology and Immunology , Washington University , St. Louis , MO , USA
| | - Khushbu K Patel
- b Department of Pathology and Immunology , Washington University , St. Louis , MO , USA
| | - Sean P Gunsten
- a Department of Medicine , Washington University , St. Louis , MO , USA
| | - Michael J Holtzman
- a Department of Medicine , Washington University , St. Louis , MO , USA.,c Department of Cell Biology , Washington University , St. Louis , MO , USA
| | - Thaddeus S Stappenbeck
- b Department of Pathology and Immunology , Washington University , St. Louis , MO , USA.,d Department of Developmental Biology , Washington University , St. Louis , MO , USA
| | - Steven L Brody
- a Department of Medicine , Washington University , St. Louis , MO , USA
| |
Collapse
|
27
|
Mathis C, Gebel S, Poussin C, Belcastro V, Sewer A, Weisensee D, Hengstermann A, Ansari S, Wagner S, Peitsch MC, Hoeng J. A systems biology approach reveals the dose- and time-dependent effect of primary human airway epithelium tissue culture after exposure to cigarette smoke in vitro. Bioinform Biol Insights 2015; 9:19-35. [PMID: 25788831 PMCID: PMC4357630 DOI: 10.4137/bbi.s19908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
To establish a relevant in vitro model for systems toxicology-based mechanistic assessment of environmental stressors such as cigarette smoke (CS), we exposed human organotypic bronchial epithelial tissue cultures at the air liquid interface (ALI) to various CS doses. Previously, we compared in vitro gene expression changes with published human airway epithelia in vivo data to assess their similarities. Here, we present a follow-up evaluation of these in vitro transcriptomics data, using complementary computational approaches and an integrated mRNA-microRNA (miRNA) analysis. The main cellular pathways perturbed by CS exposure were related to stress responses (oxidative stress and xenobiotic metabolism), inflammation (inhibition of nuclear factor-κB and the interferon gamma-dependent pathway), and proliferation/differentiation. Within post-exposure periods up to 48 hours, a transient kinetic response was observed at lower CS doses, whereas higher doses resulted in more sustained responses. In conclusion, this systems toxicology approach has potential for product testing according to "21st Century Toxicology".
Collapse
Affiliation(s)
- Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Stephan Gebel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Carine Poussin
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Dirk Weisensee
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Arnd Hengstermann
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sandra Wagner
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
28
|
Sobus SL, Warren GW. The biologic effects of cigarette smoke on cancer cells. Cancer 2014; 120:3617-26. [PMID: 25043526 DOI: 10.1002/cncr.28904] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 01/03/2023]
Abstract
Smoking is one of the largest preventable risk factors for developing cancer, and continued smoking by cancer patients is associated with increased toxicity, recurrence, risk of second primary cancer, and mortality. Cigarette smoke (CS) contains thousands of chemicals, including many known carcinogens. The carcinogenic effects of CS are well established, but relatively little work has been done to evaluate the effects of CS on cancer cells. In this review of the literature, the authors demonstrate that CS induces a more malignant tumor phenotype by increasing proliferation, migration, invasion, and angiogenesis and by activating prosurvival cellular pathways. Significant work is needed to understand the biologic effect of CS on cancer biology, including the development of model systems and the identification of critical biologic mediators of CS-induced changes in cancer cell physiology.
Collapse
Affiliation(s)
- Samantha L Sobus
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, New York; Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
29
|
Li L, Sun J, Xu C, Zhang H, Wu J, Liu B, Dong J. Icariin ameliorates cigarette smoke induced inflammatory responses via suppression of NF-κB and modulation of GR in vivo and in vitro. PLoS One 2014; 9:e102345. [PMID: 25089961 PMCID: PMC4121073 DOI: 10.1371/journal.pone.0102345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 06/18/2014] [Indexed: 11/18/2022] Open
Abstract
Purpose To investigate the effects of icariin, a major constituent of flavonoids isolated from the herb Epimedium, on cigarette smoke (CS) induced inflammatory responses in vivo and in vitro. Methods In vivo, BALB/c mice were exposed to smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months and dosed with icariin (25, 50 and 100 mg/kg) or dexamethasone (1 mg/kg). In vitro, A549 cells were incubated with icariin (10, 50 and 100 µM) followed by treatments with CSE (2.5%). Results We found that icariin significantly protected pulmonary function and attenuated CS-induced inflammatory response by decreasing inflammatory cells and production of TNF-α, IL-8 and MMP-9 in both the serum and BALF of CS-exposed mice and decreasing production of TNF-α and IL-8 in the supernatant of CSE-exposed A549 cells. Icariin also showed properties in inhibiting the phosphorylation of NF-κB p65 protein and blocking the degradation of IΚB-α protein. Further studies revealed that icariin administration markedly restore CS-reduced GR protein and mRNA expression, which might subsequently contribute to the attenuation of CS-induced respiratory inflammatory response. Conclusion Together these results suggest that icariin has anti-inflammatory effects in cigarette smoke induced inflammatory models in vivo and in vitro, possibly achieved by suppressing NF-κB activation and modulating GR protein expression.
