1
|
Ozaki A, Sakai D, Mandai M. hPSC-based treatment of retinal diseases - Current progress and challenges. Adv Drug Deliv Rev 2025; 221:115587. [PMID: 40228605 DOI: 10.1016/j.addr.2025.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD) and inherited retinal diseases (IRDs), cause visual impairment due to irreversible damage to the retinal pigment epithelium (RPE) and photoreceptor cells (PRCs). Currently, no definitive treatment exists. However, cell-based therapies using induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) offer potential solutions for restoring damaged retinal cells. This review summarizes recent advances in RPE and PRC transplantation, highlighting the benefits of each approach. For RPE transplantation, we focus on the outcomes of clinical studies involving three formulations: RPE sheets, RPE suspensions, and RPE strips. In the context of PRC transplantation, we trace the progress from fetal retinal transplantation to the latest studies. Additionally, we discuss our recent clinical work with retinal sheet transplantation and genome-edited retinal organoid sheets, which aim to improve functional integration by reducing bipolar cells in grafts. Finally, with the overall safety of the regenerative cell-based therapies demonstrated in past clinical applications, we explore future prospects for these therapies.
Collapse
Affiliation(s)
- Atsuta Ozaki
- Research Center, Kobe City Eye Hospital, 2-1-8 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; Department of Ophthalmology, Mie University Graduate school of Medicine, 2-174 Edobashi, Tsu-shi, Mie 514-8507, Japan
| | - Daiki Sakai
- Research Center, Kobe City Eye Hospital, 2-1-8 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan, 2-1-1 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki, Chuo-ku, Kobe-shi, Hyogo 650-0017 Japan
| | - Michiko Mandai
- Research Center, Kobe City Eye Hospital, 2-1-8 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan, 2-1-1 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan.
| |
Collapse
|
2
|
Martins Melo I, Pecaku A, Samet S, Oquendo P, Popovic MM, Demian SE, Cruz-Pimentel M, Muni RH. Assessment of Proliferative Vitreoretinopathy in Rhegmatogenous Retinal Detachment with OCT: Revisiting the 1991 Retina Society Classification. Ophthalmol Retina 2025:S2468-6530(25)00203-9. [PMID: 40311677 DOI: 10.1016/j.oret.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
PURPOSE To characterize proliferative vitreoretinopathy(PVR) with swept-source optical coherence tomography(SS-OCT) in rhegmatogenous retinal detachment(RRD). DESIGN Prospective cross-sectional cohort study. SUBJECTS Consecutive primary RRDs presenting to St. Michael's Hospital from 2021 to 2023. METHODS Ultra-widefield(UWF) fundus imaging was staged per the Retina Society 1991 PVR Classification and correlated with retinal microstructural changes assessed with SS-OCT. MAIN OUTCOME MEASURES SS-OCT findings in PVR. RESULTS 100 patients were included. Patients with no signs of PVR or PVR A (49/100) were more likely to have a preserved bacillary layer on SS-OCT with low-amplitude outer retinal corrugations(ORCs) compared to the PVR B/C group. PVR B(retinal wrinkling/vessel tortuosity) was present in 24%(24/100) of cases, all of which had high-amplitude ORCs. PVR C (27/100) was clinically divided into patients with subretinal membranes(SR) [63%(17/27)] and patients with fixed retinal folds(IR)[37%(10/27)]. The SR subtype was associated with shallow, slowly progressive detachments. On SS-OCT, they had a thick hyperreflective membrane emanating from the retinal pigment epithelium and extending along the outer retinal surface, causing tractional folds of the outer retina in 47%(8/17) of cases and tractional bacillary layer detachment in 12%(2/17) of cases. Outer retinal thinning/atrophy was commonly observed in the SR subtype. Patients with the IR subtype had bullous detachments on fundus examination and extensive intra-retinal changes on SS-OCT. These had a thickened bacillary layer with high-amplitude ORCs with photoreceptor-photoceptor apposition within or between individual corrugations(fused ORCs). Significant pre-retinal membranes with loss of differentiation of the inner and outer retinal lamellae and distortion of underlying ORCs were observed. CONCLUSION Our study demonstrates imaging evidence of varying PVR morphology. The IR subtype occurs in bullous detachments with intrinsic retinal changes that span from fused and distorted corrugations to retinal thickening, pre-retinal membranes and loss of differentiation of retinal lamella. The SR subtype occurs in shallow, slowly progressive detachments, where the proliferation is associated with membranes emanating from the RPE, outer retinal thinning/atrophy and tractional outer retinal folds. We present a novel OCT classification of primary PVR, which varies based on RRD morphology. Pathological intraretinal apposition in ORCs may contribute to glial proliferation and subsequent intra-retinal and pre-retinal changes.
Collapse
Affiliation(s)
- Isabela Martins Melo
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Aurora Pecaku
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Saba Samet
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paola Oquendo
- Department of Ophthalmology, McMaster University, Hamilton, Ontario, Canada
| | - Marko M Popovic
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sue Ellen Demian
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Miguel Cruz-Pimentel
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rajeev H Muni
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Kensington Vision and Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Xi Y, Zhou Z, Chang T, Dou G, Chu Z. Acute Macular Neuroretinopathy Mediated by COVID-19 Infection: Insights into its Clinical Features and Pathogenesis. FRONT BIOSCI-LANDMRK 2025; 30:26412. [PMID: 40302322 DOI: 10.31083/fbl26412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 05/02/2025]
Abstract
Acute macular neuroretinopathy (AMN) is a rare retinal condition that predominantly affects young females. The incidence of AMN increased significantly during the COVID-19 pandemic, thereby providing a unique opportunity to elucidate the etiology of this disease. In the present study, 24 articles reporting 59 patients were reviewed. The average age of the patients was 33.51 ± 14.02 years, ranging from 16 to 75 years, with females comprising 71.19% of the cases. The average duration of ocular symptoms post-infection was 8.22 ± 10.69 days, ranging from 4 to 150 days. This study investigated the potential pathogenesis of AMN, including the impact of COVID-19 on retinal neurovascular structure and function, immune-mediated inflammatory factor production, blood-retinal barrier disruption, and retinal microvascular damage, as well as potential clinical therapeutic interventions. This research provides a theoretical framework that can inform further investigations of AMN.
Collapse
Affiliation(s)
- Yixuan Xi
- College of Life Sciences, Northwestern University, 710069 Xi'an, Shaanxi, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi'an First Hospital, 710002 Xi'an, Shaanxi, China
| | - Ziyi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Tianfang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Zhaojie Chu
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi'an First Hospital, 710002 Xi'an, Shaanxi, China
- Shaanxi Institute of Ophthalmology, 710021 Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Ozal SA, Karapapak M, Ozal E, Ermis S, Guler S, Baybora H, Ciloglu Hayat S, Yılmaz YC. Retinal Toxicity Assessment Following Vitreoretinal Surgery: A Comparison of Silicone Oil and Perfluoropropane Tamponade Using Diopsys ® NOVA ™. Curr Eye Res 2025; 50:87-92. [PMID: 39212476 DOI: 10.1080/02713683.2024.2394118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This study aimed to assess and compare the retinal toxicity associated with silicone oil (SO) and perfluoropropane (C3F8) tamponade following vitreoretinal surgery for fresh rhegmatogenous retinal detachment (RRD), utilizing the office-based Diopsys® NOVA™ system for evaluation. METHODS Patients who underwent vitreoretinal surgery for fresh RRD and had SO (group 1) or C3F8 (group 2) tamponade were included in a prospective analysis. Flicker full field electroretinography (ffERG) and pattern electroretinography (PERG) tests were performed at 6 months postoperatively. RESULTS Postoperative best corrected visual acuity (logMAR) was significantly different in group 1 and group 2 patients, 0.48 ± 0.3 and 0.30 ± 0.2, respectively. No significant disparities were found in demographic variables. Flicker ffERG and PERG recordings revealed notable alterations in retinal function parameters in the group 1 compared to the group 2. CONCLUSION Our findings suggest a correlation between SO tamponade and retinal dysfunction, evidenced by office-based ERG measurements. The Diopsys® NOVA™ protocol offers clinical ease in assessing retinal function. Further controlled studies are essential to validate these findings and guide clinical practice effectively.
Collapse
Affiliation(s)
- Sadık Altan Ozal
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| | - Murat Karapapak
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| | - Ece Ozal
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| | - Serhat Ermis
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| | - Serkan Guler
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| | - Hakan Baybora
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| | - Serife Ciloglu Hayat
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| | - Yusuf Cem Yılmaz
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| |
Collapse
|
5
|
Assi A, Charteris D. Proliferative vitreoretinopathy: a revised concept of retinal injury and response. Br J Ophthalmol 2024; 108:1621-1626. [PMID: 38697801 DOI: 10.1136/bjo-2023-324417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/03/2024] [Indexed: 05/05/2024]
Abstract
Previous concepts for the pathogenesis of proliferative vitreoretinopathy (PVR) have focused on the central role of retinal pigment epithelium cells only, potentially contributing to the lack of clinical advances. More recent studies have demonstrated the essential role of retinal glial cells in the PVR healing response but failed to identify a consistent triggering mechanism.We propose a revised concept for the pathogenesis of PVR based on retinal injury and response. A posterior vitreous detachment (PVD) is invariably present in patients with rhegmatogenous retinal detachment and PVR. There is evidence to suggest that the shearing forces of acute PVD can cause mechanical injury to the inner retina and trigger a subsequent intraretinal glial healing response. That response is characterised by subclinical glial cell activation and proliferation that may then be amplified into full-blown PVR by coexisting pathology such as retinal breaks and detachment.Whether a PVD causes interface pathology depends on the plane of separation of the posterior vitreous and areas of increased vitreoretinal adhesions. If the vitreous separates in a plane or location that damages the inner retina then glial cell activation and proliferation are likely to develop. The severity of the subclinical inner retinal damage may then represent one of the missing links in our understanding of the pathogenesis of PVR and would explain many of the findings we encounter in clinical practice. Controlling the process of acute PVD and subsequent intraretinal response may be essential in the prevention and management of PVR.
Collapse
|
6
|
Carlà MM, Mateo C. Shortfalls of free autologous internal limiting membrane transplantation for highly myopic refractory macular holes in a long term follow-up. Graefes Arch Clin Exp Ophthalmol 2024; 262:3531-3541. [PMID: 38832954 PMCID: PMC11584440 DOI: 10.1007/s00417-024-06533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The aim of this study is to evaluate long-term anatomical and functional outcomes of autologous internal limiting membrane (ILM) transplantation in refractory highly myopic macular holes (HMMHs). METHODS Retrospective interventional analysis of 13 eyes with refractory HMMH undergoing autologous ILM transplantation with gas tamponade. Best-corrected visual acuity (BCVA, Snellen), optical coherence tomography and fundus photography were scheduled at baseline and every follow-up visit (1, 3, 6, 12, 18, 24 months and the most recent). Preoperatively, we collected minimum linear diameter (MLD) and basal diameter (BD). Post-operatively, rates of external limiting membrane (ELM)/ellipsoid zone (EZ) restoration, excessive gliosis and subfoveal retinal pigmented epithelium (RPE) atrophy were evaluated. RESULTS Average AXL was 31.45 ± 2.07 mm and mean follow-up was 47.2 ± 31.4 months. Anatomical success was reached in 7/13 eyes (54%), while 2 cases showed persisting HMMH, 2 cases had early recurrence and 2 cases late recurrence. BCVA went from 0.19 ± 0.18 to 0.22 ± 0.20 at final follow-up (p = 0.64), improving in 5/13 eyes (38%). One eye showed continuous ELM and EZ lines, while another eye showed an irregular ELM but no EZ. Post-operatively, 5 eyes (71%) developed progressive atrophy of the subfoveal RPE, while excessive gliosis was reported in 3 eyes (43%). Furthermore, one patient developed post-operative chronic macular edema-like changes in the perifoveal area. CONCLUSION Autologous ILM transplantation showed controversial anatomical outcomes and and poor visual results in refractory HMMH. Moreover, progressive subfoveal patchy atrophy and excessive gliosis are possible post-operative complications.
