1
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.17.545390. [PMID: 38496421 PMCID: PMC10942273 DOI: 10.1101/2023.06.17.545390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo . Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage tracing and organoid modeling studies demonstrated that HPS AT2 cells were primed to persist in a Krt8 + reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are novel mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
|
2
|
Xiao T, Wang P, Wu M, Cheng C, Yang Y, Bian Q, Liu Q. METTL3-regulated m6A modification of lncRNA E230001N04Rik is involved in myofibroblast differentiation in arsenic-induced pulmonary fibrosis through promoting senescence of lung epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136094. [PMID: 39405678 DOI: 10.1016/j.jhazmat.2024.136094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
Arsenic is a toxic agent that causes respiratory damage. Long non-coding RNAs (lncRNAs) are non-coding transcripts that adsorb specific miRNAs and regulate biological processes of human diseases. N6-Methyladenosine (m6A) is an internal modification of RNAs. However, there are few reports about lncRNAs and m6A modifications as co-regulators of pulmonary fibrosis. For 6 months, C57BL/6 mice were given water containing 0, 10, or 20 ppm arsenite. meRIP-seq and lncRNA-seq analyses showed that the m6A levels of the lncRNA E230001N04Rik were higher, and the levels of E230001N04Rik itself were lower in the high-dose arsenite group than in the controls. Murine lung epithelial 12 (MLE12) cells, exposed to 8 μM arsenite for 8 passages, had elevated METTL3 and miR-20b-3p and low E230001N04Rik. Arsenite induced cellular senescence, as demonstrated by secretion of factors related to the senescence-associated secretory phenotype (SASP). Arsenite-treated MLE12 cells co-cultured with primary lung fibroblasts (PLFs) caused myofibroblast differentiation. These data show that METTL3 reduces E230001N04Rik expression via controlling its m6A levels, which regulate miR-20b-3p and mediate the senescence of alveolar epithelial cells (AECs). Thereby, E230001N04Rik is involved in the arsenite-induced myofibroblast differentiation and in pulmonary fibrosis. These observations provide a prospective mechanism for chronic pulmonary disease caused by arsenite.
Collapse
Affiliation(s)
- Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Laboratory of Modern Environmental Toxicology, Environment and Health Research Division, Public Health School and Health Research Centre, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
3
|
Nicolas E, Kosmider B, Cukierman E, Borghaei H, Golemis EA, Borriello L. Cancer treatments as paradoxical catalysts of tumor awakening in the lung. Cancer Metastasis Rev 2024; 43:1165-1183. [PMID: 38963567 PMCID: PMC11554904 DOI: 10.1007/s10555-024-10196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Hossein Borghaei
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Lucia Borriello
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Chikhaoui A, Zayoud K, Kraoua I, Bouchoucha S, Tebourbi A, Turki I, Yacoub-Youssef H. Supplementation with nicotinamide limits accelerated aging in affected individuals with cockayne syndrome and restores antioxidant defenses. Aging (Albany NY) 2024; 16:13271-13287. [PMID: 39611850 PMCID: PMC11719109 DOI: 10.18632/aging.206160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Cockayne syndrome (CS) is a segmental progeroid syndrome characterized by defects in the DNA excision repair pathway, predisposing to neurodegenerative manifestations. It is a rare genetic disorder and an interesting model for studying premature aging. Oxidative stress and autophagy play an important role in the aging process. The study of these two processes in a model of accelerated aging and the means to counteract them would lead to the identification of relevant biomarkers with therapeutic value for healthy aging. Here we investigated the gene expression profiles of several oxidative stress-related transcripts derived from CS-affected individuals and healthy elderly donors. We also explored the effect of nicotinamide supplementation on several genes related to inflammation and autophagy. Gene expression analysis revealed alterations in two main pathways. This involves the activation of arachidonic acid metabolism and the repression of the NRF2 pathway in affected individuals with CS. The supplementation with nicotinamide adjusted these abnormalities by enhancing autophagy and decreasing inflammation. Furthermore, CSA/CSB-dependent depletion of the mitochondrial DNA polymerase-γ catalytic subunit (POLG1) was restored following nicotinamide supplementation in CS-affected individuals' fibroblasts. This study reveals the link between oxidative stress and accelerated aging in affected individuals with CS and highlights new biomarkers of cellular senescence. However, further analyses are needed to confirm these results, which could not be carried out, mainly due to the unavailability of crucial samples of this rare disease.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Kouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Sami Bouchoucha
- Orthopedics Department, Béchir Hamza Children’s Hospital, Tunis 2092, Tunisia
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2046, Tunisia
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
5
|
Yao Y, Ritzmann F, Miethe S, Kattler-Lackes K, Colakoglu B, Herr C, Kamyschnikow A, Brand M, Garn H, Yildiz D, Langer F, Bals R, Beisswenger C. Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model. Mol Med 2024; 30:227. [PMID: 39578767 PMCID: PMC11585087 DOI: 10.1186/s10020-024-00990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Impaired interaction of fibroblasts with pneumocytes contributes to the progression of chronic lung disease such as idiopathic pulmonary fibrosis (IPF). Mucin 5B (MUC5B) is associated with IPF. Here we analyzed the interaction of primary fibroblasts and alveolar type 2 (AT2) pneumocytes in the organoid model. Single-cell analysis, histology, and qRT-PCR revealed that fibroblasts expressing high levels of fibrosis markers regulate STAT3 signaling in AT2 cells, which is accompanied by cystic organoid growth and MUC5B expression. Cystic growth and MUC5B expression were also caused by the cytokine IL-6. The PI3K-Akt signaling pathway was activated in fibroblasts. The drug dasatinib prevented the formation of MUC5B-expressing cystic organoids. MUC5B associated with AT2 cells in samples obtained from IPF patients. Our model shows that fibrotic primary fibroblasts induce impaired differentiation of AT2 cells via STAT3 signaling pathways, as observed in IPF patients. It can be used for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | | | - Betül Colakoglu
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Michelle Brand
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421, Homburg, Germany
| | - Frank Langer
- Department of Thoracic- and Cardiovascular Surgery, Saarland University Hospital, Homburg/Saar, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
6
|
Behnke J, Goetz MJ, Holzfurtner L, Korte P, Weiss A, Shahzad T, Wilhelm J, Schermuly RT, Rivetti S, Bellusci S, Ehrhardt H. Senescence of lung mesenchymal stem cells of preterm infants by cyclic stretch and hyperoxia via p21. Am J Physiol Lung Cell Mol Physiol 2024; 327:L694-L711. [PMID: 39316679 PMCID: PMC11563592 DOI: 10.1152/ajplung.00355.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%. Although the impact of CMS alone was modest, CMS plus HOX displayed the strongest effect sizes. Exposure to CMS and/or HOX induced the downregulation of PDGFRα, and cellular senescence preceded by p21 accumulation. p21 interference interfered with cellular senescence and resulted in aggravated cell death, arguing for a prosurvival mechanism. HOX 40% and limited exposure to HOX 80% prevailed in a reversible phenotype with reuptake of proliferation, while prolonged exposure to HOX 80% resulted in definite MSC growth arrest. Our mechanistic data explain how HOX and CMS induce the effects on MSC phenotype disruption. The results are congruent with the clinical observation that preterm infants requiring supplemental oxygen plus mechanical ventilation are at particular risk for BPD. Although inhibiting p21 is not a feasible approach, limiting the duration and magnitude of the exposures is promising.NEW & NOTEWORTHY Rarefication of lung mesenchymal stem cells (MSC) due to exposure to cyclic mechanical stretch (CMS) during mechanical ventilation with oxygen-rich gas is a hallmark of bronchopulmonary dysplasia in preterm infants, but the pathomechanistic understanding is incomplete. Our studies identify a common signaling mechanism mediated by p21 accumulation, leading to cellular senescence and cell death, most pronounced during the combined exposure with in principle reversible phenotype change depending on strength and duration of exposures.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Maurizio J Goetz
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Pauline Korte
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Astrid Weiss
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ralph T Schermuly
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefano Rivetti
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Saverio Bellusci
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
7
|