Collapse
Affiliation(s)
- Lulu Li
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Changqing Xu
- Hangzhou Normal University, School of medicine, Affiliated Hospital, Hangzhou, China
| | - Hongying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Baojun Liu
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
Nyunoya T, Mebratu Y, Contreras A, Delgado M, Chand HS, Tesfaigzi Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am J Respir Cell Mol Biol 2014; 50:471-82. [PMID: 24111585 DOI: 10.1165/rcmb.2013-0348tr] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoke contains numerous chemical compounds, including abundant reactive oxygen/nitrogen species and aldehydes, and many other carcinogens. Long-term cigarette smoking significantly increases the risk of various lung diseases, including chronic obstructive pulmonary disease and lung cancer, and contributes to premature death. Many in vitro and in vivo studies have elucidated mechanisms involved in cigarette smoke-induced inflammation, DNA damage, and autophagy, and the subsequent cell fates, including cell death, cellular senescence, and transformation. In this Translational Review, we summarize the known pathways underlying these processes in airway epithelial cells to help reveal future challenges and describe possible directions of research that could lead to better management and treatment of these diseases.
Collapse
Affiliation(s)
- Toru Nyunoya
- 1 Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, and
| | | | | | | | | | | |
Collapse
|
31
|
Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 4:723-34. [DOI: 10.1586/ers.10.68] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Li MC, Yang G, Zhou XD, Tselluyko S, Perelman JM. The pathophysiological mechanisms underlying mucus hypersecretion induced by cold temperatures in cigarette smoke-exposed rats. Int J Mol Med 2013; 33:83-90. [PMID: 24154796 DOI: 10.3892/ijmm.2013.1535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/11/2013] [Indexed: 11/05/2022] Open
Abstract
In a recent study, we demonstrated that transient receptor potential melastatin 8 (TRPM8), a calcium-permeable cation channel that is activated by cold temperatures, is localized in the bronchial epithelium and is upregulated in subjects with chronic obstructive pulmonary disease, which causes them to be more sensitive to cold air. In the present study, we found that exposure to cold temperatures induced ciliary ultrastructural anomalies and mucus accumulation on the epithelial surface. Male Sprague-Dawley rats were exposed to cold temperatures to determine the effects of cold air on ultrastructural changes in cilia and the airway epithelial surface. The rats were also exposed to cigarette smoke and/or cold temperatures to determine the effects of smoke and cold air on TRPM8 expression and the role of cold air in cigarette smoke-induced mucus hypersecretion. Following real-time RT-PCR and western blot analysis, we observed a high expression of TRPM8 mRNA and protein in the bronchial tissue following cigarette smoke inhalation. As shown by ELISA, concurrent cold air enhanced the levels of mucin 5AC (MUC5AC) protein, as well as those of inflammatory factors [tumor necrosis factor (TNF)-α and interleukin (IL)-8] that were induced by cigarette smoke inhalation to a greater extent than stimulation with separate stimuli (cold air and cigarette smoke separately). The results suggest that cold air stimuli are responsible for the ultrastructural abnormalities of bronchial cilia, which contribute to abnormal mucus clearance. In addition, cold air synergistically amplifies cigarette smoke-induced mucus hypersecretion and the production of inflammatory factors through the elevated expression of the TRPM8 channel that is initiated by cigarette smoke inhalation.
Collapse
Affiliation(s)
- Min-Chao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | | | | | | | | |
Collapse
|
33
|
Effect of acrolein, a hazardous air pollutant in smoke, on human middle ear epithelial cells. Int J Pediatr Otorhinolaryngol 2013; 77:1659-64. [PMID: 23953484 DOI: 10.1016/j.ijporl.2013.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Acrolein is a hazardous air pollutant. Tobacco smoke and indoor air pollution are the main causes of human exposure. Acrolein has been shown to cause cytotoxicity in the airways and induce inflammation and mucin production in pulmonary cells. We investigated whether acrolein caused cytotoxicity, induced inflammation or increased expression of mucin in immortalized human middle ear epithelial cell lines (HMEECs). METHODS Cytotoxicity following acrolein treatment was investigated using the MTT assay, flow cytometry, and Hoechst 33342 staining of HMEECs. We measured expression of inflammatory cytokines tumor necrosis factor (TNF)-α and cyclo-oxygenase (COX)-2 and the mucin gene MUC5AC using semi-quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. RESULTS Exposure to >50 μg/mL acrolein caused a decrease in cell viability. Acrolein induced apoptosis and necrosis at 50 μg/mL. Acrolein at 5-50 μg/mL increased expression of TNF-α and COX-2, as shown by RT-PCR and Western blotting. Acrolein exposure at 5-50 μg/mL for 2-24h increased MUC5AC expression, as determined by RT-PCR. CONCLUSION Acrolein decreased cell viability, induced an inflammatory response, and increased mucin gene expression in HMEECs. These findings support the hypothesis that acrolein, a hazardous air pollutant in tobacco smoke and ambient air, is a risk factor for otitis media.
