1
|
Safavi AS, Karbasi S. A new path in bone tissue engineering: polymer-based 3D-printed magnetic scaffolds (a comprehensive review of in vitro and in vivo studies). JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-21. [PMID: 39715733 DOI: 10.1080/09205063.2024.2444077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Bone tissue engineering is a promising approach to address the increasing need for bone repair. Scaffolds play a crucial role in providing the structural framework for cell growth and differentiation. 3D printing offers precise control over scaffold design and fabrication. Polymers and inorganic compounds such as magnetic nanoparticles (MNPs) are used to create biocompatible and functional scaffolds. MNPs enhance mechanical properties, facilitate drug delivery, and enable the real-time monitoring of bone regeneration. This review highlights the potential of polymer-based 3D-printed magnetic scaffolds in advancing bone regenerative medicine.
Collapse
Affiliation(s)
- Atiyeh Sadat Safavi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Zhu S, Sun H, Mu T, Richel A. Cellulose nano-dispersions enhanced by ultrasound assisted chemical modification drive osteoblast proliferation and differentiation in PVA/HA bone tissue engineering scaffolds. Int J Biol Macromol 2024; 279:135571. [PMID: 39276883 DOI: 10.1016/j.ijbiomac.2024.135571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
To develop a biological bone tissue scaffold with uniform pore size and good cell adhesion was both challenging and imperative. We prepared modified cellulose nanocrystals (CNCs) dispersants (K-PCNCs) by ultrasound-assisted alkylation modification. Subsequently, nano-hydroxyapatite (HC-K) was synthesized using K-PCNCs as a dispersant and composited with polyvinyl alcohol (PVA) to prepare the scaffold using the ice template method. The results showed that the water contact angle and degree of substitution (135°, 1.53) of the K-PCNCs were highest when the ultrasound power was 450 W and the time was 2 h. The dispersion of K-PCNCs prepared under this condition was optimal. SEM showed that the pore distribution of the composite scaffolds was more homogeneous than the PVA scaffold. The porosity, equilibrium swelling rate, and mechanical properties of the composite scaffolds increased and then decreased with the increase of HC-K content, and reached the maximum values (56.1 %, 807.7 %, and 0.085 ± 0.004 MPa) at 9 % (w/w) of HC-K content. Cell experiments confirmed scaffold has good cytocompatibility and mineralization capacity. The ALP activity reached 1.71 ± 0.25 (ALP activity/mg protein). In conclusion, the scaffolds we developed have good biocompatibility and mechanical properties and have great potential in promoting bone defect repair.
Collapse
Affiliation(s)
- Shunshun Zhu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Aurore Richel
- University of Liège, Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Russo T, Peluso V, Gloria A, Gargiulo V, Alfe M, Ausanio G. An integrated design strategy coupling additive manufacturing and matrix-assisted pulsed laser evaporation (MAPLE) towards the development of a new concept 3D scaffold with improved properties for tissue regeneration. NANOSCALE ADVANCES 2024; 6:3064-3072. [PMID: 38868830 PMCID: PMC11166109 DOI: 10.1039/d4na00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
Bioinspired strategies for scaffold design and optimization were improved by the introduction of Additive Manufacturing (AM), thus allowing for replicating and reproducing complex shapes and structures in a reliable manner, adopting different kinds of polymeric and nanocomposite materials properly combined according to the features of the natural host tissues. Benefiting from recent findings in AM, a Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique was employed for obtaining graphene-like material (GL) uniform coatings on 3D scaffolds for tissue repair strategies, towards the development of a new concept 3D scaffold with controlled morphological/architectural and surface features and mechanical and biological properties. The effect of the material-design combination through an integrated technological approach (i.e., MAPLE deposition of GL on 3D AM PCL scaffolds) was assessed through scanning electron microscopy, atomic force microscopy, contact angle measurements, mechanical measurements and biological analyses (cell viability assay and alkaline phosphatase activity) in conjunction with confocal laser scanning microscopy. The differentiation of hMSCs towards the osteoblast phenotype was also investigated analysing the gene expression profile. The obtained findings provided a further insight into the development of improved strategies for the functionalization or combination of GL with other materials and 3D structures in a hybrid fashion for ensuring a tighter adhesion onto the substrates, improving cell fate over time, without negatively altering the mechanical properties and behaviour of the neat constructs. In particular, the results provided interesting information, making 3D AM GL-coated scaffolds potential candidates for bone tissue engineering.
Collapse
Affiliation(s)
- Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy 80125 Naples Italy
| | - Valentina Peluso
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy 80125 Naples Italy
| | - Antonio Gloria
- Department of Industrial Engineering, University of Naples Federico II 80125 Naples Italy
| | - Valentina Gargiulo
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council of Italy 80125 Naples Italy
| | - Michela Alfe
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council of Italy 80125 Naples Italy
| | - Giovanni Ausanio
- Dipartimento di Fisica "Ettore Pancini", Università degli Studi di Napoli Federico II 80125 Napoli Italy
| |
Collapse
|
6
|
Han Y, Lu Q, Xie J, Song KY, Luo D. Three-Dimensional Printable Magnetic Microfibers: Development and Characterization for Four-Dimensional Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e638-e654. [PMID: 38689922 PMCID: PMC11057696 DOI: 10.1089/3dp.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This study proposes a novel and simple fabrication method of magnetic microfibers, employing filament stretching three-dimensional (3D) printing, and demonstrates the capacity of four-dimensional (4D) printing of the proposed magnetic microfibers. A ferromagnetic 3D printing filament is prepared by the mixture of neodymium-iron-boron (NdFeB) and polylactic acid (PLA), and we investigate the characteristics of the ferromagnetic filament by mixing ratio, magnetic properties, mechanical properties, and rheological properties through experiments. By thermal extrusion of the ferromagnetic filament through a 3D printer nozzle, various thicknesses (80-500 μm) and lengths (less than ∼5 cm) of ferromagnetic microfibers are achieved with different printing setups, such as filament extrusion amount and printing speed. The printed ferromagnetic microfibers are magnetized to maintain a permanent magnetic dipole moment, and 4D printing can be achieved by the deformations of the permanently magnetized microfibers under magnetic fields. We observe that the mixing ratio, the thickness, and the length of the magnetized microfibers provide distinct deformation of the microfiber for customization of 4D printings. This study exhibits that the permanently magnetized microfibers have a great potential for smart sensors and actuators. Furthermore, we briefly present an application of our proposed magnetic microfibers for bionic motion actuators with various unique undulating and oscillating motions.
Collapse
Affiliation(s)
- Yanwen Han
- Department of Mechanical and Electrical Systems Engineering, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qing Lu
- Department of Mechanical and Electrical Systems Engineering, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Xie
- Department of Engineering Mechanics, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ki-Young Song
- Department of Mechanical and Electrical Systems Engineering, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Dun Luo
- Deqing Jingge Magnetic Technology Co., Ltd., Huzhou City, China
| |
Collapse
|
7
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
8
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
9
|
Han J, Ma Q, An Y, Wu F, Zhao Y, Wu G, Wang J. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology 2023; 21:277. [PMID: 37596638 PMCID: PMC10439657 DOI: 10.1186/s12951-023-02017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnology has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment around implants before and after surgery, these surface nanomodifications are designed to respond to different stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their compounds, polymer materials and other materials. In addition, the mechanism of different response types is introduced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications and developing prospect were discussion.
