1
|
Moya R, Angée C, Hanein S, Jabot-Hanin F, Kaplan J, Perrault I, Rozet JM, Fares Taie L. Four Unique Genetic Variants in Three Genes Account for 62.7% of Early-Onset Severe Retinal Dystrophy in Chile: Diagnostic and Therapeutic Consequences. Int J Mol Sci 2024; 25:6151. [PMID: 38892339 PMCID: PMC11172861 DOI: 10.3390/ijms25116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Leber congenital amaurosis (LCA)/early-onset severe retinal dystrophy (EOSRD) stand as primary causes of incurable childhood blindness. This study investigates the clinical and molecular architecture of syndromic and non-syndromic LCA/EOSRD within a Chilean cohort (67 patients/60 families). Leveraging panel sequencing, 95.5% detection was achieved, revealing 17 genes and 126 variants (32 unique). CRB1, LCA5, and RDH12 dominated (71.9%), with CRB1 being the most prevalent (43.8%). Notably, four unique variants (LCA5 p.Glu415*, CRB1 p.Ser1049Aspfs*40 and p.Cys948Tyr, RDH12 p.Leu99Ile) constituted 62.7% of all disease alleles, indicating their importance for targeted analysis in Chilean patients. This study underscores a high degree of inbreeding in Chilean families affected by pediatric retinal blindness, resulting in a limited mutation repertoire. Furthermore, it complements and reinforces earlier reports, indicating the involvement of ADAM9 and RP1 as uncommon causes of LCA/EOSRD. These data hold significant value for patient and family counseling, pharmaceutical industry endeavors in personalized medicine, and future enrolment in gene therapy-based treatments, particularly with ongoing trials (LCA5) or advancing preclinical developments (CRB1 and RDH12).
Collapse
Affiliation(s)
- Rene Moya
- Department of Ophthalmology, Hospital del Salvador, Universidad de Chile, Santiago 7500922, Chile;
| | - Clémentine Angée
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| | - Sylvain Hanein
- Bioinformatic Platform, INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| | - Lucas Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| |
Collapse
|
2
|
Peng S, Li JJ, Song W, Li Y, Zeng L, Liang Q, Wen X, Shang H, Liu K, Peng P, Xue W, Zou B, Yang L, Liang J, Zhang Z, Guo S, Chen T, Li W, Jin M, Xing XB, Wan P, Liu C, Lin H, Wei H, Lee RWJ, Zhang F, Wei L. CRB1-associated retinal degeneration is dependent on bacterial translocation from the gut. Cell 2024; 187:1387-1401.e13. [PMID: 38412859 DOI: 10.1016/j.cell.2024.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
The Crumbs homolog 1 (CRB1) gene is associated with retinal degeneration, most commonly Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Here, we demonstrate that murine retinas bearing the Rd8 mutation of Crb1 are characterized by the presence of intralesional bacteria. While normal CRB1 expression was enriched in the apical junctional complexes of retinal pigment epithelium and colonic enterocytes, Crb1 mutations dampened its expression at both sites. Consequent impairment of the outer blood retinal barrier and colonic intestinal epithelial barrier in Rd8 mice led to the translocation of intestinal bacteria from the lower gastrointestinal (GI) tract to the retina, resulting in secondary retinal degeneration. Either the depletion of bacteria systemically or the reintroduction of normal Crb1 expression colonically rescued Rd8-mutation-associated retinal degeneration without reversing the retinal barrier breach. Our data elucidate the pathogenesis of Crb1-mutation-associated retinal degenerations and suggest that antimicrobial agents have the potential to treat this devastating blinding disease.
Collapse
Affiliation(s)
- Shanzhen Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wanying Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ye Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiaoxing Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaofeng Wen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Haitao Shang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Peiyao Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Juanran Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhihui Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Shixin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Tingting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenxuan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ming Jin
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing 10029, China
| | - Xiang-Bin Xing
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Richard W J Lee
- UCL Institute of Ophthalmology and Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; The First Affiliated Hospital, Department of Ophthalmology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
3
|
Zheng Y, Chen S. Transcriptional precision in photoreceptor development and diseases - Lessons from 25 years of CRX research. Front Cell Neurosci 2024; 18:1347436. [PMID: 38414750 PMCID: PMC10896975 DOI: 10.3389/fncel.2024.1347436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
The vertebrate retina is made up of six specialized neuronal cell types and one glia that are generated from a common retinal progenitor. The development of these distinct cell types is programmed by transcription factors that regulate the expression of specific genes essential for cell fate specification and differentiation. Because of the complex nature of transcriptional regulation, understanding transcription factor functions in development and disease is challenging. Research on the Cone-rod homeobox transcription factor CRX provides an excellent model to address these challenges. In this review, we reflect on 25 years of mammalian CRX research and discuss recent progress in elucidating the distinct pathogenic mechanisms of four CRX coding variant classes. We highlight how in vitro biochemical studies of CRX protein functions facilitate understanding CRX regulatory principles in animal models. We conclude with a brief discussion of the emerging systems biology approaches that could accelerate precision medicine for CRX-linked diseases and beyond.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Saint Louis, MO, United States
- Department of Ophthalmology and Visual Sciences, Saint Louis, MO, United States
| | - Shiming Chen
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Saint Louis, MO, United States
- Department of Ophthalmology and Visual Sciences, Saint Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
4
|
Boon N, Lu X, Andriessen CA, Orlovà M, Quinn PM, Boon CJ, Wijnholds J. Characterization and AAV-mediated CRB gene augmentation in human-derived CRB1KO and CRB1KOCRB2+/- retinal organoids. Mol Ther Methods Clin Dev 2023; 31:101128. [PMID: 37886604 PMCID: PMC10597801 DOI: 10.1016/j.omtm.2023.101128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
The majority of patients with mutations in CRB1 develop either early-onset retinitis pigmentosa as young children or Leber congenital amaurosis as newborns. The cause for the phenotypic variability in CRB1-associated retinopathies is unknown, but might be linked to differences in CRB1 and CRB2 protein levels in Müller glial cells and photoreceptor cells. Here, CRB1KO and CRB1KOCRB2+/- differentiation day 210 retinal organoids showed a significant decrease in the number of photoreceptor nuclei in a row and a significant increase in the number of photoreceptor cell nuclei above the outer limiting membrane. This phenotype with outer retinal abnormalities is similar to CRB1 patient-derived retinal organoids and Crb1 or Crb2 mutant mouse retinal disease models. The CRB1KO and CRB1KOCRB2+/- retinal organoids develop an additional inner retinal phenotype due to the complete loss of CRB1 from Müller glial cells, suggesting an essential role for CRB1 in proper localization of neuronal cell types. Adeno-associated viral (AAV) transduction was explored at early and late stages of organoid development. Moreover, AAV-mediated gene augmentation therapy with AAV.hCRB2 improved the outer retinal phenotype in CRB1KO retinal organoids. Altogether, these data provide essential information for future gene therapy approaches for patients with CRB1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Xuefei Lu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Charlotte A. Andriessen
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michaela Orlovà
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Camiel J.F. Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, 1000 AE Amsterdam, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
5
|
Rodilla C, Martín-Merida I, Blanco-Kelly F, Trujillo-Tiebas MJ, Avila-Fernandez A, Riveiro-Alvarez R, Del Pozo-Valero M, Perea-Romero I, Swafiri ST, Zurita O, Villaverde C, López MÁ, Romero R, Iancu IF, Núñez-Moreno G, Jiménez-Rolando B, Martin-Gutierrez MP, Carreño E, Minguez P, García-Sandoval B, Ayuso C, Corton M. Comprehensive Genotyping and Phenotyping Analysis of GUCY2D-Associated Rod- and Cone-Dominated Dystrophies. Am J Ophthalmol 2023; 254:87-103. [PMID: 37327959 DOI: 10.1016/j.ajo.2023.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE To describe the genetic and clinical spectrum of GUCY2D-associated retinopathies and to accurately establish their prevalence in a large cohort of patients. DESIGN Retrospective case series. METHODS Institutional study of 47 patients from 27 unrelated families with retinal dystrophies carrying disease-causing GUCY2D variants from the Fundación Jiménez Díaz hospital dataset of 8000 patients. Patients underwent ophthalmological examination and molecular testing by Sanger or exome sequencing approaches. Statistical and principal component analyses were performed to determine genotype-phenotype correlations. RESULTS Four clinically different associated phenotypes were identified: 66.7% of families with cone/cone-rod dystrophy, 22.2% with Leber congenital amaurosis, 7.4% with early-onset retinitis pigmentosa, and 3.7% with congenital night blindness. Twenty-three disease-causing GUCY2D variants were identified, including 6 novel variants. Biallelic variants accounted for 28% of patients, whereas most carried dominant alleles associated with cone/cone-rod dystrophy. The disease onset had statistically significant differences according to the functional variant effect. Patients carrying GUCY2D variants were projected into 3 subgroups by allelic combination, disease onset, and presence of nystagmus or night blindness. In contrast to patients with the most severe phenotype of Leber congenital amaurosis, 7 patients with biallelic GUCY2D had a later and milder rod form with night blindness in infancy as the first symptom. CONCLUSIONS This study represents the largest GUCY2D cohort in which 4 distinctly different phenotypes were identified, including rare intermediate presentations of rod-dominated retinopathies. We established that GUCY2D is linked to about 1% of approximately 3000 molecularly characterized families of our cohort. All of these findings are critical for defining cohorts for inclusion in future clinical trials.