Collapse
|
34
|
Geng WY, Liu ZB, Song NN, Geng WY, Zhang GH, Jin WZ, Li L, Cao YX, Zhu DN, Shen LL. Effects of electroacupuncture at Zusanli (ST36) on inflammatory cytokines in a rat model of smoke-induced chronic obstructive pulmonary disease. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2013; 11:213-9. [PMID: 23743164 DOI: 10.3736/jintegrmed2013024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Improvement in lung function was reported after acupuncture treatment of chronic obstructive pulmonary disease (COPD), but little is known about the underlying mechanisms. Because an immune response imbalance could be seen in COPD, we hypothesize that electroacupuncture (EA) may play a role in regulating inflammatory cytokines and contribute to lung protection in a rat model of smoke-induced COPD. METHODS A COPD model using male Sprague-Dawley rats exposed to cigarette smoke was established. The rats were randomly divided into four groups (control, sham, COPD, and COPD plus EA), and COPD model was evaluated by measuring pulmonary pathological changes and lung function. EA was applied to the acupuncture point Zusanli (ST36) for 30 min/d for 14 d in sham and COPD rats. Bronchoalveolar lavage fluid (BALF) was used to measure levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and malonaldehyde (MDA). RESULTS Compared with the control rats, COPD rats had significant changes in lung resistance (RL) and lung compliance (CL) (both P<0.01), bronchi and bronchiole airway obstruction (P<0.01), and levels of MDA, TNF-α, and IL-1β (P<0.01). There were no significant differences between the control and the sham groups. Compared with the COPD rats, the COPD plus EA rats had decreased RL and increased CL (both P<0.05), and reduced bronchi and bronchiole airway obstruction (P<0.05, P<0.01, respectively), while levels of TNF-α, IL-1β, and MDA in BALF were lowered (P<0.05 and P<0.01, respectively). However, TNF-α and IL-1β levels of the EA group rats remained higher than those of the control group (P<0.05). CONCLUSION EA at ST36 can reduce lung injury in a COPD rat model, and beneficial effects may be related to down-regulation of inflammatory cytokines. The anti-inflammatory and antioxidant effects may prolong the clinical benefit of EA.
Collapse
Affiliation(s)
- Wen-ye Geng
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vaguliene N, Zemaitis M, Lavinskiene S, Miliauskas S, Sakalauskas R. Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease. BMC Immunol 2013; 14:36. [PMID: 23919722 PMCID: PMC3750549 DOI: 10.1186/1471-2172-14-36] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022] Open
Abstract
Background Recent investigations suggest that neutrophils play an important role in the immune response to lung cancer as well as chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the amount of neutrophils and markers of their activity in lung cancer and COPD and in coexistence of these two diseases. Methods In total, 267 persons were included in the study: 139 patients with lung cancer, 55 patients with lung cancer and COPD, 40 patients with COPD, and 33 healthy subjects. Peripheral blood and BAL fluid samples were obtained for cell count analysis and determination of NE, MPO levels and ROS production. NE and MPO levels in the serum and BAL fluid were determined by ELISA. ROS production was analyzed by flow cytometer. Results The percentage, cell count of neutrophils and neutrophil to lymphocyte ratio in the peripheral blood were significantly higher in lung cancer patients with or without COPD compared to COPD patients or healthy individuals (P < 0.05). The percentage and cell count of neutrophils in BAL fluid were significantly lower in patients with lung cancer with or without COPD than in patients with COPD (P < 0.05). However, BAL fluid and serum levels of both NE and MPO were significantly higher in patients with lung cancer than COPD patients or healthy individuals (P < 0.05). Neutrophils produced higher amounts of ROS in patients with lung cancer with or without COPD compared with COPD patients or healthy individuals (P < 0.05). Conclusions The results from this study demonstrate higher degree of local and systemic neutrophilic inflammation in patients with lung cancer (with or without COPD) than in patients with COPD.
Collapse
Affiliation(s)
- Neringa Vaguliene
- Department of Pulmonology and Immunology, Medical Academy, Hospital of Lithuanian University of Health Sciences, Eiveniu 2, Kaunas LT-50028, Lithuania.