Collapse
Affiliation(s)
- Jingyuan Han
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, 710455 Norway
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fan Wu
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Yuqing Zhao
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Jing Wang
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
10
|
Sadeghzadeh H, Dianat-Moghadam H, Del Bakhshayesh AR, Mohammadnejad D, Mehdipour A. A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem Cell Res Ther 2023; 14:194. [PMID: 37542279 PMCID: PMC10403948 DOI: 10.1186/s13287-023-03426-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Many problems related to disorders and defects of bone tissue caused by aging, diseases, and injuries have been solved by the multidisciplinary research field of regenerative medicine and tissue engineering. Numerous sciences, especially nanotechnology, along with tissue engineering, have greatly contributed to the repair and regeneration of tissues. Various studies have shown that the presence of magnetic nanoparticles (MNPs) in the structure of composite scaffolds increases their healing effect on bone defects. In addition, the induction of osteogenic differentiation of mesenchymal stem cells (MSCs) in the presence of these nanoparticles has been investigated and confirmed by various studies. Therefore, in the present article, the types of MNPs, their special properties, and their application in the healing of damaged bone tissue have been reviewed. Also, the molecular effects of MNPs on cell behavior, especially in osteogenesis, have been discussed. Finally, the present article includes the potential applications of MNP-containing nanocomposite scaffolds in bone lesions and injuries. In summary, this review article highlights nanocomposite scaffolds containing MNPs as a solution for treating bone defects in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hadi Sadeghzadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryush Mohammadnejad
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Sagadevan S, Schirhagl R, Rahman MZ, Bin Ismail MF, Lett JA, Fatimah I, Mohd Kaus NH, Oh WC. Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Ribeiro TP, Flores M, Madureira S, Zanotto F, Monteiro FJ, Laranjeira MS. Magnetic Bone Tissue Engineering: Reviewing the Effects of Magnetic Stimulation on Bone Regeneration and Angiogenesis. Pharmaceutics 2023; 15:1045. [PMID: 37111531 PMCID: PMC10143200 DOI: 10.3390/pharmaceutics15041045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Bone tissue engineering emerged as a solution to treat critical bone defects, aiding in tissue regeneration and implant integration. Mainly, this field is based on the development of scaffolds and coatings that stimulate cells to proliferate and differentiate in order to create a biologically active bone substitute. In terms of materials, several polymeric and ceramic scaffolds have been developed and their properties tailored with the objective to promote bone regeneration. These scaffolds usually provide physical support for cells to adhere, while giving chemical and physical stimuli for cell proliferation and differentiation. Among the different cells that compose the bone tissue, osteoblasts, osteoclasts, stem cells, and endothelial cells are the most relevant in bone remodeling and regeneration, being the most studied in terms of scaffold-cell interactions. Besides the intrinsic properties of bone substitutes, magnetic stimulation has been recently described as an aid in bone regeneration. External magnetic stimulation induced additional physical stimulation in cells, which in combination with different scaffolds, can lead to a faster regeneration. This can be achieved by external magnetic fields alone, or by their combination with magnetic materials such as nanoparticles, biocomposites, and coatings. Thus, this review is designed to summarize the studies on magnetic stimulation for bone regeneration. While providing information regarding the effects of magnetic fields on cells involved in bone tissue, this review discusses the advances made regarding the combination of magnetic fields with magnetic nanoparticles, magnetic scaffolds, and coatings and their subsequent influence on cells to reach optimal bone regeneration. In conclusion, several research works suggest that magnetic fields may play a role in regulating the growth of blood vessels, which are critical for tissue healing and regeneration. While more research is needed to fully understand the relationship between magnetism, bone cells, and angiogenesis, these findings promise to develop new therapies and treatments for various conditions, from bone fractures to osteoporosis.
Collapse
Affiliation(s)
- Tiago P. Ribeiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Miguel Flores
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Sara Madureira
- Escola Superior de Biotecnologia, CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Centro de Investigação Interdisciplinar em Saúde, Instituto de Ciências da Saúde, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Francesca Zanotto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Information Engineering, University of Padua, Via Gradenigo 6/b, 35131 Padova, Italy
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Marta S. Laranjeira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
13
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
14
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
15
|
Chen Z, Zhang W, Wang M, Backman LJ, Chen J. Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomater Sci Eng 2022; 8:2321-2335. [PMID: 35638755 DOI: 10.1021/acsbiomaterials.2c00368] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-sized bone defects are a great challenge in clinics and considerably impair the quality of patients' daily life. Tissue engineering strategies using cells, scaffolds, and bioactive molecules to regulate the microenvironment in bone regeneration is a promising approach. Zinc, magnesium, and iron ions are natural elements in bone tissue and participate in many physiological processes of bone metabolism and therefore have great potential for bone tissue engineering and regeneration. In this review, we performed a systematic analysis on the effects of zinc, magnesium, and iron ions in bone tissue engineering. We focus on the role of these ions in properties of scaffolds (mechanical strength, degradation, osteogenesis, antibacterial properties, etc.). We hope that our summary of the current research achievements and our notifications of potential strategies to improve the effects of zinc, magnesium, and iron ions in scaffolds for bone repair and regeneration will find new inspiration and breakthroughs to inspire future research.
Collapse
Affiliation(s)
- Zhixuan Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87 Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
16
|
Tien Lam N, Minh Quan V, Boonrungsiman S, Sukyai P. Effectiveness of bio-dispersant in homogenizing hydroxyapatite for proliferation and differentiation of osteoblast. J Colloid Interface Sci 2022; 611:491-502. [PMID: 34973654 DOI: 10.1016/j.jcis.2021.12.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
Hydroxyapatite (HA), an inorganic compound, plays an essential role in the proliferation and differentiation of bone cells. Using cellulose nanocrystals (CNCs) as green dispersants to improve homogenization of HA is promising in the fabrication of nanocomposite scaffolds with biocompatibility for bone tissue engineering. The HA/CNC (HC) nanoparticle suspension was incorporated in polyvinyl alcohol (PVA)-based scaffold to investigate the physical and chemical properties. The PVA/HC composites demonstrated high porous structure and swelling ability for cell attachment and a 3-fold improvement in compressive modulus compared with free HC scaffold. Moreover, the presence of HC nanoparticles has promoted the proliferation and mineralization of pre-osteoblast. Our findings could provide an effective strategy by using bio-dispersants to incorporate mineral elements into synthetic polymers for the fabrication of functional tissue engineering scaffolds.
Collapse
Affiliation(s)
- Nga Tien Lam
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Vo Minh Quan
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Prakit Sukyai
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
17
|
Dasari A, Xue J, Deb S. Magnetic Nanoparticles in Bone Tissue Engineering. NANOMATERIALS 2022; 12:nano12050757. [PMID: 35269245 PMCID: PMC8911835 DOI: 10.3390/nano12050757] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022]
Abstract
Large bone defects with limited intrinsic regenerative potential represent a major surgical challenge and are associated with a high socio-economic burden and severe reduction in the quality of life. Tissue engineering approaches offer the possibility to induce new functional bone regeneration, with the biomimetic scaffold serving as a bridge to create a microenvironment that enables a regenerative niche at the site of damage. Magnetic nanoparticles have emerged as a potential tool in bone tissue engineering that leverages the inherent magnetism of magnetic nano particles in cellular microenvironments providing direction in enhancing the osteoinductive, osteoconductive and angiogenic properties in the design of scaffolds. There are conflicting opinions and reports on the role of MNPs on these scaffolds, such as the true role of magnetism, the application of external magnetic fields in combination with MNPs, remote delivery of biomechanical stimuli in-vivo and magnetically controlled cell retention or bioactive agent delivery in promoting osteogenesis and angiogenesis. In this review, we focus on the role of magnetic nanoparticles for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease. We highlight the materials-design pathway from implementation strategy through the selection of materials and fabrication methods to evaluation. We discuss the advances in this field and unmet needs, current challenges in the development of ideal materials for bone-tissue regeneration and emerging strategies in the field.
Collapse
Affiliation(s)
- Akshith Dasari
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE11UL, UK
| | - Jingyi Xue
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
| | - Sanjukta Deb
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Correspondence:
| |
Collapse
|
18
|
Joy A, Unnikrishnan G, Megha M, Haris M, Thomas J, Kolanthai E, Muthuswamy S. Polycaprolactone/Graphene Oxide–Silver Nanocomposite: A Multifunctional Agent for Biomedical Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02180-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Peluso V, Rinaldi L, Russo T, Oliviero O, Di Vito A, Garbi C, Giudice A, De Santis R, Gloria A, D’Antò V. Impact of Magnetic Stimulation on Periodontal Ligament Stem Cells. Int J Mol Sci 2021; 23:188. [PMID: 35008612 PMCID: PMC8745045 DOI: 10.3390/ijms23010188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to evaluate the effect of a time-dependent magnetic field on the biological performance of periodontal ligament stem cells (PDLSCs). A Western blot analysis and Alamar Blue assay were performed to investigate the proliferative capacity of magnetically stimulated PDLSCs (PDLSCs MAG) through the study of the MAPK cascade (p-ERK1/2). The observation of ALP levels allowed the evaluation of the effect of the magnetic field on osteogenic differentiation. Metabolomics data, such as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and ATP production provided an overview of the PDLSCs MAG metabolic state. Moreover, the mitochondrial state was investigated through confocal laser scanning microscopy. Results showed a good viability for PDLSCs MAG. Magnetic stimulation can activate the ERK phosphorylation more than the FGF factor alone by promoting a better cell proliferation. Osteogenic differentiation was more effectively induced by magnetic stimulation. The metabolic panel indicated significant changes in the mitochondrial cellular respiration of PDLSCs MAG. The results suggested that periodontal ligament stem cells (PDLSCs) can respond to biophysical stimuli such as a time-dependent magnetic field, which is able to induce changes in cell proliferation and differentiation. Moreover, the magnetic stimulation also produced an effect on the cell metabolic profile. Therefore, the current study demonstrated that a time-dependent magnetic stimulation may improve the regenerative properties of PDLSCs.