Collapse
Affiliation(s)
- Matteo Mario Carlà
- Ophthalmology Department, "Fondazione Policlinico Universitario A. Gemelli, IRCCS", Largo A. Gemelli, 8, Rome, 00168, Italy.
- Ophthalmology Department, Catholic University "Sacro Cuore", Rome, Italy.
| | - Carlos Mateo
- Instituto de Microcirugía Ocular (IMO), Barcelona, Spain
| |
Collapse
|
7
|
Sorrentino FS, Gardini L, Culiersi C, Fontana L, Musa M, D’Esposito F, Surico PL, Gagliano C, Zeppieri M. Nano-Based Drug Approaches to Proliferative Vitreoretinopathy Instead of Standard Vitreoretinal Surgery. Int J Mol Sci 2024; 25:8720. [PMID: 39201407 PMCID: PMC11354910 DOI: 10.3390/ijms25168720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Proliferative vitreoretinopathy (PVR) has traditionally been managed with vitreoretinal surgery. Although there have been several recent innovations in this surgery to make the retinal approach as uninvasive as possible, the outcomes remain unsatisfactory. Significant complications remain and the complexity of the surgical approach is challenging. The focus of this review was to investigate and discuss the effectiveness of nanomedicine, featuring a wide range of drugs and molecules, as a novel potential treatment for PVR. To date, ocular drug delivery remains a significant issue due to the physiological and anatomical barriers, dynamic or static, which prevent the entry of exogenous molecules. We tried to summarize the nanotechnology-based ophthalmic drugs and new nanoparticles currently under research, with the intention of tackling the onset and development of PVR. The purpose of this review was to thoroughly and analytically examine and assess the potential of nano-based techniques as innovative strategies to treat proliferative vitreoretinopathy (PVR). This study aimed to emphasize the breakthroughs in nanomedicine that provide promising therapeutic options to enhance the results of vitreoretinal surgery and halt disease progression, considering the complexity and difficulty of PVR treatment. The future directions of the nanoparticles and nanotherapies applied to PVR highlight the importance of investing in the development of better designs and novel ophthalmic formulations in order to accomplish a mini-invasive ocular approach, replacing the standard-of-care vitreoretinal surgery.
Collapse
Affiliation(s)
| | - Lorenzo Gardini
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.)
| | - Carola Culiersi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.)
| | - Luigi Fontana
- Department of Surgical Sciences, Ophthalmology Unit, Alma Mater Studiorum University of Bologna, IRCCS Azienda Ospedaliero-Universitaria Bologna, 40100 Bologna, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
- Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd., London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Sabatino F, Banerjee P, K Muqit MM. Clinical therapeutics for proliferative vitreoretinopathy in retinal detachment. Surv Ophthalmol 2024; 69:508-520. [PMID: 38492583 DOI: 10.1016/j.survophthal.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Proliferative vitreoretinopathy (PVR) is an abnormal and prolonged healing response to retinal injury (retinal detachment, post retinal detachment surgery) characterised by: pre/subretinal membrane formation; retinal gliosis and retinal shortening, retinal pigment epithelium cell proliferation; and increased glial (mainly Mu¨ller cells), fibroblast and inflammatory cell (macrophage, lymphocyte) activity, leading to tractional retinal holes/breaks and multiple costly eye operations suffered by patients. PVR can cause retinal re-detachment following primary surgical intervention for rhegmatogenous retinal detachment. Vitrectomy and scleral buckling surgery are the main approaches for treating PVR complications of retinal detachment. Patients require many operations to remove the scar tissue but vision results are suboptimal, and do not meet patient expectations. Over the past 40 years, this has been one of the greatest challenges for vitreoretinal surgeons and patients. Despite previous large clinical trials of multiple candidate drug therapeutics, no proven adjunctive treatment currently exists to either prevent, reduce, or treat PVR formation in retinal detachment. Both cellular proliferation and the intraocular inflammatory response are realistic targets for adjunctive treatments in PVR. The cellular components of PVR periretinal membranes (retinal pigment epithelial, glial, inflammatory and fibroblastic cells) proliferate and are thus targets for antiproliferative agents. In recent years, several new therapeutics have been tested, and we present an updated review of the clinical therapeutics for PVR in retinal detachment.
Collapse
Affiliation(s)
- Francesco Sabatino
- Vitreoretinal Service, Norfolk and Norwich University Hospitals NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, United Kingdom
| | - Philip Banerjee
- Frimley Park Hospital, Frimley Health NHS Foundation Trust, Portsmouth Road, Camberley, Surrey GU16 7UJ, United Kingdom
| | - Mahiul M K Muqit
- Department of Vitreoretinal Surgery, Moorfields Eye Hospital NHS Foundation Trust, City Road, London EC1V 2PD, United Kingdom; Institute of Ophthalmology, University College London, United Kingdom.
| |
Collapse
|
9
|
Rorex C, Cardona SM, Church KA, Rodriguez D, Vanegas D, Saldivar R, Faz B, Cardona AE. Astrogliosis in the GFAP-Cre ERT2:Rosa26 iDTR Mouse Model Does Not Exacerbate Retinal Microglia Activation or Müller Cell Gliosis under Hypoxic Conditions. Biomolecules 2024; 14:567. [PMID: 38785974 PMCID: PMC11117533 DOI: 10.3390/biom14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1β, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-β1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.
Collapse
Affiliation(s)
- Colin Rorex
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Sandra M. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Kaira A. Church
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Derek Rodriguez
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Difernando Vanegas
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Reina Saldivar
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Brianna Faz
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Astrid E. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
10
|
Ferro Desideri L, Artemiev D, Zandi S, Zinkernagel MS, Anguita R. Proliferative vitreoretinopathy: an update on the current and emerging treatment options. Graefes Arch Clin Exp Ophthalmol 2024; 262:679-687. [PMID: 37843566 PMCID: PMC10907475 DOI: 10.1007/s00417-023-06264-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) remains the main cause of failure in retinal detachment (RD) surgery and a demanding challenge for vitreoretinal surgeons. Despite the large improvements in surgical techniques and a better understanding of PVR pathogenesis in the last years, satisfactory anatomical and visual outcomes have not been provided yet. For this reason, several different adjunctive pharmacological agents have been investigated in combination with surgery. In this review, we analyze the current and emerging adjunctive treatment options for the management of PVR and we discuss their possible clinical application and beneficial role in this subgroup of patients.
Collapse
Affiliation(s)
- Lorenzo Ferro Desideri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Dmitri Artemiev
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland
| | - Souska Zandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rodrigo Anguita
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Yin Z, Ge L, Cha Z, Gao H, A L, Zeng Y, Huang X, Cheng X, Yao K, Tao Z, Xu H. Identifying Hmga2 preserving visual function by promoting a shift of Müller glia cell fate in mice with acute retinal injury. Stem Cell Res Ther 2024; 15:54. [PMID: 38414051 PMCID: PMC10900711 DOI: 10.1186/s13287-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Unlike in lower vertebrates, Müller glia (MG) in adult mammalian retinas lack the ability to reprogram into neurons after retinal injury or degeneration and exhibit reactive gliosis instead. Whether a transition in MG cell fate from gliosis to reprogramming would help preserve photoreceptors is still under exploration. METHODS A mouse model of retinitis pigmentosa (RP) was established using MG cell lineage tracing mice by intraperitoneal injection of sodium iodate (SI). The critical time point for the fate determination of MG gliosis was determined through immunohistochemical staining methods. Then, bulk-RNA and single-cell RNA seq techniques were used to elucidate the changes in RNA transcription of the retina and MG at that time point, and new genes that may determine the fate transition of MG were screened. Finally, the selected gene was specifically overexpressed in MG cells through adeno-associated viruses (AAV) in the mouse RP model. Bulk-RNA seq technique, immunohistochemical staining methods, and visual function testing were used to elucidate and validate the mechanism of new genes function on MG cell fate transition and retinal function. RESULTS Here, we found the critical time point for MG gliosis fate determination was 3 days post SI injection. Hmga2 was screened out as a candidate regulator for the cell fate transition of MG. After retinal injury caused by SI, the Hmga2 protein is temporarily and lowly expressed in MG cells. Overexpression of Hmga2 in MG down-regulated glial cell related genes and up-regulated photoreceptor related genes. Besides, overexpressing Hmga2 exclusively to MG reduced MG gliosis, made MG obtain cone's marker, and retained visual function in mice with acute retinal injury. CONCLUSION Our results suggested the unique reprogramming properties of Hmga2 in regulating the fate transition of MG and neuroprotective effects on the retina with acute injury. This work uncovers the reprogramming ability of epigenetic factors in MG.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhe Cha
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xuan Cheng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Zui Tao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
12
|
Anguita R, Makuloluwa A, Sim SY, Flores-Sanchez B, Roth J, Charteris DG. LATE RECURRENCE OF RETINAL DETACHMENT: Incidence, Clinical Features, and Surgical Outcomes. Retina 2024; 44:83-87. [PMID: 37671784 DOI: 10.1097/iae.0000000000003924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
PURPOSE To describe and evaluate demographics, clinical features, prognostic factors, rate of success of surgery, incidence, and visual outcomes in patients with a late recurrence of rhegmatogenous retinal detachment over a 10-year period at a large tertiary referral eye center. METHODS A retrospective, observational case series of patients with late recurrence of retinal detachment, defined as redetachment after at least six months of total reattachment in non-proliferative vitreoretinopathy (PVR) rhegmatogenous retinal detachment, after pars plana vitrectomy (PPV) surgery with gas tamponade. RESULTS Thirty-nine patients had a late recurrence of rhegmatogenous retinal detachment of 16,396 rhegmatogenous retinal detachment operations. The mean of time between the first retinal detachment (RD) surgery and redetachment was 122.7 (SD 115) weeks. On presentation with late recurrence, 72% of eyes were pseudophakic and 64% were macula-off. In 28 eyes, small breaks were found. Thirty-eight percent had established PVR (PVR-C in 80%). Ninety-five percent underwent PPV. Gas was used in 61%. The initial secondary success rate was 64%. Initial best-corrected visual acuity was 1.32 logarithm of the minimum angle of resolution (logMAR) (6/120) and final was 0.8 logMAR (6/38; P value 0.002). CONCLUSION Late recurrence of retinal detachment is rare. It is characterized by small retinal breaks that may be difficult to visualize. Although cases can be treated with favorable anatomical results, visual outcomes are often less good and the success rate is lower.
