1
|
Karuga FF, Jaromirska J, Malicki M, Sochal M, Szmyd B, Białasiewicz P, Strzelecki D, Gabryelska A. The role of microRNAs in pathophysiology and diagnostics of metabolic complications in obstructive sleep apnea patients. Front Mol Neurosci 2023; 16:1208886. [PMID: 37547923 PMCID: PMC10403239 DOI: 10.3389/fnmol.2023.1208886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Obstructive sleep apnea (OSA) is one of the most common sleep disorders, which is characterized by recurrent apneas and/or hypopneas occurring during sleep due to upper airway obstruction. Among a variety of health consequences, OSA patients are particularly susceptible to developing metabolic complications, such as metabolic syndrome and diabetes mellitus type 2. MicroRNAs (miRNAs) as epigenetic modulators are promising particles in both understanding the pathophysiology of OSA and the prediction of OSA complications. This review describes the role of miRNAs in the development of OSA-associated metabolic complications. Moreover, it summarizes the usefulness of miRNAs as biomarkers in predicting the aforementioned OSA complications.
Collapse
Affiliation(s)
- Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Mikołaj Malicki
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Bartosz Szmyd
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
- Department of Pediatrics, Oncology, and Hematology, Medical University of Lodz, Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Klein SG, Steckbauer A, Alsolami SM, Arossa S, Parry AJ, Li M, Duarte CM. Toward Best Practices for Controlling Mammalian Cell Culture Environments. Front Cell Dev Biol 2022; 10:788808. [PMID: 35265608 PMCID: PMC8900666 DOI: 10.3389/fcell.2022.788808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
The characterization, control, and reporting of environmental conditions in mammalian cell cultures is fundamental to ensure physiological relevance and reproducibility in basic and preclinical biomedical research. The potential issue of environment instability in routine cell cultures in affecting biomedical experiments was identified many decades ago. Despite existing evidence showing variable environmental conditions can affect a suite of cellular responses and key experimental readouts, the underreporting of critical parameters affecting cell culture environments in published experiments remains a serious problem. Here, we outline the main sources of potential problems, improved guidelines for reporting, and deliver recommendations to facilitate improved culture-system based research. Addressing the lack of attention paid to culture environments is critical to improve the reproducibility and translation of preclinical research, but constitutes only an initial step towards enhancing the relevance of in vitro cell cultures towards in vivo physiology.
Collapse
Affiliation(s)
- Shannon G Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Steckbauer
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samhan M Alsolami
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Silvia Arossa
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anieka J Parry
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mo Li
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Klein SG, Alsolami SM, Arossa S, Ramos-Mandujano G, Parry AJ, Steckbauer A, Duarte CM, Li M. In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture. Commun Biol 2022; 5:119. [PMID: 35136190 PMCID: PMC8826360 DOI: 10.1038/s42003-022-03065-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian cell cultures are a keystone resource in biomedical research, but the results of published experiments often suffer from reproducibility challenges. This has led to a focus on the influence of cell culture conditions on cellular responses and reproducibility of experimental findings. Here, we perform frequent in situ monitoring of dissolved O2 and CO2 with optical sensor spots and contemporaneous evaluation of cell proliferation and medium pH in standard batch cultures of three widely used human somatic and pluripotent stem cell lines. We collate data from the literature to demonstrate that standard cell cultures consistently exhibit environmental instability, indicating that this may be a pervasive issue affecting experimental findings. Our results show that in vitro cell cultures consistently undergo large departures of environmental parameters during standard batch culture. These findings should catalyze further efforts to increase the relevance of experimental results to the in vivo physiology and enhance reproducibility.