Collapse
Affiliation(s)
- Valentina Peluso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.P.); (O.O.); (C.G.)
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy;
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (R.D.S.); (A.G.)
| | - Olimpia Oliviero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.P.); (O.O.); (C.G.)
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Corrado Garbi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.P.); (O.O.); (C.G.)
| | - Amerigo Giudice
- Department of Health Sciences, School of Dentistry, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (R.D.S.); (A.G.)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (R.D.S.); (A.G.)
| | - Vincenzo D’Antò
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.P.); (O.O.); (C.G.)
| |
Collapse
|
20
|
Abstract
Tissue engineering or tissue reconstruction/repair/regeneration may be considered as a guiding strategy in oral and maxillofacial surgery, as well as in endodontics, orthodontics, periodontics, and daily clinical practice. A wide range of techniques has been developed over the past years, from tissue grafts to the more recent and innovative regenerative procedures. Continuous research in the field of natural and artificial materials and biomaterials, as well as in advanced scaffold design strategies has been carried out. The focus has also been on various growth factors involved in dental tissue repair or reconstruction. Benefiting from the recent literature, this review paper illustrates current innovative strategies and technological approaches in oral and maxillofacial tissue engineering, trying to offer some information regarding the available scientific data and practical applications. After introducing tissue engineering aspects, an overview on additive manufacturing technologies will be provided, with a focus on the applications of superparamagnetic iron oxide nanoparticles in the biomedical field. The potential applications of magnetic fields and magnetic devices on the acceleration of orthodontic tooth movement will be analysed.
Collapse
|
21
|
Lin S, Li J, Shao J, Zhang J, He X, Huang D, Dong L, Lin J, Weng W, Cheng K. Anisotropic magneto-mechanical stimulation on collagen coatings to accelerate osteogenesis. Colloids Surf B Biointerfaces 2021; 210:112227. [PMID: 34838419 DOI: 10.1016/j.colsurfb.2021.112227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 01/08/2023]
Abstract
Mechanical stimulation has been considered to be critical to cellular response and tissue regeneration. However, harnessing the direction of mechanical stimulation during osteogenesis still remains a challenge. In this study, we designed a series of novel magnetized collagen coatings (MCCs) (randomly or parallel-oriented collagen fibers) to exert the anisotropic mechanical stimulation using oriented magnetic actuation during osteogenesis. Strikingly, we found the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were significantly up-regulated when the direction of magnetic actuation was parallel to the randomly-oriented collagen coating surface, in contrast to the down-regulated capacity under the perpendicular magnetic actuation. Moreover, further exerting a parallel mechanical stimulation along the parallel-oriented collagen coating, which cells have been oriented by the oriented collagens, were not only able to up-regulate the osteogenic differentiation of BMSCs but also promote the new bone formation during osteogenesis in vivo. We also demonstrated the anisotropic magneto-mechanical stimulation for the osteogenic differences might be attributed to the stretching or bending tensile status of collagen fibers controlled by the direction of magnetic actuation, driving the α5β1-dependent integrin signaling cascade. This study therefore got insight of understanding the directional mechanical stimulation on osteogenesis, and also paved a way for sustaining regulation of the biomaterials-host interface.
Collapse
Affiliation(s)
- Suya Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Juan Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiaqi Shao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiamin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Lin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China; Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
22
|
Physical Gold Nanoparticle-Decorated Polyethylene Glycol-Hydroxyapatite Composites Guide Osteogenesis and Angiogenesis of Mesenchymal Stem Cells. Biomedicines 2021; 9:biomedicines9111632. [PMID: 34829861 PMCID: PMC8615876 DOI: 10.3390/biomedicines9111632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, polyethylene glycol (PEG) with hydroxyapatite (HA), with the incorporation of physical gold nanoparticles (AuNPs), was created and equipped through a surface coating technique in order to form PEG-HA-AuNP nanocomposites. The surface morphology and chemical composition were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and contact angle assessment. The effects of PEG-HA-AuNP nanocomposites on the biocompatibility and biological activity of MC3T3-E1 osteoblast cells, endothelial cells (EC), macrophages (RAW 264.7), and human mesenchymal stem cells (MSCs), as well as the guiding of osteogenic differentiation, were estimated through the use of an in vitro assay. Moreover, the anti-inflammatory, biocompatibility, and endothelialization capacities were further assessed through in vivo evaluation. The PEG-HA-AuNP nanocomposites showed superior biological properties and biocompatibility capacity for cell behavior in both MC3T3-E1 cells and MSCs. These biological events surrounding the cells could be associated with the activation of adhesion, proliferation, migration, and differentiation processes on the PEG-HA-AuNP nanocomposites. Indeed, the induction of the osteogenic differentiation of MSCs by PEG-HA-AuNP nanocomposites and enhanced mineralization activity were also evidenced in this study. Moreover, from the in vivo assay, we further found that PEG-HA-AuNP nanocomposites not only facilitate the anti-immune response, as well as reducing CD86 expression, but also facilitate the endothelialization ability, as well as promoting CD31 expression, when implanted into rats subcutaneously for a period of 1 month. The current research illustrates the potential of PEG-HA-AuNP nanocomposites when used in combination with MSCs for the regeneration of bone tissue, with their nanotopography being employed as an applicable surface modification approach for the fabrication of biomaterials.
Collapse
|
23
|
Gortsas TV, Tsinopoulos SV, Polyzos E, Pyl L, Fotiadis DI, Polyzos D. BEM evaluation of surface octahedral strains and internal strain gradients in 3D-printed scaffolds used for bone tissue regeneration. J Mech Behav Biomed Mater 2021; 125:104919. [PMID: 34740014 DOI: 10.1016/j.jmbbm.2021.104919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Most of the mechnoregulatory computational models appearing so far in tissue engineering for bone healing predictions, utilize as regulators for cell differentiation mainly the octahedral volume strains and the interstitial fluid velocity calculated at any point of the fractured bone area and controlled by empirical constants concerning these two parameters. Other stimuli like the electrical and chemical signaling of bone constituents are covered by those two regulatory fields. It is apparent that the application of the same mechnoregulatory computational models for bone healing predictions in scaffold-aided regeneration is questionable since the material of a scaffold disturbs the signaling pathways developed in the environment of bone fracture. Thus, the goal of the present work is to evaluate numerically two fields developed in the body of two different compressed scaffolds, which seem to be proper for facilitating cell sensing and improving cell viability and cell seeding efficiency. These two fields concern the surface octahedral strains that the cells attached to the scaffold can experience and the internal strain gradients that create electrical pathways due to flexoelectric phenomenon. Both fields are evaluated with the aid of the Boundary Element Method (BEM), which is ideal for evaluating with high accuracy surface strains and stresses as well as strain gradients appearing throughout the analyzed elastic domain.