Collapse
Affiliation(s)
- Rodrigo Anguita
- Department of Vitreoretinal Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom ; and
- Department of Ophthalmology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Achini Makuloluwa
- Department of Vitreoretinal Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom ; and
| | - Sing Yue Sim
- Department of Vitreoretinal Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom ; and
| | - Blanca Flores-Sanchez
- Department of Vitreoretinal Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom ; and
| | - Janice Roth
- Department of Vitreoretinal Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom ; and
- Department of Ophthalmology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - David G Charteris
- Department of Vitreoretinal Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom ; and
| |
Collapse
|
13
|
Peterson C, Lu Y, Santiago CP, Price AC, McNally MM, Schubert W, Nassar K, Zollner T, Blackshaw S, Eberhart CG, Singh MS. Transition to Chronic Fibrosis in an Animal Model of Retinal Detachment With Features of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2023; 64:39. [PMID: 38153753 PMCID: PMC10756252 DOI: 10.1167/iovs.64.15.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/18/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose Proliferative vitreoretinopathy (PVR) is the most common cause of failure of surgically repaired rhegmatogenous retinal detachment (RRD). Chemically induced and cell injection PVR models do not fully simulate the clinical characteristics of PVR in the post-RRD context. There is an unmet need for translational models in which to study mechanisms and treatments specific to RRD-PVR. Methods RRD was induced in adult Dutch Belted rabbits. Posterior segments were fixed or processed for RNA sequencing at 6 hours and 2, 7, 14, and 35 days after induction. Histochemical staining and immunolabeling for glial fibrillary acidic protein, alpha smooth muscle actin, vascular endothelial growth factor receptor 2, CD68, and RPE 65 kDa protein were performed, and labeling intensity was scored. Single cell RNA sequencing was performed. Results Acute histopathological changes included intravitreal and intraretinal hemorrhage, leukocytic vitritis, chorioretinitis, and retinal rarefaction. Chronic lesions showed retinal atrophy, gliosis, fibrotic subretinal membranes, and epiretinal fibrovascular proliferation. Fibrillar collagen was present in the fibrocellular and fibrovascular membranes in chronic lesions. Moderate to strong labeling of glia and vasculature was detected in chronic lesions. At day 14, most cells profiled by single cell sequencing were identified as Mϋller glia and microglia, consistent with immunolabeling. Expression of several fibrillar collagen genes was upregulated in chronic lesions. Conclusions Histological and transcriptional features of this rabbit model simulate important features of human RRD-PVR, including the transition to chronic intraretinal and periretinal fibrosis. This animal model of RRD with features of PVR will enable further research on targeted treatment interventions.
Collapse
Affiliation(s)
- Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Comparative Pathobiology, Tufts University, Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States
| | - Yuchen Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Clayton P. Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Antoinette C. Price
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Minda M. McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | | | | | | | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Charles G. Eberhart
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mandeep S. Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
14
|
Díaz-Lezama N, Kajtna J, Wu J, Ayten M, Koch SF. Microglial and macroglial dynamics in a model of retinitis pigmentosa. Vision Res 2023; 210:108268. [PMID: 37295269 DOI: 10.1016/j.visres.2023.108268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
In retinal degenerative diseases, such as retinitis pigmentosa (RP), the characteristic photoreceptor cell death is associated with changes of microglia and macroglia cells. Gene therapy, a promising treatment option for RP, is based on the premise that glial cell remodeling does not impact vision rescue. However, the dynamics of glial cells after treatment at late disease stages are not well understood. Here, we tested the reversibility of specific RP glia phenotypes in a Pde6b-deficient RP gene therapy mouse model. We demonstrated an increased number of activated microglia, retraction of microglial processes, reactive gliosis of Müller cells, astrocyte remodelling and an upregulation of glial fibrillary acidic protein (GFAP) in response to photoreceptor degeneration. Importantly, these changes returned to normal following rod rescue at late disease stages. These results suggest that therapeutic approaches restore the homeostasis between photoreceptors and glial cells.
Collapse
Affiliation(s)
- Nundehui Díaz-Lezama
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jacqueline Kajtna
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jiou Wu
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
15
|
Charteris DG, Cro S, Casswell E, Edwards RT, Ezeofor V, Anthony B, Bunce C, Robertson E, Kelly J, Murphy C, Banerjee P, Cornelius VR. A randomised controlled trial of adjunctive triamcinolone acetonide in eyes undergoing vitreoretinal surgery for open globe trauma - the ASCOT study. Health Technol Assess 2023; 27:1-50. [PMID: 37840322 PMCID: PMC10591211 DOI: 10.3310/gnbj1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background Eyes sustaining open globe trauma are at high risk of severe visual impairment. Proliferative vitreoretinopathy is the most common cause of retinal detachment and visual loss in eyes with open globe trauma. There is evidence from experimental studies and pilot clinical trials that the use of adjunctive steroid medication triamcinolone acetonide can reduce the incidence of proliferative vitreoretinopathy and improve outcomes of surgery for open globe trauma. Objective The Adjunctive Steroid Combination in Ocular Trauma or ASCOT study aimed to investigate the clinical effectiveness of adjunctive triamcinolone acetonide given at the time of vitreoretinal surgery for open globe trauma. Design A phase 3 multicentre double-masked randomised controlled trial randomising patients undergoing vitrectomy following open globe trauma to either adjunctive triamcinolone acetonide or standard care. Setting Hospital vitreoretinal surgical services dealing with open globe trauma. Participants Patients undergoing vitrectomy surgery who had sustained open globe trauma. Interventions Triamcinolone acetonide 4 mg/0.1 ml into the vitreous cavity and 40 mg/1 ml sub-Tenon's or standard vitreoretinal surgery and postoperative care. Main outcome measures The primary outcome was the proportion of patients with at least 10 letters of improvement in corrected visual acuity at six months. Secondary outcomes included retinal detachment secondary to proliferative vitreoretinopathy, retinal reattachment, macula reattachment, tractional retinal detachment, number of operations, hypotony, elevated intraocular pressure and quality of life. Health-related quality of life was assessed using the EuroQol Five Domain and Visual Function Questionnaire 25 questionnaires. Results A total of 280 patients were randomised; 129 were analysed from the control group and 130 from the treatment group. The treatment group appeared, by chance, to have more severe pathology on presentation. The primary outcome (improvement in visual acuity) and principal secondary outcome (change in visual acuity) did not demonstrate any treatment benefit for triamcinolone acetonide. The proportion of patients with improvement in visual acuity was 47% for triamcinolone acetonide and 43% for standard care (odds ratio 1.03, 95% confidence interval 0.61 to 1.75, p = 0.908); the baseline adjusted mean difference in the six-month change in visual acuity was -2.65 (95% confidence interval -9.22 to 3.92, p = 0.430) for triamcinolone acetonide relative to control. Similarly, the secondary outcome measures failed to show any treatment benefit. For two of the secondary outcome measures, stable complete retinal reattachment and stable macular retinal reattachment, outcomes for the treatment group were significantly worse for triamcinolone acetonide at the 5% level (respectively, odds ratio 0.59, 95% confidence interval 0.36 to 0.99, p = 0.044 and odds ratio 0.59, 95% confidence interval 0.35 to 0.98, p = 0.041) compared with control in favour of control. The cost of the intervention was £132 per patient. Health economics outcome measures (Early Treatment Diabetic Retinopathy Study, Visual Function Questionnaire 25 and EuroQol Five Dimensions) did not demonstrate any significant difference in quality-adjusted life-years. Conclusions The use of combined intraocular and sub-Tenon's capsule triamcinolone acetonide is not recommended as an adjunct to vitrectomy surgery for intraocular trauma. Secondary outcome measures are suggestive of a negative effect of the adjunct, although the treatment group appeared to have more severe pathology on presentation. Future work The use of alternative adjunctive medications in cases undergoing surgery for open globe trauma should be investigated. Refinement of clinical grading and case selection will enable better trail design for future studies. Trial registration This trial is registered as ISRCTN 30012492, EudraCT number 2014-002193-37, REC 14/LNO/1428, IRAS 156358, Local R&D registration CHAD 1031. Funding This project was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (12/35/64) and will be published in full in Health Technology Assessment; Vol. 27, No. 12. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
| | - Suzie Cro
- Imperial College Clinical Trials Unit, Imperial College London, London, UK
| | | | - Rhiannon Tudor Edwards
- Centre for Health Economics and Medicines Evaluation, School of Medical and Health Sciences, Bangor University, Gwynedd, UK
| | - Victory Ezeofor
- Centre for Health Economics and Medicines Evaluation, School of Medical and Health Sciences, Bangor University, Gwynedd, UK
| | - Bethany Anthony
- Centre for Health Economics and Medicines Evaluation, School of Medical and Health Sciences, Bangor University, Gwynedd, UK
| | - Catey Bunce
- Research Data and Statistics Unit (RDSU), Royal Marsden NHS Foundation Trust, London, UK
| | | | - Joanna Kelly
- King's Clinical Trial Unit, Research Management and Innovation Directorate, Institute of Psychiatry, Kings College, London, UK
| | - Caroline Murphy
- King's Clinical Trial Unit, Research Management and Innovation Directorate, Institute of Psychiatry, Kings College, London, UK
| | | | | |
Collapse
|
16
|
Townes-Anderson E, Halász É, Sugino I, Davidow AL, Frishman LJ, Fritzky L, Yousufzai FAK, Zarbin M. Injury to Cone Synapses by Retinal Detachment: Differences from Rod Synapses and Protection by ROCK Inhibition. Cells 2023; 12:1485. [PMID: 37296606 PMCID: PMC10253016 DOI: 10.3390/cells12111485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Attachment of a detached retina does not always restore vision to pre-injury levels, even if the attachment is anatomically successful. The problem is due in part to long-term damage to photoreceptor synapses. Previously, we reported on damage to rod synapses and synaptic protection using a Rho kinase (ROCK) inhibitor (AR13503) after retinal detachment (RD). This report documents the effects of detachment, reattachment, and protection by ROCK inhibition on cone synapses. Conventional confocal and stimulated emission depletion (STED) microscopy were used for morphological assessment and electroretinograms for functional analysis of an adult pig model of RD. RDs were examined 2 and 4 h after injury or two days later when spontaneous reattachment had occurred. Cone pedicles respond differently than rod spherules. They lose their synaptic ribbons, reduce invaginations, and change their shape. ROCK inhibition protects against these structural abnormalities whether the inhibitor is applied immediately or 2 h after the RD. Functional restoration of the photopic b-wave, indicating cone-bipolar neurotransmission, is also improved with ROCK inhibition. Successful protection of both rod and cone synapses with AR13503 suggests this drug will (1) be a useful adjunct to subretinal administration of gene or stem cell therapies and (2) improve recovery of the injured retina when treatment is delayed.
