1
|
Muqit MMK, Le Mer Y, Olmos de Koo L, Holz FG, Sahel JA, Palanker D. Prosthetic Visual Acuity with the PRIMA Subretinal Microchip in Patients with Atrophic Age-Related Macular Degeneration at 4 Years Follow-up. OPHTHALMOLOGY SCIENCE 2024; 4:100510. [PMID: 38881600 PMCID: PMC11179408 DOI: 10.1016/j.xops.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 06/18/2024]
Abstract
Objective To assess the efficacy and safety of the PRIMA neurostimulation system with a subretinal microchip for improving visual acuity (VA) in patients with geographic atrophy (GA) due to age-related macular degeneration (AMD) at 48-months postimplantation. Design Feasibility clinical trial of the PRIMA subretinal prosthesis in patients with atrophic AMD, measuring best-corrected ETDRS VA (Clinicaltrials.govNCT03333954). Subjects Five patients with GA, no foveal light perception, and VA of logarithm of the minimum angle of resolution (logMAR) 1.3 to 1.7 (20/400-20/1000) in their worse-seeing "study" eye. Methods In patients subretinally implanted with a photovoltaic neurostimulation array containing 378 pixels of 100 μm in size, the VA was measured with and without the PRIMA system using ETDRS charts at 1 m. The system's external components, augmented reality glasses, and pocket computer provide image processing capabilities, including zoom. Main Outcome Measures Visual acuity using ETDRS charts with and without the system, as well as light sensitivity in the central visual field, measured by Octopus perimetry. Anatomical outcomes demonstrated by fundus photography and OCT up to 48 months postimplantation. Results All 5 subjects met the primary end point of light perception elicited by the implant in the scotoma area. In 1 patient, the implant was incorrectly inserted into the choroid. One subject died 18 months postimplantation due to study-unrelated reasons. ETDRS VA results for the remaining 3 subjects are reported here. Without zoom, VA closely matched the pixel size of the implant: 1.17 ± 0.13 pixels, corresponding to a mean logMAR of 1.39, or Snellen of 20/500, ranging from 20/438 to 20/565. Using zoom at 48 months, subjects improved their VA by 32 ETDRS letters versus baseline (standard error 5.1) 95% confidence intervals (13.4, 49.9; P < 0.0001). Natural peripheral visual function in the treated eye did not decline after surgery or during the 48-month follow-up period (P = 0.08). Conclusions Subretinal implantation of PRIMA in subjects with GA experiencing profound vision loss due to AMD is feasible and well tolerated, with no reduction of natural peripheral vision up to 48 months. Prosthetic central vision provided by photovoltaic neurostimulation enabled patients to reliably recognize letters and sequences of letters, and with zoom, it improved VA of up to 8 ETDRS lines. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Mahiul Muhammed Khan Muqit
- Vitreoretinal Service, Moorfields Eye Hospital, London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Yannick Le Mer
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center, Quinze-Vingts National Eye Hospital, Paris, France
| | - Lisa Olmos de Koo
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Germany
| | - Jose A. Sahel
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center, Quinze-Vingts National Eye Hospital, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel Palanker
- Department of Ophthalmology, Stanford University, Stanford, California
| |
Collapse
|
2
|
Hou Y, Nanduri D, Granley J, Weiland JD, Beyeler M. Axonal stimulation affects the linear summation of single-point perception in three Argus II users. J Neural Eng 2024; 21:026031. [PMID: 38457841 PMCID: PMC11003296 DOI: 10.1088/1741-2552/ad31c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Objective.Retinal implants use electrical stimulation to elicit perceived flashes of light ('phosphenes'). Single-electrode phosphene shape has been shown to vary systematically with stimulus parameters and the retinal location of the stimulating electrode, due to incidental activation of passing nerve fiber bundles. However, this knowledge has yet to be extended to paired-electrode stimulation.Approach.We retrospectively analyzed 3548 phosphene drawings made by three blind participants implanted with an Argus II Retinal Prosthesis. Phosphene shape (characterized by area, perimeter, major and minor axis length) and number of perceived phosphenes were averaged across trials and correlated with the corresponding single-electrode parameters. In addition, the number of phosphenes was correlated with stimulus amplitude and neuroanatomical parameters: electrode-retina and electrode-fovea distance as well as the electrode-electrode distance to ('between-axon') and along axon bundles ('along-axon'). Statistical analyses were conducted using linear regression and partial correlation analysis.Main results.Simple regression revealed that each paired-electrode shape descriptor could be predicted by the sum of the two corresponding single-electrode shape descriptors (p < .001). Multiple regression revealed that paired-electrode phosphene shape was primarily predicted by stimulus amplitude and electrode-fovea distance (p < .05). Interestingly, the number of elicited phosphenes tended to increase with between-axon distance (p < .05), but not with along-axon distance, in two out of three participants.Significance.The shape of phosphenes elicited by paired-electrode stimulation was well predicted by the shape of their corresponding single-electrode phosphenes, suggesting that two-point perception can be expressed as the linear summation of single-point perception. The impact of the between-axon distance on the perceived number of phosphenes provides further evidence in support of the axon map model for epiretinal stimulation. These findings contribute to the growing literature on phosphene perception and have important implications for the design of future retinal prostheses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, United States of America