Collapse
Affiliation(s)
- T V Gortsas
- Department of Mechanical Engineering and Aeronautics, University of Patras, Greece.
| | - S V Tsinopoulos
- Department of Mechanical Engineering, University of Peloponnese, Greece
| | - E Polyzos
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), BE-1050, Brussels, Belgium
| | - L Pyl
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), BE-1050, Brussels, Belgium
| | - D I Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, GR 451 10, Ioannina, Greece
| | - D Polyzos
- Department of Mechanical Engineering and Aeronautics, University of Patras, Greece
| |
Collapse
|
24
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Electro-conductive carbon nanofibers containing ferrous sulfate for bone tissue engineering. Life Sci 2021; 282:119602. [PMID: 34217765 DOI: 10.1016/j.lfs.2021.119602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
The application of electroactive scaffolds can be promising for bone tissue engineering applications. In the current paper, we aimed to fabricate an electro-conductive scaffold based on carbon nanofibers (CNFs) containing ferrous sulfate. FeSO4·7H2O salt with different concentrations 5, 10, and 15 wt%, were blended with polyacrylonitrile (PAN) polymer as the precursor and converted to Fe2O3/CNFs nanocomposite by electrospinning and heat treatment. The characterization was conducted using SEM, EDX, XRD, FTIR, and Raman methods. The results showed that the incorporation of Fe salt induces no adverse effect on the nanofibers' morphology. EDX analysis confirmed that the Fe ions are uniformly dispersed throughout the CNF mat. FTIR spectroscopy showed the interaction of Fe salt with PAN polymer. Raman spectroscopy showed that the incorporation of FeSO4·7H2O reduced the ID/IG ratio, indicating more ordered carbon in the synthesized nanocomposite. Electrical resistance measurement depicted that, although the incorporation of ferrous sulfate reduced the electrical conductivity, the conductive is suitable for electrical stimulation. The in vitro studies revealed that the prepared nanocomposites were cytocompatible and only negligible toxicity (less than 10%) induced by CNFs/Fe2O3 fabricated from PAN FeSO4·7H2O 15%. Although various nanofibrous composite fabricated with Fe NPs have been evaluated for tissue engineering applications, CNFs exhibited promising properties, such as excellent mechanical strength, biocompatibility, and electrical conductivity. These results showed that the fabricated nanocomposites could be applied as the bone tissue engineering scaffold.
Collapse
|
26
|
Zhao YZ, Chen R, Xue PP, Luo LZ, Zhong B, Tong MQ, Chen B, Yao Q, Yuan JD, Xu HL. Magnetic PLGA microspheres loaded with SPIONs promoted the reconstruction of bone defects through regulating the bone mesenchymal stem cells under an external magnetic field. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111877. [PMID: 33641893 DOI: 10.1016/j.msec.2021.111877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been presented to regulate the migration and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under magnetic field (MF). However, the toxicity and short residence for the massively exposed SPIONs at bone defects compromises their practical application. Herein, SPIONs were encapsulated into PLGA microspheres to overcome these shortcomings. Three types of PLGA microspheres (PFe-I, PFe-II and PFe-III) were prepared by adjusting the feeding amount of SPIONs, in which the practical SPIONs loading amounts was 1.83%, 1.38% and 1.16%, respectively. The average diameter of the fabricated microspheres ranged from 160 μm to 200 μm, having the porous and rough surfaces displayed by SEM. Moreover, they displayed the magnetic property with a saturation magnetization of 0.16 emu/g. In vitro cell studies showed that most of BMSCs were adhered on the surface of PFe-II microspheres after 2 days of co-culture. Moreover, the osteoblasts differentiation of BMSCs was significantly promoted by PFe-II microspheres after 2 weeks of co-culture, as shown by detecting osteogenesis-related proteins expressions of ALP, COLI, OPN and OCN. Afterward, PFe-II microspheres were surgically implanted into the defect zone of rat femoral bone, followed by exposure to an external MF, to evaluate their bone repairing effect in vivo. At 6th week after treatment with PFe-II + MF, the bone mineral density (BMD, 263.97 ± 25.99 mg/cm3), trabecular thickness (TB.TH, 0.58 ± 0.08 mm), and bone tissue volume/total tissue volume (BV/TV, 78.28 ± 5.01%) at the defect zone were markedly higher than that of the PFe-II microspheres alone (BMD, 194.34 ± 26.71 mg/cm3; TB.TH, 0.41 ± 0.07 mm; BV/TV, 50.49 ± 6.41%). Moreover, the higher expressions of ALP, COLI, OPN and OCN in PFe-II + MF group were displayed in the repairing bone. Collectively, magnetic PLGA microspheres together with MF may be a promising strategy for repairing bone defects.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Rui Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Peng-Peng Xue
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Lan-Zi Luo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Bin Zhong
- Department of Pharmacy, the First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Meng-Qi Tong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Bin Chen
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Qing Yao
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Jian-Dong Yuan
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - He-Lin Xu
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
27
|
Campos F, Bonhome-Espinosa AB, Carmona R, Durán JDG, Kuzhir P, Alaminos M, López-López MT, Rodriguez IA, Carriel V. In vivo time-course biocompatibility assessment of biomagnetic nanoparticles-based biomaterials for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111476. [PMID: 33255055 DOI: 10.1016/j.msec.2020.111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023]
Abstract
Novel artificial tissues with potential usefulness in local-based therapies have been generated by tissue engineering using magnetic-responsive nanoparticles (MNPs). In this study, we performed a comprehensive in vivo characterization of bioengineered magnetic fibrin-agarose tissue-like biomaterials. First, in vitro analyses were performed and the cytocompatibility of MNPs was demonstrated. Then, bioartificial tissues were generated and subcutaneously implanted in Wistar rats and their biodistribution, biocompatibility and functionality were analysed at the morphological, histological, haematological and biochemical levels as compared to injected MNPs. Magnetic Resonance Image (MRI), histology and magnetometry confirmed the presence of MNPs restricted to the grafting area after 12 weeks. Histologically, we found a local initial inflammatory response that decreased with time. Structural, ultrastructural, haematological and biochemical analyses of vital organs showed absence of damage or failure. This study demonstrated that the novel magnetic tissue-like biomaterials with improved biomechanical properties fulfil the biosafety and biocompatibility requirements for future clinical use and support the use of these biomaterials as an alternative delivery route for magnetic nanoparticles.
Collapse
Affiliation(s)
- Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ana B Bonhome-Espinosa
- Department of Applied Physics, University of Granada, Avenida de la Fuente Nueva, 18071 Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, Granada, Spain
| | - Juan D G Durán
- Department of Applied Physics, University of Granada, Avenida de la Fuente Nueva, 18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Pavel Kuzhir
- Université Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice, Parc Valrose, 06108 Nice, France
| | - Miguel Alaminos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Modesto T López-López
- Department of Applied Physics, University of Granada, Avenida de la Fuente Nueva, 18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Ismael A Rodriguez
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Department of Histology, Faculty of Dentistry, Nacional University of Cordoba, Cordoba, Argentina.
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
28
|
Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, Jafari A, Radinekiyan F, Hashemi SM, Ahmadpour F, Behboudi A, Mosafer J, Mokhtarzadeh A, Maleki A, Hamblin MR. Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1687-1714. [PMID: 32914573 DOI: 10.1002/term.3131] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue is vital to the organization of multicellular organisms, because it creates the different organs and provides the main scaffold for body shape. The quest for effective methods to allow tissue regeneration and create scaffolds for new tissue growth has intensified in recent years. Tissue engineering has recently used some promising alternatives to existing conventional scaffold materials, many of which have been derived from nanotechnology. One important example of these is metal nanoparticles. The purpose of this review is to cover novel tissue engineering methods, paying special attention to those based on the use of metal-based nanoparticles. The unique physiochemical properties of metal nanoparticles, such as antibacterial effects, shape memory phenomenon, low cytotoxicity, stimulation of the proliferation process, good mechanical and tensile strength, acceptable biocompatibility, significant osteogenic potential, and ability to regulate cell growth pathways, suggest that they can perform as novel types of scaffolds for bone tissue engineering. The basic principles of various nanoparticle-based composites and scaffolds are discussed in this review. The merits and demerits of these particles are critically discussed, and their importance in bone tissue engineering is highlighted.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Farnoush Ahmadpour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Behboudi
- Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Fernandes Patrício TM, Mumcuoglu D, Montesi M, Panseri S, Witte-Bouma J, Garcia SF, Sandri M, Tampieri A, Farrell E, Sprio S. Bio-inspired polymeric iron-doped hydroxyapatite microspheres as a tunable carrier of rhBMP-2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111410. [PMID: 33321577 DOI: 10.1016/j.msec.2020.111410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022]
Abstract
Hybrid superparamagnetic microspheres with bone-like composition, previously developed by a bio-inspired assembling/mineralization process, are evaluated for their ability to uptake and deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) in therapeutically-relevant doses along with prolonged release profiles. The comparison with hybrid non-magnetic and with non-mineralized microspheres highlights the role of nanocrystalline, nanosize mineral phases when they exhibit surface charged groups enabling the chemical linking with the growth factor and thus moderating the release kinetics. All the microspheres show excellent osteogenic ability with human mesenchymal stem cells whereas the hybrid mineralized ones show a slow and sustained release of rhBMP-2 along 14 days of soaking into cell culture medium with substantially bioactive effect, as reported by assay with C2C12 BRE-Luc cell line. It is also shown that the release extent can be modulated by the application of pulsed electromagnetic field, thus showing the potential of remote controlling the bioactivity of the new micro-devices which is promising for future application of hybrid biomimetic microspheres in precisely designed and personalized therapies.