Collapse
Affiliation(s)
- Ellen Townes-Anderson
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA;
| | - Éva Halász
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA;
| | - Ilene Sugino
- Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, 90 Bergen Street, Newark, NJ 07103, USA; (I.S.); (M.Z.)
| | - Amy L. Davidow
- Department of Biostatistics, New York University School of Global Public Health, 708 Broadway, New York, NY 10003, USA;
| | - Laura J. Frishman
- Department of Vision Sciences, College of Optometry, University of Houston, Martin Luther King Blvd, Houston, TX 77204, USA;
| | - Luke Fritzky
- Cellular Imaging and Histology Core, Rutgers New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA; (L.F.); (F.A.K.Y.)
| | - Fawad A. K. Yousufzai
- Cellular Imaging and Histology Core, Rutgers New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA; (L.F.); (F.A.K.Y.)
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, 90 Bergen Street, Newark, NJ 07103, USA; (I.S.); (M.Z.)
| |
Collapse
|
17
|
Albertos-Arranz H, Martínez-Gil N, Sánchez-Sáez X, Noailles A, Monferrer Adsuara C, Remolí Sargues L, Pérez-Santonja JJ, Lax P, Calvo Andrés R, Cuenca N. Microglia activation and neuronal alterations in retinas from COVID-19 patients: correlation with clinical parameters. EYE AND VISION (LONDON, ENGLAND) 2023; 10:12. [PMID: 36855168 PMCID: PMC9974399 DOI: 10.1186/s40662-023-00329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/08/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Different ocular alterations have been described in patients with coronavirus disease 2019 (COVID-19). Our aim was to determine whether COVID-19 affected retinal cells and establish correlations with clinical parameters. METHODS Retinal sections and flat-mount retinas from human donors with COVID-19 (n = 16) and controls (n = 15) were immunostained. The location of angiotensin-converting enzyme 2 (ACE2) and the morphology of microglial cells, Müller cells, astrocytes, and photoreceptors were analyzed by confocal microscopy. Microglial quantification and the area occupied by them were measured. Correlations among retinal and clinical parameters were calculated. RESULTS ACE2 was mainly located in the Müller cells, outer segment of cones and retinal pigment epithelium. Cell bodies of Müller cells in COVID-19 group showed greater staining of ACE2 and cellular retinaldehyde-binding protein (CRALBP). The 81.3% of COVID-19 patients presented disorganization of honeycomb-like pattern formed by Müller cells. Gliosis was detected in 56.3% of COVID-19 patients compared to controls (40%) as well as epiretinal membranes (ERMs) or astrocytes protruding (50%). Activated or ameboid-shape microglia was the main sign in the COVID-19 group (93.8%). Microglial migration towards the vessels was greater in the COVID-19 retinas (P < 0.05) and the area occupied by microglia was also reduced (P < 0.01) compared to control group. Cone degeneration was more severe in the COVID-19 group. Duration of the disease, age and respiratory failure were the most relevant clinical data in relation with retinal degeneration. CONCLUSIONS The retinas of patients with COVID-19 exhibit glial activation and neuronal alterations, mostly related to the inflammation, hypoxic conditions, and age.
Collapse
Affiliation(s)
- Henar Albertos-Arranz
- grid.5268.90000 0001 2168 1800Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig Road W/N, 03690 Alicante, Spain
| | - Natalia Martínez-Gil
- grid.5268.90000 0001 2168 1800Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig Road W/N, 03690 Alicante, Spain
| | - Xavier Sánchez-Sáez
- grid.5268.90000 0001 2168 1800Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig Road W/N, 03690 Alicante, Spain
| | - Agustina Noailles
- grid.5268.90000 0001 2168 1800Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig Road W/N, 03690 Alicante, Spain
| | - Clara Monferrer Adsuara
- grid.106023.60000 0004 1770 977XDepartment of Ophthalmology, General University Hospital Consortium of Valencia (CHGUV), 46014 Valencia, Spain
| | - Lidia Remolí Sargues
- grid.106023.60000 0004 1770 977XDepartment of Ophthalmology, General University Hospital Consortium of Valencia (CHGUV), 46014 Valencia, Spain
| | - Juan J. Pérez-Santonja
- grid.411086.a0000 0000 8875 8879Department of Ophthalmology, General University Hospital of Alicante (HGUA), 03010 Alicante, Spain ,grid.513062.30000 0004 8516 8274Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Pedro Lax
- grid.5268.90000 0001 2168 1800Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig Road W/N, 03690 Alicante, Spain
| | - Ramón Calvo Andrés
- grid.106023.60000 0004 1770 977XDepartment of Ophthalmology, General University Hospital Consortium of Valencia (CHGUV), 46014 Valencia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig Road W/N, 03690, Alicante, Spain. .,Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain. .,National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040, Madrid, Spain.
| |
Collapse
|
18
|
EXCESSIVE GLIOSIS AFTER VITRECTOMY FOR THE HIGHLY MYOPIC MACULAR HOLE: A Spectral Domain Optical Coherence Tomography Study. Retina 2023; 43:200-208. [PMID: 36695791 DOI: 10.1097/iae.0000000000003657] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE To investigate different modes of foveal regeneration after the closure of idiopathic macular hole (IMH) or highly myopic macular hole (HMMH) by vitrectomy with internal limiting membranes peeling or flap techniques. METHODS This retrospective observational study followed 47 IMH and 50 HMMH eyes for at least 6 months. Twenty four IMH and 25 HMMH eyes underwent internal limiting membrane peeling, whereas 23 IMH and 25 HMMH eyes received inverted internal limiting membrane flap technique. Spectral domain optical coherence tomography was used to analyze macular hole closure, foveal microstructures, and excessive gliosis as a foveal "peak-like" protuberance. RESULTS A single procedure closed all IMH (n = 47). For HMMH, the inverted group (n = 25, 100%) closed more macular hole than the peeling group (n = 14, 56.00%) (P < 0.001). Excessive gliosis only occurred in the inverted group, and there was a significant difference (P = 0.005) in incidence between IMH (three in 23 eyes, 13.04%) and HMMH (13 in 25 eyes, 52.00%). The axial length more than 29.985 mm enhanced the risk of excessive gliosis. CONCLUSION The inverted internal limiting membrane flap efficiently treated refractory MHs but was prone to cause excessive gliosis in highly myopic eyes. Excessive elongation of the globe (axial length > 29.985 mm) was linked to excessive gliosis growth.
Collapse
|
19
|
Pfeiffer RL, Jones BW. Retinal Pathoconnectomics: A Window into Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:297-301. [PMID: 37440048 PMCID: PMC11342915 DOI: 10.1007/978-3-031-27681-1_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Over the past decade, the field of retinal connectomics has made huge strides in describing the precise topologies underlying retinal visual processing. The same techniques that allowed these advancements are also applicable to understanding the progression of rewiring in retinal remodeling: retinal pathoconnectomics. Pathoconnectomics is unique in its unbiased approach to understanding the impacts of deafferentation on the remaining network components and identifying aberrant connectivities leading to visual processing defects. Pathoconnectomics also paves the way for identifying underlying rules of rewiring that may be recapitulated throughout the nervous system in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA.
| | - Bryan W Jones
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell Mol Life Sci 2022; 80:22. [PMID: 36585968 PMCID: PMC11072707 DOI: 10.1007/s00018-022-04670-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.
Collapse
Affiliation(s)
- Fátima Milhano Dos Santos
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Joana Mesquita
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - João Paulo Castro de Sousa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197, Leiria, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cândida Teixeira Tomaz
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Paulino Passarinha
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Associate Laboratory i4HB, Faculdade de Ciências e Tecnologia, Institute for Health and Bioeconomy, Universidade NOVA, 2819-516, Caparica, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Pharmaco-Toxicology Laboratory, UBIMedical, Universidade da Beira Interior, 6200-000, Covilhã, Portugal.
| |
Collapse
|
21
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
22
|
Sonmez K, Hekimsoy HK. Outcomes and predictors of vitrectomy and silicone oil tamponade in retinal detachments complicated by proliferative vitreoretinopathy. Int J Ophthalmol 2022; 15:1279-1289. [PMID: 36017034 DOI: 10.18240/ijo.2022.08.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate outcomes and determine factors influencing the outcomes of vitrectomy with silicone oil (SO) endotamponade for the management of rhegmatogenous retinal detachment (RRD) complicated by advanced proliferative vitreoretinopathy (PVR). METHODS This is a retrospective, interventional case series of eyes with PVR grade C associated RRD with or without prior surgery that underwent vitreoretinal surgery and SO tamponade. Eyes with a minimum follow-up of 6mo after SO extraction were included. Eyes were classified into three PVR subgroups according to severity and extension of proliferation. The influence of several preoperative, intraoperative and postoperative factors upon the functional and anatomical outcomes was assessed using multivariate logistic regression analysis. RESULTS A hundred and one eyes of 101 patients that met the inclusion criteria were studied. Seventy-five of 101 eyes (74.3%) had successful retinal reattachment after one operation. Increased aqueous cell and flare at the first week exam had a statistically significant association with redetachment, recurrent membrane proliferation and keratopathy. Visual acuity improvement was significantly associated with faint postoperative aqueous inflammation values, primary vitrectomy and PVR outside of the posterior pole. CONCLUSION Although encouraging anatomical and functional outcomes are achieved after vitrectomy and SO tamponade in eyes with RRD complicated by PVR, an increase in aqueous flare or cells at the first week follow-up is most likely to result in postoperative late complications. Primary vitrectomy, PVR associated with minimal posterior pole extension and absent to mild postoperative aqueous inflammation are associated with improved post-operative final visual acuity.
Collapse
Affiliation(s)
- Kenan Sonmez
- University of Health Sciences, Ulucanlar Eye Education and Research Hospital, Ankara 06240, Turkey
| | - Hilal Kilinc Hekimsoy
- University of Health Sciences, Ulucanlar Eye Education and Research Hospital, Ankara 06240, Turkey
| |
Collapse
|
23
|
Recurrent retinal detachment after pars plana vitrectomy with silicone oil tamponade for rhegmatogenous retinal detachment. Int Ophthalmol 2022; 42:3813-3820. [PMID: 35802298 DOI: 10.1007/s10792-022-02401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND The recurrence of retinal detachment following rhegmatogenous retinal detachment (RRD) is a relatively common complication that can lead to reduced visual acuity and requires further surgery. The purpose of this study was to investigate the risk factors and visual outcomes of recurrent RRD following pars plana vitrectomy (PPV) with silicone oil tamponade for primary RRD. METHODS This was a retrospective follow-up study of 343 eyes that underwent initial PPV surgery with silicone oil tamponade for primary RRD. Patients were divided into a recurrence group and a reattachment group. The main outcome measures included causative factors, visual outcomes related to the recurrence of RRD, and the perioperative factors most affecting the recurrence of RRD. RESULTS After retinal reattachment, we observed RRD recurrence after PPV for primary RRD in 42 out of 343 eyes (12.2%) during the follow-up period. Most causes of recurrence (69%) occurred within 6 months of surgery. Multivariate logistic regression analysis showed that a PVR ≥ Grade C (odds ratio [OR]: 4.015; 95% confidence interval [CI] 1.721-9.367; P = 0.001) was a significant predictor for the development of recurrent RRD. Compared with the reattachment group, the recurrence group exhibited a significant decline in best-corrected visual acuity (BCVA) at the last follow-up visit (P = 0.000). Eyes with PVR prior to primary surgery, or at the diagnosis of re-detachment, showed a worse final BCVA. CONCLUSIONS Our analysis shows that the predominant risk factor for the recurrence of RRD is a PVR ≥ Grade C. PVR prior to primary surgery, or at the diagnosis of re-detachment, was also shown to limit the recovery of final visual acuity.