Kaur G, Wang Q, Tjitropranoto A, Unwalla H, Rahman I. Cold ischemia time alters cell-type specific senescence leading to loss of cellular integrity in mouse lungs. Exp Lung Res 2024; 50:184-198. [PMID: 39427288 PMCID: PMC11513191 DOI: 10.1080/01902148.2024.2414974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Purpose: Ischemia-reperfusion injury (IRI) is a major challenge in lung transplantation often causing graft dysfunction and chronic airway illnesses in recipients. To prevent potential transplant related complications, strict guidelines were put in place to choose viable donor lungs with minimal risk of IRI. These regulations deem most of the donor organs unfit for transplant which then are donated for research to understand the mechanisms of health and diseases in human. However, resected organs that are being transported undergo cold ischemia that can negatively affect the tissue architecture and other cellular functions under study. Thus, it is important to assess how cold ischemia time (CIT) affects the physiological mechanism. In this respect, we are interested in studying how CIT affects cellular senescence in normal aging and various pulmonary pathologies. We thus hypothesized that prolonged CIT exhibits cell-type specific changes in lung cellular senescence in mice. Methods: Lung lobes from C57BL/6J (n = 5-8) mice were harvested and stored in UW Belzer cold storage solution for 0, 4-, 9-, 12-, 24-, and 48-h CIT. Lung cellular senescence was determined using fluorescence (C12FdG) assay and co-immunolabelling was performed to identify changes in individual cell types. Results: We found a rapid decline in the overall lung cellular senescence after 4-h of CIT in our study. Co-immunolabelling revealed the endothelial cells to be most affected by cold ischemia, demonstrating significant decrease in the endothelial cell senescence immediately after harvest. Annexin V-PI staining further revealed a prominent increase in the number of necrotic cells at 4-h CIT, thus suggesting that most of the cells undergo cell death within a few hours of cold ischemic injury. Conclusions: We thus concluded that CIT significantly lowers the cellular senescence in lung tissues and must be considered as a confounding factor for mechanistic studies in the future.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Ariel Tjitropranoto
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
8
|
Hernandez-Gonzalez F, Pietrocola F, Cameli P, Bargagli E, Prieto-González S, Cruz T, Mendoza N, Rojas M, Serrano M, Agustí A, Faner R, Gómez-Puerta JA, Sellares J. Exploring the Interplay between Cellular Senescence, Immunity, and Fibrosing Interstitial Lung Diseases: Challenges and Opportunities. Int J Mol Sci 2024; 25:7554. [PMID: 39062798 PMCID: PMC11276754 DOI: 10.3390/ijms25147554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) are characterized by the gradual and irreversible accumulation of scar tissue in the lung parenchyma. The role of the immune response in the pathogenesis of pulmonary fibrosis remains unclear. In recent years, substantial advancements have been made in our comprehension of the pathobiology driving fibrosing ILDs, particularly concerning various age-related cellular disturbances and immune mechanisms believed to contribute to an inadequate response to stress and increased susceptibility to lung fibrosis. Emerging studies emphasize cellular senescence as a key mechanism implicated in the pathobiology of age-related diseases, including pulmonary fibrosis. Cellular senescence, marked by antagonistic pleiotropy, and the complex interplay with immunity, are pivotal in comprehending many aspects of lung fibrosis. Here, we review progress in novel concepts in cellular senescence, its association with the dysregulation of the immune response, and the evidence underlining its detrimental role in fibrosing ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Federico Pietrocola
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Solna, Sweden;
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Sergio Prieto-González
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Tamara Cruz
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Nuria Mendoza
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Cambridge CB21 6GP, UK;
| | - Alvar Agustí
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Biomedicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Jose A. Gómez-Puerta
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Rheumatology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Jacobo Sellares
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| |
Collapse
|
9
|
Melo-Narváez MC, Bramey N, See F, Heinzelmann K, Ballester B, Steinchen C, Jain E, Federl K, Hu Q, Dhakad D, Behr J, Eickelberg O, Yildirim AÖ, Königshoff M, Lehmann M. Stimuli-Specific Senescence of Primary Human Lung Fibroblasts Modulates Alveolar Stem Cell Function. Cells 2024; 13:1129. [PMID: 38994981 PMCID: PMC11240317 DOI: 10.3390/cells13131129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little is known about the different triggers that induce a senescence phenotype in different disease backgrounds and its role in CLD pathogenesis. Therefore, we characterized senescence in primary human lung fibroblasts (phLF) from control, IPF, or COPD patients at baseline and after exposure to disease-relevant insults (H2O2, bleomycin, TGF-β1) and studied their capacity to support progenitor cell potential in a lung organoid model. Bulk-RNA sequencing revealed that phLF from IPF and COPD activate different transcriptional programs but share a similar senescence phenotype at baseline. Moreover, H2O2 and bleomycin but not TGF-β1 induced senescence in phLF from different disease origins. Exposure to different triggers resulted in distinct senescence programs in phLF characterized by different SASP profiles. Finally, co-culture with bleomycin- and H2O2-treated phLF reduced the progenitor cell potential of alveolar epithelial progenitor cells. In conclusion, phLF from COPD and IPF share a conserved senescence response that varies depending on the insult and impairs alveolar epithelial progenitor capacity ex vivo.
Collapse
Affiliation(s)
- Maria Camila Melo-Narváez
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), 35043 Marburg, Germany
| | - Nora Bramey
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Fenja See
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Katharina Heinzelmann
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Beatriz Ballester
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
- Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
| | - Carina Steinchen
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Eshita Jain
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Kathrin Federl
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Qianjiang Hu
- Division of Pulmonary, Allergy & Critical Care, and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (Q.H.); (O.E.); (M.K.)
| | - Deepesh Dhakad
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Jürgen Behr
- Department of Medicine V, University Hospital Munich, Medical Faculty of the LMU Munich, 81377 Munich, Germany;
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy & Critical Care, and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (Q.H.); (O.E.); (M.K.)
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
- Institute of Experimental Pneumology, University Hospital Munich, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Melanie Königshoff
- Division of Pulmonary, Allergy & Critical Care, and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (Q.H.); (O.E.); (M.K.)
| | - Mareike Lehmann
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), 35043 Marburg, Germany
- Lung Aging and Regeneration, Institute for Lung Health (ILH), 35392 Giessen, Germany
| |
Collapse
|
10
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
11
|
Bramey N, Melo-Narvaez MC, See F, Ballester-Lllobell B, Steinchen C, Jain E, Hafner K, Yildirim AÖ, Königshoff M, Lehmann M. Stimuli-specific senescence of primary human lung fibroblasts modulates alveolar stem cell function. RESEARCH SQUARE 2024:rs.3.rs-3879423. [PMID: 38352619 PMCID: PMC10862971 DOI: 10.21203/rs.3.rs-3879423/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging such as cellular senescence are present in different lung cell types such as fibroblasts in these patients. However, whether the senescent phenotype of fibroblasts derived from IPF or COPD patients differs is still unknown. Therefore, we characterized senescence at baseline and after exposure to disease-relevant insults (H 2 O 2 , bleomycin, and TGF-β1) in cultured primary human lung fibroblasts (phLF) from control donors, IPF, or COPD patients. We found that phLF from different disease-origins have a low baseline senescence. H 2 O 2 and bleomycin treatment induced a senescent phenotype in phLF, whereas TGF-β1 had primarily a pro-fibrotic effect. Notably, we did not observe any differences in susceptibility to senescence induction in phLF based on disease origin, while exposure to different stimuli resulted in distinct senescence programs in phLF. Moreover, senescent phLF reduced colony formation efficiency of distal alveolar epithelial progenitor cells in a stimuli-dependent manner. In conclusion, the senescent phenotype of phLF is mainly determined by the senescence inducer and impairs alveolar epithelial progenitor capacity in vitro .
Collapse
|
12
|
Brand M, Ritzmann F, Kattler K, Milasius D, Yao Y, Herr C, Kirsch SH, Müller R, Yildiz D, Bals R, Beisswenger C. Biochemical and transcriptomic evaluation of a 3D lung organoid platform for pre-clinical testing of active substances targeting senescence. Respir Res 2024; 25:3. [PMID: 38172839 PMCID: PMC10765931 DOI: 10.1186/s12931-023-02636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicin-induced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing.