Collapse
Affiliation(s)
| | - Didem Mumcuoglu
- Fujifilm Manufacturing Europe B.V., Tilburg, the Netherlands; Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Shorouk Fahmy Garcia
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy.
| |
Collapse
|
30
|
Safiaghdam H, Nokhbatolfoghahaei H, Khojasteh A. Therapeutic Metallic Ions in Bone Tissue Engineering: A Systematic Review of The Literature. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:101-118. [PMID: 32802092 PMCID: PMC7393040 DOI: 10.22037/ijpr.2020.112641.13894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An important field of bone tissue engineering (BTE) concerns the design and fabrication of smart scaffolds capable of inducing cellular interactions and differentiation of osteo-progenitor cells. One of these additives that has gained growing attention is metallic ions as therapeutic agents (MITAs). The specific biological advantage that these ions bring to scaffolds as well as other potential mechanical, and antimicrobial enhancements may vary depending on the ion entity, fabrication method, and biomaterials used. Therefore, this article provides an overview on current status of In-vivo application of MITAs in BTE and the remaining challenges in the field. Electronic databases, including PubMed, Scopus, Science direct and Cochrane library were searched for studies on MITAs treatments for BTE. We searched for articles in English from January-2000 to October-2019. Abstracts, letters, conference papers and reviews, In-vitro studies, studies on alloys and studies investigating effects other than enhancement of new bone formation (NBF) were excluded. A detailed summary of relevant metallic ions with specific scaffold material and design, cell type, animal model and defect type, the implantation period, measured parameters and obtained qualitative and quantitative results is presented. No ideal material or fabrication method suited to deliver MITAs can yet be agreed upon, but an investigation into various systems and their drawbacks or potential advantages can lead the future research. A tendency to enhance NBF with MITAs can be observed in the studies. However, this needs to be validated with further studies comparing various ions with each other in the same animal model using critical-sized defects.
Collapse
Affiliation(s)
- Hannaneh Safiaghdam
- Student Research Committee, Dental school, Shahid Beheshti university of medical sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Nie L, Hou M, Wang T, Sun M, Hou R. Nanostructured selenium-doped biphasic calcium phosphate with in situ incorporation of silver for antibacterial applications. Sci Rep 2020; 10:13738. [PMID: 32792661 PMCID: PMC7427101 DOI: 10.1038/s41598-020-70776-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
Selenium-doped nanostructure has been considered as an attractive approach to enhance the antibacterial activity of calcium phosphate (CaP) materials in diverse medical applications. In this study, the selenium-doped biphasic calcium phosphate nanoparticles (SeB-NPs) were first synthesized. Then, silver was in situ incorporated into SeB-NPs to obtain nanostructured composite nanoparticles (AgSeB-NPs). Both SeB-NPs and AgSeB-NPs were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS), and Raman spectra. The results confirmed that the SeO32- was doped at the PO43- position and silver nanoparticles were deposited on the surface of SeB-NPs. Next, Transmission Electron Microscopy (TEM) analysis displayed that the prepared AgSeB-NPs had a needle-cluster-like morphology. CCK-8 analysis revealed SeB-NPs and AgSeB-NPs had good cytocompatibility with osteoblasts. The antibacterial activity of the prepared AgSeB-NPs was confirmed by using Gram-negative E. coli and Gram-positive S. aureus. The above results manifested the significance of the final AgSeB-NPs for biomedical applications.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, People's Republic of China.
- Department of Mechanical Engineering, Member of Flanders Make, KU Leuven (Catholic University of Leuven), 3001, Leuven, Belgium.
| | - Mengjuan Hou
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, People's Republic of China
| | - Tianwen Wang
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, People's Republic of China
| | - Meng Sun
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, People's Republic of China
| | - Ruixia Hou
- Medical School of Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
32
|
Combination Design of Time-Dependent Magnetic Field and Magnetic Nanocomposites to Guide Cell Behavior. NANOMATERIALS 2020; 10:nano10030577. [PMID: 32235724 PMCID: PMC7153399 DOI: 10.3390/nano10030577] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
The concept of magnetic guidance is still challenging and has opened a wide range of perspectives in the field of tissue engineering. In this context, magnetic nanocomposites consisting of a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) nanoparticles were designed and manufactured for bone tissue engineering. The mechanical properties of PCL/Fe3O4 (80/20 w/w) nanocomposites were first assessed through small punch tests. The inclusion of Fe3O4 nanoparticles improved the punching properties as the values of peak load were higher than those obtained for the neat PCL without significantly affecting the work to failure. The effect of a time-dependent magnetic field on the adhesion, proliferation, and differentiation of human mesenchymal stem cells (hMSCs) was analyzed. The Alamar Blue assay, confocal laser scanning microscopy, and image analysis (i.e., shape factor) provided information on cell adhesion and viability over time, whereas the normalized alkaline phosphatase activity (ALP/DNA) demonstrated that the combination of a time-dependent field with magnetic nanocomposites (PCL/Fe3O4 Mag) influenced cell differentiation. Furthermore, in terms of extracellular signal-regulated kinase (ERK)1/2 phosphorylation, an insight into the role of the magnetic stimulation was reported, also demonstrating a strong effect due the combination of the magnetic field with PCL/Fe3O4 nanocomposites (PCL/Fe3O4 Mag).
Collapse
|
33
|
Iga C, Paweł S, Marcin Ł, Justyna KL. Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition. Polymers (Basel) 2020; 12:polym12020410. [PMID: 32054055 PMCID: PMC7077717 DOI: 10.3390/polym12020410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/08/2023] Open
Abstract
The skeleton is a crucial element of the motion system in the human body, whose main function is to support and protect the soft tissues. Furthermore, the elements of the skeleton act as a storage place for minerals and participate in the production of red blood cells. The bone tissue includes the craniomaxillofacial bones, ribs, and spine. There are abundant reports in the literature indicating that the amount of treatments related to bone fractures increases year by year. Nowadays, the regeneration of the bone tissue is performed by using autografts or allografts, but this treatment method possesses a few disadvantages. Therefore, new and promising methods of bone tissue regeneration are constantly being sought. They often include the implantation of tissue scaffolds, which exhibit proper mechanical and osteoconductive properties. In this paper, the preparation of polyurethane (PUR) scaffolds modified by gelatin as the reinforcing factor and hydroxyapatite as the bioactive agent was described. The unmodified and modified scaffolds were tested for their mechanical properties; morphological assessments using optical microscopy were also conducted, as was the ability for calcification using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Moreover, each type of scaffold was subjected to a degradation process in 5M NaOH and 2M HCl aqueous solutions. It was noticed that the best properties promoting the calcium phosphate deposition were obtained for scaffolds modified with 2% gelatin solution containing 5% of hydroxyapatite.
Collapse
Affiliation(s)
- Carayon Iga
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), Narutowicza Street 11/12, 80233 Gdansk, Poland; (C.I.); (S.P.)
| | - Szarlej Paweł
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), Narutowicza Street 11/12, 80233 Gdansk, Poland; (C.I.); (S.P.)
| | - Łapiński Marcin
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology (GUT), Narutowicza Street 11/12, 80233 Gdansk, Poland;
| | - Kucińska-Lipka Justyna
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), Narutowicza Street 11/12, 80233 Gdansk, Poland; (C.I.); (S.P.)