Collapse
Affiliation(s)
- Shannon G Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Samhan M Alsolami
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Silvia Arossa
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Anieka J Parry
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Alexandra Steckbauer
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Mo Li
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
4
|
Kryvenko V, Vadász I. Mechanisms of Hypercapnia-Induced Endoplasmic Reticulum Dysfunction. Front Physiol 2021; 12:735580. [PMID: 34867444 PMCID: PMC8640499 DOI: 10.3389/fphys.2021.735580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Abstract
Protein transcription, translation, and folding occur continuously in every living cell and are essential for physiological functions. About one-third of all proteins of the cellular proteome interacts with the endoplasmic reticulum (ER). The ER is a large, dynamic cellular organelle that orchestrates synthesis, folding, and structural maturation of proteins, regulation of lipid metabolism and additionally functions as a calcium store. Recent evidence suggests that both acute and chronic hypercapnia (elevated levels of CO2) impair ER function by different mechanisms, leading to adaptive and maladaptive regulation of protein folding and maturation. In order to cope with ER stress, cells activate unfolded protein response (UPR) pathways. Initially, during the adaptive phase of ER stress, the UPR mainly functions to restore ER protein-folding homeostasis by decreasing protein synthesis and translation and by activation of ER-associated degradation (ERAD) and autophagy. However, if the initial UPR attempts for alleviating ER stress fail, a maladaptive response is triggered. In this review, we discuss the distinct mechanisms by which elevated CO2 levels affect these molecular pathways in the setting of acute and chronic pulmonary diseases associated with hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
5
|
Xia Y, You K, Xiong Y. Interaction effects between characteristics of obstructive sleep apnea and obesity on dyslipidemia. Auris Nasus Larynx 2021; 49:437-444. [PMID: 34789392 DOI: 10.1016/j.anl.2021.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Obstructive sleep apnea (OSA) and obesity often coexist, and both can increase the risk of dyslipidemia. However, the interaction effects between the characteristics of OSA and obesity on dyslipidemia are not yet known. This study was performed to investigate this issue. METHODS Basic characteristics, polysomnography data, and biochemical markers of patients with suspected OSA seen at the First Affiliated Hospital of Nanchang University were collected. Serum lipid levels were compared after adjusting for multiple confounders. We used binary logistic regression models to assess the interaction effects of the oxygen desaturation index (ODI) and obesity, and the apnea-hypopnea index (AHI) and obesity, on dyslipidemia. RESULTS A total of 343 patients were included in the study. After adjusting for multiple confounders, there were no differences in serum lipid levels between non-obese or obese patients with an AHI ≤ 30 and AHI > 30, and no interaction effect between the AHI and obesity on dyslipidemia. Obese patients, but not non-obese ones, with an ODI > 37.5 had significantly higher total cholesterol (TC) levels, and higher TC/high-density lipoprotein cholesterol (HDL-C) ratios, than patients with an ODI ≤ 37.5. In addition, a significant positive multiplicative interaction effect between obesity and the ODI was found on hyper-TC (odds ratio [OR] = 3.459; 95% confidence interval [CI] = 1.104, 10.838; p = 0.03). CONCLUSION A positive interaction effect was detected between obesity and intermittent hypoxia on dyslipidemia. Therefore, further attention should be paid to dyslipidemia in obese patients with intermittent hypoxia.
Collapse
Affiliation(s)
- Yunyan Xia
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai You
- Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanping Xiong
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Klein SG, Alsolami SM, Steckbauer A, Arossa S, Parry AJ, Ramos Mandujano G, Alsayegh K, Izpisua Belmonte JC, Li M, Duarte CM. A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nat Biomed Eng 2021; 5:787-792. [PMID: 34389822 DOI: 10.1038/s41551-021-00775-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shannon G Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samhan M Alsolami
- Stem Cell and Regeneration Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alexandra Steckbauer
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Silvia Arossa
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anieka J Parry
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gerardo Ramos Mandujano
- Stem Cell and Regeneration Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled Alsayegh
- Stem Cell and Regeneration Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA. .,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Mo Li
- Stem Cell and Regeneration Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
7
|