| | - Devyani Nanduri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Jacob Granley
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, United States of America
| |
Collapse
|
3
|
Hou Y, Nanduri D, Granley J, Weiland JD, Beyeler M. Axonal stimulation affects the linear summation of single-point perception in three Argus II users. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.21.23292908. [PMID: 37546858 PMCID: PMC10402233 DOI: 10.1101/2023.07.21.23292908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Purpose Retinal implants use electrical stimulation to elicit perceived flashes of light ("phosphenes"). Single-electrode phosphene shape has been shown to vary systematically with stimulus parameters and the retinal location of the stimulating electrode, due to incidental activation of passing nerve fiber bundles. However, this knowledge has yet to be extended to paired-electrode stimulation. Methods We retrospectively analyzed 3548 phosphene drawings made by three blind participants implanted with an Argus II Retinal Prosthesis. Phosphene shape (characterized by area, perimeter, major and minor axis length) and number of perceived phosphenes were averaged across trials and correlated with the corresponding single-electrode parameters. In addition, the number of phosphenes was correlated with stimulus amplitude and neuroanatomical parameters: electrode-retina and electrode-fovea distance as well as the electrode-electrode distance to ("between-axon") and along axon bundles ("along-axon"). Statistical analyses were conducted using linear regression and partial correlation analysis. Results Simple regression revealed that each paired-electrode shape descriptor could be predicted by the sum of the two corresponding single-electrode shape descriptors (p < .001). Multiple regression revealed that paired-electrode phosphene shape was primarily predicted by stimulus amplitude and electrode-fovea distance (p < .05). Interestingly, the number of elicited phosphenes tended to increase with between-axon distance (p < .05), but not with along-axon distance, in two out of three participants. Conclusions The shape of phosphenes elicited by paired-electrode stimulation was well predicted by the shape of their corresponding single-electrode phosphenes, suggesting that two-point perception can be expressed as the linear summation of single-point perception. The notable impact of the between-axon distance on the perceived number of phosphenes provides further evidence in support of the axon map model for epiretinal stimulation. These findings contribute to the growing literature on phosphene perception and have important implications for the design of future retinal prostheses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Computer Science, University of California, Santa Barbara, CA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA
| | - Devyani Nanduri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Jacob Granley
- Department of Computer Science, University of California, Santa Barbara, CA
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, CA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA
| |
Collapse
|
4
|
Muqit M, Mer YL, de Koo LO, Holz FG, Sahel JA, Palanker D. Prosthetic Visual Acuity with the PRIMA System in Patients with Atrophic Age-related Macular Degeneration at 4 years follow-up. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.12.23298227. [PMID: 38014146 PMCID: PMC10680875 DOI: 10.1101/2023.11.12.23298227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Objective To assess the efficacy and safety of the PRIMA subretinal neurostimulation system 48-months post-implantation for improving visual acuity (VA) in patients with geographic atrophy (GA) due to age-related macular degeneration (AMD) at 48-months post-implantation. Design First-in-human clinical trial of the PRIMA subretinal prosthesis in patients with atrophic AMD, measuring best-corrected ETDRS VA (Clinicaltrials.gov NCT03333954). Subjects Five patients with GA, no foveal light perception and VA of logMAR 1.3 to 1.7 in their worse-seeing "study" eye. Methods In patients implanted with a subretinal photovoltaic neurostimulation array containing 378 pixels of 100 μm in size, the VA was measured with and without the PRIMA system using ETDRS charts at 1 meter. The system's external components: augmented reality glasses and pocket computer, provide image processing capabilities, including zoom. Main Outcome Measures VA using ETDRS charts with and without the system. Light sensitivity in the central visual field, as measured by Octopus perimetry. Anatomical outcomes demonstrated by fundus photography and optical coherence tomography up to 48-months post-implantation. Results All five subjects met the primary endpoint of light perception elicited by the implant in the scotoma area. In one patient the implant was incorrectly inserted into the choroid. One subject died 18-months post-implantation due to study-unrelated reason. ETDRS VA results for the remaining three subjects are reported herein. Without zoom, VA closely matched the pixel size of the implant: 1.17 ± 0.13 pixels, corresponding to mean logMAR 1.39, or Snellen 20/500, ranging from 20/438 to 20/565. Using zoom at 48 months, subjects improved their VA by 32 ETDRS letters versus baseline (SE 5.1) 95% CI[13.4,49.9], p<0.0001. Natural peripheral visual function in the treated eye did not decline after surgery compared to the fellow eye (p=0.08) during the 48 months follow-up period. Conclusions Subretinal implantation of PRIMA in subjects with GA suffering from profound vision loss due to AMD is feasible and well tolerated, with no reduction of natural peripheral vision up to 48-months. Using prosthetic central vision through photovoltaic neurostimulation, patients reliably recognized letters and sequences of letters,and with zoom it provided a clinically meaningful improvement in VA of up to eight ETDRS lines.