- Correspondence:
| |
Collapse
|
34
|
Goranov V, Shelyakova T, De Santis R, Haranava Y, Makhaniok A, Gloria A, Tampieri A, Russo A, Kon E, Marcacci M, Ambrosio L, Dediu VA. 3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering. Sci Rep 2020; 10:2289. [PMID: 32041994 PMCID: PMC7010825 DOI: 10.1038/s41598-020-58738-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/18/2019] [Indexed: 12/03/2022] Open
Abstract
A three dimensional magnetic patterning of two cell types was realised in vitro inside an additive manufactured magnetic scaffold, as a conceptual precursor for the vascularised tissue. The realisation of separate arrangements of vascular and osteoprogenitor cells, labelled with biocompatible magnetic nanoparticles, was established on the opposite sides of the scaffold fibres under the effect of non-homogeneous magnetic gradients and loading magnetic configuration. The magnetisation of the scaffold amplified the guiding effects by an additional trapping of cells due to short range magnetic forces. The mathematical modelling confirmed the strong enhancement of the magnetic gradients and their particular geometrical distribution near the fibres, defining the preferential cell positioning on the micro-scale. The manipulation of cells inside suitably designed magnetic scaffolds represents a unique solution for the assembling of cellular constructs organised in biologically adequate arrangements.
Collapse
Affiliation(s)
- V Goranov
- Institute for Nanostructured Materials, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy.
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic.
| | - T Shelyakova
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - R De Santis
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - Y Haranava
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic
| | - A Makhaniok
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic
| | - A Gloria
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - A Tampieri
- Institute of Science and Technology for Ceramics, CNR-ISTEC, Via Granarolo 64, 48018, Faenza, Italy
| | - A Russo
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - E Kon
- Humanitas University Department of Biomedical Sciences, Via Manzoni 113, 20089 Rozzano, Milano, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano - Milan, Italy
- First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - M Marcacci
- Humanitas University Department of Biomedical Sciences, Via Manzoni 113, 20089 Rozzano, Milano, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano - Milan, Italy
| | - L Ambrosio
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - V A Dediu
- Institute for Nanostructured Materials, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
35
|
Li S, Wei C, Lv Y. Preparation and Application of Magnetic Responsive Materials in Bone Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:428-440. [PMID: 31893995 DOI: 10.2174/1574888x15666200101122505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/01/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022]
Abstract
At present, many kinds of materials are used for bone tissue engineering, such as polymer materials, metals, etc., which in general have good biocompatibility and mechanical properties. However, these materials cannot be controlled artificially after implantation, which may result in poor repair performance. The appearance of the magnetic response material enables the scaffolds to have the corresponding ability to the external magnetic field. Within the magnetic field, the magnetic response material can achieve the targeted release of the drug, improve the performance of the scaffold, and further have a positive impact on bone formation. This paper first reviewed the preparation methods of magnetic responsive materials such as magnetic nanoparticles, magnetic polymers, magnetic bioceramic materials and magnetic alloys in recent years, and then introduced its main applications in the field of bone tissue engineering, including promoting osteogenic differentiation, targets release, bioimaging, cell patterning, etc. Finally, the mechanism of magnetic response materials to promote bone regeneration was introduced. The combination of magnetic field treatment methods will bring significant progress to regenerative medicine and help to improve the treatment of bone defects and promote bone tissue repair.
Collapse
Affiliation(s)
- Song Li
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, China
| | - Changling Wei
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
36
|
Khan S, Kumar V, Roy P, Kundu PP. TiO 2 doped chitosan/hydroxyapatite/halloysite nanotube membranes with enhanced mechanical properties and osteoblast-like cell response for application in bone tissue engineering. RSC Adv 2019; 9:39768-39779. [PMID: 35541414 PMCID: PMC9076061 DOI: 10.1039/c9ra08366a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
The current therapeutic strategies for healing bone defects commonly suffer from the occurrence of bacterial contamination on the graft, resulting in nonunion in the segmental bone defects and the requirement for secondary surgery to remove or sterilize the primary graft. A membrane with enhanced anti-bacterial efficacy, mechanical strength and osteoconductivity would represent an improvement in the therapeutic strategy for guided bone regeneration. The present study aims to optimize the content of halloysite nanotubes (HNTs) and TiO2 in the polymer matrix of chitosan (CTS) with a constant amount of nano-hydroxyapatite (5%) with the objective of mimicking the mechanical and biological microenvironment of the natural bone extracellular matrix with enhanced anti-bacterial efficacy. HNTs are a low-cost alternative to MWNCTs for enhancing the mechanical properties and anti-bacterial efficacy of the composite. From the first stage of the study, it was concluded that the membranes possessed enhanced mechanical properties and optimum biological properties at 7.5% (w/w) loading of HNTs in the composite. In the second stage of this investigation, we studied the effect of the addition of TiO2 nanoparticles (NPs) and TiO2 nanotubes (NTs) in small amounts to the CTS/n-HAP/HNT nanocomposite at 7.5% HNT loading, with an aim to augment the anti-bacterial efficacy and osteoconductivity of this mechanically strong membrane. The study revealed a significant enhancement in the anti-bacterial efficacy, osteoblast-like MG-63 cell proliferation and ALP expression with the addition of TiO2 NTs. The CHH-TiT membrane successfully inhibited the S. aureus and E. coli growth within 16 hours and simultaneously assisted the enhanced proliferation of osteoblast-like cells on its surface. The study supports the potential exploitation of CHH-TiT (7.5% HNT & 0.2% TiO2 NT) membranes as a template for guided bone tissue regeneration. This two-stage study aims to optimize the amount of halloysite nanotubes and TiO2 in a chitosan/nano-hydroxyapatite composite to tailor the mechanical and biological properties for application in bone tissue engineering.![]()
Collapse
Affiliation(s)
- Sarim Khan
- Department of Chemical Engineering, Indian Institute of Technology Roorkee 247667 India .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge USA
| | - Viney Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee 247667 India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee 247667 India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology Roorkee 247667 India
| |
Collapse
|
37
|
Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials 2019; 223:119468. [DOI: 10.1016/j.biomaterials.2019.119468] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/20/2019] [Accepted: 09/01/2019] [Indexed: 11/18/2022]
|
38
|
Zheng P, Hu X, Lou Y, Tang K. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes. Med Sci Monit 2019; 25:7361-7369. [PMID: 31570688 PMCID: PMC6784681 DOI: 10.12659/msm.915441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/01/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to investigate a rabbit model of osteochondral regeneration using three-dimensional (3-D) printed polycaprolactone-hydroxyapatite (PCL-HA) scaffolds coated with umbilical cord blood mesenchymal stem cells (UCB-MSCs) and chondrocytes. MATERIAL AND METHODS Nine female New Zealand white rabbits were included in the study. The 3-D PCL-HA scaffolds were prepared using fused deposition modeling 3-D printing technology. Seeding cells were prepared by co-culture of rabbit UCB-MSCs and chondrocytes with a ratio of 3: 1. A total of 4×10⁶ cells were seeded on 3-D PCL-HA scaffolds and implanted into rabbits with femoral trochlear defects. After 8 weeks of in vivo implantation, 12 specimens were sampled and examined using histology and scanning electron microscopy (SEM). The International Cartilage Repair Society (ICRS) macroscopic scores and histological results were recorded and compared with those of the unseeded PCL-HA scaffolds. RESULTS Mean ICRS scores for the UCB-MSCs and chondrocyte-seeded PCL-HA scaffolds (group A) were significantly higher than the normal unseeded control (NC) PCL-HA scaffold group (group B) (P<0.05). Histology with safranin-O and fast-green staining showed that the UCB chondrocyte-seeded PCL-HA scaffolds significantly promoted bone and cartilage regeneration. CONCLUSIONS In a rabbit model of osteochondral regeneration using 3-D printed PCL-HA scaffolds, the UCB chondrocyte-seeded PCL-HA scaffold promoted articular cartilage repair when compared with the control or non-seeded PCL-HA scaffolds.