Kryvenko V, Wessendorf M, Tello K, Herold S, Morty RE, Seeger W, Vadász I. Hypercapnia-induces IRE1α-driven Endoplasmic Reticulum-associated Degradation of the Na,K-ATPase β-subunit. Am J Respir Cell Mol Biol 2021; 65:615-629. [PMID: 34192507 DOI: 10.1165/rcmb.2021-0114oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is often associated with elevated levels of CO2 (hypercapnia) and impaired alveolar fluid clearance. Misfolding of the Na,K-ATPase (NKA), a key molecule involved in both alveolar epithelial barrier tightness and in resolution of alveolar edema, in the endoplasmic reticulum (ER) may decrease plasma membrane (PM) abundance of the transporter. Here, we investigated how hypercapnia affects the NKA β-subunit (NKA-β) in the ER. Exposing murine precision-cut lung slices (PCLS) and human alveolar epithelial A549 cells to elevated CO2 levels led to a rapid decrease of NKA-β abundance in the ER and at the cell surface. Knockdown of ER alpha-mannosidase I (MAN1B1) and ER degradation enhancing alpha-mannosidase like protein 1 by siRNA or treatment with the MAN1B1 inhibitor, kifunensine rescued loss of NKA-β in the ER, suggesting ER-associated degradation (ERAD) of the enzyme. Furthermore, hypercapnia activated the unfolded protein response (UPR) by promoting phosphorylation of inositol-requiring enzyme 1α (IRE1α) and treatment with a siRNA against IRE1α prevented the decrease of NKA-β in the ER. Of note, the hypercapnia-induced phosphorylation of IRE1α was triggered by a Ca2+-dependent mechanism. Additionally, inhibition of the inositol trisphosphate receptor decreased phosphorylation levels of IRE1α in PCLS and A549 cells, suggesting that Ca2+ efflux from the ER might be responsible for IRE1α activation and ERAD of NKA-β. In conclusion, here we provide evidence that hypercapnia attenuates maturation of the regulatory subunit of NKA by activating IRE1α and promoting ERAD, which may contribute to impaired alveolar epithelial integrity in patients with ARDS and hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Miriam Wessendorf
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany
| | - Khodr Tello
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Susanne Herold
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Rory E Morty
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Werner Seeger
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany.,Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany
| | - István Vadász
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany;
| |
Collapse
|
8
|
Phelan DE, Mota C, Lai C, Kierans SJ, Cummins EP. Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus 2021; 11:20200033. [PMID: 33633832 PMCID: PMC7898142 DOI: 10.1098/rsfs.2020.0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Carbon dioxide (CO2) is a fundamental physiological gas known to profoundly influence the behaviour and health of millions of species within the plant and animal kingdoms in particular. A recent Royal Society meeting on the topic of 'Carbon dioxide detection in biological systems' was extremely revealing in terms of the multitude of roles that different levels of CO2 play in influencing plants and animals alike. While outstanding research has been performed by leading researchers in the area of plant biology, neuronal sensing, cell signalling, gas transport, inflammation, lung function and clinical medicine, there is still much to be learned about CO2-dependent sensing and signalling. Notably, while several key signal transduction pathways and nodes of activity have been identified in plants and animals respectively, the precise wiring and sensitivity of these pathways to CO2 remains to be fully elucidated. In this article, we will give an overview of the literature relating to CO2-dependent signal transduction in mammalian systems. We will highlight the main signal transduction hubs through which CO2-dependent signalling is elicited with a view to better understanding the complex physiological response to CO2 in mammalian systems. The main topics of discussion in this article relate to how changes in CO2 influence cellular function through modulation of signal transduction networks influenced by pH, mitochondrial function, adenylate cyclase, calcium, transcriptional regulators, the adenosine monophosphate-activated protein kinase pathway and direct CO2-dependent protein modifications. While each of these topics will be discussed independently, there is evidence of significant cross-talk between these signal transduction pathways as they respond to changes in CO2. In considering these core hubs of CO2-dependent signal transduction, we hope to delineate common elements and identify areas in which future research could be best directed.
Collapse
Affiliation(s)
- D. E. Phelan
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Mota
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Lai
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S. J. Kierans
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - E. P. Cummins
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Ceco E, Celli D, Weinberg S, Shigemura M, Welch LC, Volpe L, Chandel NS, Bharat A, Lecuona E, Sznajder JI. Elevated CO 2 Levels Delay Skeletal Muscle Repair by Increasing Fatty Acid Oxidation. Front Physiol 2021; 11:630910. [PMID: 33551852 PMCID: PMC7859333 DOI: 10.3389/fphys.2020.630910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Muscle dysfunction often occurs in patients with chronic obstructive pulmonary diseases (COPD) and affects ventilatory and non-ventilatory skeletal muscles. We have previously reported that hypercapnia (elevated CO2 levels) causes muscle atrophy through the activation of the AMPKα2-FoxO3a-MuRF1 pathway. In the present study, we investigated the effect of normoxic hypercapnia on skeletal muscle regeneration. We found that mouse C2C12 myoblasts exposed to elevated CO2 levels had decreased fusion index compared to myoblasts exposed to normal CO2. Metabolic analyses of C2C12 myoblasts exposed to high CO2 showed increased oxidative phosphorylation due to increased fatty acid oxidation. We utilized the cardiotoxin-induced muscle injury model in mice exposed to normoxia and 10% CO2 for 21 days and observed that muscle regeneration was delayed. High CO2-delayed differentiation in both mouse C2C12 myoblasts and skeletal muscle after injury and was restored to control levels when cells or mice were treated with a carnitine palmitoyltransfearse-1 (CPT1) inhibitor. Taken together, our data suggest that hypercapnia leads to changes in the metabolic activity of skeletal muscle cells, which results in impaired muscle regeneration and recovery after injury.