Collapse
Affiliation(s)
- Michelle Brand
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Kathrin Kattler
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Deivydas Milasius
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Susanne H Kirsch
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, PZMS, and Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
13
|
Wang F, Ting C, Riemondy KA, Douglas M, Foster K, Patel N, Kaku N, Linsalata A, Nemzek J, Varisco BM, Cohen E, Wilson JA, Riches DW, Redente EF, Toivola DM, Zhou X, Moore BB, Coulombe PA, Omary MB, Zemans RL. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J Clin Invest 2023; 133:e165612. [PMID: 37768734 PMCID: PMC10645382 DOI: 10.1172/jci165612] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from impaired regeneration of the alveolar epithelium after injury. During regeneration, type 2 alveolar epithelial cells (AEC2s) assume a transitional state that upregulates multiple keratins and ultimately differentiate into AEC1s. In IPF, transitional AECs accumulate with ineffectual AEC1 differentiation. However, whether and how transitional cells cause fibrosis, whether keratins regulate transitional cell accumulation and fibrosis, and why transitional AECs and fibrosis resolve in mouse models but accumulate in IPF are unclear. Here, we show that human keratin 8 (KRT8) genetic variants were associated with IPF. Krt8-/- mice were protected from fibrosis and accumulation of the transitional state. Keratin 8 (K8) regulated the expression of macrophage chemokines and macrophage recruitment. Profibrotic macrophages and myofibroblasts promoted the accumulation of transitional AECs, establishing a K8-dependent positive feedback loop driving fibrogenesis. Finally, rare murine transitional AECs were highly senescent and basaloid and may not differentiate into AEC1s, recapitulating the aberrant basaloid state in human IPF. We conclude that transitional AECs induced and were maintained by fibrosis in a K8-dependent manner; in mice, most transitional cells and fibrosis resolved, whereas in human IPF, transitional AECs evolved into an aberrant basaloid state that persisted with progressive fibrosis.
Collapse
Affiliation(s)
- Fa Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Ting
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kent A. Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Douglas
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nisha Patel
- College of Literature, Science, and the Arts
| | - Norihito Kaku
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jean Nemzek
- Unit for Laboratory Animal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian M. Varisco
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jasmine A. Wilson
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver Colorado, USA
| | - Elizabeth F. Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Diana M. Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Xiaofeng Zhou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Bishr Omary
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Program in Cellular and Molecular Biology, School of Medicine, and
| |
Collapse
|
14
|
Cruz T, Agudelo Garcia PA, Chamucero-Millares JA, Bondonese A, Mitash N, Sembrat J, Tabib T, Zhang W, Seyed N, Peters V, Stacey S, Vignali D, Mora AL, Lafyatis R, Rojas M. End-Stage Idiopathic Pulmonary Fibrosis Lung Microenvironment Promotes Impaired NK Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1073-1081. [PMID: 37566492 DOI: 10.4049/jimmunol.2300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic age-related chronic lung disease characterized by the accumulation of senescent cells. Whether impaired immune response is responsible for the accumulation of senescent cells in the IPF lung remains unknown. In this study, we characterized the NK phenotype in IPF lungs via flow cytometry using 5-dodecanoylaminofluorescein di-β-d-galactopyranoside, markers of tissue residence, and chemokine receptors. The effect of the lung microenvironment was evaluated using lung fibroblast (LF) conditioned media (CM), and the bleomycin-induced pulmonary fibrosis mouse model was used to assess the in vivo relationship between NK cells and the accumulation of senescent cells. We found that NK cells from the lower lobe of IPF patients exhibited immune-senescent and impaired CD57-NKG2A+ phenotype. We also observed that culture of NK cells from healthy donors in CM from IPF lower lobe lung fibroblasts induced a senescent-like phenotype and impaired cytotoxic capacity. There is an impaired NK recruitment by LF, and NKs presented decreased migration toward their CM. In addition, NK cell-depleted mice treated with bleomycin showed increased collagen deposition and accumulation of different populations of senescent cells compared with controls. The IPF lung microenvironment induces a dysfunctional NK phenotype limiting the clearance of lung senescent cells and the resolution of lung fibrosis. We propose that impaired NK activity could be one of the mechanisms responsible for perpetuating the accumulation of senescent cells in IPF lungs.
Collapse
Affiliation(s)
- Tamara Cruz
- Fundacio Clinic per a la Recerca Biomedica, IDIBAPS, 08036 Barcelona, Spain
| | - Paula A Agudelo Garcia
- Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH
| | | | - Anna Bondonese
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nilay Mitash
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Wenping Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nouraie Seyed
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Victor Peters
- Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH
| | - Sean Stacey
- Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, Division of Transplant Surgery, The Ohio State University, Columbus, OH
- The Davis Heart and Lung Research Institute at The Ohio State University Wexner Medical, College of Medicine, Columbus, OH
| | - Dario Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ana L Mora
- Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
15
|
Pan X, Wang C, Zhan Y, Chen J, Wang Z, Lan R, Chen J, Zhang W, Chen C, Zhang M, Huang F, Hong J. A Subset of Breg Cells, B10, Contributes to the Development of Radiation-Induced Pulmonary Fibrosis. Int J Radiat Oncol Biol Phys 2023; 117:237-251. [PMID: 37054996 DOI: 10.1016/j.ijrobp.2023.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a serious side effect of radiation therapy, but the underlying mechanisms are unknown. B10 cells, as negative B regulatory cells, play important roles in regulating inflammation and autoimmunity. However, the role of B10 cells in RIPF progression is unclear. The aim of this study was to determine the role of B10 cells in aggravating RIPF and the underlying mechanism. METHODS AND MATERIALS The role of B10 cells in RIPF was studied by constructing mouse models of RIPF and depleting B10 cells with an anti-CD22 antibody. The mechanism of B10 cells in RIPF was further explored through cocultivation of B10 cells and MLE-12 or NIH3T3 cells and administration of an interleukin (IL)-10 antibody to block IL-10. RESULTS B10 cell numbers increased significantly during the early stage in the RIPF mouse models compared with the controls. In addition, depleting B10 cells with the anti-CD22 antibody attenuated the development of lung fibrosis in mice. Subsequently, we confirmed that B10 cells induced epithelial-mesenchymal transition and the transformation of myofibroblasts via activation of STAT3 signaling in vitro. After blockade of IL-10, it was verified that IL-10 secreted by B10 cells mediates the epithelial-mesenchymal transition of myofibroblasts, thereby promoting RIPF. CONCLUSIONS Our study uncovers a novel role for IL-10-secreting B10 cells that could be a new target of research for relieving RIPF.
Collapse
Affiliation(s)
- Xiaoxian Pan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Caihong Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Yuping Zhan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Jinmei Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zeng Wang
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Ruilong Lan
- Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Junying Chen
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Weijian Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Chun Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Mingwei Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Fei Huang
- Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
16
|
Parimon T, Chen P, Stripp BR, Liang J, Jiang D, Noble PW, Parks WC, Yao C. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325:C483-C495. [PMID: 37458437 PMCID: PMC10511168 DOI: 10.1152/ajpcell.00239.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
17
|
Bateman G, Guo-Parke H, Rodgers AM, Linden D, Bailey M, Weldon S, Kidney JC, Taggart CC. Airway Epithelium Senescence as a Driving Mechanism in COPD Pathogenesis. Biomedicines 2023; 11:2072. [PMID: 37509711 PMCID: PMC10377597 DOI: 10.3390/biomedicines11072072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest triggered by various intrinsic and extrinsic stressors. Cellular senescence results in impaired tissue repair and remodeling, loss of physiological integrity, organ dysfunction, and changes in the secretome. The systemic accumulation of senescence cells has been observed in many age-related diseases. Likewise, cellular senescence has been implicated as a risk factor and driving mechanism in chronic obstructive pulmonary disease (COPD) pathogenesis. Airway epithelium exhibits hallmark features of senescence in COPD including activation of the p53/p21WAF1/CIP1 and p16INK4A/RB pathways, leading to cell cycle arrest. Airway epithelial senescent cells secrete an array of inflammatory mediators, the so-called senescence-associated secretory phenotype (SASP), leading to a persistent low-grade chronic inflammation in COPD. SASP further promotes senescence in an autocrine and paracrine manner, potentially contributing to the onset and progression of COPD. In addition, cellular senescence in COPD airway epithelium is associated with telomere dysfunction, DNA damage, and oxidative stress. This review discusses the potential mechanisms of airway epithelial cell senescence in COPD, the impact of cellular senescence on the development and severity of the disease, and highlights potential targets for modulating cellular senescence in airway epithelium as a potential therapeutic approach in COPD.