Collapse
|
24
|
Domouky AM, Samy WM, Rashad WA. Therapeutic effect of the mesenchymal stem cells on vigabatrin-induced retinopathy in adult male albino rat. Anat Cell Biol 2022; 55:217-228. [PMID: 35773221 PMCID: PMC9256488 DOI: 10.5115/acb.22.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 12/02/2022] Open
Abstract
Vigabatrin (VGB) is an effective antiepileptic drug used mainly to treat infantile spasms and refractory complex partial seizures. However, using VGB was restricted as it was known to cause retinal toxicity that appears as a severe peripheral visual field defect. Accordingly, this study was conducted to examine the histopathological and biochemical effects of VGB on the retina in adult male albino rats and assess the possible therapeutic role of mesenchymal stem cells (MSCs) against this potential toxicity. The rats were divided into three groups (control group, VGB group, and VGB/MSCs group), one week after 65 days of VGB treatment ±MSCs. The right eyeballs were prepared for histological and immunohistochemical examination, whereas the left eyeballs were prepared for real-time polymerase chain reaction analysis. Our results demonstrated that MSCs ameliorated retinal pathological changes and downregulated the expression of glial fibrillary acidic protein, vascular endothelial growth factor, and synaptophysin after VGB administration suggesting MSCs function and vascular modulating effect. Moreover, MSCs regulate retinal tissue gene expression of BAX, Bcl-2, BDNF, NGF, synapsin, interleukin (IL)-6, IL-1β, and occludin suggesting MSCs antiapoptotic and immunomodulating effect. In conclusion, MSCs administration could be a suitable therapeutic line to ameliorate VGB-induced retinopathy.
Collapse
Affiliation(s)
- Ayat Mahmoud Domouky
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Zagazig, Egypt
| | - Walaa M Samy
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa A Rashad
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Zagazig, Egypt
| |
Collapse
|
25
|
Rempel SK, Welch MJ, Ludwig AL, Phillips MJ, Kancherla Y, Zack DJ, Gamm DM, Gómez TM. Human photoreceptors switch from autonomous axon extension to cell-mediated process pulling during synaptic marker redistribution. Cell Rep 2022; 39:110827. [PMID: 35584680 DOI: 10.1016/j.celrep.2022.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Photoreceptors (PRs) are the primary visual sensory cells, and their loss leads to blindness that is currently incurable. Although cell replacement therapy holds promise, success is hindered by our limited understanding of PR axon growth during development and regeneration. Here, we generate retinal organoids from human pluripotent stem cells to study the mechanisms of PR process extension. We find that early-born PRs exhibit autonomous axon extension from dynamic terminals. However, as PRs age from 40 to 80 days of differentiation, they lose dynamic terminals on 2D substrata and in 3D retinal organoids. Interestingly, PRs without motile terminals are still capable of extending axons but only by process stretching via attachment to motile non-PR cells. Immobile PR terminals of late-born PRs have fewer and less organized actin filaments but more synaptic proteins compared with early-born PR terminals. These findings may help inform the development of PR transplantation therapies.
Collapse
Affiliation(s)
- Sarah K Rempel
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Madalynn J Welch
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Allison L Ludwig
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - M Joseph Phillips
- McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Yochana Kancherla
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Timothy M Gómez
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
26
|
Nag TC. Immunohistochemical features of cells in peripheral microcystoid retinal degeneration. Acta Histochem 2022; 124:151893. [PMID: 35405413 DOI: 10.1016/j.acthis.2022.151893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
Abstract
Peripheral microcystoid retinal degeneration (PMD) is an age-related, benign condition in which the peripheral retina develops small holes and undergoes cystic degeneration. This paper demonstrates neuronal alterations in PMD, as studied by immunohistochemistry in postmortem donor eyes (age: 76-89 years; N = 6 donors). In all cases, the degeneration was located in the inferior temporal quadrant, creating holes in the far peripheral retina. There was thinning of the inner retinal layers and the outer plexiform layer (OPL) was patchy or inconspicuous. As a response, Müller cell processes showed increased vimentin immunoreactivity. None of the retinas examined expressed glial fibrillary acidic protein. Cone photoreceptor cells were significantly altered: compared to the adjoining cones that were short, those located in the cystoid retina underwent significant elongation of their inner segments, evident from calbindin immunolabeling, to maintain synaptic contacts with the remnant OPL. The latter consisted of small photoreceptor terminals and scanty processes from shrunken bipolar cells. Besides, cones and ganglion cells undergo oxidative stress, they showed immunoreactivity to 4-hydroxy 2-nonenal and nitrotyrosine. The level of superoxide dismutase-2 was relatively low in the PMD region than in adjacent area, suggesting that the former suffers from oxidative stress.
Collapse
|
27
|
Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int J Mol Sci 2022; 23:ijms23094883. [PMID: 35563274 PMCID: PMC9101511 DOI: 10.3390/ijms23094883] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is genetically heterogeneous retinopathy caused by photoreceptor cell death and retinal pigment epithelial atrophy that eventually results in blindness in bilateral eyes. Various photoreceptor cell death types and pathological phenotypic changes that have been disclosed in RP demand in-depth research of its pathogenic mechanism that may account for inter-patient heterogeneous responses to mainstream drug treatment. As the primary method for studying the genetic characteristics of RP, molecular biology has been widely used in disease diagnosis and clinical trials. Current technology iterations, such as gene therapy, stem cell therapy, and optogenetics, are advancing towards precise diagnosis and clinical applications. Specifically, technologies, such as effective delivery vectors, CRISPR/Cas9 technology, and iPSC-based cell transplantation, hasten the pace of personalized precision medicine in RP. The combination of conventional therapy and state-of-the-art medication is promising in revolutionizing RP treatment strategies. This article provides an overview of the latest research on the pathogenesis, diagnosis, and treatment of retinitis pigmentosa, aiming for a convenient reference of what has been achieved so far.
Collapse
|
28
|
Strettoi E, Di Marco B, Orsini N, Napoli D. Retinal Plasticity. Int J Mol Sci 2022; 23:ijms23031138. [PMID: 35163059 PMCID: PMC8835074 DOI: 10.3390/ijms23031138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Brain plasticity is a well-established concept designating the ability of central nervous system (CNS) neurons to rearrange as a result of learning, when adapting to changeable environmental conditions or else while reacting to injurious factors. As a part of the CNS, the retina has been repeatedly probed for its possible ability to respond plastically to a variably altered environment or to pathological insults. However, numerous studies support the conclusion that the retina, outside the developmental stage, is endowed with only limited plasticity, exhibiting, instead, a remarkable ability to maintain a stable architectural and functional organization. Reviewed here are representative examples of hippocampal and cortical paradigms of plasticity and of retinal structural rearrangements found in organization and circuitry following altered developmental conditions or occurrence of genetic diseases leading to neuronal degeneration. The variable rate of plastic changes found in mammalian retinal neurons in different circumstances is discussed, focusing on structural plasticity. The likely adaptive value of maintaining a low level of plasticity in an organ subserving a sensory modality that is dominant for the human species and that requires elevated fidelity is discussed.
Collapse
Affiliation(s)
- Enrica Strettoi
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Correspondence: ; Tel.: +39-0503153213
| | - Beatrice Di Marco
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| | - Debora Napoli
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| |
Collapse
|
29
|
Nemitz L, Dedek K, Janssen-Bienhold U. Synaptic Remodeling in the Cone Pathway After Early Postnatal Horizontal Cell Ablation. Front Cell Neurosci 2021; 15:657594. [PMID: 34122012 PMCID: PMC8187617 DOI: 10.3389/fncel.2021.657594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
The first synapse of the visual pathway is formed by photoreceptors, horizontal cells and bipolar cells. While ON bipolar cells invaginate into the photoreceptor terminal and form synaptic triads together with invaginating horizontal cell processes, OFF bipolar cells make flat contacts at the base of the terminal. When horizontal cells are ablated during retina development, no invaginating synapses are formed in rod photoreceptors. However, how cone photoreceptors and their synaptic connections with bipolar cells react to this insult, is unclear so far. To answer this question, we specifically ablated horizontal cells from the developing mouse retina. Following ablation around postnatal day 4 (P4)/P5, cones initially exhibited a normal morphology and formed flat contacts with OFF bipolar cells, but only few invaginating contacts with ON bipolar cells. From P15 on, synaptic remodeling became obvious with clustering of cone terminals and mislocalized cone somata in the OPL. Adult cones (P56) finally displayed highly branched axons with numerous terminals which contained ribbons and vesicular glutamate transporters. Furthermore, type 3a, 3b, and 4 OFF bipolar cell dendrites sprouted into the outer nuclear layer and even expressed glutamate receptors at the base of newly formed cone terminals. These results indicate that cones may be able to form new synapses with OFF bipolar cells in adult mice. In contrast, cone terminals lost their invaginating contacts with ON bipolar cells, highlighting the importance of horizontal cells for synapse maintenance. Taken together, our data demonstrate that early postnatal horizontal cell ablation leads to differential remodeling in the cone pathway: whereas synapses between cones and ON bipolar cells were lost, new putative synapses were established between cones and OFF bipolar cells. These results suggest that synapse formation and maintenance are regulated very differently between flat and invaginating contacts at cone terminals.