Collapse
Affiliation(s)
- Ermelinda Ceco
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Diego Celli
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Samuel Weinberg
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lena Volpe
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ankit Bharat
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emilia Lecuona
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Shigemura M, Welch LC, Sznajder JI. Hypercapnia Regulates Gene Expression and Tissue Function. Front Physiol 2020; 11:598122. [PMID: 33329047 PMCID: PMC7715027 DOI: 10.3389/fphys.2020.598122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023] Open
Abstract
Carbon dioxide (CO2) is produced in eukaryotic cells primarily during aerobic respiration, resulting in higher CO2 levels in mammalian tissues than those in the atmosphere. CO2 like other gaseous molecules such as oxygen and nitric oxide, is sensed by cells and contributes to cellular and organismal physiology. In humans, elevation of CO2 levels in tissues and the bloodstream (hypercapnia) occurs during impaired alveolar gas exchange in patients with severe acute and chronic lung diseases. Advances in understanding of the biology of high CO2 effects reveal that the changes in CO2 levels are sensed in cells resulting in specific tissue responses. There is accumulating evidence on the transcriptional response to elevated CO2 levels that alters gene expression and activates signaling pathways with consequences for cellular and tissue functions. The nature of hypercapnia-responsive transcriptional regulation is an emerging area of research, as the responses to hypercapnia in different cell types, tissues, and species are not fully understood. Here, we review the current understanding of hypercapnia effects on gene transcription and consequent cellular and tissue functions.
Collapse
Affiliation(s)
- Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Duarte CM, Jaremko Ł, Jaremko M. Hypothesis: Potentially Systemic Impacts of Elevated CO 2 on the Human Proteome and Health. Front Public Health 2020; 8:543322. [PMID: 33304871 PMCID: PMC7701242 DOI: 10.3389/fpubh.2020.543322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
Uniform CO2 during human evolution (180 to 280 ppm) resulted, because of the role of the CO2-bicarbonate buffer in regulating pH, in rather constant pH (7.35 to 7.45) in human fluids, cells and tissues, determining, in turn, the narrow pH range for optimal functioning of the human proteome. Herein, we hypothesize that chronic exposure to elevated pCO2 with increasing atmospheric CO2 (>400 ppm), and extended time spent in confined, crowded indoor atmospheres (pCO2 up to 5,000 ppm) with urban lifestyles, may be an important, largely overlooked driver of change in human proteome performance. The reduced pH (downregulated from 0.1 to 0.4 units below the optimum pH) of extant humans chronically exposed to elevated CO2 is likely to lead to proteome malfunction. This malfunction is due to protein misfolding, aggregation, charge distribution, and altered interaction with other molecules (e.g., nucleic acids, metals, proteins, and drugs). Such alterations would have systemic effects that help explain the prevalence of syndromes (obesity, diabetes, respiratory diseases, osteoporosis, cancer, and neurological disorders) characteristic of the modern lifestyle. Chronic exposure to elevated CO2 poses risks to human health that are too serious to be ignored and require testing with fit-for-purpose equipment and protocols along with indoor carbon capture technologies to bring CO2 levels down to approach levels (180–280 ppm) under which the human proteome evolved.
Collapse
Affiliation(s)
- Carlos M Duarte
- Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Bioscience and Environmental Science and Technology Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Bioscience and Environmental Science and Technology Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
12
|
Hypercapnia: An Aggravating Factor in Asthma. J Clin Med 2020; 9:jcm9103207. [PMID: 33027886 PMCID: PMC7599850 DOI: 10.3390/jcm9103207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is a common chronic respiratory disorder with relatively good outcomes in the majority of patients with appropriate maintenance therapy. However, in a small minority, patients can experience severe asthma with respiratory failure and hypercapnia, necessitating intensive care unit admission. Hypercapnia occurs due to alveolar hypoventilation and insufficient removal of carbon dioxide (CO2) from the blood. Although mild hypercapnia is generally well tolerated in patients with asthma, there is accumulating evidence that elevated levels of CO2 can act as a gaso-signaling molecule, triggering deleterious effects in various organs such as the lung, skeletal muscles and the innate immune system. Here, we review recent advances on pathophysiological response to hypercapnia and discuss potential detrimental effects of hypercapnia in patients with asthma.