| | | | | | | | | |
Collapse
|
36
|
Susceptibility to viral infections in chronic obstructive pulmonary disease: role of epithelial cells. Curr Opin Pulm Med 2013; 19:125-32. [PMID: 23361194 DOI: 10.1097/mcp.0b013e32835cef10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The aim is to understand how airway epithelial cells with compromised innate defense mechanisms enhance susceptibility to respiratory virus infections in chronic obstructive pulmonary disease (COPD). RECENT FINDINGS Exacerbations associated with respiratory viruses are more severe and increase disease severity in COPD. Airway epithelial cells cultured from COPD patients show excessive innate immune response to viral infection and higher viral load compared with normal cells. SUMMARY Airway epithelial cells are the first line of defense in the lung and are equipped with several lines of innate defense mechanisms to fight against invading pathogens including viruses. Under normal conditions, mucociliary and barrier functions of airway epithelial cells prevent virus binding and entry into the cells. Virus-infected airway epithelial cells also express various cytokines, which recruit and activate innate and adaptive immune cells ultimately controlling the infection and tissue damage. In COPD however, compromised mucociliary and barrier functions may increase virus binding and allow virus entry into airway epithelial cells. Virus-infected COPD airway epithelial cells also show disproportionate cytokine expression leading to inappropriate recruitment and activation of innate and adaptive immune cells. COPD airway epithelial cells also show defective antiviral responses. Such defects in innate defense mechanisms may increase susceptibility to viral infections and disease severity in COPD.
Collapse
|
37
|
An J, Li JQ, Wang T, Li XO, Guo LL, Wan C, Liao ZL, Dong JJ, Xu D, Wen FQ. Blocking of thromboxane A₂ receptor attenuates airway mucus hyperproduction induced by cigarette smoke. Eur J Pharmacol 2013; 703:11-7. [PMID: 23399768 DOI: 10.1016/j.ejphar.2013.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 01/19/2013] [Accepted: 01/29/2013] [Indexed: 02/03/2023]
Abstract
Cigarette smoking is one of the risk factors for chronic obstructive pulmonary disease (COPD). In this study, we investigated the effects of thromboxane A2 (TxA2) receptor antagonists on airway mucus production induced by cigarette smoke. Rats were exposed to cigarette smoke 1h/day, 6 days/week for 4 weeks. Seratrodast (2, 5, 10mg/kg day) was administered intragastrically prior to smoke exposure. Thromboxane B2 (TxB2) in the bronchoalveolar lavage fluid and lung tissues was determined by enzyme immunoassay. Airway mucus production was determined by alcin-blue/periodic acid sthiff (AB-PAS) staining, Muc5ac immunohistochemical staining, and RT-PCR. The phosphorylation of ERK and p38 was evaluated by Western blotting. Seratrodast reduced the overproduction of TxB2 in both bronchoalveolar lavage fluid and lung tissues. Cigarette smoke exposure markedly increased AB/PAS-stained goblet cells and rat Muc5ac expression in the airway, which was significantly attenuated by seratrodast administration. The induced phosphorylation of ERK and p38 was also attenuated by seratrodast. TxA2 receptor antagonist could reduce Muc5ac production induced by cigarette smoke in vivo, possibly through the mitogen-activated protein kinases (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Jing An
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ganesan S, Unger BL, Comstock AT, Angel KA, Mancuso P, Martinez FJ, Sajjan US. Aberrantly activated EGFR contributes to enhanced IL-8 expression in COPD airways epithelial cells via regulation of nuclear FoxO3A. Thorax 2012; 68:131-41. [PMID: 23099361 DOI: 10.1136/thoraxjnl-2012-201719] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Decreased activity of forkhead transcription factor class O (FoxO)3A, a negative regulator of NF-κB-mediated chemokine expression, is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Previously, we showed that quercetin reduces lung inflammation in a murine model of COPD. Here, we examined the mechanisms underlying decreased FoxO3A activation and its modulation by quercetin in COPD human airway epithelial cells and in a COPD mouse model. METHODS Primary COPD and normal human airway epithelial cells were treated with quercetin, LY294002 or erlotinib for 2 weeks. IL-8 was measured by ELISA. FoxO3A, Akt, and epidermal growth factor (EGF) receptor (EGFR) phosphorylation and nuclear FoxO3A levels were determined by Western blot analysis. Effects of quercetin on lung chemokine expression, nuclear FoxO3A levels and phosphorylation of EGFR and Akt were determined in COPD mouse model. RESULTS Compared with normal, COPD cells showed significantly increased IL-8, which negatively correlated with nuclear FoxO3A levels. COPD bronchial biopsies also showed reduced nuclear FoxO3A. Decreased FoxO3A in COPD cells was associated with increased phosphorylation of EGFR, Akt and FoxO3A and treatment with quercetin, LY294002 or erlotinib increased nuclear FoxO3A and decreased IL-8 and phosphorylation of Akt, EGFR and FoxO3A, Compared with control, elastase/LPS-exposed mice showed decreased nuclear FoxO3A, increased chemokines and phosphorylation of EGFR and Akt. Treatment with quercetin partially reversed these changes. CONCLUSIONS In COPD airways, aberrant EGFR activity increases PI 3-kinase/Akt-mediated phosphorylation of FoxO3A, thereby decreasing nuclear FoxO3A and increasing chemokine expression. Quercetin restores nuclear FoxO3A and reduces chemokine expression partly by modulating EGFR/PI 3-kinase/Akt activity.