Collapse
Affiliation(s)
- Lena Nemitz
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
30
|
Wang Y, Chang T, Wu T, Ye W, Wang Y, Dou G, Du H, Hui Y, Guo C. Connective tissue growth factor promotes retinal pigment epithelium mesenchymal transition via the PI3K/AKT signaling pathway. Mol Med Rep 2021; 23:389. [PMID: 33760200 PMCID: PMC8008218 DOI: 10.3892/mmr.2021.12028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a disease leading to the formation of contractile preretinal membranes (PRMs) and is one of the leading causes of blindness. Connective tissue growth factor (CTGF) has been identified as a possible key determinant of progressive tissue fibrosis and excessive scarring. Therefore, the present study investigated the role and mechanism of action of CTGF in PVR. Immunohistochemical staining was performed to detect the expression of CTGF, fibronectin and collagen type III in PRMs from patients with PVR. The effects and mechanisms of recombinant human CTGF and its upstream regulator, TGF‑β1, on epithelial‑mesenchymal transition (EMT) and the synthesis of extracellular matrix (ECM) by retinal pigment epithelium (RPE) cells were investigated using reverse transcription‑quantitative PCR, western blotting and a [3H]proline incorporation assay. The data indicated that CTGF, fibronectin and collagen type III were highly expressed in PRMs. In vitro, CTGF significantly decreased the expression of the epithelial markers ZO‑1 and E‑cadherin and increased that of the mesenchymal markers fibronectin, N‑cadherin and α‑smooth muscle actin in a concentration‑dependent manner. Furthermore, the expression of the ECM protein collagen type III was upregulated by CTGF. However, the trends in expression for the above‑mentioned markers were reversed after knocking down CTGF. The incorporation of [3H]proline into RPE cells was also increased by CTGF. In addition, 8‑Bromoadenosine cAMP inhibited CTGF‑stimulated collagen synthesis and transient transfection of RPE cells with a CTGF antisense oligonucleotide inhibited TGF‑β1‑induced collagen synthesis. The phosphorylation of PI3K and AKT in RPE cells was promoted by CTGF and TGF‑β1 and the latter promoted the expression of CTGF. The results of the present study indicated that CTGF may promote EMT and ECM synthesis in PVR via the PI3K/AKT signaling pathway and suggested that targeting CTGF signaling may have a therapeutic or preventative effect on PVR.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianfang Chang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yusheng Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guorui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongjun Du
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yannian Hui
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Changmei Guo
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
31
|
ROCK inhibition reduces morphological and functional damage to rod synapses after retinal injury. Sci Rep 2021; 11:692. [PMID: 33436892 PMCID: PMC7804129 DOI: 10.1038/s41598-020-80267-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
Retinal detachment (RD) causes damage, including disjunction, of the rod photoreceptor-bipolar synapse, which disrupts vision and may contribute to the poor visual recovery observed after retinal reattachment surgery. We created a model of iatrogenic RD in adult female pigs to study damage to the rod-bipolar synapse after injury and the ability of a highly specific Rho-kinase (ROCK) inhibitor to preserve synaptic structure and function. This model mimics procedures used in humans when viral vectors or cells are injected subretinally for treatment of retinal disease. Synaptic disjunction by retraction of rod spherules, quantified by image analysis of confocal sections, was present 2 h after detachment and remained 2 days later even though the retina had spontaneously reattached by then. Moreover, spherule retraction occurred in attached retina 1-2 cms from detached retina. Synaptic damage was significantly reduced by ROCK inhibition in detached retina whether injected subretinally or intravitreally. Dark-adapted full-field electroretinograms were recorded in reattached retinas to assess rod-specific function. Reduction in synaptic injury correlated with increases in rod-driven responses in drug-treated eyes. Thus, ROCK inhibition helps prevent synaptic damage and improves functional outcomes after retinal injury and may be a useful adjunctive treatment in iatrogenic RD and other retinal degenerative diseases.
Collapse
|
32
|
Edwards MM, Bonilha VL, Bhutto IA, Bell BA, McLeod DS, Hollyfield JG, Lutty GA. Retinal Glial and Choroidal Vascular Pathology in Donors Clinically Diagnosed With Stargardt Disease. Invest Ophthalmol Vis Sci 2020; 61:27. [PMID: 32692840 PMCID: PMC7425722 DOI: 10.1167/iovs.61.8.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/14/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose The present study investigated retinal glia and choroidal vessels in flatmounts and sections from individuals with clinically diagnosed Stargardt disease (STGD). Methods Eyes from three donors clinically diagnosed with STGD were obtained through the Foundation Fighting Blindness (FFB). Genetic testing was performed to determine the disease-causing mutations. Eyes were enucleated and fixed in 4% paraformaldehyde and 0.5% glutaraldehyde. After imaging, retinas were dissected and immunostained for glial fibrillary acidic protein, vimentin, and peanut agglutin. Following RPE removal, the choroid was immunostained with Ulex europaeus agglutinin lectin. For each choroid, the area of affected vasculature, percent vascular area, and choriocapillaris luminal diameters were measured. The retina from one donor was hemisected and cryopreserved or embedded in JB-4 for cross-section analysis. Results Genetic testing confirmed the STGD diagnosis in donor 1, whereas a mutation in peripherin 2 was identified in donor 3. Genetic testing was not successful on donor 2. Therefore, only donor 1 can definitively be classified as having STGD. All donors had areas of RPE atrophy within the macular region, which correlated with underlying choriocapillaris loss. In addition, Müller cells formed pre- and subretinal membranes. Subretinal gliotic membranes correlated almost identically with RPE and choriocapillaris loss. Conclusions Despite bearing different genetic mutations, all donors demonstrated choriocapillaris loss and Müller cell membranes correlating with RPE loss. Müller cell remodeling was most extensive in the donor with the peripherin mutation, whereas choriocapillaris loss was greatest in the confirmed STGD donor. This study emphasizes the importance of genetic testing when diagnosing macular disease.
Collapse
Affiliation(s)
- Malia M. Edwards
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Vera L. Bonilha
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| | - Imran A. Bhutto
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Brent A. Bell
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - D. Scott McLeod
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Joe G. Hollyfield
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| | - Gerard A. Lutty
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
33
|
Touahri Y, Dixit R, Kofoed RH, Mikloska K, Park E, Raeisossadati R, Markham-Coultes K, David LA, Rijal H, Zhao J, Lynch M, Hynynen K, Aubert I, Schuurmans C. Focused ultrasound as a novel strategy for noninvasive gene delivery to retinal Müller glia. Theranostics 2020; 10:2982-2999. [PMID: 32194850 PMCID: PMC7053200 DOI: 10.7150/thno.42611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Müller glia are specialized retinal cells with stem cell properties in fish and frogs but not in mammals. Current efforts to develop gene therapies to activate mammalian Müller glia for retinal repair will require safe and effective delivery strategies for recombinant adeno-associated viruses (AAVs), vectors of choice for clinical translation. Intravitreal and subretinal injections are currently used for AAV gene delivery in the eye, but less invasive methods efficiently targeting Müller glia have yet to be developed. Methods: As gene delivery strategies have been more extensively studied in the brain, to validate our vectors, we initially compared the glial tropism of AAV-PHP.eB, an AAV9 that crosses the blood-brain and blood-retinal barriers, for its ability to drive fluorescent protein expression in glial cells in both the brain and retina. We then tested the glial transduction of AAV2/8-GFAP-mCherry, a virus that does not cross blood-brain and blood-retinal barriers, for its effectiveness in transducing Müller glia in murine retinal explants ex vivo. For in vivo assays we used larger rat eyes, performing invasive intravitreal injections, and non-invasive intravenous delivery using focused ultrasound (FUS) (pressure amplitude: 0.360 - 0.84 MPa) and microbubbles (Definity, 0.2 ml/kg). Results: We showed that AAV-PHP.eB carrying a ubiquitous promoter (CAG) and green fluorescent protein (GFP) reporter, readily crossed the blood-brain and blood-retinal barriers after intravenous delivery in mice. However, murine Müller glia did not express GFP, suggesting that they were not transduced by AAV-PHP.eB. We thus tested an AAV2/8 variant, which was selected based on its safety record in multiple clinical trials, adding a glial fibrillary acidic protein (GFAP) promoter and mCherry (red fluorescent protein) reporter. We confirmed the glial specificity of AAV2/8-GFAP-mCherry, showing effective expression of mCherry in astrocytes after intracranial injection in the mouse brain, and of Müller glia in murine retinal explants. For in vivo experiments we switched to rats because of their larger size, injecting AAV2/8-GFAP-mCherry intravitreally, an invasive procedure, demonstrating passage across the inner limiting membrane, leading to Müller glia transduction. We then tested an alternative non-invasive delivery approach targeting a different barrier - the inner blood-retinal-barrier, applying focused ultrasound (FUS) to the retina after intravenous injection of AAV2/8 and microbubbles in rats, using magnetic resonance imaging (MRI) for FUS targeting. FUS permeabilized the rat blood-retinal-barrier and allowed the passage of macromolecules to the retina (Evans blue, IgG, IgM), with minimal extravasation of platelets and red blood cells. Intravenous injection of microbubbles and AAV2/8-GFAP-mCherry followed by FUS resulted in mCherry expression in rat Müller glia. However, systemic delivery of AAV2/8 also had off-target effects, transducing several murine peripheral organs, particularly the liver. Conclusions: Retinal permeabilisation via FUS in the presence of microbubbles is effective for delivering AAV2/8 across the inner blood-retinal-barrier, targeting Müller glia, which is less invasive than intravitreal injections that bypass the inner limiting membrane. However, implementing FUS in the clinic will require a comprehensive consideration of any off-target tropism of the AAV in peripheral organs, combined ideally, with the development of Müller glia-specific promoters.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rikke Hahn Kofoed
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kristina Mikloska
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - EunJee Park
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Reza Raeisossadati
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kelly Markham-Coultes
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hibo Rijal
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jiayi Zhao
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Madelaine Lynch
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog Retin Eye Res 2020; 74:100771. [PMID: 31356876 PMCID: PMC6982593 DOI: 10.1016/j.preteyeres.2019.07.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Retinal remodeling is a progressive series of negative plasticity revisions that arise from retinal degeneration, and are seen in retinitis pigmentosa, age-related macular degeneration and other forms of retinal disease. These processes occur regardless of the precipitating event leading to degeneration. Retinal remodeling then culminates in a late-stage neurodegeneration that is indistinguishable from progressive central nervous system (CNS) proteinopathies. Following long-term deafferentation from photoreceptor cell death in humans, and long-lived animal models of retinal degeneration, most retinal neurons reprogram, then die. Glial cells reprogram into multiple anomalous metabolic phenotypes. At the same time, survivor neurons display degenerative inclusions that appear identical to progressive CNS neurodegenerative disease, and contain aberrant α-synuclein (α-syn) and phosphorylated α-syn. In addition, ultrastructural analysis indicates a novel potential mechanism for misfolded protein transfer that may explain how proteinopathies spread. While neurodegeneration poses a barrier to prospective retinal interventions that target primary photoreceptor loss, understanding the progression and time-course of retinal remodeling will be essential for the establishment of windows of therapeutic intervention and appropriate tuning and design of interventions. Finally, the development of protein aggregates and widespread neurodegeneration in numerous retinal degenerative diseases positions the retina as a ideal platform for the study of proteinopathies, and mechanisms of neurodegeneration that drive devastating CNS diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| | - Robert E Marc
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Bryan William Jones
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
35
|
Charteris DG. Proliferative vitreoretinopathy: revised concepts of pathogenesis and adjunctive treatment. Eye (Lond) 2019; 34:241-245. [PMID: 31776451 DOI: 10.1038/s41433-019-0699-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) remains a significant challenge for vitreoretinal surgeons. Its incidence, as a complication of retinal detachment, does not appear to have altered despite improvement in surgical techniques. Extensive laboratory research has been undertaken to investigate the pathogenesis of PVR and the use of adjunctive mediations to modify the disease process. To date these studies have not resulted in improved clinical management of PVR. Previous concepts of the pathogenesis of PVR, focussing on a central role for RPE cells, may be flawed and could potentially have contributed to the lack of clinical advances. Revised clinical classifications and novel approaches to adjunctive treatment may in the future result in improved surgical outcomes.