Collapse
|
13
|
|
14
|
Mohammadifard N, Karimi G, Khosravi A, Sarrafzadegan N, Jozan M, Zahed P, Haghighatdoost F. High dietary acid load score is not associated with the risk of metabolic syndrome in Iranian adults. INT J VITAM NUTR RES 2020; 91:152-163. [PMID: 32019435 DOI: 10.1024/0300-9831/a000626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background and objective: The association between dietary acid load and metabolic syndrome (MetS) risk is not well-known. Therefore, we aimed to investigate the relationship between dietary acid load and the risk of MetS among Iranian adults. Methods: This cross-sectional study was carried out on 1430 Iranian adults. Dietary intakes were assessed using a validated food frequency questionnaire. Dietary acid load was estimated using potential renal acid load (PRAL) and net endogenous acid production (NEAP). MetS was defined according to the ATP-III criteria. The risk of MetS and its components was explored using logistic regression test. Results: Totally, 205 individuals were identified to have MetS. No significant association for MetS was found across the quartiles of PRAL and NEAP either in the crude model [Q4 PRAL: OR (95% CI): 0.94 (0.67-1.32), and NEAP: OR (95% CI): 0.88 (0.63-1.25)] or fully-adjusted model [Q4 PRAL: OR (95% CI): 0.90 (0.61-1.33), and NEAP: OR (95% CI): 1.05 (0.70-1.57)]. Amongst the components of MetS, higher scores of NEAP was associated with an increased risk of impaired blood sugar after adjustment for potential confounders [OR (95% CI): 1.35 (0.93-1.96)]. No significant association was found for other components either with PRAL or with NEAP. Conclusion: Our findings suggest no association between dietary acid load and MetS risk in Iranian adults. However, higher dietary acid load, measured by NEAP, but not PRAL, was associated with increased risk of impaired fasting blood sugar. Longitudinal studies are warranted to explore whether a diet low in potential acid load could reduce MetS risk.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golgis Karimi
- Cellular and Molecular Biology Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Khosravi
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Jozan
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Zahed
- Isfahan Health Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Haghighatdoost
- Psychosomatic research center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Genetic variants of rs1275988 and rs2586886 in TWIK-related acid-sensitive K+ channel-1 gene may be potential risk factors for obese patients with obstructive sleep apnea. Chin Med J (Engl) 2020; 132:2059-2065. [PMID: 31436597 PMCID: PMC6793785 DOI: 10.1097/cm9.0000000000000401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: The pathogenesis of obstructive sleep apnea (OSA) remains not fully understood. This study aimed to explore the mechanism of OSA by assessing the association between the human tandem of P domains in a weak inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ channel-1 (TASK-1) gene and OSA. Methods: A total of 164 patients with severe OSA and 171 patients without OSA were recruited from the Center for Hypertension of People's Hospital of Xinjiang Uygur Autonomous Region (China) from April to December in 2016. Two single nucleotide polymorphisms (rs1275988 and rs2586886) in the TASK-1 gene were selected and genotyped using a kompetitive allele specific polymerase chain reaction genotyping system. Clinical-pathological characteristics and genotype data were compared between the severe and non-OSA groups to explore the association between TASK-1 gene polymorphism and severe OSA. Results: There were no significant differences in genotype distribution, allele frequency, and the recessive and dominant model of the two selected single nucleotide polymorphisms (rs1275988 and rs2586886) between the severe and non-OSA groups in the total population (P > 0.05). However, for patients with a body mass index (BMI) ≥28 kg/m2, the distribution of genotypes and alleles, and the recessive model (GG + GA vs. AA) exhibited significant differences between the severe and non-OSA group (for genotypes: P = 0.014 and P = 0.026; for alleles: P = 0.006 and P = 0.011; for the recessive model: P = 0.005 and P = 0.009, respectively). The simple logistic regression analysis revealed that the GG genotype was a risk factor for OSA. The odds ratio (OR) and 95% confidence intervals (CI) were 4.902 (1.582–15.186, P = 0.006) for rs1275988 and 4.420 (1.422–13.734, P = 0.010) for rs2586886, respectively. In multivariate logistic regression analysis, the combination of GG genotypes of rs1275988 with BMI ≥28 kg/m2 increased the risk of severe OSA (OR = 8.916, 95% CI 4.506–17.645, P < 0.001). Conclusion: Both the GG genotype of rs1275988 and GG genotype of rs2586886 in the TASK-1 gene may play as potential risk factors in obese patients with OSA.