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-5688, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Moretto N, Volpi G, Pastore F, Facchinetti F. Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann N Y Acad Sci 2012; 1259:39-46. [PMID: 22758635 DOI: 10.1111/j.1749-6632.2012.06531.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acrolein (2-propenal) is a highly reactive α,β-unsaturated aldehyde and a respiratory irritant that is ubiquitously present in the environment but that can also be generated endogenously at sites of inflammation. Acrolein is abundant in tobacco smoke, which is the major environmental risk factor for chronic obstructive pulmonary disease (COPD), and elevated levels of acrolein are found in the lung fluids of COPD patients. Its high electrophilicity makes acrolein notorious for its facile reaction with biological nucleophiles, leading to the modification of proteins and DNA and depletion of antioxidant defenses. As a consequence, acrolein results in oxidative stress as well as altered intracellular signaling and gene transcription/translation. In pulmonary cells, acrolein, at subtoxic concentrations, can activate intracellular stress kinases, alter the production of inflammatory mediators and proteases, modify innate immune response, induce mucus hypersecretion, and damage airway epithelium. A better comprehension of the mechanisms underlying acrolein effects in the airways may suggest novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Nadia Moretto
- Department of Pharmacology, Chiesi Farmaceutici SpA, Parma, Italy
| | | | | | | |
Collapse
|
40
|
Li FF, Shen J, Shen HJ, Zhang X, Cao R, Zhang Y, Qui Q, Lin XX, Xie YC, Zhang LH, Jia YL, Dong XW, Jiang JX, Bao MJ, Zhang S, Ma WJ, Wu XM, Shen H, Xie QM, Ke Y. Shp2 plays an important role in acute cigarette smoke-mediated lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3159-67. [PMID: 22891281 PMCID: PMC3496208 DOI: 10.4049/jimmunol.1200197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022]
Abstract
Cigarette smoke (CS), the major cause of chronic obstructive pulmonary disease, contains a variety of oxidative components that were implicated in the regulation of Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) activity. However, the contribution of Shp2 enzyme to chronic obstructive pulmonary disease pathogenesis remains unclear. We investigated the role of Shp2 enzyme in blockading CS-induced pulmonary inflammation. Shp2 levels were assessed in vivo and in vitro. Mice (C57BL/6) or pulmonary epithelial cells (NCI-H292) were exposed to CS or cigarette smoke extract (CSE) to induce acute injury and inflammation. Lungs of smoking mice showed increased levels of Shp2, compared with those of controls. Treatment of lung epithelial cells with CSE showed elevated levels of Shp2 associated with the increased release of IL-8. Selective inhibition or knockdown of Shp2 resulted in decreased IL-8 release in response to CSE treatment in pulmonary epithelial cells. In comparison with CS-exposed wild-type mice, selective inhibition or conditional knockout of Shp2 in lung epithelia reduced IL-8 release and pulmonary inflammation in CS-exposed mice. In vitro biochemical data correlate CSE-mediated IL-8 release with Shp2-regulated epidermal growth factor receptor/Grb-2-associated binders/MAPK signaling. Our data suggest an important role for Shp2 in the pathological alteration associated with CS-mediated inflammation. Shp2 may be a potential target for therapeutic intervention for inflammation in CS-induced pulmonary diseases.
Collapse
Affiliation(s)
- Fen-fen Li
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Hui-juan Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Rui Cao
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yun Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Qiu Qui
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Xi-xi Lin
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yi-cheng Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Lin-hui Zhang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yong-liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xin-wei Dong
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Jun-xia Jiang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Meng-jing Bao
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Shanshan Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| | - Wen-jiang Ma
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Xi-mei Wu
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Huahao Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Qiang-min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 310058; and
| |
Collapse
|
41
|
PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases. PPAR Res 2012; 2012:256874. [PMID: 22761606 PMCID: PMC3385647 DOI: 10.1155/2012/256874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/19/2012] [Accepted: 05/08/2012] [Indexed: 02/05/2023] Open
Abstract
Airway mucus hypersecretion (AMH) is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.
