1
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
2
|
Enweasor C, Flayer CH, Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front Immunol 2021; 12:631092. [PMID: 33717165 PMCID: PMC7952990 DOI: 10.3389/fimmu.2021.631092] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.
Collapse
Affiliation(s)
- Chioma Enweasor
- UC Davis Lung Center, University of California, Davis, CA, United States
| | - Cameron H. Flayer
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, United States
| |
Collapse
|
3
|
Pabst R, Miller LA, Schelegle E, Hyde DM. Organized lymphatic tissue (BALT) in lungs of rhesus monkeys after air pollutant exposure. Anat Rec (Hoboken) 2020; 303:2766-2773. [PMID: 32445535 PMCID: PMC8793891 DOI: 10.1002/ar.24456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022]
Abstract
The presence of bronchus-associated lymphoid tissue (BALT) and its size in humans largely depends upon age. It is detected in 35% of children less than 2 years of age, but absent in the healthy adult lung. Environmental gases or allergens may have an effect on the number of BALT. Lungs of rhesus macaque monkeys were screened by histology for the presence, size, and location of BALT after exposure to filtered air for 2, 6, 12, or 36 months or 12 and 36 months to ozone or 2, 12, or 36 months of house dust mite or a combination of ozone and house dust mite for 12 months. In the lungs of monkeys housed in filtered air for 2 months, no BALT was identified. After 6, 12, or 36 months, the number of BALT showed a significantly increased correlation with age in monkeys housed in filtered air. After 2 months of episodic house dust mite (HDM) exposure, no BALT was found. Monkeys exposed to HDM or HDM + ozone did not show a significant increase in BALT compared to monkeys housed in filtered air. However, monkeys exposed to ozone alone did show significant increases in BALT compared to all other groups. In particular, there were frequent accumulations of lymphocytes in the periarterial space of ozone exposed animals. In conclusion, BALT in rhesus monkeys housed under filtered air conditions is age-dependent. BALT significantly increased in monkeys exposed to ozone in comparison with monkeys exposed to HDM.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Immunomorphology, Centre of Anatomy, Medical School of Hannover, Hannover, Germany
| | - Lisa A. Miller
- California National Primate Research Center, Davis, California, USA
| | - Edward Schelegle
- California National Primate Research Center, Davis, California, USA
| | - Dallas M. Hyde
- California National Primate Research Center, Davis, California, USA
| |
Collapse
|
4
|
Huang Y, Tzeng JY, Maguire R, Hoyo C, Allen T. The association between neuraxial anesthesia and the development of childhood asthma - a secondary analysis of the newborn epigenetics study cohort. Curr Med Res Opin 2020; 36:1025-1032. [PMID: 32212939 PMCID: PMC7269869 DOI: 10.1080/03007995.2020.1747417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objectives: Childhood asthma is a common chronic illness that has been associated with mode of delivery. However, the effect of cesarean delivery alone does not fully account for the increased prevalence of childhood asthma. We tested the hypothesis that neuraxial anesthesia used for labor analgesia and cesarean delivery alters the risk of developing childhood asthma.Methods: Within the Newborn Epigenetics Study birth cohort, 196 mother and child pairs with entries in the electronic anesthesia records were included. From these records, data on maternal anesthesia type, duration of exposure, and drugs administered peripartum were abstracted and combined with questionnaire-derived prenatal risk factors and medical records and questionnaire-derived asthma diagnosis data in children. Logistic regression models were used to evaluate associations between type of anesthesia, duration of anesthesia, and the development of asthma in males and females.Results: We found that longer duration of epidural anesthesia was associated with a lower risk of asthma in male children (OR = 0.80; 95% CI = 0.66-0.95) for each hour of epidural exposure. Additionally, a unit increase in the composite dose of local anesthetics and opioid analgesics administered via the spinal route was associated with a lower risk of asthma in both male (OR = 0.59, 95% CI = 0.36-0.96) and female children (OR 0.26, 95% CI 0.09-0.82).Conclusion: Our data suggest that peripartum exposure to neuraxial anesthesia may reduce the risk of childhood asthma primarily in males. Larger human studies and model systems with longer follow-up are required to elucidate these findings.