Collapse
|
16
|
Shigemura M, Lecuona E, Angulo M, Dada LA, Edwards MB, Welch LC, Casalino-Matsuda SM, Sporn PHS, Vadász I, Helenius IT, Nader GA, Gruenbaum Y, Sharabi K, Cummins E, Taylor C, Bharat A, Gottardi CJ, Beitel GJ, Kaminski N, Budinger GRS, Berdnikovs S, Sznajder JI. Elevated CO 2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Sci Rep 2019; 9:18251. [PMID: 31796806 PMCID: PMC6890671 DOI: 10.1038/s41598-019-54683-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/14/2019] [Indexed: 12/03/2022] Open
Abstract
Carbon dioxide (CO2) is sensed by cells and can trigger signals to modify gene expression in different tissues leading to changes in organismal functions. Despite accumulating evidence that several pathways in various organisms are responsive to CO2 elevation (hypercapnia), it has yet to be elucidated how hypercapnia activates genes and signaling pathways, or whether they interact, are integrated, or are conserved across species. Here, we performed a large-scale transcriptomic study to explore the interaction/integration/conservation of hypercapnia-induced genomic responses in mammals (mice and humans) as well as invertebrates (Caenorhabditis elegans and Drosophila melanogaster). We found that hypercapnia activated genes that regulate Wnt signaling in mouse lungs and skeletal muscles in vivo and in several cell lines of different tissue origin. Hypercapnia-responsive Wnt pathway homologues were similarly observed in secondary analysis of available transcriptomic datasets of hypercapnia in a human bronchial cell line, flies and nematodes. Our data suggest the evolutionarily conserved role of high CO2 in regulating Wnt pathway genes.
Collapse
Affiliation(s)
- Masahiko Shigemura
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Martín Angulo
- Pathophysiology Department, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Laura A Dada
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Melanie B Edwards
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Lynn C Welch
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - S Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Peter H S Sporn
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Medical Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States of America
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, and The Cardio-Pulmonary Institute, Giessen, Germany
| | - Iiro Taneli Helenius
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States of America
| | - Eoin Cummins
- School of Medicine, Systems Biology Ireland and the Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Cormac Taylor
- School of Medicine, Systems Biology Ireland and the Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cara J Gottardi
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Greg J Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Naftali Kaminski
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States of America
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.
| |
Collapse
|
17
|
Sunwoo BY. Obesity Hypoventilation: Pathophysiology, Diagnosis, and Treatment. CURRENT PULMONOLOGY REPORTS 2019. [DOI: 10.1007/s13665-019-0223-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Kikuchi R, Iwai Y, Tsuji T, Watanabe Y, Koyama N, Yamaguchi K, Nakamura H, Aoshiba K. Hypercapnic tumor microenvironment confers chemoresistance to lung cancer cells by reprogramming mitochondrial metabolism in vitro. Free Radic Biol Med 2019; 134:200-214. [PMID: 30639568 DOI: 10.1016/j.freeradbiomed.2019.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/10/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment has previously been reported to be hypercapnic (as high as ~84 mmHg), although its effect on tumor cell behaviors is unknown. In this study, high CO2 levels, ranging from 5% to 15%, protected lung cancer cells from anticancer agents, such as cisplatin, carboplatin and etoposide, by suppressing apoptosis. The cytoprotective effect of a high CO2 level was independent of acidosis and was due to mitochondrial metabolic reprogramming that reduced mitochondrial respiration, as assessed by oxygen consumption, oxidative phosphorylation, mitochondrial membrane and oxidative potentials, eventually leading to reduced reactive oxidant species production. In contrast, high CO2 levels did not affect cisplatin-mediated DNA damage responses or the expression of Bcl-2 family proteins. Although high CO2 levels inhibited glycolysis, this inhibition was not mechanistically involved in high CO2-mediated reductions in mitochondrial respiration, because a high CO2 concentration inhibited isolated mitochondria. A cytoprotective effect of high CO2 levels on mitochondria DNA-depleted cells was not noted, lending support to our conclusion that high CO2 levels act on mitochondria to reduce the cytotoxicity of anticancer agents. High CO2-mediated cytoprotection was also noted in a 3D culture system. In conclusion, the hypercapnic tumor microenvironment reprograms mitochondrial respiratory metabolism causing chemoresistance in lung cancer cells. Thus, tumor hypercapnia may represent a novel target to improve chemosensitivity.
Collapse
Affiliation(s)
- Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Ibaraki 300-0395, Japan
| | - Yuki Iwai
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Ibaraki 300-0395, Japan
| | - Takao Tsuji
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Sinjuku-ku, Tokyo 160-0023, Japan
| | - Yasutaka Watanabe
- Department of Thoracic Oncology, Saitama Cancer Center, 780 Komuro, Ina-machi, Saitama 362-0806, Japan
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Hachioji Medical Center, 1163 Tate-machi, Hachioji, Tokyo 193-0998, Japan
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Ibaraki 300-0395, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Ibaraki 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Ibaraki 300-0395, Japan.