Collapse
Affiliation(s)
- Georgia Bateman
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Hong Guo-Parke
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Aoife M Rodgers
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Dermot Linden
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Melanie Bailey
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Joseph C Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
18
|
Luo H, Xiao T, Sun X, Song Y, Shi W, Lu K, Chen D, Sun C, Bian Q. The regulation of circRNA_kif26b on alveolar epithelial cell senescence via miR-346-3p is involved in microplastics-induced lung injuries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163512. [PMID: 37084911 DOI: 10.1016/j.scitotenv.2023.163512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), the emerging environmental contaminants, can be inhaled and lead to lung injuries, including inflammation and fibrosis. Alveolar epithelial cell senescence is associated with several lung diseases, but its mechanism in MPs-induced lung injuries remains unknown. In this study, polystyrene microplastics (PS-MPs) in the form of microspheres with a particle size of 100 nm were used for a 35-day inhalation exposure in SPF-grade Sprague-Dawley (SD) rats. The plethysmograph showed lung dysfunction. The hematoxylin and eosin (H&E) staining revealed lung histological lesions with a significant accumulation of inflammatory cells. The β-galactosidase staining indicated increased senescent cells in lung tissues. The ELISA suggested increased senescence-associated secretory phenotype (SASP) in bronchoalveolar lavage fluid (BALF). Treatment of mouse alveolar epithelial cell line MLE12 with PS-MPs raised levels of senescence-related markers p21, p16, and p27 and SASP secretion. circ_kif26b, a ring-structured non-coding RNA (ncRNA), is homologous in human, rat, and mouse and was elevated in PS-MPs-exposed rat lung tissues as well as in PS-MPs-treated MLE12 cells. The luciferase reporter gene revealed that circ_kif26b was bound to miR-346-3p and co-regulated p21, a target gene of miR-346-3p. circ_kif26b knockdown or miR-346-3p overexpression attenuated PS-MPs-induced MLE12 cell senescence and secretion of the SASP cytokines IL-6 and IL-8. However, down-regulation of circ_kif26b and miR-346-3p reversed this depressive effect. Overall, circ_kif26b mediates alveolar epithelial cell senescence through miR-346-3p and participates in PS-MPs-induced lung inflammation. These findings provide new insights into the mechanisms of MPs inhalation toxicity and lay a mechanistic foundation for health risk assessment of MPs.
Collapse
Affiliation(s)
- Hangjun Luo
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tian Xiao
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Xiaoxue Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Song
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Weiqing Shi
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Kuikui Lu
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Dongya Chen
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Bian
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Jiangsu Province Engineering Research Center of Health Emergency, Nanjing 210009, China.
| |
Collapse
|
19
|
Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 2023; 201:201-215. [PMID: 36790647 DOI: 10.1007/s00408-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
20
|
Cerro Chiang G, Parimon T. Understanding Interstitial Lung Diseases Associated with Connective Tissue Disease (CTD-ILD): Genetics, Cellular Pathophysiology, and Biologic Drivers. Int J Mol Sci 2023; 24:ijms24032405. [PMID: 36768729 PMCID: PMC9917355 DOI: 10.3390/ijms24032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a collection of systemic autoimmune disorders resulting in lung interstitial abnormalities or lung fibrosis. CTD-ILD pathogenesis is not well characterized because of disease heterogeneity and lack of pre-clinical models. Some common risk factors are inter-related with idiopathic pulmonary fibrosis, an extensively studied fibrotic lung disease, which includes genetic abnormalities and environmental risk factors. The primary pathogenic mechanism is that these risk factors promote alveolar type II cell dysfunction triggering many downstream profibrotic pathways, including inflammatory cascades, leading to lung fibroblast proliferation and activation, causing abnormal lung remodeling and repairs that result in interstitial pathology and lung fibrosis. In CTD-ILD, dysregulation of regulator pathways in inflammation is a primary culprit. However, confirmatory studies are required. Understanding these pathogenetic mechanisms is necessary for developing and tailoring more targeted therapy and provides newly discovered disease biomarkers for early diagnosis, clinical monitoring, and disease prognostication. This review highlights the central CTD-ILD pathogenesis and biological drivers that facilitate the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Giuliana Cerro Chiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| | - Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
21
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
22
|
Kyi P, Hendee K, Hunyenyiwa T, Matus K, Mammoto T, Mammoto A. Endothelial senescence mediates hypoxia-induced vascular remodeling by modulating PDGFB expression. Front Med (Lausanne) 2022; 9:908639. [PMID: 36203755 PMCID: PMC9530050 DOI: 10.3389/fmed.2022.908639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Uncontrolled accumulation of pulmonary artery smooth muscle cells (PASMCs) to the distal pulmonary arterioles (PAs) is one of the major characteristics of pulmonary hypertension (PH). Cellular senescence contributes to aging and lung diseases associated with PH and links to PH progression. However, the mechanism by which cellular senescence controls vascular remodeling in PH is not fully understood. The levels of senescence marker, p16INK4A and senescence-associated β-galactosidase (SA-β-gal) activity are higher in PA endothelial cells (ECs) isolated from idiopathic pulmonary arterial hypertension (IPAH) patients compared to those from healthy individuals. Hypoxia-induced accumulation of α-smooth muscle actin (αSMA)-positive cells to the PAs is attenuated in p16fl/fl-Cdh5(PAC)-CreERT2 (p16iΔEC) mice after tamoxifen induction. We have reported that endothelial TWIST1 mediates hypoxia-induced vascular remodeling by increasing platelet-derived growth factor (PDGFB) expression. Transcriptomic analyses of IPAH patient lungs or hypoxia-induced mouse lung ECs reveal the alteration of senescence-related gene expression and their interaction with TWIST1. Knockdown of p16INK4A attenuates the expression of PDGFB and TWIST1 in IPAH patient PAECs or hypoxia-treated mouse lungs and suppresses accumulation of αSMA–positive cells to the supplemented ECs in the gel implanted on the mouse lungs. Hypoxia-treated mouse lung EC-derived exosomes stimulate DNA synthesis and migration of PASMCs in vitro and in the gel implanted on the mouse lungs, while p16iΔEC mouse lung EC-derived exosomes inhibit the effects. These results suggest that endothelial senescence modulates TWIST1-PDGFB signaling and controls vascular remodeling in PH.
Collapse
Affiliation(s)
- Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kienna Matus
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Tadanori Mammoto
| |
Collapse
|
23
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|
24
|
Xu J, Liu D, Zhao D, Jiang X, Meng X, Jiang L, Yu M, Zhang L, Jiang H. Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sci 2022; 302:120644. [PMID: 35588864 DOI: 10.1016/j.lfs.2022.120644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
Cellular senescence refers to the permanent arrest of cell cycle caused by intrinsic and/or extrinsic stressors including oncogene activation, irradiation, DNA damage, oxidative stress, and certain cytokines (including senescence associated secretory phenotype). Cellular senescence is an important factor in aging. Accumulation of senescent cells has been implicated in the causation of various age-related organ disorders, tissue dysfunction, and chronic diseases. It is widely accepted that the biological effects triggered by low-dose radiation (LDR) are different from those caused by high-dose radiation. Experimental evidence suggests that LDR may promote growth and development, enhance longevity, induce embryo production, and delay the progression of chronic diseases. The underlying mechanisms of these effects include modulation of immune response, stimulation of hematopoietic system, antioxidative effect, reduced DNA damage and improved ability for DNA damage repair. In this review, we discuss the possible mechanisms by which LDR prevents senescence and aging from the perspectives of inhibiting cellular senescence and promoting the removal of senescent cells. We review a wide broad of evidence about the beneficial impact of LDR in senescence and aging models (including cardiovascular diseases, neurological diseases, arthritis and osteoporosis, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis) to highlight the potential value of LDR in preventing aging and age-related diseases. However, there is no consensus on the effect of LDR on human health, and several important aspects require further investigation.
Collapse
Affiliation(s)
- Jing Xu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Dandan Liu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Lili Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Meina Yu
- Department of Special Clinic, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Long Zhang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China.
| |
Collapse
|
25
|
Rivas M, Gupta G, Costanzo L, Ahmed H, Wyman AE, Geraghty P. Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:817. [PMID: 35744080 PMCID: PMC9228143 DOI: 10.3390/medicina58060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a disease of accelerated lung aging. Over the past two decades, mounting evidence suggests an accumulation of senescent cells within the lungs of patients with COPD that contributes to dysregulated tissue repair and the secretion of multiple inflammatory proteins, termed the senescence-associated secretory phenotype (SASP). Cellular senescence in COPD is linked to telomere dysfunction, DNA damage, and oxidative stress. This review gives an overview of the mechanistic contributions and pathologic consequences of cellular senescence in COPD and discusses potential therapeutic approaches targeting senescence-associated signaling in COPD.