Collapse
Affiliation(s)
- Cristina Rodilla
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Inmaculada Martín-Merida
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Fiona Blanco-Kelly
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - María José Trujillo-Tiebas
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Almudena Avila-Fernandez
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Rosa Riveiro-Alvarez
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Marta Del Pozo-Valero
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Irene Perea-Romero
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Saoud Tahsin Swafiri
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Olga Zurita
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Cristina Villaverde
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Miguel Ángel López
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Raquel Romero
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.); Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (R.R., I.F.I., G.N.-M., P.M.)
| | - Ionut Florin Iancu
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.); Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (R.R., I.F.I., G.N.-M., P.M.)
| | - Gonzalo Núñez-Moreno
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.); Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (R.R., I.F.I., G.N.-M., P.M.)
| | - Belén Jiménez-Rolando
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.J.-R., M.P.M.-G., E.C., B.G.-S.)
| | - María Pilar Martin-Gutierrez
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.J.-R., M.P.M.-G., E.C., B.G.-S.)
| | - Ester Carreño
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.J.-R., M.P.M.-G., E.C., B.G.-S.)
| | - Pablo Minguez
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.); Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (R.R., I.F.I., G.N.-M., P.M.)
| | - Blanca García-Sandoval
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.J.-R., M.P.M.-G., E.C., B.G.-S.)
| | - Carmen Ayuso
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.).
| | - Marta Corton
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.).
| |
Collapse
|
6
|
Malvasi M, Casillo L, Avogaro F, Abbouda A, Vingolo EM. Gene Therapy in Hereditary Retinal Dystrophies: The Usefulness of Diagnostic Tools in Candidate Patient Selections. Int J Mol Sci 2023; 24:13756. [PMID: 37762059 PMCID: PMC10531171 DOI: 10.3390/ijms241813756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Gene therapy actually seems to have promising results in the treatment of Leber Congenital Amaurosis and some different inherited retinal diseases (IRDs); the primary goal of this strategy is to change gene defects with a wild-type gene without defects in a DNA sequence to achieve partial recovery of the photoreceptor function and, consequently, partially restore lost retinal functions. This approach led to the introduction of a new drug (voretigene neparvovec-rzyl) for replacement of the RPE65 gene in patients affected by Leber Congenital Amaurosis (LCA); however, the treatment results are inconstant and with variable long-lasting effects due to a lack of correctly evaluating the anatomical and functional conditions of residual photoreceptors. These variabilities may also be related to host immunoreactive reactions towards the Adenovirus-associated vector. A broad spectrum of retinal dystrophies frequently generates doubt as to whether the disease or the patient is a good candidate for a successful gene treatment, because, very often, different diseases share similar genetic characteristics, causing an inconstant genotype/phenotype correlation between clinical characteristics also within the same family. For example, mutations on the RPE65 gene cause Leber Congenital Amaurosis (LCA) but also some forms of Retinitis Pigmentosa (RP), Bardet Biedl Syndrome (BBS), Congenital Stationary Night Blindness (CSNB) and Usher syndrome (USH), with a very wide spectrum of clinical manifestations. These confusing elements are due to the different pathways in which the product protein (retinoid isomer-hydrolase) is involved and, consequently, the overlapping metabolism in retinal function. Considering this point and the cost of the drug (over USD one hundred thousand), it would be mandatory to follow guidelines or algorithms to assess the best-fitting disease and candidate patients to maximize the output. Unfortunately, at the moment, there are no suggestions regarding who to treat with gene therapy. Moreover, gene therapy might be helpful in other forms of inherited retinal dystrophies, with more frequent incidence of the disease and better functional conditions (actually, gene therapy is proposed only for patients with poor vision, considering possible side effects due to the treatment procedures), in which this approach leads to better function and, hopefully, visual restoration. But, in this view, who might be a disease candidate or patient to undergo gene therapy, in relationship to the onset of clinical trials for several different forms of IRD? Further, what is the gold standard for tests able to correctly select the patient? Our work aims to evaluate clinical considerations on instrumental morphofunctional tests to assess candidate subjects for treatment and correlate them with clinical and genetic defect analysis that, often, is not correspondent. We try to define which parameters are an essential and indispensable part of the clinical rationale to select patients with IRDs for gene therapy. This review will describe a series of models used to characterize retinal morphology and function from tests, such as optical coherence tomography (OCT) and electrophysiological evaluation (ERG), and its evaluation as a primary outcome in clinical trials. A secondary aim is to propose an ancillary clinical classification of IRDs and their accessibility based on gene therapy's current state of the art. MATERIAL AND METHODS OCT, ERG, and visual field examinations were performed in different forms of IRDs, classified based on clinical and retinal conditions; compared to the gene defect classification, we utilized a diagnostic algorithm for the clinical classification based on morphofunctional information of the retina of patients, which could significantly improve diagnostic accuracy and, consequently, help the ophthalmologist to make a correct diagnosis to achieve optimal clinical results. These considerations are very helpful in selecting IRD patients who might respond to gene therapy with possible therapeutic success and filter out those in which treatment has a lower chance or no chance of positive results due to bad retinal conditions, avoiding time-consuming patient management with unsatisfactory results.
Collapse
Affiliation(s)
- Mariaelena Malvasi
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Lorenzo Casillo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Alessandro Abbouda
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| |
Collapse
|
7
|
Owen N, Toms M, Tian Y, Toualbi L, Richardson R, Young R, Tracey‐White D, Dhami P, Beck S, Moosajee M. Loss of the crumbs cell polarity complex disrupts epigenetic transcriptional control and cell cycle progression in the developing retina. J Pathol 2023; 259:441-454. [PMID: 36656098 PMCID: PMC10601974 DOI: 10.1002/path.6056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however, the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/- ) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic [reduced representation bisulphite sequencing (RRBS)] analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting the dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo, and transforming growth factor β (TGFβ) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified six key modules involving cell cycle control and disturbance of TGFβ, bone morphogenetic protein (BMP), Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function and confirming the epigenetic control of gene regulation in early retinal development, which points to a novel mechanism underlying CRB1-retinopathies. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Owen
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Maria Toms
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Yuan Tian
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Lyes Toualbi
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Rose Richardson
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | - Rodrigo Young
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | | | - Pawan Dhami
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Stephan Beck
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Mariya Moosajee
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
- Department of OphthalmologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
8
|
Han J, Joo K, Kim US, Woo SJ, Lee EK, Lee JY, Park TK, Kim SJ, Byeon SH, on behalf of the Korea RPE65-IRD Consensus Paper Committee. Voretigene Neparvovec for the Treatment of RPE65-associated Retinal Dystrophy: Consensus and Recommendations from the Korea RPE65-IRD Consensus Paper Committee. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:166-186. [PMID: 36950921 PMCID: PMC10151174 DOI: 10.3341/kjo.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Mutations in the RPE65 gene, associated with Leber congenital amaurosis, early-onset severe retinal dystrophy, and retinitis pigmentosa, gained growing attention since gene therapy for patients with RPE65-associated retinal dystrophy is available in clinical practice. RPE65 gene accounts for a very small proportion of patients with inherited retinal degeneration, especially Asian patients. Because RPE65-associated retinal dystrophy shares common clinical characteristics, such as early-onset severe nyctalopia, nystagmus, low vision, and progressive visual field constriction, with retinitis pigmentosa by other genetic mutations, appropriate genetic testing is essential to make a correct diagnosis. Also, fundus abnormalities can be minimal in early childhood, and the phenotype is highly variable depending on the type of mutations in RPE65-associated retinal dystrophy, which makes a diagnostic difficulty. The aim of this paper is to review the epidemiology of RPE65-associated retinal dystrophy, mutation spectrum, genetic diagnosis, clinical characteristics, and voretigene neparvovec, a gene therapy product for the treatment of RPE65-related retinal dystrophy.
Collapse
Affiliation(s)
- Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Ungsoo Samuel Kim
- Department of Ophthalmology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong,
Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon,
Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | | |
Collapse
|
9
|
Bellingrath JS, McClements ME, Shanks M, Clouston P, Fischer MD, MacLaren RE. Envisioning the development of a CRISPR-Cas mediated base editing strategy for a patient with a novel pathogenic CRB1 single nucleotide variant. Ophthalmic Genet 2022; 43:661-670. [PMID: 35538629 DOI: 10.1080/13816810.2022.2073599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Inherited retinal degeneration (IRD) associated with mutations in the Crumbs homolog 1 (CRB1) gene is associated with a severe, early-onset retinal degeneration for which no therapy currently exists. Base editing, with its capability to precisely catalyse permanent nucleobase conversion in a programmable manner, represents a novel therapeutic approach to targeting this autosomal recessive IRD, for which a gene supplementation is challenging due to the need to target three different retinal CRB1 isoforms. PURPOSE To report and classify a novel CRB1 variant and envision a possible therapeutic approach in form of base editing. METHODS Case report. RESULTS A 16-year-old male patient with a clinical diagnosis of early-onset retinitis pigmentosa (RP) and characteristic clinical findings of retinal thickening and coarse lamination was seen at the Oxford Eye Hospital. He was found to be compound heterozygous for two CRB1 variants: a novel pathogenic nonsense variant in exon 9, c.2885T>A (p.Leu962Ter), and a likely pathogenic missense change in exon 6, c.2056C>T (p.Arg686Cys). While a base editing strategy for c.2885T>A would encompass a CRISPR-pass mediated "read-through" of the premature stop codon, the resulting missense changes were predicted to be "possibly damaging" in in-silico analysis. On the other hand, the transversion missense change, c.2056C>T, is amenable to transition editing with an adenine base editor (ABE) fused to a SaCas9-KKH with a negligible chance of bystander edits due to an absence of additional Adenines (As) in the editing window. CONCLUSIONS This case report records a novel pathogenic nonsense variant in CRB1 and gives an example of thinking about a base editing strategy for a patient compound heterozygous for CRB1 variants.