Collapse
|
39
|
Paun IA, Calin BS, Mustaciosu CC, Mihailescu M, Moldovan A, Crisan O, Leca A, Luculescu CR. 3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation. MATERIALS 2019; 12:ma12172834. [PMID: 31484381 PMCID: PMC6747966 DOI: 10.3390/ma12172834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.9 ± 1.5 nm and saturation magnetization of 30 emu/g were added to Ormocore, in concentrations of 0, 2 and 4 mg/mL. The homogenous distribution and the concentration of the MNPs from the unpolymerized Ormocore/MNPs composite were preserved after the photopolymerization process. The MNPs in the scaffolds retained their superparamagnetic behavior. The specific magnetizations of the scaffolds with 2 and 4 mg/mL MNPs concentrations were of 14 emu/g and 17 emu/g, respectively. The MNPs reduced the shrinkage of the structures from 80.2 ± 5.3% for scaffolds without MNPs to 20.7 ± 4.7% for scaffolds with 4 mg/mL MNPs. Osteoblast cells seeded on scaffolds exposed to static magnetic field of 1.3 T deformed the regular architecture of the scaffolds and evoked faster mineralization in comparison to unstimulated samples. Scaffolds deformation and extracellular matrix mineralization under static magnetic field (SMF) exposure increased with increasing MNPs concentration. The results are discussed in the frame of gradient magnetic fields of ~3 × 10−4 T/m generated by MNPs over the cells bodies.
Collapse
Affiliation(s)
- Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania.
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania.
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Cosmin Catalin Mustaciosu
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, RO-077125 Magurele-Ilfov, Romania
| | - Mona Mihailescu
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Antoniu Moldovan
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
| | - Ovidiu Crisan
- National Institute of Materials Physics, RO-077125 Magurele-Ilfov, Romania
| | - Aurel Leca
- National Institute of Materials Physics, RO-077125 Magurele-Ilfov, Romania
| | - Catalin Romeo Luculescu
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
| |
Collapse
|
40
|
Pang S, Sun M, Huang Z, He Y, Luo X, Guo Z, Li H. Bioadaptive nanorod array topography of hydroxyapatite and TiO 2 on Ti substrate to preosteoblast cell behaviors. J Biomed Mater Res A 2019; 107:2272-2281. [PMID: 31148352 DOI: 10.1002/jbm.a.36735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/12/2022]
Abstract
Bioadaptive nanostructure coatings of hydroxyapatite (HAP) and TiO2 on titanium (Ti) implants are essential for biomaterial-tissue osteointegration. However, there is no specific report, so far, that focuses on the different influences of the two bioadaptive coatings on preosteoblast behaviors. Herein, adhesion, proliferation, and osteogenic potential of preosteoblast on HAP and TiO2 coatings with nanorod array topography were studied. XRD, TEM, and SAED analysis indicated that rod-like HAP nanoarray and anatase TiO2 nanoarray coatings were fabricated successfully, and there was insignificant difference in roughness and fibronectin adsorption of the two coatings. Adhesion and proliferation of MC3T3-E1 cells on the two coatings were of no significant difference, besides a larger projected area of the cells on HAP coating. MC3T3-E1 cells cultured on the HAP coating displayed significantly higher expression of runt-related transcription factor-2 (Runx2), osteocalcin (OCN) and collagen type-1 (Col I) after culture for 21 days compared with those on TiO2 coating, except alkaline phosphatase (ALP). This study provides beneficial suggestion for intelligent selection of biocoatings.
Collapse
Affiliation(s)
- Shumin Pang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Manman Sun
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Zhiqiang Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Yuan He
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Xueshi Luo
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Zhenzhao Guo
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,The first affiliated hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
41
|
Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA. Med Eng Phys 2019; 69:92-99. [PMID: 31101484 DOI: 10.1016/j.medengphy.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/11/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
In order to increase manufacturing and experimental efficiency, a certain degree of control over design performances before realization phase is recommended. In this context, this paper presents an integrated procedure to design 3D scaffolds for bone tissue engineering. The procedure required a combination of Computer Aided Design (CAD), Finite Element Analysis (FEA), and Design methodologies Of Experiments (DOE), firstly to understand the influence of the design parameters, and then to control them. Based on inputs from the literature and limitations imposed by the chosen manufacturing process (Precision Extrusion Deposition), 36 scaffold architectures have been drawn. The porosity of each scaffold has been calculated with CAD. Thereafter, a generic scaffold material was considered and its variable parameters were combined with the geometrical ones according to the Taguchi method, i.e. a DOE method. The compressive response of those principal combinations was simulated by FEA, and the influence of each design parameter on the scaffold compressive behaviour was clarified. Finally, a regression model was obtained correlating the scaffold's mechanical performances to its geometrical and material parameters. This model has been applied to a novel composite material made of polycaprolactone and innovative bioactive glass. By setting specific porosity (50%) and stiffness (0.05 GPa) suitable for trabecular bone substitutes, the model selected 4 of the 36 initial scaffold architectures. Only these 4 more promising geometries will be realized and physically tested for advanced indications on compressive strength and biocompatibility.
Collapse
|
42
|
Scialla S, Barca A, Palazzo B, D'Amora U, Russo T, Gloria A, De Santis R, Verri T, Sannino A, Ambrosio L, Gervaso F. Bioactive chitosan‐based scaffolds with improved properties induced by dextran‐grafted nano‐maghemite and
l
‐arginine amino acid. J Biomed Mater Res A 2019; 107:1244-1252. [DOI: 10.1002/jbm.a.36633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Stefania Scialla
- Department of Engineering for InnovationUniversity of Salento Lecce Italy
| | - Amilcare Barca
- General Physiology Laboratories, Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Barbara Palazzo
- Department of Engineering for InnovationUniversity of Salento Lecce Italy
- Ghimas S.p.A., c/o Dhitech Scarl, Campus Ecotekne Lecce Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and BiomaterialsNational Research Council Naples Italy
| | - Teresa Russo
- Institute of Polymers, Composites and BiomaterialsNational Research Council Naples Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and BiomaterialsNational Research Council Naples Italy
| | - Roberto De Santis
- Institute of Polymers, Composites and BiomaterialsNational Research Council Naples Italy
| | - Tiziano Verri
- General Physiology Laboratories, Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce Italy
| | - Alessandro Sannino
- Department of Engineering for InnovationUniversity of Salento Lecce Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and BiomaterialsNational Research Council Naples Italy
| | - Francesca Gervaso
- Department of Engineering for InnovationUniversity of Salento Lecce Italy
| |
Collapse
|
43
|
Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 2019; 84:16-33. [PMID: 30481607 DOI: 10.1016/j.actbio.2018.11.039] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/06/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022]
Abstract
Critical-sized bone defect repair remains a substantial challenge in clinical settings and requires bone grafts or bone substitute materials. However, existing biomaterials often do not meet the clinical requirements of structural support, osteoinductive property, and controllable biodegradability. To treat large-scale bone defects, the development of three-dimensional (3D) porous scaffolds has received considerable focus within bone engineering. A variety of biomaterials and manufacturing methods, including 3D printing, have emerged to fabricate patient-specific bioactive scaffolds that possess controlled micro-architectures for bridging bone defects in complex configurations. During the last decade, with the development of the 3D printing industry, a large number of tissue-engineered scaffolds have been created for preclinical and clinical applications using novel materials and innovative technologies. Thus, this review provides a brief overview of current progress in existing biomaterials and tissue engineering scaffolds prepared by 3D printing technologies, with an emphasis on the material selection, scaffold design optimization, and their preclinical and clinical applications in the repair of critical-sized bone defects. Furthermore, it will elaborate on the current limitations and potential future prospects of 3D printing technology. STATEMENT OF SIGNIFICANCE: 3D printing has emerged as a critical fabrication process for bone engineering due to its ability to control bulk geometry and internal structure of tissue scaffolds. The advancement of bioprinting methods and compatible ink materials for bone engineering have been a major focus to develop optimal 3D scaffolds for bone defect repair. Achieving a successful balance of cellular function, cellular viability, and mechanical integrity under load-bearing conditions is critical. Hybridization of natural and synthetic polymer-based materials is a promising approach to create novel tissue engineered scaffolds that combines the advantages of both materials and meets various requirements, including biological activity, mechanical strength, easy fabrication and controllable degradation. 3D printing is linked to the future of bone grafts to create on-demand patient-specific scaffolds.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China