Collapse
Affiliation(s)
- Melissa Rivas
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Louis Costanzo
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Anne E. Wyman
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| |
Collapse
|
26
|
Wu H, Ma H, Wang L, Zhang H, Lu L, Xiao T, Cheng C, Wang P, Yang Y, Wu M, Wang S, Zhang J, Liu Q. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int J Biol Sci 2022; 18:661-674. [PMID: 35002516 PMCID: PMC8741857 DOI: 10.7150/ijbs.65861] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects the health of more than 300 million people worldwide; at present, there is no effective drug to treat COPD. Smoking is the most important risk factor, but the molecular mechanism by which smoking causes the disease is unclear. The senescence of lung epithelial cells is related to development of COPD. Regulation of miRNAs is the main epigenetic mechanism related to aging. β-Galactose staining showed that the lung tissues of smokers have a higher degree of cellular senescence, and the expression of miR-125a-5p is high. This effect is obvious for smokers with COPD/emphysema, and there is a negative correlation between miR-125a-5p levels and values for forced expiratory volume in one second (FEV1)/forced vital capacity (FVC). After Balb/c mice were chronically exposed to various concentrations of cigarette smoke (CS), plethysmography showed that lung function was impaired, lung tissue senescence was increased, and the senescence-associated secretory phenotype (SASP) in bronchoalveolar lavage fluid was increased. For mouse lung epithelial (MLE)-12 cells treated with cigarette smoke extract (CSE), Sp1 and SIRT1 levels were low, HIF-1α acetylation levels were high, and cell senescence and secretion of SASP factors were elevated. Down-regulation of miR-125a-5p or up-regulation of Sp1 reversed these effects. In addition, compared with mice exposed to CS, knockdown of miR-125a-5p reduced lung epithelial cell senescence and COPD/emphysema. Therefore, in smoking-induced COPD, elevated miR-125a-5p participates in the senescence of lung epithelial cells through Sp1/SIRT1/HIF-1α. These findings provide evidence related to the pathogenesis of COPD/emphysema caused by chronic smoking.
Collapse
Affiliation(s)
- Hao Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.,Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huimin Ma
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lumin Wang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huazhong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Suhua Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Faniyi AA, Hughes MJ, Scott A, Belchamber KBR, Sapey E. Inflammation, Ageing and Diseases of the Lung: Potential therapeutic strategies from shared biological pathways. Br J Pharmacol 2021; 179:1790-1807. [PMID: 34826882 DOI: 10.1111/bph.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung diseases disproportionately affect elderly individuals. The lungs form a unique environment: a highly elastic organ with gaseous exchange requiring the closest proximity of inhaled air containing harmful agents and the circulating blood volume. The lungs are highly susceptible to senescence, with age and "inflammageing" creating a pro-inflammatory environment with a reduced capacity to deal with challenges. Whilst lung diseases may have disparate causes, the burden of ageing and inflammation provides a common process which can exacerbate seemingly unrelated pathologies. However, these shared pathways may also provide a common route to treatment, with increased interest in drugs which target ageing processes across respiratory diseases. In this review, we will examine the evidence for the increased burden of lung disease in older adults, the structural and functional changes seen with advancing age and assess what our expanding knowledge of inflammation and ageing pathways could mean for the treatment of lung disease.
Collapse
Affiliation(s)
- A A Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - M J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - A Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - K B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - E Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| |
Collapse
|
28
|
OC-STAMP Overexpression Drives Lung Alveolar Epithelial Cell Type II Senescence in Silicosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4158495. [PMID: 34426759 PMCID: PMC8380176 DOI: 10.1155/2021/4158495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Cellular senescence has been considered an important driver of many chronic lung diseases. However, the specific mechanism of cellular senescence in silicosis is still unknown. In the present study, silicotic rats and osteoclast stimulatory transmembrane protein (Ocstamp) overexpression of MLE-12 cells were used to explore the mechanism of OC-STAMP in cellular senescence in alveolar epithelial cell type II (AEC2). We found an increasing level of OC-STAMP in AEC2 of silicotic rats. Overexpression of Ocstamp in MLE-12 cells promoted epithelial-mesenchymal transition (EMT), endoplasmic reticulum (ER) stress, and cellular senescence. Myosin heavy chain 9 (MYH9) was a potential interacting protein of OC-STAMP. Knockdown of Ocstamp or Myh9 inhibited cellular senescence in MLE-12 cells transfected with pcmv6-Ocstamp. Treatment with 4-phenylbutyrate (4-PBA) to inhibit ER stress also attenuated cellular senescence in vitro or in vivo. In conclusion, OC-STAMP promotes cellular senescence in AEC2 in silicosis.
Collapse
|
29
|
Subramaniyan B, Larabee JL, Bodas M, Moore AR, Burgett AWG, Myers DA, Georgescu C, Wren JD, Papin JF, Walters MS. Characterization of the SARS-CoV-2 Host Response in Primary Human Airway Epithelial Cells from Aged Individuals. Viruses 2021; 13:v13081603. [PMID: 34452468 PMCID: PMC8402710 DOI: 10.3390/v13081603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), a global pandemic characterized by an exaggerated immune response and respiratory illness. Age (>60 years) is a significant risk factor for developing severe COVID-19. To better understand the host response of the aged airway epithelium to SARS-CoV-2 infection, we performed an in vitro study using primary human bronchial epithelial cells from donors >67 years of age differentiated on an air–liquid interface culture. We demonstrate that SARS-CoV-2 infection leads to early induction of a proinflammatory response and a delayed interferon response. In addition, we observed changes in the genes and pathways associated with cell death and senescence throughout infection. In summary, our study provides new and important insights into the temporal kinetics of the airway epithelial innate immune response to SARS-CoV-2 in older individuals.
Collapse
Affiliation(s)
- Bharathiraja Subramaniyan
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Manish Bodas
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Andrew R. Moore
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Anthony W. G. Burgett
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - James F. Papin
- Department of Pathology, Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Matthew S. Walters
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
- Correspondence:
| |
Collapse
|
30
|
Adam G, Shiomi T, Monica G, Jarrod S, Vincent A, Becky M, Tina Z, Jeanine D. Suppression of cigarette smoke induced MMP1 expression by selective serotonin re-uptake inhibitors. FASEB J 2021; 35:e21519. [PMID: 34137477 PMCID: PMC9292461 DOI: 10.1096/fj.202001966rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Globally, COPD remains a major cause of disability and death. In the United States alone, it is estimated that approximately 14 million people suffer from the disease. Given the high disease burden and requirement for chronic, long‐term medical care associated with COPD, it is essential that new disease modifying agents are developed to complement the symptomatic therapeutics currently available. In the present report, we have identified a potentially novel therapeutic agent through the use of a high throughput screen based on the knowledge that cigarette smoke induces the proteolytic enzyme MMP1 leading to destruction of the lung in COPD. A construct utilizing the cigarette responsive promoter element of MMP‐1 was conjugated to a luciferase reporter and utilized in an in vitro assay to screen the NIH Molecular Libraries Small Molecule Repository to identify putative targets that suppressed luciferase expression in response to cigarette smoke extract (CSE). Selective serotonin reuptake inhibitors potently inhibited luciferase expression and were further validated. SSRI treatment suppressed MMP‐1 production in small airway epithelial cells exposed to (CSE) in vitro as well as in smoke exposed rabbits. In addition, SSRI treatment inhibited inflammatory cytokine production while rescuing cigarette smoke induced downregulation in vivo of the anti‐inflammatory lipid transporter ABCA1, previously shown by our laboratory to be lung protective. Importantly, SSRI treatment prevented lung destruction in smoke exposed rabbits as measured by morphometry. These studies support further investigation into SSRIs as a novel therapeutic for COPD may be warranted.
Collapse
Affiliation(s)
- Gerber Adam
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Takayuki Shiomi
- Center for Basic Medical Sciences, Graduate School, International University of Health and Welfare, Chiba, Japan
| | - Goldklang Monica
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sonett Jarrod
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Anguiano Vincent
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Mercer Becky
- Office of Academic Affairs, Palm Beach State College, Florida, USA
| | - Zelonina Tina
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - D'Armiento Jeanine
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
31
|
A model of the aged lung epithelium in idiopathic pulmonary fibrosis. Aging (Albany NY) 2021; 13:16922-16937. [PMID: 34238764 PMCID: PMC8312437 DOI: 10.18632/aging.203291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/19/2021] [Indexed: 01/19/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related disorder that carries a universally poor prognosis and is thought to arise from repetitive micro injuries to the alveolar epithelium. To date, a major factor limiting our understanding of IPF is a deficiency of disease models, particularly in vitro models that can recapitulate the full complement of molecular attributes in the human condition. In this study, we aimed to develop a model that more closely resembles the aberrant IPF lung epithelium. By exposing mouse alveolar epithelial cells to repeated, low doses of bleomycin, instead of usual one-time exposures, we uncovered changes strikingly similar to those in the IPF lung epithelium. This included the acquisition of multiple phenotypic and functional characteristics of senescent cells and the adoption of previously described changes in mitochondrial homeostasis, including alterations in redox balance, energy production and activity of the mitochondrial unfolded protein response. We also uncovered dramatic changes in cellular metabolism and detected a profound loss of proteostasis, as characterized by the accumulation of cytoplasmic protein aggregates, dysregulated expression of chaperone proteins and decreased activity of the ubiquitin proteasome system. In summary, we describe an in vitro model that closely resembles the aberrant lung epithelium in IPF. We propose that this simple yet powerful tool could help uncover new biological mechanisms and assist in developing new pharmacological tools to treat the disease.