Collapse
Affiliation(s)
- J-S Bellingrath
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Shanks
- Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - P Clouston
- Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M D Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - R E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
10
|
Sallum JMF, Kaur VP, Shaikh J, Banhazi J, Spera C, Aouadj C, Viriato D, Fischer MD. Epidemiology of Mutations in the 65-kDa Retinal Pigment Epithelium (RPE65) Gene-Mediated Inherited Retinal Dystrophies: A Systematic Literature Review. Adv Ther 2022; 39:1179-1198. [PMID: 35098484 PMCID: PMC8918161 DOI: 10.1007/s12325-021-02036-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inherited retinal dystrophies (IRDs) represent a genetically diverse group of progressive, visually debilitating diseases. Adult and paediatric patients with vision loss due to IRD caused by biallelic mutations in the 65-kDa retinal pigment epithelium (RPE65) gene are often clinically diagnosed as retinitis pigmentosa (RP), and Leber congenital amaurosis (LCA). This study aimed to understand the epidemiological landscape of RPE65 gene-mediated IRD through a systematic review of the literature, as the current evidence base for its epidemiology is very limited. METHODS Medline, Embase, and other databases were searched for articles on the epidemiology of RPE65 gene-mediated IRDs from inception until June 2021. Studies were included if they were original research articles reporting the epidemiology of RP and LCA and/or proportion of RPE65 gene mutations in these clinically diagnosed or molecularly confirmed IRDs patients. RESULTS A total of 100 studies with relevant data were included in this systematic review. The range for prevalence of LCA and RP in the literature was 1.20-2.37 and 11.09-26.43 per 100,000, respectively. The proportion of RPE65 mutations in clinically diagnosed patients with LCA was found to be between ~ 2-16% within the US and major European countries (France, Germany, Italy, Spain, and the UK). This range was also comparable to our findings in the Asian region for RPE65-LCA (1.26-16.67%). Similarly, for these European countries, RPE65-RP was estimated between 0.23 and 1.94%, and RPE65-IRD range was 1.2-14%. Further, in the Americas region, mutations in RPE65 were reported to cause 1-3% of RP and 0.8-3.7% of IRD cases. Lastly, the RPE65-IRD range was 4.81-8% in the Middle East region. CONCLUSIONS There are significant variations in reporting of RPE65 proportions within countries as well as regions. Generating robust epidemiological evidence on RPE65 gene-mediated IRDs would be fundamental to support rare disease awareness, timely therapeutic intervention, and public health decision-making.
Collapse
Affiliation(s)
- Juliana M F Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
| | | | | | | | | | | | | | - M Dominik Fischer
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
11
|
In Silico Analysis of Pathogenic CRB1 Single Nucleotide Variants and Their Amenability to Base Editing as a Potential Lead for Therapeutic Intervention. Genes (Basel) 2021; 12:genes12121908. [PMID: 34946856 PMCID: PMC8700976 DOI: 10.3390/genes12121908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Mutations in the Crumbs homolog 1 (CRB1) gene cause both autosomal recessive retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). Since three separate CRB1 isoforms are expressed at meaningful levels in the human retina, base editing shows promise as a therapeutic approach. This retrospective analysis aims to summarise the reported pathogenic CRB1 variants and investigate their amenability to treatment with currently available DNA base editors. Pathogenic single nucleotide variants (SNVs) were extracted from the Leiden open-source variation database (LOVD) and ClinVar database and coded by mutational consequence. They were then analyzed for their amenability to currently available DNA base editors and available PAM sites from a selection of different Cas proteins. Of a total of 1115 unique CRB1 variants, 69% were classified as pathogenic SNVs. Of these, 62% were amenable to currently available DNA BEs. Adenine base editors (ABEs) alone have the potential of targeting 34% of pathogenic SNVs; 19% were amenable to a CBE while GBEs could target an additional 9%. Of the pathogenic SNVs targetable with a DNA BE, 87% had a PAM site for a Cas protein. Of the 33 most frequently reported pathogenic SNVs, 70% were targetable with a base editor. The most common pathogenic variant was c.2843G>A, p.Cys948Arg, which is targetable with an ABE. Since 62% of pathogenic CRB1 SNVs are amenable to correction with a base editor and 87% of these mutations had a suitable PAM site, gene editing represents a promising therapeutic avenue for CRB1-associated retinal degenerations.
Collapse
|
12
|
Beryozkin A, Aweidah H, Carrero Valenzuela RD, Berman M, Iguzquiza O, Cremers FPM, Khan MI, Swaroop A, Amer R, Khateb S, Ben-Yosef T, Sharon D, Banin E. Retinal Degeneration Associated With RPGRIP1: A Review of Natural History, Mutation Spectrum, and Genotype-Phenotype Correlation in 228 Patients. Front Cell Dev Biol 2021; 9:746781. [PMID: 34722527 PMCID: PMC8551679 DOI: 10.3389/fcell.2021.746781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose:RPGRIP1 encodes a ciliary protein expressed in the photoreceptor connecting cilium. Mutations in this gene cause ∼5% of Leber congenital amaurosis (LCA) worldwide, but are also associated with cone–rod dystrophy (CRD) and retinitis pigmentosa (RP) phenotypes. Our purpose was to clinically characterize RPGRIP1 patients from our cohort, collect clinical data of additional RPGRIP1 patients reported previously in the literature, identify common clinical features, and seek genotype–phenotype correlations. Methods: Clinical data were collected from 16 patients of our cohort and 212 previously reported RPGRIP1 patients and included (when available) family history, best corrected visual acuity (BCVA), refraction, comprehensive ocular examination, optical coherence tomography (OCT) imaging, visual fields (VF), and full-field electroretinography (ffERG). Results: Out of 228 patients, the majority (197, 86%) were diagnosed with LCA, 18 (7%) with RP, and 13 (5%) with CRD. Age of onset was during early childhood (n = 133, average of 1.7 years). All patients but 6 had moderate hyperopia (n = 59, mean of 4.8D), and average BCVA was 0.06 Snellen (n = 124; only 10 patients had visual acuity [VA] > 0.10 Snellen). On funduscopy, narrowing of blood vessels was noted early in life. Most patients had mild bone spicule-like pigmentation starting in the midperiphery and later encroaching upon the posterior pole. OCT showed thinning of the outer nuclear layer (ONL), while cystoid changes and edema were relatively rare. VF were usually very constricted from early on. ffERG responses were non-detectable in the vast majority of cases. Most of the mutations are predicted to be null (363 alleles), and 93 alleles harbored missense mutations. Missense mutations were identified only in two regions: the RPGR-interacting domain and the C2 domains. Biallelic null mutations are mostly associated with a severe form of the disease, whereas biallelic missense mutations usually cause a milder disease (mostly CRD). Conclusion: Our results indicate that RPGRIP1 biallelic mutations usually cause severe retinal degeneration at an early age with a cone–rod pattern. However, most of the patients exhibit preservation of some (usually low) BCVA for a long period and can potentially benefit from gene therapy. Missense changes appear only in the conserved domains and are associated with a milder phenotype.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hamzah Aweidah
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Myriam Berman
- Ophthalmology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Oscar Iguzquiza
- Neurology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Radgonde Amer
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Ben-Yosef
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Talib M, Schooneveld MJ, Wijnholds J, Genderen MM, Schalij‐Delfos NE, Talsma HE, Florijn RJ, Brink JB, Cremers FP, Thiadens AA, Born LI, Hoyng CB, Meester‐Smoor MA, Bergen AA, Boon CJ. Defining inclusion criteria and endpoints for clinical trials: a prospective cross-sectional study in CRB1-associated retinal dystrophies. Acta Ophthalmol 2021; 99:e402-e414. [PMID: 33528094 PMCID: PMC8248330 DOI: 10.1111/aos.14597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
Purpose To investigate the retinal structure and function in patients with CRB1‐associated retinal dystrophies (RD) and to explore potential clinical endpoints. Methods In this prospective cross‐sectional study, 22 patients with genetically confirmed CRB1‐RD (aged 6–74 years), and who had a decimal best‐corrected visual acuity (BCVA) ≥ 0.05 at the last visit, were studied clinically with ETDRS BCVA, corneal topography, spectral‐domain optical coherence tomography (SD‐OCT), fundus autofluorescence, Goldmann visual field (VF), microperimetry, full‐field electroretinography (ERG) and full‐field stimulus testing (FST). Ten patients were from a genetic isolate (GI). Results Patients had retinitis pigmentosa (n = 19; GI and non‐GI), cone‐rod dystrophy (n = 2; GI) or macular dystrophy (n = 1; non‐GI). Median age at first symptom onset was 3 years (range 0.8–49). Median decimal BCVA in the better and worse‐seeing eye was 0.18 (range 0.05–0.83) and 0.08 (range light perception‐0.72), respectively. Spectral‐domain optical coherence tomography (SD‐OCT) showed cystoid maculopathy in 8 subjects; inner retinal thickening (n = 20), a well‐preserved (para)foveal outer retina (n = 7) or severe (para)foveal outer retinal atrophy (n = 14). All retinal layers were discernible in 13/21 patients (62%), with mild to moderate laminar disorganization in the others. Nanophthalmos was observed in 8 patients (36%). Full‐field stimulus testing (FST) provided a subjective outcome measure for retinal sensitivity in eyes with (nearly) extinguished ERG amplitudes. Conclusions Despite the generally severe course of CRB1‐RDs, symptom onset and central visual function are variable, even at advanced ages. Phenotypes may vary within the same family. Imaging and functional studies in a prospective longitudinal setting should clarify which endpoints may be most appropriate in a clinical trial.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
| | - Mary J. Schooneveld
- Department of Ophthalmology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Bartiméus Diagnostic Centre for complex visual disorders Zeist The Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
| | - Maria M. Genderen
- Bartiméus Diagnostic Centre for complex visual disorders Zeist The Netherlands
| | | | - Herman E. Talsma
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
- Bartiméus Diagnostic Centre for complex visual disorders Zeist The Netherlands
| | - Ralph J. Florijn
- Department of Clinical Genetics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Jacoline B. Brink
- Department of Clinical Genetics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Frans P.M. Cremers
- Department of Human Genetics and Donders Institute for Brain Cognition and Behaviour Radboud University Medical Center Nijmegen The Netherlands
| | | | | | - Carel B. Hoyng
- Department of Ophthalmology Radboud University Medical Center Nijmegen The Netherlands
| | | | - Arthur A. Bergen
- Department of Clinical Genetics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- The Netherlands Institute for Neuroscience (NIN‐KNAW) Amsterdam The Netherlands
| | - Camiel J.F. Boon
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
- Department of Ophthalmology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
14
|
Talib M, Van Cauwenbergh C, De Zaeytijd J, Van Wynsberghe D, De Baere E, Boon CJF, Leroy BP. CRB1-associated retinal dystrophies in a Belgian cohort: genetic characteristics and long-term clinical follow-up. Br J Ophthalmol 2021; 106:696-704. [PMID: 33579689 DOI: 10.1136/bjophthalmol-2020-316781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 11/04/2022]