Collapse
|
42
|
Cockayne DA, Cheng DT, Waschki B, Sridhar S, Ravindran P, Hilton H, Kourteva G, Bitter H, Pillai SG, Visvanathan S, Müller KC, Holz O, Magnussen H, Watz H, Fine JS. Systemic biomarkers of neutrophilic inflammation, tissue injury and repair in COPD patients with differing levels of disease severity. PLoS One 2012; 7:e38629. [PMID: 22701684 PMCID: PMC3373533 DOI: 10.1371/journal.pone.0038629] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 05/08/2012] [Indexed: 12/21/2022] Open
Abstract
The identification and validation of biomarkers to support the assessment of novel therapeutics for COPD continues to be an important area of research. The aim of the current study was to identify systemic protein biomarkers correlated with measures of COPD severity, as well as specific protein signatures associated with comorbidities such as metabolic syndrome. 142 protein analytes were measured in serum of 140 patients with stable COPD, 15 smokers without COPD and 30 non-smoking controls. Seven analytes (sRAGE, EN-RAGE, NGAL, Fibrinogen, MPO, TGF-α and HB-EGF) showed significant differences between severe/very severe COPD, mild/moderate COPD, smoking and non-smoking control groups. Within the COPD subjects, univariate and multivariate analyses identified analytes significantly associated with FEV(1), FEV(1)/FVC and DLCO. Most notably, a set of 5 analytes (HB-EGF, Fibrinogen, MCP-4, sRAGE and Sortilin) predicted 21% of the variability in DLCO values. To determine common functions/pathways, analytes were clustered in a correlation network by similarity of expression profile. While analytes related to neutrophil function (EN-RAGE, NGAL, MPO) grouped together to form a cluster associated with FEV(1) related parameters, analytes related to the EGFR pathway (HB-EGF, TGF-α) formed another cluster associated with both DLCO and FEV(1) related parameters. Associations of Fibrinogen with DLCO and MPO with FEV(1)/FVC were stronger in patients without metabolic syndrome (r = -0.52, p = 0.005 and r = -0.61, p = 0.023, respectively) compared to patients with coexisting metabolic syndrome (r = -0.25, p = 0.47 and r = -0.15, p = 0.96, respectively), and may be driving overall associations in the general cohort. In summary, our study has identified known and novel serum protein biomarkers and has demonstrated specific associations with COPD disease severity, FEV(1), FEV(1)/FVC and DLCO. These data highlight systemic inflammatory pathways, neutrophil activation and epithelial tissue injury/repair processes as key pathways associated with COPD.
Collapse
Affiliation(s)
- Debra A. Cockayne
- Inflammation Disease Therapy Area, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Donavan T. Cheng
- Translational Research Sciences, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Benjamin Waschki
- Pulmonary Research Institute at Hospital Grosshansdorf, Grosshansdorf, Germany
- Center for Pneumology and Thoracic Surgery, Hospital Grosshandorf, Grosshansdorf, Germany
| | - Sriram Sridhar
- Translational Research Sciences, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Palanikumar Ravindran
- Translational Research Sciences, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Holly Hilton
- Translational Research Sciences, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Galina Kourteva
- Translational Research Sciences, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Hans Bitter
- Translational Research Sciences, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Sreekumar G. Pillai
- Inflammation Disease Therapy Area, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Sudha Visvanathan
- Inflammation Disease Therapy Area, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| | - Kai-Christian Müller
- Center for Pneumology and Thoracic Surgery, Hospital Grosshandorf, Grosshansdorf, Germany
| | - Olaf Holz
- Center for Pneumology and Thoracic Surgery, Hospital Grosshandorf, Grosshansdorf, Germany
| | - Helgo Magnussen
- Pulmonary Research Institute at Hospital Grosshansdorf, Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at Hospital Grosshansdorf, Grosshansdorf, Germany
| | - Jay S. Fine
- Inflammation Disease Therapy Area, Hoffmann-La Roche, Nutley, New Jersey, United States of America
| |
Collapse
|
43
|
Autocrine effect of EGFR ligands on the pro-inflammatory response induced by PM2.5 exposure in human bronchial epithelial cells. Arch Toxicol 2012; 86:1537-46. [DOI: 10.1007/s00204-012-0863-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
44
|
Lavinskiene S, Jeroch J, Malakaskas K, Bajoriuniene I, Jackute J, Sakalauskas R. Peripheral Blood Neutrophil Activity During Dermatophagoides pteronyssinus-Induced Late-Phase Airway Inflammation in Patients with Allergic Rhinitis and Asthma. Inflammation 2012; 35:1600-9. [DOI: 10.1007/s10753-012-9475-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Manzo ND, Foster WM, Stripp BR. Amphiregulin-dependent mucous cell metaplasia in a model of nonallergic lung injury. Am J Respir Cell Mol Biol 2012; 47:349-57. [PMID: 22493011 DOI: 10.1165/rcmb.2011-0257oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proliferation and differentiation of the pulmonary epithelium after injury is a critical process in the defense against the external environment. Defects in this response can result in airway remodeling, such as mucus cell metaplasia (MCM), commonly seen in patients with chronic lung disease. We have previously shown that amphiregulin (AREG), a ligand to the epidermal growth factor receptor (EGFR), is induced during the repair/differentiation process elicited by naphthalene-induced lung injury. Thus, we hypothesized that AREG signaling plays an important role in epithelial proliferation and differentiation of the repairing airway. Mice deficient in AREG and lung epithelial EGFR were used to define roles for AREG-dependent EGFR signaling in airway repair and remodeling. We show that AREG and epithelial EGFR expression is dispensable to pulmonary epithelial repair after naphthalene-induced lung injury, but regulates secretory cell differentiation to a mucus-producing phenotype. We show that the pulmonary epithelium is the source of AREG, suggesting that naphthalene-induced MCM is mediated through an autocrine signaling mechanism. However, induction of MCM resulting from allergen exposure was independent of AREG. Our data demonstrate that AREG-dependent EGFR signaling in airway epithelial cells contributes to MCM in naphthalene-induced lung injury. We conclude that AREG may represent a determinant of nonallergic chronic lung diseases complicated by MCM.