| | - Guojing Yang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183:151-170. [PMID: 30170257 DOI: 10.1016/j.biomaterials.2018.08.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Novel strategies utilizing magnetic nanoparticles (MNPs) and magnetic fields are being developed to enhance bone tissue engineering efficacy. This article first reviewed cutting-edge research on the osteogenic enhancements via magnetic fields and MNPs. Then the current developments in magnetic strategies to improve the cells, scaffolds and growth factor deliveries were described. The magnetic-cell strategies included cell labeling, targeting, patterning, and gene modifications. MNPs were incorporated to fabricate magnetic composite scaffolds, as well as to construct delivery systems for growth factors, drugs and gene transfections. The novel methods using magnetic nanoparticles and scaffolds with magnetic fields and stem cells increased the osteogenic differentiation, angiogenesis and bone regeneration by 2-3 folds over those of the controls. The mechanisms of magnetic nanoparticles and scaffolds with magnetic fields and stem cells to enhance bone regeneration were identified as involving the activation of signaling pathways including MAPK, integrin, BMP and NF-κB. Potential clinical applications of magnetic nanoparticles and scaffolds with magnetic fields and stem cells include dental, craniofacial and orthopedic treatments with substantially increased bone repair and regeneration efficacy.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liang Zhao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
45
|
Aliabouzar M, Zhang GL, Sarkar K. Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications. Biomed Mater 2018; 13:055013. [DOI: 10.1088/1748-605x/aad417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Zhang B, Zhang PB, Wang ZL, Lyu ZW, Wu H. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. J Zhejiang Univ Sci B 2018; 18:963-976. [PMID: 29119734 DOI: 10.1631/jzus.b1600412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A new therapeutic strategy using nanocomposite scaffolds of grafted hydroxyapatite (g-HA)/ poly(lactide-co-glycolide) (PLGA) carried with autologous mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) was assessed for the therapy of critical bone defects. At the same time, tissue response and in vivo mineralization of tissue-engineered implants were investigated. METHODS A composite scaffold of PLGA and g-HA was fabricated by the solvent casting and particulate-leaching method. The tissue-engineered implants were prepared by seeding the scaffolds with autologous bone marrow MSCs in vitro. Then, mineralization and osteogenesis were observed by intramuscular implantation, as well as the repair of the critical radius defects in rabbits. RESULTS After eight weeks post-surgery, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that g-HA/PLGA had a better interface of tissue response and higher mineralization than PLGA. Apatite particles were formed and varied both in macropores and micropores of g-HA/PLGA. Computer radiographs and histological analysis revealed that there were more and more quickly formed new bone formations and better fusion in the bone defect areas of g-HA/PLGA at 2-8 weeks post-surgery. Typical bone synostosis between the implant and bone tissue was found in g-HA/PLGA, while only fibrous tissues formed in PLGA. CONCLUSIONS The incorporation of g-HA mainly improved mineralization and bone formation compared with PLGA. The application of MSCs can enhance bone formation and mineralization in PLGA scaffolds compared with cell-free scaffolds. Furthermore, it can accelerate the absorption of scaffolds compared with composite scaffolds.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun 130041, China
| | - Pei-Biao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zong-Liang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhong-Wen Lyu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Han Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
47
|
Hafidh A, Touati F, Hamzaoui AH. Synthesis of new silica xerogels based on bi-functional 1,3,4-thiadiazole and 1,2,4-triazole adducts. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1499742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Afifa Hafidh
- Department of Chemistry, Materials and Environment Laboratory, University of Tunis, Preparatory Institute for Engineering Studies of Tunis, Tunis, Tunisia
| | - Fathi Touati
- Laboratory of Materials Treatment and Analysis, National Institute for Physico-Chemical Research and Analysis, Tunis, Tunisia
| | - Ahmed Hichem Hamzaoui
- Useful Material Valorization Laboratory, National Center for Research in Materials Sciences, CNRSM, Soliman, Tunisia
| |
Collapse
|
48
|
Yang F, Lu J, Ke Q, Peng X, Guo Y, Xie X. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma. Sci Rep 2018; 8:7345. [PMID: 29743489 PMCID: PMC5943301 DOI: 10.1038/s41598-018-25595-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
The development of multifunctional biomaterials to repair bone defects after neoplasm removal and inhibit tumor recurrence remained huge clinical challenges. Here, we demonstrate a kind of innovative and multifunctional magnetic mesoporous calcium sillicate/chitosan (MCSC) porous scaffolds, made of M-type ferrite particles (SrFe12O19), mesoporous calcium silicate (CaSiO3) and chitosan (CS), which exert robust anti-tumor and bone regeneration properties. The mesopores in the CaSiO3 microspheres contributed to the drug delivery property, and the SrFe12O19 particles improved photothermal therapy (PTT) conversion efficacy. With the irradiation of NIR laser, doxorubicin (DOX) was rapidly released from the MCSC/DOX scaffolds. In vitro and in vivo tests demonstrated that the MCSC scaffolds possessed the excellent anti-tumor efficacy via the synergetic effect of DOX drug release and hyperthermia ablation. Moreover, BMP-2/Smad/Runx2 pathway was involved in the MCSC scaffolds promoted proliferation and osteogenic differentiation of human bone marrow stromal cells (hBMSCs). Taken together, the MCSC scaffolds have the ability to promote osteogenesis and enhance synergetic photothermal-chemotherapy against osteosarcoma, indicating MCSC scaffolds may have great application potential for bone tumor-related defects.
Collapse
Affiliation(s)
- Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiawei Lu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Xiaoyuan Peng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China.
| | - Xuetao Xie
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
49
|
Astakhova NM, Korel' AV, Shchelkunova EI, Orishchenko KE, Nikolaev SV, Zubairova US, Kirilova IA. Analysis of the Basic Characteristics of Osteogenic and Chondrogenic Cell Lines Important for Tissue Engineering Implants. Bull Exp Biol Med 2018; 164:561-568. [PMID: 29504112 DOI: 10.1007/s10517-018-4032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/30/2022]
Abstract
We isolated and characterized cultures of bone and cartilage tissue cells of laboratory minipigs. The size and morphological features of adherent osteogenic and chondrogenic cells were specified. During long-term culturing under standard conditions, the studied cultures expressed specific markers that were detected by immunohistochemical staining: alkaline phosphatase and calcium deposits in osteoblasts and type II collagen and cartilage extracellular matrix in chondrogenic cells. Proliferative potential (mitotic index) of both cell types was 4.64% of the total cell number. Cell motility, i.e. the mean velocity of cell motion was 49 pixels/h for osteoblasts and 47 pixels/h for chondroblasts; the mean migration distance was 2045 and 2118 pixels for chondroblasts and osteoblasts, respectively. The obtained cell lines are now used as the control for evaluation of optimal biocompatibility of scaffold materials in various models. Characteristics of the motility of the bone and cartilage tissue cells can be used for modeling and estimation of the rate of cells population of 3D scaffolds made of synthetic and biological polymers with different internal structure and physicochemical properties during designing in vitro tissue implants.
Collapse
Affiliation(s)
- N M Astakhova
- Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Novosibirsk, Russia.
- Innovative Medical and Technology Center (Medical Technopark), Novosibirsk, Russia.
| | - A V Korel'
- Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - E I Shchelkunova
- Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - K E Orishchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S V Nikolaev
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - U S Zubairova
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I A Kirilova
- Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
50
|
Maietta S, Russo T, Santis RD, Ronca D, Riccardi F, Catauro M, Martorelli M, Gloria A. Further Theoretical Insight into the Mechanical Properties of Polycaprolactone Loaded with Organic-Inorganic Hybrid Fillers. MATERIALS 2018; 11:ma11020312. [PMID: 29466299 PMCID: PMC5849009 DOI: 10.3390/ma11020312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 01/14/2023]
Abstract
Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO₂ and PCL/ZrO₂) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO₂ = 88 wt %) and Zr2 (PCL = 12, ZrO₂ = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.
Collapse
Affiliation(s)
- Saverio Maietta
- Department of Industrial Engineering, Fraunhofer JL IDEAS-University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| | - Dante Ronca
- Institute of Orthopaedics and Traumathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 2-4, 80138 Naples, Italy.
| | - Filomena Riccardi
- Institute of Orthopaedics and Traumathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 2-4, 80138 Naples, Italy.
| | - Michelina Catauro
- Department of Industrial and Information Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| | - Massimo Martorelli
- Department of Industrial Engineering, Fraunhofer JL IDEAS-University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| |
Collapse
|