Abstract
AIM To investigate the natural history in a Belgian cohort of CRB1-associated retinal dystrophies. METHODS An in-depth retrospective study focusing on visual function and retinal structure. RESULTS Forty patients from 35 families were included (ages: 2.5-80.1 years). In patients with a follow-up of >1 year (63%), the mean follow-up time was 12.0 years (range: 2.3-29.2 years). Based on the patient history, symptoms and/or electroretinography, 22 patients (55%) were diagnosed with retinitis pigmentosa (RP), 15 (38%) with Leber congenital amaurosis (LCA) and 3 (8%) with macular dystrophy (MD), the latter being associated with the p.(Ile167_Gly169del) mutation (in compound heterozygosity). MD later developed into a rod-cone dystrophy in one patient. Blindness at initial presentation was seen in the first decade of life in LCA, and in the fifth decade of life in RP. Eventually, 28 patients (70%) reached visual acuity-based blindness (<0.05). Visual field-based blindness (<10°) was documented in 17/25 patients (68%). Five patients (13%) developed Coats-like exudative vasculopathy. Intermediate/posterior uveitis was found in three patients (8%). Cystoid maculopathy was common in RP (9/21; 43%) and MD (3/3; 100%). Macular involvement, varying from retinal pigment epithelium alterations to complete outer retinal atrophy, was observed in all patients. CONCLUSION Bi-allelic CRB1 mutations result in a range of progressive retinal disorders, most of which are generalised, with characteristically early macular involvement. Visual function and retinal structure analysis indicates a window for potential intervention with gene therapy before the fourth decade of life in RP and the first decade in LCA.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bart Peter Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Centre for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
15
|
Zebrafish Crb1, Localizing Uniquely to the Cell Membranes around Cone Photoreceptor Axonemes, Alleviates Light Damage to Photoreceptors and Modulates Cones' Light Responsiveness. J Neurosci 2020; 40:7065-7079. [PMID: 32817065 DOI: 10.1523/jneurosci.0497-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022] Open
Abstract
The crumbs (crb) apical polarity genes are essential for the development and functions of epithelia. Adult zebrafish retinal neuroepithelium expresses three crb genes (crb1, crb2a, and crb2b); however, it is unknown whether and how Crb1 differs from other Crb proteins in expression, localization, and functions. Here, we show that, unlike zebrafish Crb2a and Crb2b as well as mammalian Crb1 and Crb2, zebrafish Crb1 does not localize to the subapical regions of photoreceptors and Müller glial cells; rather, it localizes to a small region of cone outer segments: the cell membranes surrounding the axonemes. Moreover, zebrafish Crb1 is not required for retinal morphogenesis and photoreceptor patterning. Interestingly, Crb1 promotes rod survival under strong white light irradiation in a previously unreported non--cell-autonomous fashion; in addition, Crb1 delays UV and blue cones' chromatin condensation caused by UV light irradiation. Finally, Crb1 plays a role in cones' responsiveness to light through an arrestin-translocation-independent mechanism. The localization of Crb1 and its functions do not differ between male and female fish. We conclude that zebrafish Crb1 has diverged from other vertebrate Crb proteins, representing a neofunctionalization in Crb biology during evolution.SIGNIFICANCE STATEMENT Apicobasal polarity of epithelia is an important property that underlies the morphogenesis and functions of epithelial tissues. Epithelial apicobasal polarity is controlled by many polarity genes, including the crb genes. In vertebrates, multiple crb genes have been identified, but the differences in their expression patterns and functions are not fully understood. Here, we report a novel subcellular localization of zebrafish Crb1 in retinal cone photoreceptors and evidence for its new functions in photoreceptor maintenance and light responsiveness. This study expands our understanding of the biology of the crb genes in epithelia, including retinal neuroepithelium.
Collapse
|
16
|
Boon N, Wijnholds J, Pellissier LP. Research Models and Gene Augmentation Therapy for CRB1 Retinal Dystrophies. Front Neurosci 2020; 14:860. [PMID: 32922261 PMCID: PMC7456964 DOI: 10.3389/fnins.2020.00860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Lucie P Pellissier
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements INRAE UMR 0085, CNRS UMR 7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
17
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
18
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
19
|
Leber congenital amaurosis: Current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res 2019; 189:107834. [PMID: 31639339 DOI: 10.1016/j.exer.2019.107834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Retinal dystrophies are one of the leading causes of pediatric congenital blindness. Leber's congenital amaurosis (LCA) encompasses one of the most severe forms of inherited retinal dystrophy responsible for early-onset childhood blindness in infancy. These are clinically characterized by nystagmus, amaurotic pupil response and markedly reduced or in most instances completely absent full-field electroretinogram. LCA exhibits immense genetic heterogeneity. With advances in next-generation genetic technologies, tremendous progress has been achieved over the last two decades in discovering genes and genetic defects leading to retinal dystrophies. Currently, 28 genes have been implicated in the pathogenesis of LCA and with initial reports of success in management with targeted gene therapy the disease has attracted a lot of research attention in the recent time. The review provides an update on genetic basis of LCA, scope for genetic testing and pharmacogenetic medicine in diagnosis and treatment of these diseases.
Collapse
|
20
|
Quinn PM, Alves CH, Klooster J, Wijnholds J. CRB2 in immature photoreceptors determines the superior-inferior symmetry of the developing retina to maintain retinal structure and function. Hum Mol Genet 2019; 27:3137-3153. [PMID: 29893966 DOI: 10.1093/hmg/ddy194] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
The mammalian apical-basal determinant Crumbs homolog-1 (CRB1) plays a crucial role in retinal structure and function by the maintenance of adherens junctions between photoreceptors and Müller glial cells. Patients with mutations in the CRB1 gene develop retinal dystrophies, including early-onset retinitis pigmentosa and Leber congenital amaurosis. Previously, we showed that Crb1 knockout mice developed a slow-progressing retinal phenotype at foci in the inferior retina, although specific ablation of Crb2 in immature photoreceptors leads to an early-onset phenotype throughout the retina. Here, we conditionally disrupted one or both alleles of Crb2 in immature photoreceptors, on a genetic background lacking Crb1, and studied the retinal dystrophies thereof. Our data showed that disruption of one allele of Crb2 in immature photoreceptors caused a substantial aggravation of the Crb1 phenotype in the entire inferior retina. The photoreceptor layer showed early-onset progressive thinning limited to the inferior retina, although the superior retina maintained intact. Surprisingly, disruption of both alleles of Crb2 in immature photoreceptors further aggravated the phenotype. Throughout the retina, photoreceptor synapses were disrupted and photoreceptor nuclei intermingled with nuclei of the inner nuclear layer. In the superior retina, the ganglion cell layer appeared thicker because of ectopic nuclei of photoreceptors. In conclusion, the data suggest that CRB2 is required to maintain retinal progenitor and photoreceptor cell adhesion and prevent photoreceptor ingression into the immature inner retina. We hypothesize, from these animal models, that decreased levels of CRB2 in immature photoreceptors adjust retinitis pigmentosa because of the loss of CRB1 into Leber congenital amaurosis phenotype.
Collapse
Affiliation(s)
- Peter M Quinn
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - C Henrique Alves
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Klooster
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
22
|
Sharon D, Wimberg H, Kinarty Y, Koch KW. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog Retin Eye Res 2018; 63:69-91. [DOI: 10.1016/j.preteyeres.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
|
23
|
Srikrupa N, Srilekha S, Sen P, Arokiasamy T, Meenakshi S, Bhende M, Kapur S, Soumittra N. Genetic profile and mutation spectrum of Leber congenital amaurosis in a larger Indian cohort using high throughput targeted re-sequencing. Clin Genet 2018; 93:329-339. [DOI: 10.1111/cge.13159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 01/02/2023]
Affiliation(s)
- N.N. Srikrupa
- SNONGC Department of Genetics and Molecular Biology; Vision Research Foundation; Chennai India
- PhD Scholar; Birla Institute of Technology & Science (BITS); Hyderabad India
| | - S. Srilekha
- SNONGC Department of Genetics and Molecular Biology; Vision Research Foundation; Chennai India
| | - P. Sen
- Department of Vitreo-Retinal Services; Medical Research Foundation; Chennai India
| | - T. Arokiasamy
- SNONGC Department of Genetics and Molecular Biology; Vision Research Foundation; Chennai India
| | - S. Meenakshi
- Department of Pediatric Ophthalmology; Medical Research Foundation; Chennai India
| | - M. Bhende
- Department of Vitreo-Retinal Services; Medical Research Foundation; Chennai India
| | - S. Kapur
- Department of Biological Sciences; Birla Institute of Technology & Science (BITS); Hyderabad India
| | - N. Soumittra
- SNONGC Department of Genetics and Molecular Biology; Vision Research Foundation; Chennai India
| |
Collapse
|
24
|
Thompson JA, De Roach JN, McLaren TL, Lamey TM. A Mini-Review: Leber Congenital Amaurosis: Identification of Disease-Causing Variants and Personalised Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:265-271. [DOI: 10.1007/978-3-319-75402-4_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Quinn PM, Pellissier LP, Wijnholds J. The CRB1 Complex: Following the Trail of Crumbs to a Feasible Gene Therapy Strategy. Front Neurosci 2017; 11:175. [PMID: 28424578 PMCID: PMC5380682 DOI: 10.3389/fnins.2017.00175] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/16/2017] [Indexed: 12/24/2022] Open
Abstract
Once considered science fiction, gene therapy is rapidly becoming scientific reality, targeting a growing number of the approximately 250 genes linked to hereditary retinal disorders such as retinitis pigmentosa and Leber's congenital amaurosis. Powerful new technologies have emerged, leading to the development of humanized models for testing and screening these therapies, bringing us closer to the goal of personalized medicine. These tools include the ability to differentiate human induced pluripotent stem cells (iPSCs) to create a “retina-in-a-dish” model and the self-formed ectodermal autonomous multi-zone, which can mimic whole eye development. In addition, highly specific gene-editing tools are now available, including the CRISPR/Cas9 system and the recently developed homology-independent targeted integration approach, which allows gene editing in non-dividing cells. Variants in the CRB1 gene have long been associated with retinopathies, and more recently the CRB2 gene has also been shown to have possible clinical relevance with respect to retinopathies. In this review, we discuss the role of the CRB protein complex in patients with retinopathy. In addition, we discuss new opportunities provided by stem cells and gene-editing tools, and we provide insight into how the retinal therapeutic pipeline can be improved. Finally, we discuss the current state of adeno-associated virus-mediated gene therapy and how it can be applied to treat retinopathies associated with mutations in CRB1.