Collapse
|
32
|
Cellular Senescence in Lung Fibrosis. Int J Mol Sci 2021; 22:ijms22137012. [PMID: 34209809 PMCID: PMC8267738 DOI: 10.3390/ijms22137012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) are chronic and ultimately fatal age-related lung diseases characterized by the progressive and irreversible accumulation of scar tissue in the lung parenchyma. Over the past years, significant progress has been made in our incomplete understanding of the pathobiology underlying fibrosing ILDs, in particular in relation to diverse age-related processes and cell perturbations that seem to lead to maladaptation to stress and susceptibility to lung fibrosis. Growing evidence suggests that a specific biological phenomenon known as cellular senescence plays an important role in the initiation and progression of pulmonary fibrosis. Cellular senescence is defined as a cell fate decision caused by the accumulation of unrepairable cellular damage and is characterized by an abundant pro-inflammatory and pro-fibrotic secretome. The senescence response has been widely recognized as a beneficial physiological mechanism during development and in tumour suppression. However, recent evidence strengthens the idea that it also drives degenerative processes such as lung fibrosis, most likely by promoting molecular and cellular changes in chronic fibrosing processes. Here, we review how cellular senescence may contribute to lung fibrosis pathobiology, and we highlight current and emerging therapeutic approaches to treat fibrosing ILDs by targeting cellular senescence.
Collapse
|
33
|
Merkt W, Zhou Y, Han H, Lagares D. Myofibroblast fate plasticity in tissue repair and fibrosis: Deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen 2021; 29:678-691. [PMID: 34117675 DOI: 10.1111/wrr.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
In response to tissue injury, fibroblasts differentiate into professional repair cells called myofibroblasts, which orchestrate many aspects of the normal tissue repair programme including synthesis, deposition and contraction of extracellular matrix proteins, leading to wound closure. Successful tissue repair responses involve termination of myofibroblast activities in order to prevent pathologic fibrotic scarring. Here, we discuss the cellular and molecular mechanisms limiting myofibroblast activities during physiological tissue repair, including myofibroblast deactivation, apoptosis, reprogramming and immune clearance of senescent myofibroblasts. In addition, we summarize pathological mechanisms leading to myofibroblast persistence and survival, a hallmark of fibrotic diseases. Finally, we discuss emerging anti-fibrotic therapies aimed at targeting myofibroblast fate such as senolytics, gene therapy, cellular immunotherapy and CAR-T cells.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Yan Zhou
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Physiology, Xiangya Medical School, Central South University, Changsha, China
| | - Hongwei Han
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Lagares
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Scaffa AM, Peterson AL, Carr JF, Garcia D, Yao H, Dennery PA. Hyperoxia causes senescence and increases glycolysis in cultured lung epithelial cells. Physiol Rep 2021; 9:e14839. [PMID: 34042288 PMCID: PMC8157762 DOI: 10.14814/phy2.14839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Supplemental oxygen and mechanical ventilation commonly used in premature infants may lead to chronic lung disease of prematurity, which is characterized by arrested alveolar development and dysmorphic vascular development. Hyperoxia is also known to dysregulate p53, senescence, and metabolism. However, whether these changes in p53, senescence, and metabolism are intertwined in response to hyperoxia is still unknown. Given that the lung epithelium is the first cell to encounter ambient oxygen during a hyperoxic exposure, we used mouse lung epithelial cells (MLE‐12), surfactant protein expressing type II cells, to explore whether hyperoxic exposure alters senescence and glycolysis. We measured glycolytic rate using a Seahorse Bioanalyzer assay and senescence using a senescence‐associated β galactosidase activity assay with X‐gal and C12FDG as substrates. We found that hyperoxic exposure caused senescence and increased glycolysis as well as reduced proliferation. This was associated with increased double stranded DNA damage, p53 phosphorylation and nuclear localization. Furthermore, hyperoxia‐induced senescence was p53‐dependent, but not pRB‐dependent, as shown in p53KO and pRBKO cell lines. Despite the inhibitory effects of p53 on glycolysis, we observed that glycolysis was upregulated in hyperoxia‐exposed MLE‐12 cells. This was attributable to a subpopulation of highly glycolytic senescent cells detected by C12FDG sorting. Nevertheless, inhibition of glycolysis did not prevent hyperoxia‐induced senescence. Therapeutic strategies modulating p53 and glycolysis may be useful to mitigate the detrimental consequences of hyperoxia in the neonatal lung.
Collapse
Affiliation(s)
- Alejandro M Scaffa
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island, USA.,Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jennifer F Carr
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - David Garcia
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.,Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
35
|
Kanagaki S, Suezawa T, Moriguchi K, Nakao K, Toyomoto M, Yamamoto Y, Murakami K, Hagiwara M, Gotoh S. Hydroxypropyl Cyclodextrin Improves Amiodarone-induced Aberrant Lipid Homeostasis of Alveolar Cells. Am J Respir Cell Mol Biol 2021; 64:504-514. [PMID: 33493427 DOI: 10.1165/rcmb.2020-0119oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alveolar epithelial type II (AT2) cells secrete pulmonary surfactant via lamellar bodies (LBs). Abnormalities in LBs are associated with pulmonary disorders, including fibrosis. However, high-content screening (HCS) for LB abnormalities is limited by the lack of understanding of AT2 cell functions. In the present study, we have developed LB cells harboring LB-like organelles that secrete surfactant proteins. These cells were more similar to AT2 cells than to parental A549 cells. LB cells recapitulated amiodarone (AMD)-induced LB enlargement, similar to AT2 cells of patients exposed to AMD. To reverse AMD-induced LB abnormalities, we performed HCS of approved drugs and identified 2-hydroxypropyl-β-cyclodextrin (HPβCD), a cyclic oligosaccharide, as a potential therapeutic agent. A transcriptome analysis revealed that HPβCD modulates lipid homeostasis. In addition, HPβCD inhibited AMD-induced LB abnormalities in human induced pluripotent stem cell-derived AT2 cells. Our results demonstrate that LB cells are useful for HCS and suggest that HPβCD is a candidate therapeutic agent for AMD-induced interstitial pneumonia.
Collapse
Affiliation(s)
- Shuhei Kanagaki
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Keita Moriguchi
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Kazuhisa Nakao
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masayasu Toyomoto
- Department of Drug Discovery for Lung Diseases and.,Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; and
| | | | - Koji Murakami
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; and
| | | |
Collapse
|
36
|
Meiners S, Lehmann M. Senescent Cells in IPF: Locked in Repair? Front Med (Lausanne) 2020; 7:606330. [PMID: 33392228 PMCID: PMC7775527 DOI: 10.3389/fmed.2020.606330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Silke Meiners
- Helmholtz Zentrum München, Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
37
|
Yuan L, Wang L, Du X, Qin L, Yang M, Zhou K, Wu M, Yang Y, Zheng Z, Xiang Y, Qu X, Liu H, Qin X, Liu C. The DNA methylation of FOXO3 and TP53 as a blood biomarker of late-onset asthma. J Transl Med 2020; 18:467. [PMID: 33298101 PMCID: PMC7726856 DOI: 10.1186/s12967-020-02643-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Late-onset asthma (LOA) is beginning to account for an increasing proportion of asthma patients, which is often underdiagnosed in the elderly. Studies on the possible relations between aging-related genes and LOA contribute to the diagnosis and treatment of LOA. Forkhead Box O3 (FOXO3) and TP53 are two classic aging-related genes. DNA methylation varies greatly with age which may play an important role in the pathogenesis of LOA. We supposed that the differentially methylated sites of FOXO3 and TP53 associated with clinical phenotypes of LOA may be useful biomarkers for the early screening of LOA. METHODS The mRNA expression and DNA methylation of FOXO3 and TP53 in peripheral blood of 43 LOA patients (15 mild LOA, 15 moderate LOA and 13 severe LOA) and 60 healthy controls (HCs) were determined. The association of methylated sites with age was assessed by Cox regression to control the potential confounders. Then, the correlation between differentially methylated sites (DMSs; p-value < 0.05) and clinical lung function in LOA patients was evaluated. Next, candidate DMSs combining with age were evaluated to predict LOA by receiver operating characteristic (ROC) analysis and principal components analysis (PCA). Finally, HDM-stressed asthma model was constructed, and DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-AZA) were used to determine the regulation of DNA methylation on the expression of FOXO3 and TP53. RESULTS Compared with HCs, the mRNA expression and DNA methylation of FOXO3 and TP53 vary significantly in LOA patients. Besides, 8 DMSs from LOA patients were identified. Two of the DMSs, chr6:108882977 (FOXO3) and chr17:7591672 (TP53), were associated with the severity of LOA. The combination of the two DMSs and age could predict LOA with high accuracy (AUC values = 0.924). In HDM-stressed asthma model, DNA demethylation increased the expression of FOXO3 and P53. CONCLUSIONS The mRNA expression of FOXO3 and TP53 varies significantly in peripheral blood of LOA patients, which may be due to the regulation of DNA methylation. FOXO3 and TP53 methylation is a suitable blood biomarker to predict LOA, which may be useful targets for the risk diagnosis and clinical management of LOA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Leyuan Wang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xizi Du
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Kai Zhou
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Mengping Wu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Yu Yang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Zhiyuan Zheng
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Huijun Liu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China.
- Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
38
|
Venosa A. Senescence in Pulmonary Fibrosis: Between Aging and Exposure. Front Med (Lausanne) 2020; 7:606462. [PMID: 33282895 PMCID: PMC7689159 DOI: 10.3389/fmed.2020.606462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
To date, chronic pulmonary pathologies represent the third leading cause of death in the elderly population. Evidence-based projections suggest that >65 (years old) individuals will account for approximately a quarter of the world population before the turn of the century. Genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, are described as the nine “hallmarks” that govern cellular fitness. Any deviation from the normal pattern initiates a complex cascade of events culminating to a disease state. This blueprint, originally employed to describe aberrant changes in cancer cells, can be also used to describe aging and fibrosis. Pulmonary fibrosis (PF) is the result of a progressive decline in injury resolution processes stemming from endogenous (physiological decline or somatic mutations) or exogenous stress. Environmental, dietary or occupational exposure accelerates the pathogenesis of a senescent phenotype based on (1) window of exposure; (2) dose, duration, recurrence; and (3) cells type being targeted. As the lung ages, the threshold to generate an irreversibly senescent phenotype is lowered. However, we do not have sufficient knowledge to make accurate predictions. In this review, we provide an assessment of the literature that interrogates lung epithelial, mesenchymal, and immune senescence at the intersection of aging, environmental exposure and pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, United States
| |
Collapse
|
39
|
Nehme J, Borghesan M, Mackedenski S, Bird TG, Demaria M. Cellular senescence as a potential mediator of COVID-19 severity in the elderly. Aging Cell 2020; 19:e13237. [PMID: 32955770 PMCID: PMC7576296 DOI: 10.1111/acel.13237] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023] Open
Abstract
SARS-CoV-2 is a novel betacoronavirus which infects the lower respiratory tract and can cause coronavirus disease 2019 (COVID-19), a complex respiratory distress syndrome. Epidemiological data show that COVID-19 has a rising mortality particularly in individuals with advanced age. Identifying a functional association between SARS-CoV-2 infection and the process of biological aging may provide a tractable avenue for therapy to prevent acute and long-term disease. Here, we discuss how cellular senescence-a state of stable growth arrest characterized by pro-inflammatory and pro-disease functions-can hypothetically be a contributor to COVID-19 pathogenesis, and a potential pharmaceutical target to alleviate disease severity. First, we define why older COVID-19 patients are more likely to accumulate high levels of cellular senescence. Second, we describe how senescent cells can contribute to an uncontrolled SARS-CoV-2-mediated cytokine storm and an excessive inflammatory reaction during the early phase of the disease. Third, we discuss the various mechanisms by which senescent cells promote tissue damage leading to lung failure and multi-tissue dysfunctions. Fourth, we argue that a high senescence burst might negatively impact on vaccine efficacy. Measuring the burst of cellular senescence could hypothetically serve as a predictor of COVID-19 severity, and targeting senescence-associated mechanisms prior and after SARS-CoV-2 infection might have the potential to limit a number of severe damages and to improve the efficacy of vaccinations.
Collapse
Affiliation(s)
- Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
- Doctoral School of Science and TechnologyLebanese UniversityBeirutLebanon
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| | - Sebastian Mackedenski
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| | - Thomas G. Bird
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
- MRC Centre for Inflammation ResearchThe Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| |
Collapse
|
40
|
Extracorporeal Shock Waves Increase Markers of Cellular Proliferation in Bronchial Epithelium and in Primary Bronchial Fibroblasts of COPD Patients. Can Respir J 2020; 2020:1524716. [PMID: 32831979 PMCID: PMC7429777 DOI: 10.1155/2020/1524716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is due to structural changes and narrowing of small airways and parenchymal destruction (loss of the alveolar attachment as a result of pulmonary emphysema), which all lead to airflow limitation. Extracorporeal shock waves (ESW) increase cell proliferation and differentiation of connective tissue fibroblasts. To date no studies are available on ESW treatment of human bronchial fibroblasts and epithelial cells from COPD and control subjects. We obtained primary bronchial fibroblasts from bronchial biopsies of 3 patients with mild/moderate COPD and 3 control smokers with normal lung function. 16HBE cells were also studied. Cells were treated with a piezoelectric shock wave generator at low energy (0.3 mJ/mm2, 500 pulses). After treatment, viability was evaluated and cells were recultured and followed up for 4, 24, 48, and 72 h. Cell growth (WST-1 test) was assessed, and proliferation markers were analyzed by qRT-PCR in cell lysates and by ELISA tests in cell supernatants and cell lysates. After ESW treatment, we observed a significant increase of cell proliferation in all cell types. C-Kit (CD117) mRNA was significantly increased in 16HBE cells at 4 h. Protein levels were significantly increased for c-Kit (CD117) at 4 h in 16HBE (p < 0.0001) and at 24 h in COPD-fibroblasts (p = 0.037); for PCNA at 4 h in 16HBE (p = 0.046); for Thy1 (CD90) at 24 and 72 h in CS-fibroblasts (p = 0.031 and p = 0.041); for TGFβ1 at 72 h in CS-fibroblasts (p = 0.038); for procollagen-1 at 4 h in COPD-fibroblasts (p = 0.020); and for NF-κB-p65 at 4 and 24 h in 16HBE (p = 0.015 and p = 0.0002). In the peripheral lung tissue of a representative COPD patient, alveolar type II epithelial cells (TTF‐1+) coexpressing c-Kit (CD117) and PCNA were occasionally observed. These data show an increase of cell proliferation induced by a low dosage of extracorporeal shock waves in 16HBE cells and primary bronchial fibroblasts of COPD and control smoking subjects.
Collapse
|
41
|
Gu C, Zhang Q, Ni D, Xiao QF, Cao LF, Fei CY, Ying Y, Li N, Tao F. Therapeutic Effects of SRT2104 on Lung Injury in Rats with Emphysema via Reduction of Type II Alveolar Epithelial Cell Senescence. COPD 2020; 17:444-451. [PMID: 32722945 DOI: 10.1080/15412555.2020.1797657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most prevalent and severe diseases worldwide with high societal and health care costs. The pathogenesis of COPD is very complicated, and no curative treatment is available. Cellular senescence promotes the development of COPD. Type II alveolar epithelial cells (AECII) play a momentous role in lung tissue repair and maintenance of alveolar homeostasis. Sirtuin 1 (SIRT1), an antiaging molecule involved in the response to chronic inflammation and oxidative stress, regulates many pathophysiological changes including stress resistance, apoptosis, inflammation, and cellular senescence. This study aimed to investigate whether the pharmacological SIRT1 activator SRT2104 protects against AECII senescence in rats with emphysema. Our findings confirmed that SRT2104 administration reduced the pathological characteristics of emphysema and improved lung function parameters, including pulmonary resistance, pulmonary dynamic compliance, and peak expiratory flow. Moreover, SRT2104 treatment upregulated the expression of surfactant proteins A and C, SIRT1, and forkhead box O 3a (FoxO3a), decreased senescence-associated-β-galactosidase (SA-β-gal) activity, increased SIRT1 deacetylase activity, and downregulated the levels of p53 and p21. Therefore, SRT2104 administration protected against AECII senescence in rats with emphysema via SIRT1/FoxO3a and SIRT1/p53 signaling pathways and may provide a novel potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Chao Gu
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| | - Qi Zhang
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| | - Dan Ni
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| | - Qin-Feng Xiao
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| | - Lin-Feng Cao
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| | - Chun-Yuan Fei
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| | - Ying Ying
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| | - Na Li
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| | - Feng Tao
- Department of Respiratory Medicine, The First Hospital of Jiaxing (the Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang, People's Republic of China
| |
Collapse
|
42
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The etiology of systemic sclerosis (SSc), which is a rare immune-mediated inflammatory disease characterized by vascular damage and fibrosis, is still unknown. However, different intrinsic (genetics) and extrinsic (environmental) factors play a part in the progression of the disease. This review focuses on the role of aging, mitochondrial dysfunction, and senescence in SSc. RECENT FINDINGS Mitochondrial dysfunction and senescence have been linked to the age-related susceptibility to other interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF). SSc is not regarded as an age-related disease but does show a higher incidence of cardiac events, fibrosis, and mortality at older age. We provide an overview of the current status of the role of aging, mitochondrial dysfunction, and senescence in SSc. Further work is needed to validate some of these pathways in SSc and may allow for new therapeutic interventions focused on restoring mitochondrial homeostasis and the targeted removal of chronic-senescent cells.