| |
Collapse
|
19
|
Treatment of Primary Aldosteronism Reduces the Probability of Obstructive Sleep Apnea. J Surg Res 2019; 236:37-43. [PMID: 30694777 DOI: 10.1016/j.jss.2018.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Aldosterone excess is hypothesized to worsen obstructive sleep apnea (OSA) symptoms by promoting peripharyngeal edema. However, the extent to which primary aldosteronism (PA), hypertension, and body mass index (BMI) influence OSA pathogenesis remains unclear. METHODS We conducted a cross-sectional study of PA patients from our endocrine database to retrospectively evaluate OSA probability before and after adrenalectomy or medical management of PA. A control group of patients undergoing adrenalectomy for nonfunctioning benign adrenal masses was also evaluated. We categorized patients as high or low OSA probability after evaluation with the Berlin Questionnaire, a validated 10-question survey that explores sleep, fatigue, hypertension, and BMI. RESULTS We interviewed 91 patients (83 PA patients and eight control patients). Median follow-up time was 2.6 y. The proportion of high OSA probability in all PA patients decreased from 64% to 35% after treatment for PA (mean Berlin score 1.64 versus 1.35, P < 0.001). This decline correlated with improvements in hypertension (P < 0.001) and fatigue symptoms (P = 0.03). Both surgical (n = 48; 1.69 versus 1.33, P < 0.001) and medical (n = 35; 1.57 versus 1.37, P = 0.03) treatment groups demonstrated reduced OSA probability. BMI remained unchanged after PA treatment (29.1 versus 28.6, P = nonsignificant), and the impact of treatment on OSA probability was independent of BMI. The control surgical group showed no change in OSA probability after adrenalectomy (1.25 versus 1.25, P = nonsignificant). CONCLUSIONS Both surgical and medical treatments of PA reduce sleep apnea probability independent of BMI and are associated with improvements in hypertension and fatigue. Improved screening for PA could reduce OSA burden.
Collapse
|
20
|
Farré R, Almendros I, Montserrat JM, Gozal D, Navajas D. Gas Partial Pressure in Cultured Cells: Patho-Physiological Importance and Methodological Approaches. Front Physiol 2018; 9:1803. [PMID: 30618815 PMCID: PMC6300470 DOI: 10.3389/fphys.2018.01803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
Gas partial pressures within the cell microenvironment are one of the key modulators of cell pathophysiology. Indeed, respiratory gases (O2 and CO2) are usually altered in respiratory diseases and gasotransmitters (CO, NO, H2S) have been proposed as potential therapeutic agents. Investigating the pathophysiology of respiratory diseases in vitro mandates that cultured cells are subjected to gas partial pressures similar to those experienced by each cell type in its native microenvironment. For instance, O2 partial pressures range from ∼13% in the arterial endothelium to values as low as 2-5% in cells of other healthy tissues and to less than 1% in solid tumor cells, clearly much lower values than those used in conventional cell culture research settings (∼19%). Moreover, actual cell O2 partial pressure in vivo changes with time, at considerably different timescales as illustrated by tumors, sleep apnea, or mechanical ventilation. Unfortunately, the conventional approach to modify gas concentrations at the above culture medium precludes the tight and exact control of intra-cellular gas levels to realistically mimic the natural cell microenvironment. Interestingly, well-controlled cellular application of gas partial pressures is currently possible through commercially available silicone-like material (PDMS) membranes, which are biocompatible and have a high permeability to gases. Cells are seeded on one side of the membrane and tailored gas concentrations are circulated on the other side of the membrane. Using thin membranes (50-100 μm) the value of gas concentration is instantaneously (<0.5 s) transmitted to the cell microenvironment. As PDMS is transparent, cells can be concurrently observed by conventional or advanced microscopy. This procedure can be implemented in specific-purpose microfluidic devices and in settings that do not require expensive or complex technologies, thus making the procedure readily implementable in any cell biology laboratory. This review describes the gas composition requirements for a cell culture in respiratory research, the limitations of current experimental settings, and also suggests new approaches to better control gas partial pressures in a cell culture.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep M. Montserrat
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Sleep Lab, Hospital Clinic of Barcelona, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, United States
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
21
|