Collapse
Affiliation(s)
- Peter M Quinn
- Department of Ophthalmology, Leiden University Medical CenterLeiden, Netherlands
| | - Lucie P Pellissier
- Unité Physiologie de la Reproduction et des Comportements, INRA UMR85, Centre National de la Recherche Scientifique UMR-7247, Institut Français du Cheval et de l'Équitation, Université François RabelaisNouzilly, France
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical CenterLeiden, Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdam, Netherlands
| |
Collapse
|
26
|
Talib M, van Schooneveld MJ, van Genderen MM, Wijnholds J, Florijn RJ, Ten Brink JB, Schalij-Delfos NE, Dagnelie G, Cremers FPM, Wolterbeek R, Fiocco M, Thiadens AA, Hoyng CB, Klaver CC, Bergen AA, Boon CJF. Genotypic and Phenotypic Characteristics of CRB1-Associated Retinal Dystrophies: A Long-Term Follow-up Study. Ophthalmology 2017; 124:884-895. [PMID: 28341475 DOI: 10.1016/j.ophtha.2017.01.047] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To describe the phenotype, long-term clinical course, clinical variability, and genotype of patients with CRB1-associated retinal dystrophies. DESIGN Retrospective cohort study. PARTICIPANTS Fifty-five patients with CRB1-associated retinal dystrophies from 16 families. METHODS A medical record review of 55 patients for age at onset, medical history, initial symptoms, best-corrected visual acuity, ophthalmoscopy, fundus photography, full-field electroretinography (ffERG), Goldmann visual fields (VFs), and spectral-domain optical coherence tomography. MAIN OUTCOME MEASURES Age at onset, visual acuity survival time, visual acuity decline rate, and electroretinography and imaging findings. RESULTS A retinitis pigmentosa (RP) phenotype was present in 50 patients, 34 of whom were from a Dutch genetic isolate (GI), and 5 patients had a Leber congenital amaurosis phenotype. The mean follow-up time was 15.4 years (range, 0-55.5 years). For the RP patients, the median age at symptom onset was 4.0 years. In the RP group, median ages for reaching low vision, severe visual impairment, and blindness were 18, 32, and 44 years, respectively, with a visual acuity decline rate of 0.03 logarithm of the minimum angle of resolution per year. The presence of a truncating mutation did not alter the annual decline rate significantly (P = 0.75). Asymmetry in visual acuity was found in 31% of patients. The annual VF decline rate was 5% in patients from the genetic isolate, which was significantly faster than in non-GI patients (P < 0.05). Full-field electroretinography responses were extinguished in 50% of patients, were pathologically attenuated without a documented rod or cone predominance in 30% of patients, and showed a rod-cone dysfunction pattern in 20% of RP patients. Cystoid fluid collections in the macula were found in 50% of RP patients. CONCLUSIONS Mutations in the CRB1 gene are associated with a spectrum of progressive retinal degeneration. Visual acuity survival analyses indicate that the optimal intervention window for subretinal gene therapy is within the first 2 to 3 decades of life.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maria M van Genderen
- Bartiméus, Diagnostic Centre for Complex Visual Disorders, Zeist, The Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ralph J Florijn
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Gislin Dagnelie
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Frans P M Cremers
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron Wolterbeek
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marta Fiocco
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands; Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Alberta A Thiadens
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arthur A Bergen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands; The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Unravelling the genetic basis of simplex Retinitis Pigmentosa cases. Sci Rep 2017; 7:41937. [PMID: 28157192 PMCID: PMC5291209 DOI: 10.1038/srep41937] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Retinitis Pigmentosa (RP) is the most common form of inherited retinal dystrophy (IRD) characterized ultimately by photoreceptors degeneration. Exhibiting great clinical and genetic heterogeneity, RP can be inherited as an autosomal dominant (ad), autosomal recessive (ar) and X-linked (xl) disorder. Although the relative prevalence of each form varies somewhat between populations, a major proportion (41% in Spain) of patients represent simplex cases (sRP) in which the mode of inheritance is unknown. Molecular genetic diagnostic is crucial, but also challenging, for sRP patients because any of the 81 RP genes identified to date may be causative. Herein, we report the use of a customized targeted gene panel consisting of 68 IRD genes for the molecular characterization of 106 sRP cases. The diagnostic rate was 62.26% (66 of 106) with a proportion of clinical refinements of 30.3%, demonstrating the high efficiency of this genomic approach even for clinically ambiguous cases. The high number of patients diagnosed here has allowed us to study in detail the genetic basis of the sRP. The solved sRP cohort is composed of 62.1% of arRP cases, 24.2% of adRP and 13.6% of xlRP, which implies consequences for counselling of patients and families.
Collapse
|
28
|
LONG-TERM FOLLOW-UP OF PATIENTS WITH RETINITIS PIGMENTOSA TYPE 12 CAUSED BY CRB1 MUTATIONS. Retina 2017; 37:161-172. [PMID: 27380427 DOI: 10.1097/iae.0000000000001127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Yang Y, Yang Y, Huang L, Zhai Y, Li J, Jiang Z, Gong B, Fang H, Kim R, Yang Z, Sundaresan P, Zhu X, Zhou Y. Whole exome sequencing identified novel CRB1 mutations in Chinese and Indian populations with autosomal recessive retinitis pigmentosa. Sci Rep 2016; 6:33681. [PMID: 27670293 PMCID: PMC5037368 DOI: 10.1038/srep33681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/31/2016] [Indexed: 01/02/2023] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of inherited blindness characterized by progressive degeneration of the retinal photoreceptor cells. This study aims to identify genetic mutations in a Chinese family RP-2236, an Indian family RP-IC-90 and 100 sporadic Indian individuals with autosomal recessive RP (arRP). Whole exome sequencing was performed on the index patients of RP-2236, RP-IC-90 and all of the 100 sporadic Indian patients. Direct Sanger sequencing was used to validate the mutations identified. Four novel mutations and one reported mutation in the crumbs homolog 1 (CRB1) gene, which has been known to cause severe retinal dystrophies, were identified. A novel homozygous splicing mutation c.2129-1G>C was found in the three patients In family RP-2236. A homozygous point mutation p.R664C was found in RP-IC-90. A novel homozygous mutation p.G1310C was identified in patient I-44, while novel compound heterozygous mutations p.N629D and p.A593T were found in patient I-7. All mutations described above were not present in the 1000 normal controls. In conclusion, we identified four novel mutations in CRB1 in a cohort of RP patients from the Chinese and Indian populations. Our data enlarges the CRB1 mutation spectrums and may provide new target loci for RP diagnose and treatment.