Collapse
Affiliation(s)
- Yueyang Huang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Rachel Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Terrence Allen
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Thurston GD, Balmes JR, Garcia E, Gilliland FD, Rice MB, Schikowski T, Van Winkle LS, Annesi-Maesano I, Burchard EG, Carlsten C, Harkema JR, Khreis H, Kleeberger SR, Kodavanti UP, London SJ, McConnell R, Peden DB, Pinkerton KE, Reibman J, White CW. Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2020; 17:387-398. [PMID: 32233861 PMCID: PMC7175976 DOI: 10.1513/annalsats.202001-046st] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although it is well accepted that air pollution exposure exacerbates preexisting airway disease, it has not been firmly established that long-term pollution exposure increases the risk of new-onset asthma or chronic obstruction pulmonary disease (COPD). This Workshop brought together experts on mechanistic, epidemiological, and clinical aspects of airway disease to review current knowledge regarding whether air pollution is a causal factor in the development of asthma and/or COPD. Speakers presented recent evidence in their respective areas of expertise related to air pollution and new airway disease incidence, followed by interactive discussions. A writing committee summarized their collective findings. The Epidemiology Group found that long-term exposure to air pollution, especially metrics of traffic-related air pollution such as nitrogen dioxide and black carbon, is associated with onset of childhood asthma. However, the evidence for a causal role in adult-onset asthma or COPD remains insufficient. The Mechanistic Group concluded that air pollution exposure can cause airway remodeling, which can lead to asthma or COPD, as well as asthma-like phenotypes that worsen with long-term exposure to air pollution, especially fine particulate matter and ozone. The Clinical Group concluded that air pollution is a plausible contributor to the onset of both asthma and COPD. Available evidence indicates that long-term exposure to air pollution is a cause of childhood asthma, but the evidence for a similar determination for adult asthma or COPD remains insufficient. Further research is needed to elucidate the exact biological mechanism underlying incident childhood asthma, and the specific air pollutant that causes it.
Collapse
|
6
|
Miller LA, Royer CM, Pinkerton KE, Schelegle ES. Nonhuman Primate Models of Respiratory Disease: Past, Present, and Future. ILAR J 2018; 58:269-280. [PMID: 29216343 PMCID: PMC5886323 DOI: 10.1093/ilar/ilx030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
The respiratory system consists of an integrated network of organs and structures that primarily function for gas exchange. In mammals, oxygen and carbon dioxide are transmitted through a complex respiratory tract, consisting of the nasal passages, pharynx, larynx, and lung. Exposure to ambient air throughout the lifespan imposes vulnerability of the respiratory system to environmental challenges that can contribute toward development of disease. The importance of the respiratory system to human health is supported by statistics from the Centers for Disease Control and Prevention; in 2015, chronic lower respiratory diseases were the third leading cause of death in the United States. In light of the significant mortality associated with respiratory conditions that afflict all ages of the human population, this review will focus on basic and preclinical research conducted in nonhuman primate models of respiratory disease. In comparison with other laboratory animals, the nonhuman primate lung most closely resembles the human lung in structure, physiology, and mucosal immune mechanisms. Studies defining the influence of inhaled microbes, pollutants, or allergens on the nonhuman primate lung have provided insight on disease pathogenesis, with the potential for elucidation of molecular targets leading to new treatment modalities. Vaccine trials in nonhuman primates have been crucial for confirmation of safety and protective efficacy against infectious diseases of the lung in a laboratory animal model that recapitulates pathology observed in humans. In looking to the future, nonhuman primate models of respiratory diseases will continue to be instrumental for translating biomedical research for improvement of human health.
Collapse
Affiliation(s)
- Lisa A Miller
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California
| | - Christopher M Royer
- California National Primate Research Center, University of California, Davis, California
| | - Kent E Pinkerton
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine and Department of Pediatrics, UC Davis School of Medicine, University of California, Davis, California
| | - Edward S Schelegle
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
7
|
Litvinov J, Spear WC, Patrikeev I, Motamedi M, Ameredes BT. Noninvasive allergic sinus congestion and resolution assessments using microcomputed tomography imaging. J Appl Physiol (1985) 2018; 125:1563-1575. [PMID: 30161008 DOI: 10.1152/japplphysiol.00980.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sinus congestion resultant of allergic rhinosinusitis is associated with development and worsening of asthma and can result in difficulty breathing, headaches, and missed days of school and work. Quantification of sinus congestion is important in the understanding of allergic rhinosinusitis and the development of new drugs for its treatment. Noninvasive microcomputed tomography (micro-CT) was investigated in a guinea pig model of allergic rhinosinusitis to determine its utility to determine accurately the degree of sinus congestion and resolution with anti-inflammatory drug administration. Three-dimensional sinus air-space volume, two-dimensional sinus width, sinus image air-space area, and sinus image sinus perimeter were measured in guinea pigs administered ragweed pollen (RWP), intranasally (i.n.), followed by administration of fluticasone, i.n. To determine their relative accuracy in assessing sinus congestion, the micro-CT image results were compared with the "gold-standard" method of sinus fluid fill-volume (SFFV) measurements. As measured by SFFV method, RWP increased sinus congestion in a RWP concentration-dependent fashion, approaching near-total sinus blockage with concentrations ≥22 µg of RWP. At this level of congestion, fluticasone (25-100 µg) progressively decreased sinus congestion in a concentration-dependent fashion. The noninvasive micro-CT methods were found to accurately determine the amount of sinus congestion and resolution, with patterns of increases and decreases of congestion that were nearly identical to the SFFV method. We conclude that noninvasive micro-CT measurements of allergic sinus congestion can be useful as an investigative tool in the assessment of congestion intensity and the development of new drug therapies for its treatment. NEW & NOTEWORTHY Allergic rhinosinusitis afflicts significant portions of the world population, resulting in loss of work productivity and decreased quality of life. Thus the development of methodological approaches, which incorporate accurate and reproducible noninvasive assessments of sinus congestion, are desirable. Microcomputed tomography of the guinea pig sinuses offers a noninvasive evaluation tool in an animal model of IgE-dependent allergy similar to that in humans, with potential relevance toward development of therapeutics for human sinus diseases.