Park JH, Wee SY, Chang J, Hong S, Lee JH, Cho KW, Choi CY. Carboxytherapy-Induced Fat loss is Associated with VEGF-Mediated Vascularization. Aesthetic Plast Surg 2018; 42:1681-1688. [PMID: 30194505 DOI: 10.1007/s00266-018-1222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/26/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Carboxytherapy is the transcutaneous administration of CO2 gas for therapeutic purposes. Although this non-surgical procedure has been widely used for reducing localized adiposity, its effectiveness on fat loss in obese patients and its underlying mechanisms remain unclear. METHODS C57BL/6 mice were fed with a high-fat diet for 8 weeks to generate obese animal models. Obese mice were randomly assigned to two groups: One group was administered air to both inguinal fat pads (air/air), and the other group was treated with air to the left inguinal fat pad and with CO2 to the right inguinal fat pad (air/CO2). Each group was treated every other day for 2 weeks. Morphological changes and expression levels of genes associated with lipogenesis and vascularization in fat were determined by histological and qRT-PCR analyses. RESULTS Mice treated with air/CO2 showed lower body weights and blood glucose levels compared to air/air-treated mice. Paired comparison analysis revealed that CO2 administration significantly decreased adipose tissue weights and adipocyte sizes compared to air treatment. Additionally, CO2 treatment markedly increased vessel numbers and expressions of Vegfa and Fgf1 genes in adipose tissues. The expressions of Fasn and Fabp4 genes were also modestly reduced in CO2-treated adipose tissue. Moreover, Ucp1 expression, the target gene of VEGF and a key regulator in energy expenditure, was significantly increased in CO2-treated adipose tissue. CONCLUSIONS Carboxytherapy is effective in the reduction of localized fat in obese patients which is mechanistically associated with alteration of the vasculature involved in VEGF. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
22
|
Sleep-disordered breathing, circulating exosomes, and insulin sensitivity in adipocytes. Int J Obes (Lond) 2018; 42:1127-1139. [PMID: 29892042 PMCID: PMC6195831 DOI: 10.1038/s41366-018-0099-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sleep-disordered-breathing (SDB), which is characterized by chronic intermittent hypoxia (IH) and sleep fragmentation (SF), is a prevalent condition that promotes metabolic dysfunction, particularly among patients suffering from obstructive hypoventilation syndrome (OHS). Exosomes are generated ubiquitously, are readily present in the circulation, and their cargo may exert substantial functional cellular alterations in both physiological and pathological conditions. However, the effects of plasma exosomes on adipocyte metabolism in patients with OHS or in mice subjected to IH or SF mimicking SDB are unclear. METHODS Exosomes from fasting morning plasma samples from obese adults with polysomnographically-confirmed OSA before and after 3 months of adherent CPAP therapy were assayed. In addition, C57BL/6 mice were randomly assigned to (1) sleep control (SC), (2) sleep fragmentation (SF), and (3) intermittent hypoxia (HI) for 6 weeks, and plasma exosomes were isolated. Equivalent exosome amounts were added to differentiated adipocytes in culture, after which insulin sensitivity was assessed using 0 nM and 5 nM insulin-induced pAKT/AKT expression changes by western blotting. RESULTS When plasma exosomes were co-cultured and internalized by human naive adipocytes, significant reductions emerged in Akt phosphorylation responses to insulin when compared to exosomes obtained after 24 months of adherent CPAP treatment (n = 24; p < 0.001), while no such changes occur in untreated patients (n = 8). In addition, OHS exosomes induced significant increases in adipocyte lipolysis that were attenuated after CPAP, but did not alter pre-adipocyte differentiation. Similarly, exosomes from SF- and IH-exposed mice induced attenuated p-AKT/total AKT responses to exogenous insulin and increased glycerol content in naive murine adipocytes, without altering pre-adipocyte differentiation. CONCLUSIONS Using in vitro adipocyte-based functional reporter assays, alterations in plasma exosomal cargo occur in SDB, and appear to contribute to adipocyte metabolic dysfunction. Further exploration of exosomal miRNA signatures in either human subjects or animal models and their putative organ and cell targets appears warranted.
Collapse
|
23
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
24
|
Pozdniakova S, Ladilov Y. Functional Significance of the Adcy10-Dependent Intracellular cAMP Compartments. J Cardiovasc Dev Dis 2018; 5:E29. [PMID: 29751653 PMCID: PMC6023465 DOI: 10.3390/jcdd5020029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence confirms the compartmentalized structure of evolutionarily conserved 3'⁻5'-cyclic adenosine monophosphate (cAMP) signaling, which allows for simultaneous participation in a wide variety of physiological functions and ensures specificity, selectivity and signal strength. One important player in cAMP signaling is soluble adenylyl cyclase (sAC). The intracellular localization of sAC allows for the formation of unique intracellular cAMP microdomains that control various physiological and pathological processes. This review is focused on the functional role of sAC-produced cAMP. In particular, we examine the role of sAC-cAMP in different cellular compartments, such as cytosol, nucleus and mitochondria.
Collapse
Affiliation(s)
- Sofya Pozdniakova
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite, 10115 Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany.
| | - Yury Ladilov
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite, 10115 Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany.
| |
Collapse
|
25
|
Affiliation(s)
- Michael B Fessler
- 1 National Institute of Environmental Health Sciences National Institutes of Health Research Triangle Park, North Carolina
| |
Collapse
|