Collapse
Affiliation(s)
- David G Charteris
- The Institute of Ophthalmology, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK.
| |
Collapse
|
36
|
Jaldín-Fincati JR, Actis Dato V, Díaz NM, Sánchez MC, Barcelona PF, Chiabrando GA. Activated α 2-Macroglobulin Regulates LRP1 Levels at the Plasma Membrane through the Activation of a Rab10-dependent Exocytic Pathway in Retinal Müller Glial Cells. Sci Rep 2019; 9:13234. [PMID: 31519919 PMCID: PMC6744500 DOI: 10.1038/s41598-019-49072-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Activated α2-macroglobulin (α2M*) and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), have been linked to proliferative retinal diseases. In Müller glial cells (MGCs), the α2M*/LRP1 interaction induces cell signaling, cell migration, and extracellular matrix remodeling, processes closely associated with proliferative disorders. However, the mechanism whereby α2M* and LRP1 participate in the aforementioned pathologies remains incompletely elucidated. Here, we investigate whether α2M* regulates both the intracellular distribution and sorting of LRP1 to the plasma membrane (PM) and how this regulation is involved in the cell migration of MGCs. Using a human Müller glial-derived cell line, MIO-M1, we demonstrate that the α2M*/LRP1 complex is internalized and rapidly reaches early endosomes. Afterward, α2M* is routed to degradative compartments, while LRP1 is accumulated at the PM through a Rab10-dependent exocytic pathway regulated by PI3K/Akt. Interestingly, Rab10 knockdown reduces both LRP1 accumulation at the PM and cell migration of MIO-M1 cells induced by α2M*. Given the importance of MGCs in the maintenance of retinal homeostasis, unravelling this molecular mechanism can potentially provide new therapeutic targets for the treatment of proliferative retinopathies.
Collapse
Affiliation(s)
- Javier R Jaldín-Fincati
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.,Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Virginia Actis Dato
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Nicolás M Díaz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María C Sánchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Pablo F Barcelona
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| | - Gustavo A Chiabrando
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| |
Collapse
|
37
|
Uzel MM, Citirik M, İlhan Ç, Tekin K. The impact of duration on the recurrence of rhegmatogenous retinal detachment: optimal cutoff value. Int Ophthalmol 2019; 39:2089-2095. [PMID: 30470984 DOI: 10.1007/s10792-018-1045-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE To assess the impact of symptom duration on the recurrence of rhegmatogenous retinal detachment (RRD) and to determine the threshold symptom duration for recurrence. PATIENT AND METHODS In this non-comparative, observational case series, a retrospective evaluation was made of the records of patients with RRD at baseline and during the postoperative follow-up period, in respect of postoperative anatomic outcome, prognostic factors for recurrent retinal detachment and the cutoff value of symptom duration. RESULTS Recurrent retinal detachment was detected in 33 (17.8%) of 185 patients following primary retinal detachment surgery. The surgery type in phakic patients and preoperative symptom duration had a significantly high odds ratio for evidence of surgical failure. According to the ROC analysis, the threshold preoperative symptom duration was 20.5 days. CONCLUSION Our results showed that early reattachment surgery is necessary to lower the risk of retinal redetachment. The threshold at which RRD recurrence significantly increases is 20.5 days.
Collapse
Affiliation(s)
- Mehmet Murat Uzel
- SB Afyonkarahisar State Hospital, Orhangazi, Nedim Helvacıoğlu Blv. No:73, 03030, Merkez, Afyonkarahisar, Turkey.
| | - Mehmet Citirik
- Ankara Ulucanlar Eye Education and Research Hospital, University of Health Science, Ankara, Turkey
| | | | | |
Collapse
|
38
|
Cebulla CM, Stevenson W, Van Law H, Heisler-Taylor T, Hamadmad S, Shah MH, Kim B, Davidorf FH, Ohr M, Wells M, Yanoga F, Chang S, Terrell W, Miller DM, Klisovic D, Allen JB, Shah N, Geraymovych E, Tarabishy AB, Kondapalli SS, Brewington BY, Inman A, Williams D, Kusibati R, Mathias J, Vedat Y, Fernandez S, Wisely CE, Pilarski R, Abdel-Rahman MH. MIF promoter polymorphisms are associated with epiretinal membrane but not retinal detachment with PVR in an american population. Exp Eye Res 2019; 185:107667. [PMID: 31108057 DOI: 10.1016/j.exer.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Colleen M Cebulla
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA.
| | - William Stevenson
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Heather Van Law
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA; The Ohio State University College of Optometry, Columbus, OH, USA
| | - Tyler Heisler-Taylor
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Sumaya Hamadmad
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Mohd Hussain Shah
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Bongsu Kim
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Frederick H Davidorf
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Matthew Ohr
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Michael Wells
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Fatoumata Yanoga
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Susie Chang
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA; Department of Ophthalmology, Straub Medical Center, Honolulu, HI, USA
| | - William Terrell
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA; Mary Lanning Health Care, Hastings, NE, USA
| | | | | | - John B Allen
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Niraj Shah
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Elena Geraymovych
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Ahmad B Tarabishy
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Srinivas S Kondapalli
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Beatrice Y Brewington
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Andrea Inman
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Demarcus Williams
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Rania Kusibati
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Jay Mathias
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Yildiz Vedat
- The Ohio State University Biomedical Informatics, Columbus, OH, USA
| | | | - C Ellis Wisely
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Robert Pilarski
- Division Human Genetics, The Ohio State University, Columbus, OH, USA
| | - Mohamed H Abdel-Rahman
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH, 43212, USA; Division Human Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Li X, Liu J, Hoh J, Liu J. Müller cells in pathological retinal angiogenesis. Transl Res 2019; 207:96-106. [PMID: 30639368 DOI: 10.1016/j.trsl.2018.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Müller cells are the major glial cells spanning the entire layer of the retina and maintaining retinal structure. Under pathological conditions, Müller cells are involved in retinal angiogenesis, a process of growing new blood vessels from pre-existing capillaries. In response to hypoxia, high glucose, and inflammation conditions, multiple signaling pathways are activated in Müller cells, followed by the increased production of proangiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, matrix metalloproteinases, Netrin-4, and angiopoietin-like 4. Expression of antiangiogenic factors is also downregulated in Müller cells. Besides, proliferation and dedifferentiation of Müller cells facilitates retinal angiogenesis. In this review, we summarized molecular mechanisms of Müller cells-related retinal angiogenesis. The potential of Müller cells as a therapeutic target for retinal angiogenesis was also discussed.
Collapse
Affiliation(s)
- Xiaorui Li
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China; Taishan Medical College, Taian, China
| | - Jing Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Josephine Hoh
- Department of Epidemiology and Public Health, Department of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
40
|
Zarbin M, Sugino I, Townes‐Anderson E. Concise Review: Update on Retinal Pigment Epithelium Transplantation for Age-Related Macular Degeneration. Stem Cells Transl Med 2019; 8:466-477. [PMID: 30748126 PMCID: PMC6477002 DOI: 10.1002/sctm.18-0282] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Retinal cell therapy can have the objectives of rescue (i.e., modulation of metabolic abnormalities primarily for sight preservation) as well as replacement (i.e., replace cells lost due to injury or disease for sight restoration as well as preservation). The first clinical trials of retinal pigment epithelium (RPE) transplantation for vision-threatening complications of age-related macular degeneration (AMD) have begun with some preliminary signs of success (e.g., improvement in vision in some patients, anatomic evidence of transplant-host integration with some evidence of host photoreceptor recovery, long-term survival of autologous induced pluripotent stem cell-derived RPE transplants without immune suppression) as well as limitations (e.g., limited RPE suspension survival in the AMD eye, limited tolerance for long-term systemic immune suppression in elderly patients, suggestion of uncontrolled cell proliferation in the vitreous cavity). RPE survival on aged and AMD Bruch's membrane can be improved with chemical treatment, which may enhance the efficacy of RPE suspension transplants in AMD patients. Retinal detachment, currently used to deliver transplanted RPE cells to the subretinal space, induces disjunction of the first synapse in the visual pathway: the photoreceptor-bipolar synapse. This synaptic change occurs even in areas of attached retina near the locus of detachment. Synaptic disjunction and photoreceptor apoptosis associated with retinal detachment can be reduced with Rho kinase inhibitors. Addition of Rho kinase inhibitors may improve retinal function and photoreceptor survival after subretinal delivery of cells either in suspension or on scaffolds.
Collapse
Affiliation(s)
- Marco Zarbin
- Institute of Ophthalmology and Visual ScienceRutgers‐New Jersey Medical School, Rutgers UniversityNewarkNew JerseyUSA
| | - Ilene Sugino
- Institute of Ophthalmology and Visual ScienceRutgers‐New Jersey Medical School, Rutgers UniversityNewarkNew JerseyUSA
| | - Ellen Townes‐Anderson
- Department of Pharmacology, Physiology, and NeuroscienceRutgers‐New Jersey Medical SchoolNewarkNew JerseyUSA
| |
Collapse
|
41
|
Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget 2018; 8:32505-32522. [PMID: 28455954 PMCID: PMC5464805 DOI: 10.18632/oncotarget.17129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Collapse
|
42
|
Haghighi A, Do J, Ameri H. Eplerenone as a novel treatment for persistent subretinal fluid following retinal detachment surgery. Am J Ophthalmol Case Rep 2018; 10:261-263. [PMID: 29780947 PMCID: PMC5956724 DOI: 10.1016/j.ajoc.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 10/31/2022] Open
Abstract
Purpose To describe the clinical course of a patient with persistent subretinal fluid (SRF) after primary scleral buckle surgery for a rhegmatogenous retinal detachment (RRD) repair who was subsequently treated with oral eplerenone for resolution of SRF. Observations A 34 year-old-male presented with a large bullous macula-involving RRD of unknown duration and underwent primary scleral buckle and retinotomy for drainage of subretinal fluid (SRF). His post-operative course was characterized by persistent macular SRF for 1.5 years with poor vision largely unchanged from his pre-operative presentation. Patient declined additional surgical treatment and opted for conservative management. Given such persistent SRF, the patient was trialed on a course of oral eplerenone 50 mg po bid. After only one month on this therapy, a marked decline in SRF was noted with near complete resolution after two months. Conclusions and Importance To our knowledge, this is the first report of its kind to show the effectivity of oral eplerenone treatment in the reduction of SRF following retinal detachment surgery.
Collapse
Affiliation(s)
- Arezu Haghighi
- USC Roski Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, USA
| | - Jiun Do
- USC Roski Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, USA.,University of San Diego Shiley Eye Institute, 9415 Campus Point Dr, La Jolla, CA, 92093, USA
| | - Hossein Ameri
- USC Roski Eye Institute, University of Southern California, 1450 San Pablo Street, Los Angeles, CA, USA
| |
Collapse
|
43
|
Zhang P, Zhao G, Ji L, Yin J, Lu L, Li W, Zhou G, Chaum E, Yue J. Knockdown of survivin results in inhibition of epithelial to mesenchymal transition in retinal pigment epithelial cells by attenuating the TGFβ pathway. Biochem Biophys Res Commun 2018. [PMID: 29522718 DOI: 10.1016/j.bbrc.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a common complication of open globe injury and the most common cause of failed retinal detachment surgery. The response by retinal pigment epithelial (RPE) cells liberated into the vitreous includes proliferation and migration; most importantly, epithelial to mesenchymal transition (EMT) of RPE plays a central role in the development and progress of PVR. For the first time, we show that knockdown of BIRC5, a member of the inhibitor of apoptosis protein family, using either lentiviral vector based CRISPR/Cas9 nickase gene editing or inhibition of survivin using the small-molecule inhibitor YM155, results in the suppression of EMT in RPE cells. Knockdown of survivin or inhibition of survivin significantly reduced TGFβ-induced cell proliferation and migration. We further demonstrated that knockdown or inhibition of survivin attenuated the TGFβ signaling by showing reduced phospho-SMAD2 in BIRC5 knockdown or YM155-treated cells compared to controls. Inhibition of the TGFβ pathway using TGFβ receptor inhibitor also suppressed survivin expression in RPE cells. Our studies demonstrate that survivin contributes to EMT by cross-talking with the TGFβ pathway in RPE cells. Targeting survivin using small-molecule inhibitors may provide a novel approach to treat PVR disease.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Anatomy, Histology and Embryology, Fudan University, Shanghai, PR China
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ji
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jinggang Yin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lu Lu
- Department of Genetics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, Fudan University, Shanghai, PR China.
| | - Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
44
|
Steel DH, Joussen AM, Wong D. ILM peeling in rhegmatogenous retinal detachment; does it improve the outcome? Graefes Arch Clin Exp Ophthalmol 2017; 256:247-248. [PMID: 29282562 DOI: 10.1007/s00417-017-3876-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022] Open
Affiliation(s)
- D H Steel
- Sunderland Eye Infirmary, Queen Alexandra Road, Sunderland, UK.