Collapse
Affiliation(s)
- Julia Litvinov
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas
| | - Walter C Spear
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas
| | - Igor Patrikeev
- Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Bill T Ameredes
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
8
|
Dahlmann F, Sewald K. Use of nonhuman primates in obstructive lung disease research - is it required? Primate Biol 2017; 4:131-142. [PMID: 32110701 PMCID: PMC7041527 DOI: 10.5194/pb-4-131-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
In times of increasing costs for health insurances, obstructive lung
diseases are a burden for both the patients and the economy. Pulmonary symptoms
of asthma and chronic obstructive pulmonary disease (COPD) are similar;
nevertheless, the diseases differ in pathophysiology and therapeutic
approaches. Novel therapeutics are continuously developed, and nonhuman
primates (NHPs) provide valuable models for investigating novel biologicals
regarding efficacy and safety. This review discusses the role of nonhuman primate models for drug
development in asthma and COPD and investigates whether alternative methods
are able to prevent animal experiments.
Collapse
Affiliation(s)
- Franziska Dahlmann
- German Primate Center GmbH, Infection Pathology Unit, Kellnerweg 4, 37077 Göttingen, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Preclinical Pharmacology and Immunology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Nikolai-Fuchs-Straße 1, 30625 Hanover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Preclinical Pharmacology and Immunology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Nikolai-Fuchs-Straße 1, 30625 Hanover, Germany
| |
Collapse
|
9
|
Wicher SA, Jacoby DB, Fryer AD. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs. Am J Physiol Lung Cell Mol Physiol 2017; 312:L969-L982. [PMID: 28258108 PMCID: PMC5495948 DOI: 10.1152/ajplung.00530.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals.
Collapse
Affiliation(s)
- Sarah A Wicher
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; and
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
10
|
Association between obesity and asthma - epidemiology, pathophysiology and clinical profile. Nutr Res Rev 2016; 29:194-201. [PMID: 27514726 DOI: 10.1017/s0954422416000111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity is a risk factor for asthma, and obese asthmatics have lower disease control and increased symptom severity. Several putative links have been proposed, including genetics, mechanical restriction of the chest and the intake of corticosteroids. The most consistent evidence, however, comes from studies of cytokines produced by the adipose tissue called adipokines. Adipokine imbalance is associated with both proinflammatory status and asthma. Although reverse causation has been proposed, it is now acknowledged that obesity precedes asthma symptoms. Nevertheless, prenatal origins of both conditions complicate the search for causality. There is a confirmed role of neuro-immune cross-talk mediating obesity-induced asthma, with leptin playing a key role in these processes. Obesity-induced asthma is now considered a distinct asthma phenotype. In fact, it is one of the most important determinants of asthma phenotypes. Two main subphenotypes have been distinguished. The first phenotype, which affects adult women, is characterised by later onset and is more likely to be non-atopic. The childhood obesity-induced asthma phenotype is characterised by primary and predominantly atopic asthma. In obesity-induced asthma, the immune responses are shifted towards T helper (Th) 1 polarisation rather than the typical atopic Th2 immunological profile. Moreover, obese asthmatics might respond differently to environmental triggers. The high cost of treatment of obesity-related asthma, and the burden it causes for the patients and their families call for urgent intervention. Phenotype-specific approaches seem to be crucial for the success of prevention and treatment.
Collapse
|
11
|
Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs. Toxicol Appl Pharmacol 2014; 283:35-41. [PMID: 25545987 DOI: 10.1016/j.taap.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/10/2014] [Accepted: 12/16/2014] [Indexed: 02/08/2023]
Abstract
In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O3) or HDMA/ozone (HDMA+O3) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA+O3 alters the development process in the lung alveoli.
Collapse
|