Collapse
Affiliation(s)
- Mmk Muqit
- Vitreoretinal Service, Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, University College London, UK
| | - Y Le Mer
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center, Quinze-Vingts National Eye Hospital, Paris, France
| | - L Olmos de Koo
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - F G Holz
- Department of Ophthalmology, University of Bonn, Germany
| | - J A Sahel
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center, Quinze-Vingts National Eye Hospital, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Palanker
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Palanker D. Electronic Retinal Prostheses. Cold Spring Harb Perspect Med 2023; 13:a041525. [PMID: 36781222 PMCID: PMC10411866 DOI: 10.1101/cshperspect.a041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Retinal prostheses are a promising means for restoring sight to patients blinded by photoreceptor atrophy. They introduce visual information by electrical stimulation of the surviving inner retinal neurons. Subretinal implants target the graded-response secondary neurons, primarily the bipolar cells, which then transfer the information to the ganglion cells via the retinal neural network. Therefore, many features of natural retinal signal processing can be preserved in this approach if the inner retinal network is retained. Epiretinal implants stimulate primarily the ganglion cells, and hence should encode the visual information in spiking patterns, which, ideally, should match the target cell types. Currently, subretinal arrays are being developed primarily for restoration of central vision in patients impaired by age-related macular degeneration (AMD), while epiretinal implants-for patients blinded by retinitis pigmentosa, where the inner retina is less preserved. This review describes the concepts and technologies, preclinical characterization of prosthetic vision and clinical outcomes, and provides a glimpse into future developments.
Collapse
Affiliation(s)
- Daniel Palanker
- Department of Ophthalmology and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
6
|
Ly K, Guo T, Tsai D, Muralidharan M, Shivdasani MN, Lovell NH, Dokos S. Simulating the impact of photoreceptor loss and inner retinal network changes on electrical activity of the retina. J Neural Eng 2022; 19. [PMID: 36368033 DOI: 10.1088/1741-2552/aca221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Objective.A major reason for poor visual outcomes provided by existing retinal prostheses is the limited knowledge of the impact of photoreceptor loss on retinal remodelling and its subsequent impact on neural responses to electrical stimulation. Computational network models of the neural retina assist in the understanding of normal retinal function but can be also useful for investigating diseased retinal responses to electrical stimulation.Approach.We developed and validated a biophysically detailed discrete neuronal network model of the retina in the software package NEURON. The model includes rod and cone photoreceptors, ON and OFF bipolar cell pathways, amacrine and horizontal cells and finally, ON and OFF retinal ganglion cells with detailed network connectivity and neural intrinsic properties. By accurately controlling the network parameters, we simulated the impact of varying levels of degeneration on retinal electrical function.Main results.Our model was able to reproduce characteristic monophasic and biphasic oscillatory patterns seen in ON and OFF neurons during retinal degeneration (RD). Oscillatory activity occurred at 3 Hz with partial photoreceptor loss and at 6 Hz when all photoreceptor input to the retina was removed. Oscillations were found to gradually weaken, then disappear when synapses and gap junctions were destroyed in the inner retina. Without requiring any changes to intrinsic cellular properties of individual inner retinal neurons, our results suggest that changes in connectivity alone were sufficient to give rise to neural oscillations during photoreceptor degeneration, and significant network connectivity destruction in the inner retina terminated the oscillations.Significance.Our results provide a platform for further understanding physiological retinal changes with progressive photoreceptor and inner RD. Furthermore, our model can be used to guide future stimulation strategies for retinal prostheses to benefit patients at different stages of disease progression, particularly in the early and mid-stages of RD.