Collapse
Affiliation(s)
- Nicholas D Manzo
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
46
|
Yu H, Li Q, Kolosov VP, Perelman JM, Zhou X. Regulation of cigarette smoke-mediated mucin expression by hypoxia-inducible factor-1α via epidermal growth factor receptor-mediated signaling pathways. J Appl Toxicol 2012; 32:282-92. [PMID: 21544845 DOI: 10.1002/jat.1679] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 01/04/2011] [Accepted: 02/04/2011] [Indexed: 02/03/2023]
Abstract
Cigarette smoking is strongly implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mucus hypersecretion is the key manifestation in patients with COPD and mucin 5AC (MUC5AC) is a major component of airway mucus. Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor which can be stimulated to bind to the MUC5AC promoter and induce MUC5AC promoter activation. Previous studies have reported that activation of HIF-1α pathways by cigarette smoke contributes to the development of COPD. We hypothesize that cigarette smoke up-regulates HIF-1α production and HIF-1 activity through epidermal growth factor receptor (EGFR)-activated signal cascades pathways, leading to mucin production in human airway epithelial cells (16HBE). We show that cigarette smoke increases HIF-1α production, HIF-1 activity and MUC5AC expression. These effects are prevented by small interfering RNA (siRNA) for HIF-1α, indicating that cigarette smoke-induced mucin production is HIF-1α-dependent. Cigarette smoke activates extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K) signal pathways, both of which are inhibited by gefitinib (an inhibitor of EGFR), suggesting that cigarette smoke-activated signal pathways are mediated by EGFR in 16HBE cells. Furthermore, pretreatment with gefitinib and the pharmacological inhibitors of PI3K (LY294002) and ERK1/2 (PD98059) prevented cigarette smoke-mediated Akt and ERK1/2 phosphorylation responses, HIF-1α production, HIF-1 activity and MUC5AC expression. These observations demonstrate an important role for EGFR-mediated signaling pathways in regulating cigarette smoke-induced HIF-1 activation and MUC5AC expression. Our results suggest that cigarette smoke activates EGFR-mediated signaling pathways, leading to HIF-1α production and HIF-1 activation, resulting in mucin expression in human airway epithelial cells.
Collapse
Affiliation(s)
- Hongmei Yu
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | | | | | | | | |
Collapse
|
47
|
Li L, Bao H, Wu J, Duan X, Liu B, Sun J, Gong W, Lv Y, Zhang H, Luo Q, Wu X, Dong J. Baicalin is anti-inflammatory in cigarette smoke-induced inflammatory models in vivo and in vitro: A possible role for HDAC2 activity. Int Immunopharmacol 2012; 13:15-22. [PMID: 22421405 DOI: 10.1016/j.intimp.2012.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by airway obstruction and progressive lung inflammation, which is insensitive to corticosteroids therapies. In this study, we investigated the mechanism underlying the attenuation of cigarette smoke (CS)-induced respiratory inflammation by baicalin, a flavonoid compound isolated from the root of Scutellaria baicalensis Georgi, in vivo and in vitro. In vivo, mice were exposed to smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months and dosed with baicalin (25, 50 and 100mg/kg) or dexamethasone (1mg/kg). In vitro, A549 cells were incubated with baicalin (10, 50 and 100 μM) or dexamethasone (10(-12), 10(-10), 10(-8) and 10(-6)M) followed by treatments with cigarette smoke extract (CSE, 2.5 and 5%), or TNF-α (10 ng/ml), or trichostatin A (TSA, 100 ng/ml). We found that baicalin significantly protected pulmonary function and attenuated CS-induced inflammatory response by decreasing inflammatory cells and production of TNF-α, IL-8 and MMP-9. This result was not found in the group treated with dexamethasone. Baicalin also showed efficacy in enhancing histone deacetylase (HDAC)2 activity and protein expression, however, it did not affect HDAC2 mRNA. Further studies revealed that baicalin inhibited HDAC2 phosphorylation, suggesting that it may directly affect the protein structure and effect by modification at post-translational level. Together these results suggest that baicalin has anti-inflammatory effects in cigarette smoke induced inflammatory models in mice and A549 cells, possibly achieved by modulating HDAC2.