- Institute of Genetic Medicine, Newcastle University, Upon Tyne, Newcastle, UK.
| | - A M Joussen
- Department of Ophthalmology, Charité Universitätsmedizin, Berlin, Germany
| | - D Wong
- St. Paul's Eye Unit, Royal Liverpool University Hospital Trust, Liverpool, UK
| |
Collapse
|
45
|
Kuo HK, Chen YH, Kuo YH, Ke MC, Tseng YC, Wu PC. Evaluation of the Effect of Everolimus on Retinal Pigment Epithelial Cells and Experimental Proliferative Vitreoretinopathy. Curr Eye Res 2017; 43:333-339. [PMID: 29182404 DOI: 10.1080/02713683.2017.1396618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Failure of retinal detachment surgery is most commonly due to the development of proliferative vitreoretinopathy (PVR). Everolimus is an inhibitor of mammalian target of rapamycin (mTOR), and is available as oral tablets. In this study, we investigated the effect of everolimus on retinal pigment epithelial cells and modification of the severity of experimental PVR. METHODS In our in vitro studies, primary culture of retinal pigment epithelium (RPE) cells was obtained from pigmented Rex rabbits. Cell proliferation was assayed with the tetrazolium dye cytotoxicity test, and cell migration assay was performed in 24-well transwell units with 8-μm filters. In the in vivo study, pigmented Rex rabbits weighing between 2 and 2.5 kg were used. Each rabbit eye underwent gas compression; one week later, 5 × 104 RPE cells were injected into the vitreous cavity to induce PVR, and each eye was graded with indirect ophthalmoscopy on days 1, 3, 7, 14, 21, and 28. The rabbits were administered everolimus (0.5 mg/day orally) from the day of PVR induction. Total proteins extracted from RPE cells and dissected retinal samples were processed for Western blotting analysis of mTOR and ribosomal protein S6 (RPS6). RESULTS The in vitro studies showed that everolimus significantly inhibited the proliferation of RPE cells at 0.1 μg/ml; additionally, at 10 μg/ml, it suppressed the migration of RPE cells and significantly suppressed the expression of mTOR and RPS6 in RPE cells. The in vivo study did not show any benefit of oral everolimus (0.5 mg/day) in suppressing experimental PVR. Thus, everolimus significantly suppressed the expression of mTOR and RPS6 in PVR. CONCLUSIONS Everolimus suppressed the proliferation and migration of RPE cells in vitro. Oral everolimus (0.5 mg/day) suppressed the expression of mTOR and RPS6 in the retina, but showed no effect in suppressing experimental PVR.
Collapse
Affiliation(s)
- Hsi-Kung Kuo
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan.,b Chang-Gung University College of Medicine , Kaohsiung , Taiwan
| | - Yi-Hao Chen
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan.,b Chang-Gung University College of Medicine , Kaohsiung , Taiwan
| | - Yu-Hsia Kuo
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Mu-Chan Ke
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Ya-Chi Tseng
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Pei-Chang Wu
- a Department of Ophthalmology , Kaohsiung Chang-Gung Memorial Hospital , Kaohsiung , Taiwan.,b Chang-Gung University College of Medicine , Kaohsiung , Taiwan
| |
Collapse
|
46
|
Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM. The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res 2017; 61:72-97. [PMID: 28668352 PMCID: PMC5653414 DOI: 10.1016/j.preteyeres.2017.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The domestic chicken, Gallus gallus, serves as an excellent model for the study of a wide range of ocular diseases and conditions. The purpose of this manuscript is to outline some anatomic, physiologic, and genetic features of this organism as a robust animal model for vision research, particularly for modeling human retinal disease. Advantages include a sequenced genome, a large eye, relative ease of handling and maintenance, and ready availability. Relevant similarities and differences to humans are highlighted for ocular structures as well as for general physiologic processes. Current research applications for various ocular diseases and conditions, including ocular imaging with spectral domain optical coherence tomography, are discussed. Several genetic and non-genetic ocular disease models are outlined, including for pathologic myopia, keratoconus, glaucoma, retinal detachment, retinal degeneration, ocular albinism, and ocular tumors. Finally, the use of stem cell technology to study the repair of damaged tissues in the chick eye is discussed. Overall, the chick model provides opportunities for high-throughput translational studies to more effectively prevent or treat blinding ocular diseases.
Collapse
Affiliation(s)
- C Ellis Wisely
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Javed A Sayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Heather Tamez
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Chris Zelinka
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA.
| |
Collapse
|
47
|
MIF Inhibitor ISO-1 Protects Photoreceptors and Reduces Gliosis in Experimental Retinal Detachment. Sci Rep 2017; 7:14336. [PMID: 29084983 PMCID: PMC5662618 DOI: 10.1038/s41598-017-14298-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Photoreceptor death and retinal gliosis underlie the majority of vision threatening retinal diseases including retinal detachment (RD). Although the underlying pathobiology of vision limiting processes in RD is not fully understood, inflammation is known to play a critical role. We conducted an iTRAQ proteomic screen of up- and down-regulated proteins in a murine model of RD to identify potential targetable candidates. Macrophage migration inhibitory factor (MIF) was identified and evaluated for neurotoxic and pro-gliotic effects during RD. Systemic administration of the MIF inhibitor ISO-1 significantly blocked photoreceptor apoptosis, outer nuclear layer (ONL) thinning, and retinal gliosis. ISO-1 and MIF knockout (MIFKO) had greater accumulation of Müller glia pERK expression in the detached retina, suggesting that Müller survival pathways might underlie the neuroprotective response. Our data show the feasibility of the MIF-inhibitor ISO-1 to block pathological damage responses in retinal detachment and provide a rationale to explore MIF inhibition as a potential therapeutic option for RD.
Collapse
|
48
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Invaginating Presynaptic Terminals in Neuromuscular Junctions, Photoreceptor Terminals, and Other Synapses of Animals. Neuromolecular Med 2017; 19:193-240. [PMID: 28612182 PMCID: PMC6518423 DOI: 10.1007/s12017-017-8445-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Typically, presynaptic terminals form a synapse directly on the surface of postsynaptic processes such as dendrite shafts and spines. However, some presynaptic terminals invaginate-entirely or partially-into postsynaptic processes. We survey these invaginating presynaptic terminals in all animals and describe several examples from the central nervous system, including giant fiber systems in invertebrates, and cup-shaped spines, electroreceptor synapses, and some specialized auditory and vestibular nerve terminals in vertebrates. We then examine mechanoreceptors and photoreceptors, concentrating on the complex of pre- and postsynaptic processes found in basal invaginations of the cell. We discuss in detail the role of vertebrate invaginating horizontal cell processes in both chemical and electrical feedback mechanisms. We also discuss the common presence of indenting or invaginating terminals in neuromuscular junctions on muscles of most kinds of animals, and especially discuss those of Drosophila and vertebrates. Finally, we consider broad questions about the advantages of possessing invaginating presynaptic terminals and describe some effects of aging and disease, especially on neuromuscular junctions. We suggest that the invagination is a mechanism that can enhance both chemical and electrical interactions at the synapse.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| |
Collapse
|
49
|
Kaneko H, Terasaki H. Biological Involvement of MicroRNAs in Proliferative Vitreoretinopathy. Transl Vis Sci Technol 2017; 6:5. [PMID: 28706757 PMCID: PMC5505124 DOI: 10.1167/tvst.6.4.5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Even with a high surgical success rate for retinal detachment and proliferative vitreoretinopathy (PVR) supported by the robust improvement in vitrectomy surgery and its related devices, certain questions still remain for the pathogenesis and treatment of PVR. One of the important biological events in PVR is epithelial–mesenchymal transition (EMT) of the retinal pigment epithelial (RPE) cells. MicroRNAs are noncoding, small, single-strand RNAs that posttranscriptionally regulate gene expression and have essential roles in homeostasis and pathogenesis in many diseases. Recently, microRNAs also had a critical role in EMT in many tissues and cells. One main purpose of this brief review is to describe the knowledge obtained from microRNA research, especially concerning vitreoretinal diseases. In addition, the potential role of microRNAs in prevention of PVR by regulating EMT in RPE cells is described. Understanding microRNA involvement in PVR could be helpful for developing new biological markers or therapeutic targets and reducing the rate of visual disability due to PVR.
Collapse
Affiliation(s)
- Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya Japan
| |
Collapse
|
50
|
Edwards MM, McLeod DS, Bhutto IA, Grebe R, Duffy M, Lutty GA. Subretinal Glial Membranes in Eyes With Geographic Atrophy. Invest Ophthalmol Vis Sci 2017; 58:1352-1367. [PMID: 28249091 PMCID: PMC5358932 DOI: 10.1167/iovs.16-21229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Müller cells create the external limiting membrane (ELM) by forming junctions with photoreceptor cells. This study evaluated the relationship between focal photoreceptors and RPE loss in geographic atrophy (GA) and Müller cell extension into the subretinal space. Methods Human donor eyes with no retinal disease or geographic atrophy (GA) were fixed and the eye cups imaged. The retinal posterior pole was stained for glial fibrillary acidic protein (GFAP; astrocytes and activated Müller cells) and vimentin (Müller cells) while the submacular choroids were labeled with Ulex Europaeus Agglutinin lectin (blood vessels). Choroids and retinas were imaged using a Zeiss 710 confocal microscope. Additional eyes were cryopreserved or processed for transmission electron microscopy (TEM) to better visualize the Müller cells. Results Vimentin staining of aged control retinas (n = 4) revealed a panretinal cobblestone-like ELM. While this pattern was also observed in the GA retinas (n = 7), each also had a distinct area in which vimentin+ and vimentin+/GFAP+ processes created a subretinal membrane. Subretinal glial membranes closely matched areas of RPE atrophy in the gross photos. Choroidal vascular loss was also evident in these atrophic areas. Smaller glial projections were noted, which correlated with drusen in gross photos. The presence of glia in the subretinal space was confirmed by TEM and cross cross-section immunohistochemistry. Conclusions In eyes with GA, subretinal Müller cell membranes present in areas of RPE atrophy may be a Müller cell attempt to replace the ELM. These membranes could interfere with treatments such as stem cell therapy.
Collapse
Affiliation(s)
- Malia M Edwards
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - D Scott McLeod
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Imran A Bhutto
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Rhonda Grebe
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Maeve Duffy
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gerard A Lutty
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|