Collapse
Affiliation(s)
- Yin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yaru Zhai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Hao Fang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ramasamy Kim
- Retina-vitreous services, Aravind Eye Hospital, Madurai, Tamilnadu, India
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamilnadu, India
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Slavotinek AM. The Family of Crumbs Genes and Human Disease. Mol Syndromol 2016; 7:274-281. [PMID: 27867342 DOI: 10.1159/000448109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
The family of vertebrate Crumbs proteins, homologous to Drosophila Crumbs (Crb), share large extracellular domains with epidermal growth factor-like repeats and laminin-globular domains, a single transmembrane domain, and a short intracellular C-terminus containing a single membrane proximal 4.1/ezrin/radixin/moesin-binding domain and PSD-95/Discs large/ZO-1-binding motifs. There are 3 Crb genes in humans - Crumbs homolog-1 (CRB1), Crumbs homolog-2 (CRB2), and Crumbs homolog-3 (CRB3). Bilallelic loss-of-function mutations in CRB1 cause visual impairment, with Leber's congenital amaurosis and retinitis pigmentosa, whereas CRB2 mutations are associated with raised maternal serum and amniotic fluid alpha feto-protein levels, ventriculomegaly/hydrocephalus, and renal disease, ranging from focal segmental glomerulosclerosis to congenital Finnish nephrosis. CRB3 has not yet been associated with human disease. In this review, we summarize the phenotypic findings associated with deleterious sequence variants in CRB1 and CRB2. We discuss the mutational spectrum, animal models of loss of function for both genes and speculate on the likely mechanisms of disease.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, UCSF School of Medicine, University of California San Francisco, San Francisco, Calif., USA
| |
Collapse
|
31
|
Xu Y, Xiao X, Li S, Jia X, Xin W, Wang P, Sun W, Huang L, Guo X, Zhang Q. Molecular genetics of Leber congenital amaurosis in Chinese: New data from 66 probands and mutation overview of 159 probands. Exp Eye Res 2016; 149:93-99. [PMID: 27375279 DOI: 10.1016/j.exer.2016.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 04/28/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wei Xin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
32
|
Chebil A, Falfoul Y, Habibi I, Munier F, Schorderet D, El Matri L. Corrélations phénotype–génotype de la rétinopathie pigmentaire non syndromique : à propos de dix familles tunisiennes. J Fr Ophtalmol 2016; 39:277-86. [DOI: 10.1016/j.jfo.2015.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 08/28/2015] [Indexed: 11/29/2022]
|
33
|
Ahonen SJ, Arumilli M, Seppälä E, Hakosalo O, Kaukonen MK, Komáromy AM, Lohi H. Increased expression of MERTK is associated with a unique form of canine retinopathy. PLoS One 2014; 9:e114552. [PMID: 25517981 PMCID: PMC4269413 DOI: 10.1371/journal.pone.0114552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
Progressive retinal degenerations are among the most common causes of blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) resembles human retinitis pigmentosa (RP) and is typically characterized by a progressive loss of rod photoreceptors followed by a loss of cone function. The disease gradually progress from the loss of night and day vision to a complete blindness. We have recently described a unique form of retinopathy characterized by the multifocal gray/brown discoloration and thinning of the retina in the Swedish Vallhund (SV) breed. We aimed to identify the genetic cause by performing a genome wide association analysis in a cohort of 18 affected and 10 healthy control dogs using Illumina's canine 22k SNP array. We mapped the disease to canine chromosome 17 (p = 7.7×10−5) and found a 6.1 Mb shared homozygous region in the affected dogs. A combined analysis of the GWAS and replication data with additional 60 dogs confirmed the association (p = 4.3×10−8, OR = 11.2 for homozygosity). A targeted resequencing of the entire associated region in four cases and four controls with opposite risk haplotypes identified several variants in the coding region of functional candidate genes, such as a known retinopathy gene, MERTK. However, none of the identified coding variants followed a compelling case- or breed-specific segregation pattern. The expression analyses of four candidate genes in the region, MERTK, NPHP1, ANAPC1 and KRCC1, revealed specific upregulation of MERTK in the retina of the affected dogs. Collectively, these results indicate that the retinopathy is associated with overexpression of MERTK, however further investigation is needed to discover the regulatory mutation for the better understanding of the disease pathogenesis. Our study establishes a novel gain-of-function model for the MERTK biology and provides a therapy model for retinopathy MERTK inhibitors. Meanwhile, a marker-based genetic counseling can be developed to revise breeding programs.
Collapse
Affiliation(s)
- Saija J. Ahonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Meharji Arumilli
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Eija Seppälä
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Osmo Hakosalo
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maria K. Kaukonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- * E-mail:
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To discuss the risks, benefits and value of genetic testing for ocular genetic disease. RECENT FINDINGS Testing for ocular genetics diseases is becoming more available and successful gene therapy is being reported. Clinicians must prepare for this trend by considering diagnostic genetic testing for their patients. SUMMARY As advances continually occur in genetic testing for ocular genetic disorders, clinicians must develop an understanding of the potential risks and benefits for their patients.
Collapse
|
35
|
Ku CA, Chiodo VA, Boye SL, Hayes A, Goldberg AFX, Hauswirth WW, Ramamurthy V. Viral-mediated vision rescue of a novel AIPL1 cone-rod dystrophy model. Hum Mol Genet 2014; 24:670-84. [PMID: 25274777 DOI: 10.1093/hmg/ddu487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Defects in aryl hydrocarbon receptor interacting protein-like1 (AIPL1) are associated with blinding diseases with a wide range of severity in humans. We examined the mechanism behind autosomal dominant cone-rod dystrophy (adCORD) caused by 12 base pair (bp) deletion at proline 351 of hAIPL1 (P351Δ12) mutation in the primate-specific region of human AIPL1. Mutant P351Δ12 human isoform, aryl hydrocarbon receptor interacting protein-like 1 (hAIPL1) mice demonstrated a CORD phenotype with early defects in cone-mediated vision and subsequent photoreceptor degeneration. A dominant CORD phenotype was observed in double transgenic animals expressing both mutant P351Δ12 and normal hAIPL1, but not with co-expression of P351Δ12 hAIPL1 and the mouse isoform, aryl hydrocarbon receptor interacting protein-like 1 (mAipl1). Despite a dominant effect of the mutation, we successfully rescued cone-mediated vision in P351Δ12 hAIPL1 mice following high over-expression of WT hAIPL1 by adeno-associated virus-mediated gene delivery, which was stable up to 6 months after treatment. Our transgenic P351Δ12 hAIPL1 mouse offers a novel model of AIPL1-CORD, with distinct defects from both the Aipl1-null mouse mimicking LCA and the Aipl1-hypomorphic mice mimicking a slow progressing RP.
Collapse
Affiliation(s)
- Cristy A Ku
- Center for Neuroscience Department of Ophthalmology and
| | - Vince A Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA and
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA and
| | - Abigail Hayes
- Department of Ophthalmology and Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | | | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA and
| | - Visvanathan Ramamurthy
- Center for Neuroscience Department of Ophthalmology and Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
36
|
Tran NM, Chen S. Mechanisms of blindness: animal models provide insight into distinct CRX-associated retinopathies. Dev Dyn 2014; 243:1153-66. [PMID: 24888636 DOI: 10.1002/dvdy.24151] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/24/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The homeodomain transcription factor CRX is a crucial regulator of mammalian photoreceptor gene expression. Mutations in the human CRX gene are associated with dominant inherited retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD), and Leber Congenital Amaurosis (LCA), of varying severity. In vitro and in vivo assessment of mutant CRX proteins have revealed pathogenic mechanisms for several mutations, but no comprehensive mutation-disease correlation has yet been reported. RESULTS Here we describe four different classes of disease-causing CRX mutations, characterized by mutation type, pathogenetic mechanism, and the molecular activity of the mutant protein: (1) hypomorphic missense mutations with reduced DNA binding, (2) antimorphic missense mutations with variable DNA binding, (3) antimorphic frameshift/nonsense mutations with intact DNA binding, and (4) antimorphic frameshift mutations with reduced DNA binding. Mammalian models representing three of these classes have been characterized. CONCLUSIONS Models carrying Class I mutations display a mild dominant retinal phenotype and recessive LCA, while models carrying Class III and IV mutations display characteristically distinct dominant LCA phenotypes. These animal models also reveal unexpected pathogenic mechanisms underlying CRX-associated retinopathies. The complexity of genotype-phenotype correlation for CRX-associated diseases highlights the value of developing comprehensive "true-to-disease" animal models for understanding pathologic mechanisms and testing novel therapeutic approaches.
Collapse
Affiliation(s)
- Nicholas M Tran
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri
| | | |
Collapse
|
37
|
Tsang SH, Burke T, Oll M, Yzer S, Lee W, Xie YA, Allikmets R. Whole exome sequencing identifies CRB1 defect in an unusual maculopathy phenotype. Ophthalmology 2014; 121:1773-82. [PMID: 24811962 DOI: 10.1016/j.ophtha.2014.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To report a new phenotype caused by mutations in the CRB1 gene in a family with 2 affected siblings. DESIGN Molecular genetics and observational case studies. PARTICIPANTS Two affected siblings and 3 unaffected family members. METHODS Each subject received a complete ophthalmic examination together with color fundus photography, fundus autofluorescence (FAF), and spectral-domain optical coherence tomography (SD-OCT). Microperimetry 1 (MP-1) mapping and electroretinogram (ERG) analysis were performed on the proband. Screening for disease-causing mutations was performed by whole exome sequencing in 3 family members followed by segregation analyses in the entire family. MAIN OUTCOME MEASURES Appearance of the macula as examined by clinical examination, fundus photography, FAF imaging, SD-OCT, and visual function by MP-1 and ERG. RESULTS The proband and her affected brother exhibited unusual, previously unreported, findings of a macular dystrophy with relative sparing of the retinal periphery beyond the vascular arcades. The FAF imaging showed severely affected areas of hypoautofluorescence that extended nasally beyond the optic disc in both eyes. A central macular patch of retinal pigment epithelium (RPE) sparing was evident in both eyes on FAF, whereas photoreceptor sparing was documented in the right eye only using SD-OCT. The affected brother presented with irregular patterns of autofluorescence in both eyes characterized by concentric rings of alternating hyper- and hypoautofluorescence, and foveal sparing of photoreceptors and RPE, as seen on SD-OCT, bilaterally. After negative results in screening for mutations in candidate genes including ABCA4 and PRPH2, DNA from 3 members of the family, including both affected siblings and their mother, was screened by whole exome sequencing resulting in identification of 2 CRB1 missense mutations, c.C3991T:p.R1331C and c.C4142T:p.P1381L, which segregated with the disease in the family. Of the 2, the p.R1331C CRB1 mutation has not been described before and the p.P1381L variant has been described in 1 patient with Leber congenital amaurosis. CONCLUSIONS This report illustrates a novel presentation of a macular dystrophy caused by CRB1 mutations. Both affected siblings exhibited a relatively well-developed retinal structure and preservation of generalized retinal function. An unusual 5-year progression of macular atrophy alone was observed that has not been described in any other CRB1-associated phenotypes.