Collapse
|
44
|
Alsafadi HN, Uhl FE, Pineda RH, Bailey KE, Rojas M, Wagner DE, Königshoff M. Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. Am J Respir Cell Mol Biol 2020; 62:681-691. [PMID: 31991090 PMCID: PMC7401444 DOI: 10.1165/rcmb.2019-0276tr] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.
Collapse
Affiliation(s)
- Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Franziska E. Uhl
- Wallenberg Center for Molecular Medicine
- Vascular Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ricardo H. Pineda
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Kolene E. Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Mauricio Rojas
- Division of Respiratory, Allergy and Critical Care Medicine, The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darcy E. Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
45
|
Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells. Int J Mol Sci 2020; 21:ijms21093279. [PMID: 32384619 PMCID: PMC7247355 DOI: 10.3390/ijms21093279] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a key process in physiological dysfunction developing upon aging or following diverse stressors including ionizing radiation. It describes the state of a permanent cell cycle arrest, in which proliferating cells become resistant to growth-stimulating factors. Senescent cells differ from quiescent cells, which can re-enter the cell cycle and from finally differentiated cells: morphological and metabolic changes, restructuring of chromatin, changes in gene expressions and the appropriation of an inflammation-promoting phenotype, called the senescence-associated secretory phenotype (SASP), characterize cellular senescence. The biological role of senescence is complex, since both protective and harmful effects have been described for senescent cells. While initially described as a mechanism to avoid malignant transformation of damaged cells, senescence can even contribute to many age-related diseases, including cancer, tissue degeneration, and inflammatory diseases, particularly when senescent cells persist in damaged tissues. Due to overwhelming evidence about the important contribution of cellular senescence to the pathogenesis of different lung diseases, specific targeting of senescent cells or of pathology-promoting SASP factors has been suggested as a potential therapeutic approach. In this review, we summarize recent advances regarding the role of cellular (fibroblastic, endothelial, and epithelial) senescence in lung pathologies, with a focus on radiation-induced senescence. Among the different cells here, a central role of epithelial senescence is suggested.
Collapse
|
46
|
Kathiriya JJ, Brumwell AN, Jackson JR, Tang X, Chapman HA. Distinct Airway Epithelial Stem Cells Hide among Club Cells but Mobilize to Promote Alveolar Regeneration. Cell Stem Cell 2020; 26:346-358.e4. [PMID: 31978363 DOI: 10.1016/j.stem.2019.12.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023]
Abstract
Lung injury activates specialized adult epithelial progenitors to regenerate the epithelium. Depending on the extent of injury, both remaining alveolar type II cells (AEC2s) and distal airway stem/progenitors mobilize to cover denuded alveoli and restore normal barriers. The major source of airway stem/progenitors other than basal-like cells remains uncertain. Here, we define a distinct subpopulation (∼5%) of club-like lineage-negative epithelial progenitors (LNEPs) marked by high H2-K1 expression critical for alveolar repair. Quiescent H2-K1high cells account for virtually all in vitro regenerative activity of airway lineages. After bleomycin injury, H2-K1 cells expand and differentiate in vivo to alveolar lineages. However, injured H2-K1 cells eventually develop impaired self-renewal with features of senescence, limiting complete repair. Normal H2-K1high cells transplanted into injured lungs differentiate into alveolar cells and rescue lung function. These findings indicate that small subpopulations of specialized stem/progenitors are required for effective lung regeneration and are a potential therapeutic adjunct after major lung injury.
Collapse
Affiliation(s)
- Jaymin J Kathiriya
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, San Francisco, CA 94143, USA
| | - Alexis N Brumwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, San Francisco, CA 94143, USA
| | - Julia R Jackson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, San Francisco, CA 94143, USA
| | - Xiaodan Tang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, San Francisco, CA 94143, USA; Department of Pulmonary Disease, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Harold A Chapman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, San Francisco, CA 94143, USA.
| |
Collapse
|
47
|
Merkt W, Bueno M, Mora AL, Lagares D. Senotherapeutics: Targeting senescence in idiopathic pulmonary fibrosis. Semin Cell Dev Biol 2019; 101:104-110. [PMID: 31879264 DOI: 10.1016/j.semcdb.2019.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease characterized by progressive scarring of the lung tissue, leading to respiratory failure. There is no cure for IPF, and current anti-fibrotic treatments modestly arrest its further progression. IPF prevalence and incidence increase with age, which is a recognized risk factor. Intense clinical and basic research over the last fifteen years has shown that hallmarks of accelerated aging are present in the lungs of patients with IPF. Different cell types in IPF lungs exhibit premature hallmarks of aging, including telomere attrition and cellular senescence. In this Review, we discuss recent insights into the mechanisms behind these age-related alterations and their contribution to the development of lung fibrosis. We focus on the genetic and molecular basis of telomere attrition in alveolar type II epithelial cells, which promote cellular senescence and lung fibrosis. Mechanistically, senescent cells secrete pro-fibrotic factors that activate scar-forming myofibroblasts. Ultimately, senescent alveolar epithelial cells lose their regenerative capacity, impeding fibrosis resolution. In addition, mitochondrial dysfunction is strongly associated with the appearance of senescent epithelial cells and senescent myofibroblasts in IPF, which persist in the fibrotic tissue by adapting their metabolic pathways and becoming resistant to apoptosis. We discuss emerging novel therapeutic strategies to treat IPF by targeting cellular senescence with the so-called senotherapeutics.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany; Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Bueno
- Aging Institute. School of Medicine. University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Aging Institute. School of Medicine. University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 2019; 101:78-86. [PMID: 31791693 DOI: 10.1016/j.semcdb.2019.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.
Collapse
Affiliation(s)
- Xuetao Sun
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada
| | - Blessing Nkennor
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Department of Biological Sciences, University of Toronto Scarborough, Canada
| | - Olya Mastikhina
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Kayla Soon
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Sara S Nunes
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
49
|
Zhang CY, Duan JX, Yang HH, Sun CC, Zhong WJ, Tao JH, Guan XX, Jiang HL, Hammock BD, Hwang SH, Zhou Y, Guan CX. COX-2/sEH dual inhibitor PTUPB alleviates bleomycin-induced pulmonary fibrosis in mice via inhibiting senescence. FEBS J 2019; 287:1666-1680. [PMID: 31646730 DOI: 10.1111/febs.15105] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023]
Abstract
Pulmonary fibrosis (PF) is a senescence-associated disease with poor prognosis. Currently, there is no effective therapeutic strategy for preventing and treating the disease process. Mounting evidence suggests that arachidonic acid (ARA) metabolites are involved in the pathogenesis of various fibrosis. However, the relationship between the metabolism of ARA and PF is still elusive. In this study, we observed a disorder in the cyclooxygenase-2/cytochrome P450 (COX-2/CYP) metabolism of ARA in the lungs of PF mice induced by bleomycin (BLM). Therefore, we aimed to explore the role of COX-2/CYP-derived ARA metabolic disorders in PF. PTUPB, a dual COX-2 and soluble epoxide hydrolase (sEH) inhibitor, was used to restore the balance of COX-2/CYP metabolism. sEH is an enzyme hydrolyzing epoxyeicosatrienoic acids derived from ARA by CYP. We found that PTUPB alleviated the pathological changes in lung tissue and collagen deposition, as well as reduced senescence marker molecules (p16Ink4a and p53-p21Waf1/Cip1 ) in the lungs of mice treated by BLM. In vitro, we found that PTUPB pretreatment remarkably reduced the expression of senescence-related molecules in the alveolar epithelial cells (AECs) induced by BLM. In conclusion, our study supports the notion that the COX-2/CYP-derived ARA metabolic disorders may be a potential therapeutic target for PF via inhibiting the cellular senescence in AECs.
Collapse
Affiliation(s)
- Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wen-Jing Zhong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia-Hao Tao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui-Ling Jiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|