Collapse
Affiliation(s)
- Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chiba T, Chihara J, Furue M. Role of the Arylhydrocarbon Receptor (AhR) in the Pathology of Asthma and COPD. J Allergy (Cairo) 2012; 2012:372384. [PMID: 22500183 PMCID: PMC3303582 DOI: 10.1155/2012/372384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 10/18/2011] [Indexed: 12/17/2022] Open
Abstract
The dioxins and dioxin-like compounds in cigarette smoke and environmental pollutants modulate immunological responses. These environmental toxicants are known to cause lung cancer but have also recently been implicated in allergic and inflammatory diseases such as bronchitis, asthma, and chronic obstructive pulmonary disease (COPD). In a novel pathway of this response, the activation of a nuclear receptor, arylhydrocarbon receptor (AhR), mediates the effects of these toxins through the arachidonic acid cascade, cell differentiation, cell-cell adhesion interactions, cytokine expression, and mucin production that are implicated in the pathogenesis and exacerbation of asthma/COPD. We have previously reported that human bronchial epithelial cells express AhR, and AhR activation induces mucin production through reactive oxygen species. This review discusses the role of AhR in asthma and COPD, focusing in particular on inflammatory and resident cells in the lung. We describe the important impact that AhR activation may have on the inflammation phase in the pathology of asthma and COPD. In addition, crosstalk of AhR signaling with other ligand-activated transcription factors such as peroxisome proliferator-activated receptors (PPARs) has been well documented.
Collapse
Affiliation(s)
- Takahito Chiba
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University School of Medicine, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Junichi Chihara
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Akila 010-8502, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University School of Medicine, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
49
|
Hirota N, Risse PA, Novali M, McGovern T, Al-Alwan L, McCuaig S, Proud D, Hayden P, Hamid Q, Martin JG. Histamine may induce airway remodeling through release of epidermal growth factor receptor ligands from bronchial epithelial cells. FASEB J 2012; 26:1704-16. [PMID: 22247333 DOI: 10.1096/fj.11-197061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asthma is a chronic inflammatory disease that is associated with airway remodeling, including hyperplasia of airway epithelial cells and airway smooth muscle cells, and goblet cell differentiation. We wished to address the potential role of histamine, a key biogenic amine involved in allergic reactions, in airway remodeling through the epidermal growth factor receptor (EGFR) pathway. Here, we demonstrate that histamine releases 2 EGFR ligands, amphiregulin and heparin-binding epidermal growth factor-like growth factor (HB-EGF), from airway epithelial cells. Amphiregulin and HB-EGF were expressed in airway epithelium of patients with asthma. Histamine up-regulated their mRNA expression (amphiregulin 3.2-fold, P<0.001; HB-EGF 2.3-fold, P<0.05) and triggered their release (amphiregulin EC(50) 0.50 μM, 31.2 ± 2.7 pg/ml with 10 μM histamine, P<0.01; HB-EGF EC(50) 0.54 μM, 78.5 ± 1.8 pg/ml with 10 μM histamine, P<0.001) compared to vehicle control (amphiregulin 19.3 ± 0.9 pg/ml; HB-EGF 60.2 ± 1.0 pg/ml), in airway epithelial cells. Histamine increased EGFR phosphorylation (2.1-fold by Western blot analysis) and induced goblet cell differentiation (CLCA1 up-regulation by real-time qPCR) in normal human bronchial epithelial (NHBE) cells. Moreover, amphiregulin and HB-EGF caused proliferation and migration of both NHBE cells and human airway smooth muscle cells. These results suggest that histamine may induce airway remodeling via the epithelial-derived EGFR ligands amphiregulin and HB-EGF.
Collapse
Affiliation(s)
- Nobuaki Hirota
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St-Urbain, Montréal, QC, H2X 2P2 Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu Q, Jiang D, Chu HW. Cigarette smoke induces growth differentiation factor 15 production in human lung epithelial cells: implication in mucin over-expression. Innate Immun 2011; 18:617-26. [PMID: 22180562 DOI: 10.1177/1753425911429837] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Excessive mucus is a hallmark of chronic obstructive pulmonary disease (COPD). There is an emerging interest in the role of TGF-β signaling in the initiation and progression of COPD. Growth differentiation factor 15 (GDF15) is a divergent member of TGF-β superfamily. However, whether cigarette smoke induces airway epithelial GDF15 production and its functions in the airways have not been revealed. Therefore, we first analyzed GDF15 protein expression in airway epithelium of human COPD smokers versus normal non-smokers. We then examined the regulation and function of GDF15 in human airway epithelial cells in response to cigarette smoke exposure. We found increased GDF15 protein expression in airway epithelium (mainly in ciliated cells) of human COPD smokers compared with normal non-smokers. Furthermore, cigarette smoke exposure consistently up-regulated GDF15 expression in human airway epithelial cells. Moreover, GDF15 was shown to play a critical role in cigarette smoke-induced airway epithelial MUC5AC expression. Lastly, activation of phosphoinositide 3-kinase (PI3K) pathway was largely responsible for GDF15-induced airway epithelial MUC5AC expression. Our findings indicate that human airway epithelial cells can produce GDF15 during cigarette smoke exposure, which subsequently activates PI3K pathway to promote mucin (e.g. MUC5AC) expression. This highlights a novel role of GDF15 in regulating airway mucosal immunity (e.g. mucin) in cigarette smoke-exposed lungs.
Collapse
Affiliation(s)
- Qun Wu
- Department of Medicine, National Jewish Health and the University of Colorado Denver, USA
| | | | | |
Collapse
|