Collapse
Affiliation(s)
- Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York; Department of Pathology & Cell Biology, Columbia University, New York, New York
| | - Tomas Burke
- Department of Ophthalmology, Columbia University, New York, New York; Department of Ophthalmology, Stoke Mandeville Hospital, Aylesbury, Buckinghamshire, United Kingdom
| | - Maris Oll
- Department of Ophthalmology, Columbia University, New York, New York; University Eye Clinic, Tartu University, Tartu, Estonia
| | - Suzanne Yzer
- Department of Ophthalmology, Columbia University, New York, New York; Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York
| | - Yajing Angela Xie
- Department of Ophthalmology, Columbia University, New York, New York
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York; Department of Pathology & Cell Biology, Columbia University, New York, New York.
| |
Collapse
|
38
|
Abstract
Mutations in the CRB1 gene cause severe retinal degenerations, which may present as Leber congenital amaurosis, early onset retinal dystrophy, retinitis pigmentosa, or cone-rod dystrophy. Some clinical features should alert the ophthalmologist to the possibility of CRB1 disease. These features are nummular pigmentation of the retina, atrophic macula, retinal degeneration associated with Coats disease, and a unique form of retinitis pigmentosa named para-arteriolar preservation of the retinal pigment epithelium (PPRPE). Retinal degenerations associated with nanophthalmos and hyperopia, or with keratoconus, can serve as further clinical cues to mutations in CRB1. Despite this, no clear genotype-phenotype relationship has been established in CRB1 disease. In CRB1-disease, as in other inherited retinal degenerations (IRDs), it is essential to diagnose the specific disease-causing gene for the disease as genetic therapy has progressed considerably in the last few years and might be applicable.
Collapse
Affiliation(s)
- Miriam Ehrenberg
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | | | | | | |
Collapse
|
39
|
Guo Y, Prokudin I, Yu C, Liang J, Xie Y, Flaherty M, Tian L, Crofts S, Wang F, Snyder J, Donaldson C, Abdel-Magid N, Vazquez L, Keating B, Hakonarson H, Wang J, Jamieson RV. Advantage of Whole Exome Sequencing over Allele-Specific and Targeted Segment Sequencing in Detection of Novel TULP1 Mutation in Leber Congenital Amaurosis. Ophthalmic Genet 2014; 36:333-8. [PMID: 24547928 DOI: 10.3109/13816810.2014.886269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) is a severe form of retinal dystrophy with marked underlying genetic heterogeneity. Until recently, allele-specific assays and Sanger sequencing of targeted segments were the only available approaches for attempted genetic diagnosis in this condition. A broader next-generation sequencing (NGS) strategy, such as whole exome sequencing, provides an improved molecular genetic diagnostic capacity for patients with these conditions. MATERIALS AND METHODS In a child with LCA, an allele-specific assay analyzing 135 known LCA-causing variations, followed by targeted segment sequencing of 61 regions in 14 causative genes was performed. Subsequently, exome sequencing was undertaken in the proband, unaffected consanguineous parents and two unaffected siblings. Bioinformatic analysis used two independent pipelines, BWA-GATK and SOAP, followed by Annovar and SnpEff to annotate the variants. RESULTS No disease-causing variants were found using the allele-specific or targeted segment Sanger sequencing assays. Analysis of variants in the exome sequence data revealed a novel homozygous nonsense mutation (c.1081C > T, p.Arg361*) in TULP1, a gene with roles in photoreceptor function where mutations were previously shown to cause LCA and retinitis pigmentosa. The identified homozygous variant was the top candidate using both bioinformatic pipelines. CONCLUSIONS This study highlights the value of the broad sequencing strategy of exome sequencing for disease gene identification in LCA, over other existing methods. NGS is particularly beneficial in LCA where there are a large number of causative disease genes, few distinguishing clinical features for precise candidate disease gene selection, and few mutation hotspots in any of the known disease genes.
Collapse
Affiliation(s)
- Yiran Guo
- a Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Ivan Prokudin
- b Eye and Developmental Genetics Research Group, Western Sydney Genetics Program, The Children's Hospital at Westmead , Sydney , NSW , Australia .,c Children's Medical Research Institute , Westmead , Sydney , NSW , Australia
| | - Cong Yu
- d College of Life Sciences, Sichuan University, Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology , Chengdu , PR China .,e BGI-Shenzhen , Shenzhen , China
| | | | - Yi Xie
- e BGI-Shenzhen , Shenzhen , China
| | - Maree Flaherty
- f Department of Ophthalmology , The Children's Hospital at Westmead , Sydney , NSW , Australia
| | - Lifeng Tian
- a Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Stephanie Crofts
- f Department of Ophthalmology , The Children's Hospital at Westmead , Sydney , NSW , Australia
| | - Fengxiang Wang
- a Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - James Snyder
- a Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Craig Donaldson
- f Department of Ophthalmology , The Children's Hospital at Westmead , Sydney , NSW , Australia
| | - Nada Abdel-Magid
- a Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Lyam Vazquez
- a Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Brendan Keating
- a Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA .,g Division of Human Genetics , The Children's Hospital of Philadelphia , Philadelphia , PA , USA .,h Department of Pediatrics , The Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Hakon Hakonarson
- a Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA .,g Division of Human Genetics , The Children's Hospital of Philadelphia , Philadelphia , PA , USA .,h Department of Pediatrics , The Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Jun Wang
- e BGI-Shenzhen , Shenzhen , China .,i Department of Biology , University of Copenhagen , Copenhagen , Denmark .,j King Abdulaziz University , Jeddah , Saudi Arabia
| | - Robyn V Jamieson
- b Eye and Developmental Genetics Research Group, Western Sydney Genetics Program, The Children's Hospital at Westmead , Sydney , NSW , Australia .,c Children's Medical Research Institute , Westmead , Sydney , NSW , Australia .,k Discipline of Ophthalmology & Save Sight Institute, University of Sydney , Sydney , Australia , and.,l Disciplines of Paediatrics and Child Health & Genetic Medicine, University of Sydney , Sydney , NSW , Australia
| |
Collapse
|
40
|
|
41
|
Sutherland JE, Day MA. Advantages and disadvantages of molecular testing in ophthalmology. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.11.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Shukla R, Kannabiran C, Jalali S. Genetics of Leber congenital amaurosis: an update. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Schorderet DF, Bernasconi M, Tiab L, Favez T, Escher P. IROme, a new high-throughput molecular tool for the diagnosis of inherited retinal dystrophies-a price comparison with Sanger sequencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:171-6. [PMID: 24664695 DOI: 10.1007/978-1-4614-3209-8_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular diagnosis of retinal dystrophies (RD) is difficult because of genetic and clinical heterogeneity. Previously, the molecular screening of genes was done one by one, sometimes in a scheme based on the frequency of sequence variants and the number of exons/length of the candidate genes. Payment for these procedures was complicated and the sequential billing of several genes created endless paperwork. We therefore evaluated the costs of generating and sequencing a hybridization-based DNA library enriched for the 64 most frequently mutated genes in RD, called IROme, and compared them to the costs of amplifying and sequencing these genes by the Sanger method. The production cost generated by the high-throughput (HT) sequencing of IROme was established at CHF 2,875.75 per case. Sanger sequencing of the same exons cost CHF 69,399.02. Turnaround time of the analysis was 3 days for IROme. For Sanger sequencing, it could only be estimated, as we never sequenced all 64 genes in one single patient. Sale cost for IROme calculated on the basis of the sale cost of one exon by Sanger sequencing is CHF 8,445.88, which corresponds to the sale price of 40 exons. In conclusion, IROme is cheaper and faster than Sanger sequencing and therefore represents a sound approach for the diagnosis of RD, both scientifically and economically. As a drop in the costs of HT sequencing is anticipated, target resequencing might become the new gold standard in the molecular diagnosis of RD.
Collapse
Affiliation(s)
- Daniel F Schorderet
- IRO, Institute for Research in Ophthalmology, 64 Avenue du Grand-Champsec, 1950, Sion, Switzerland,
| | | | | | | | | |
Collapse
|
44
|
Yang L, Yin X, Wu L, Chen N, Zhang H, Li G, Ma Z. Targeted exome capture and sequencing identifies novel PRPF31 mutations in autosomal dominant retinitis pigmentosa in Chinese families. BMJ Open 2013; 3:e004030. [PMID: 24202059 PMCID: PMC3822309 DOI: 10.1136/bmjopen-2013-004030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES To identify disease-causing mutations in two Chinese families with autosomal dominant retinitis pigmentosa (adRP). DESIGN Prospective analysis. PATIENTS Two Chinese adRP families underwent genetic diagnosis. A specific hereditary eye disease enrichment panel (HEDEP) based on targeted exome capture technology was used to collect the protein coding regions of targeted 371 hereditary eye disease genes; high throughput sequencing was done with the Illumina HiSeq 2000 platform. The identified variants were confirmed with Sanger sequencing. SETTING All experiments were performed in a large laboratory specialising in genetic studies in the Department of Ophthalmology, Peking University Third Hospital. RESULTS Two novel mutations, including one splice site mutation (Int10 c.1074-2 A>T; p.Y359SfsX29) and one insertion (c.824_825insA; p.Y275X) of PRPF31 were identified in the two families. The two mutations segregated with the disease phenotype in their respective families. CONCLUSIONS Our findings broaden the spectrum of PRPF31 mutations causing adRP and the phenotypic spectrum of the disease in Chinese patients. The HEDEP based on targeted exome capture technology is an efficient method for molecular diagnosis in adRP patients.
Collapse
Affiliation(s)
- Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Xiaobei Yin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
| | - Lemeng Wu
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Ningning Chen
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Huirong Zhang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
| | - Zhizhong Ma
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| |
Collapse
|
45
|
Verma A, Perumalsamy V, Shetty S, Kulm M, Sundaresan P. Mutational screening of LCA genes emphasizing RPE65 in South Indian cohort of patients. PLoS One 2013; 8:e73172. [PMID: 24066033 PMCID: PMC3774716 DOI: 10.1371/journal.pone.0073172] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background Leber congenital amaurosis (LCA) is the most severe form of inherited retinal visual impairment in children. So far, mutations in more than 20 genes have been known to cause LCA and among them, RPE65 is a suitable candidate for gene therapy. The mutational screenings of RPE65 and other LCA genes are requisite in support of emerging gene specific therapy for LCA. Therefore, we have carried out a comprehensive LCA genes screening using a combined approach of direct sequencing and DNA microarray based Asper chip analysis. Methodology/Principal Findings Thirty clinically diagnosed index LCA cases from Southern India were screened for coding and flanking intronic regions of RPE65 through direct sequencing. Among thirty, 25 cases excluded from RPE65 mutations were subjected to Asper chip analysis, testing 784 known pathogenic variations in 15 major LCA genes. In RPE65 screening, four different pathogenic variations including two novel (c.361insT & c.939T>A) and two known (c.394G>A & c.361delT) mutations were identified in five index cases. In the chip analysis, seven known pathogenic mutations were identified in six index cases, involving genes GUCY2D, RPGRIP1, AIPL1, CRX and IQCB1. Overall, 11 out of 30 LCA cases (36.6%) revealed pathogenic variations with the involvement of RPE65 (16.6%), GUCY2D (10%), RPGRIP1 (3.3%), AIPL1 (3.3%) and CRX & IQCB1 (3.3%). Conclusions/Significance Our study suggests that such combined screening approach is productive and cost-effective for mutation detection and can be applied in Indian LCA cohort for molecular diagnosis and genetic counselling.
Collapse
Affiliation(s)
- Anshuman Verma
- Department of Genetics, Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | | - Shashikant Shetty
- Pediatric Eye Clinic, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | | - Periasamy Sundaresan
- Department of Genetics, Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
46
|
Corton M, Nishiguchi KM, Avila-Fernández A, Nikopoulos K, Riveiro-Alvarez R, Tatu SD, Ayuso C, Rivolta C. Exome sequencing of index patients with retinal dystrophies as a tool for molecular diagnosis. PLoS One 2013; 8:e65574. [PMID: 23940504 PMCID: PMC3683009 DOI: 10.1371/journal.pone.0065574] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Retinal dystrophies (RD) are a group of hereditary diseases that lead to debilitating visual impairment and are usually transmitted as a Mendelian trait. Pathogenic mutations can occur in any of the 100 or more disease genes identified so far, making molecular diagnosis a rather laborious process. In this work we explored the use of whole exome sequencing (WES) as a tool for identification of RD mutations, with the aim of assessing its applicability in a diagnostic context. METHODOLOGY/PRINCIPAL FINDINGS We ascertained 12 Spanish families with seemingly recessive RD. All of the index patients underwent mutational pre-screening by chip-based sequence hybridization and resulted to be negative for known RD mutations. With the exception of one pedigree, to simulate a standard diagnostic scenario we processed by WES only the DNA from the index patient of each family, followed by in silico data analysis. We successfully identified causative mutations in patients from 10 different families, which were later verified by Sanger sequencing and co-segregation analyses. Specifically, we detected pathogenic DNA variants (∼50% novel mutations) in the genes RP1, USH2A, CNGB3, NMNAT1, CHM, and ABCA4, responsible for retinitis pigmentosa, Usher syndrome, achromatopsia, Leber congenital amaurosis, choroideremia, or recessive Stargardt/cone-rod dystrophy cases. CONCLUSIONS/SIGNIFICANCE Despite the absence of genetic information from other family members that could help excluding nonpathogenic DNA variants, we could detect causative mutations in a variety of genes known to represent a wide spectrum of clinical phenotypes in 83% of the patients analyzed. Considering the constant drop in costs for human exome sequencing and the relative simplicity of the analyses made, this technique could represent a valuable tool for molecular diagnostics or genetic research, even in cases for which no genotypes from family members are available.
Collapse
Affiliation(s)
- Marta Corton
- Department of Genetics, IIS- Fundacion Jimenez Diaz, CIBERER, Madrid, Spain
| | - Koji M. Nishiguchi
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | - Sorina D. Tatu
- Department of Genetics, IIS- Fundacion Jimenez Diaz, CIBERER, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, IIS- Fundacion Jimenez Diaz, CIBERER, Madrid, Spain
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Corton M, Tatu SD, Avila-Fernandez A, Vallespín E, Tapias I, Cantalapiedra D, Blanco-Kelly F, Riveiro-Alvarez R, Bernal S, García-Sandoval B, Baiget M, Ayuso C. High frequency of CRB1 mutations as cause of Early-Onset Retinal Dystrophies in the Spanish population. Orphanet J Rare Dis 2013; 8:20. [PMID: 23379534 PMCID: PMC3637806 DOI: 10.1186/1750-1172-8-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 01/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CRB1 mutations are reported as cause of severe congenital and early-onset retinal dystrophies (EORD) with different phenotypic manifestations, including Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) and cone-rod dystrophies. Comprehensive mutational scanning of the whole gene has been only performed in few cohorts, mainly in LCA patients. Here, we aimed investigating the real prevalence of CRB1 mutations in the Spanish population by extensive screening of CRB1 mutations in a large cohort of LCA and EORP cases. METHODS This report integrates data from previous studies on CRB1 defects in our Spanish cohort of LCA and early-onset RP (EORP) with new findings from a comprehensive mutational screening of the whole gene. The molecular tools used include mutation genotyping arrays, whole-genome homozygosity mapping, an optimized high-resolution melting (HRM) analysis and Sanger sequencing. RESULTS A large clinically well-characterized cohort of 404 Spanish cases was studied, 114 of which suffered from LCA and 290 from EORP. This study reveals that 11% of Spanish patients carried mutations in CRB1, ranging from 9% of EORP to 14% of LCA cases. More than three quarters of the mutations identified herein have been first described in this Spanish cohort, 13 of them are unreported new variants and 13 had been previously reported in our previous studies. CONCLUSIONS This work provides a wide spectrum of CRB1 mutations in the Spanish EORD patients and evidences the major role of CRB1 as causal gene in the Spanish EORP patients. It is noteworthy that a high rate of private mutations only described in our cohort has been found so far. To our knowledge, this study represents the most complete mutational screening of CRB1 in a Spanish LCA and EORP cohort, allowing us to establish gene-specific frequencies and to provide a wide spectrum of CRB1 mutations in the Spanish population.
Collapse
Affiliation(s)
- Marta Corton
- Department of Genetics, IIS - Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Homozygous mutation in MERTK causes severe autosomal recessive retinitis pigmentosa. Eur J Ophthalmol 2012; 22:647-53. [PMID: 22180149 DOI: 10.5301/ejo.5000096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE Gene identification in retinitis pigmentosa is a prerequisite to future therapies. Accordingly, autosomal recessive retinitis pigmentosa families were genotyped to search for causative mutations. METHODS Members of a consanguineous Moroccan family had standard ophthalmologic examination, optical coherence tomography-3 scan, autofluorescence testing, and electroretinogram. Their DNA was genotyped with the 250K SNP microchip (Affymetrix) and homozygosity mapping was done. MERTK exons were polymerase chain reaction amplified and sequenced. RESULTS Two sisters and one brother out of 6 siblings had rod cone dystrophy type of retinitis pigmentosa. Salient features were night blindness starting in early infancy, dot-like whitish deposits in fovea and macula with corresponding autofluorescent dots in youngest patients, decreased visual acuity, and cone responses higher than rod responses at electroretinogram. The patients were homozygous in regions from chromosomes 2 and 8, but only that of chromosome 2 was inherited from a common ancestor. Sequencing of the MERTK gene belonging to the chromosome 2 region showed that the 3 affected patients carried a novel homozygous mutation in exon 17, c.2323C>T, leading to p.Arg775X, while their unaffected brothers and sister, parents, and paternal grandfather were heterozygous. CONCLUSIONS MERTK mutations lead to severe retinitis pigmentosa with discrete dot-like autofluorescent deposits at early stages, which are a hallmark of this MERTK-specific dystrophy.
Collapse
|
49
|
Huang L, Xiao X, Li S, Jia X, Wang P, Guo X, Zhang Q. CRX variants in cone-rod dystrophy and mutation overview. Biochem Biophys Res Commun 2012; 426:498-503. [PMID: 22960069 DOI: 10.1016/j.bbrc.2012.08.110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/23/2012] [Indexed: 11/17/2022]
Abstract
Mutations in the cone-rod homeobox gene (CRX) are associated with cone-rod dystrophy (CORD), Leber congenital amaurosis (LCA), and, in rare cases, retinitis pigmentosa (RP). In this study, three variations were detected in 3 of 130 families with CORD, including two novel mutations, c.239A>G (p.Glu80Gly) and c.362C>T (p.Ala121Val). So far, 49 mutations in CRX were reported, affecting about 2.35% of LCA, 4.76% of CORD, and 0.80% of RP. These mutations can be classified as missense (38.78%), nonsense (4.08%), deletion (36.73%), insertion (16.33%), and indel (4.08%). They distributed in the three coding exons without mutation hot spots. No clear genotype-phenotype correlation could be established so far.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Massively parallel sequencing for early molecular diagnosis in Leber congenital amaurosis. Genet Med 2012; 14:576-85. [PMID: 22261762 DOI: 10.1038/gim.2011.51] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is a rare congenital retinal dystrophy associated with 16 genes. Recent breakthroughs in LCA gene therapy offer the first prospect of treating inherited blindness, which requires an unequivocal and early molecular diagnosis. While present genetic tests do not address this due to a tremendous genetic heterogeneity, massively parallel sequencing (MPS) strategies might bring a solution. Here, we developed a comprehensive molecular test for LCA based on targeted MPS of all exons of 16 known LCA genes. METHODS We designed a unique and flexible workflow for targeted resequencing of all 236 exons from 16 LCA genes based on quantitative PCR (qPCR) amplicon ligation, shearing, and parallel sequencing of multiple patients on a single lane of a short-read sequencer. Twenty-two prescreened LCA patients were included, five of whom had a known molecular cause. RESULTS Validation of 107 variations was performed as proof of concept. In addition, the causal genetic defect and a single heterozygous mutation were identified in 3 and 5, respectively, of 17 patients without previously identified mutations. CONCLUSION We propose a novel targeted MPS-based approach that is suitable for accurate, fast, and cost-effective early molecular testing in LCA, and easily applicable in other genetic disorders.
Collapse
|