Collapse
Affiliation(s)
- Keith Ly
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - David Tsai
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia.,School of Electrical Engineering & Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia.,Tyree Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Vu QA, Seo HW, Choi KE, Kim N, Kang YN, Lee J, Park SH, Kim JT, Kim S, Kim SW. Structural changes in the retina after implantation of subretinal three-dimensional implants in mini pigs. Front Neurosci 2022; 16:1010445. [PMID: 36248640 PMCID: PMC9561346 DOI: 10.3389/fnins.2022.1010445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
The retinal structural changes after subretinal implantation of three-dimensional (3D) microelectrodes were investigated in a mini pig. Three types of electrode were implanted into the subretinal spaces of nine mini pigs: 75-μm-high 3D electrodes on a 200-μm-thick right-angled polydimethylsiloxane (PDMS) substrate (group 1); a 140-μm-thick sloped PDMS substrate without electrodes (group 2); and a 140-μm-thick sloped PDMS substrate with 20-μm-high 3D electrodes (group 3). One mini pig was used as a control. Spectral domain–optical coherence tomography (SD–OCT) images were obtained at baseline and 2, 6, and 12 weeks post-surgery. Retinal specimens were immunostained using a tissue-clearing method 3 months post-implantation. The 75-μm-high 3D electrodes progressively penetrated the inner nuclear layer (INL) and touched the inner plexiform layer (IPL) 2 weeks post-surgery. At 6 weeks post-operatively, the electrodes were in contact with the nerve-fiber layer, accompanied by a severe fibrous reaction. In the other groups, the implants remained in place without subretinal migration. Immunostaining showed that retinal ganglion and bipolar cells were preserved without fibrosis over the retinal implants in groups 2 and 3 during the 12-week implantation period. In summary, SD–OCT and immunohistology results showed differences in the extent of reactions, such as fibrosis over the implants and penetration of the electrodes into the inner retinal layer depending on different types of electrodes. A sloped substrate performed better than a right-angled substrate in terms of retinal preservation over the implanted electrodes. The 20-μm-high electrodes showed better structural compatibility than the 75-μm-high 3D electrodes. There was no significant difference between the results of sloped implants without electrodes and 20-μm-high 3D electrodes, indicating that the latter had no adverse effects on retinal tissue.
Collapse
Affiliation(s)
- Que Anh Vu
- Department of Ophthalmology, Korea University School of Medicine, Seoul, South Korea
- Department of Ophthalmology, Hanoi Medical University, Hanoi, Vietnam
| | - Hee Won Seo
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Kwang-Eon Choi
- Department of Ophthalmology, Korea University School of Medicine, Seoul, South Korea
| | - Namju Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoo Na Kang
- Department of Medical Assistant Robot, Korea Institute of Machinery and Materials (KIMM), Daegu, South Korea
| | - Jaemeun Lee
- R&D Center for Advanced Pharmaceuticals and Evaluation, Korea Institute of Toxicology, Daejeon, South Korea
| | - Sun-Hyun Park
- R&D Center for Advanced Pharmaceuticals and Evaluation, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jee Taek Kim
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- *Correspondence: Sohee Kim,
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University School of Medicine, Seoul, South Korea
- Seong-Woo Kim,
| |
Collapse
|
8
|
Song X, Qiu S, Shivdasani MN, Zhou F, Liu Z, Ma S, Chai X, Chen Y, Cai X, Guo T, Li L. An in-silico analysis of electrically-evoked responses of midget and parasol retinal ganglion cells in different retinal regions. J Neural Eng 2022; 19. [PMID: 35255486 DOI: 10.1088/1741-2552/ac5b18] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Visual outcomes provided by present retinal prostheses that primarily target retinal ganglion cells (RGCs) through epiretinal stimulation remain rudimentary, partly due to the limited knowledge of retinal responses under electrical stimulation. Better understanding of how different retinal regions can be quantitatively controlled with high spatial accuracy, will be beneficial to the design of micro-electrode arrays (MEAs) and stimulation strategies for next-generation wide-view, high-resolution epiretinal implants. METHODS A computational model was developed to assess neural activity at different eccentricities (2 mm and 5 mm) within the human retina. This model included midget and parasol RGCs with anatomically accurate cell distribution and cell-specific morphological information. We then performed in silico investigations of region-specific RGC responses to epiretinal electrical stimulation using varied electrode sizes (5 µm - 210 µm diameter), emulating both commercialized retinal implants and recently-developed prototype devices. RESULTS Our model of epiretinal stimulation predicted RGC population excitation analogous to the complex percepts reported in human subjects. Following this, our simulations suggest that midget and parasol RGCs have characteristic regional differences in excitation under preferred electrode sizes. Relatively central (2 mm) regions demonstrated higher number of excited RGCs but lower overall activated receptive field (RF) areas under the same stimulus amplitudes (two-way ANOVA, p < 0.05). Furthermore, the activated RGC numbers per unit active RF area (number-RF ratio) were significantly higher in central than in peripheral regions, and higher in the midget than in the parasol population under all tested electrode sizes (two-way ANOVA, p < 0.05). Our simulations also suggested that smaller electrodes exhibit a higher range of controllable stimulation parameters to achieve pre-defined performance of RGC excitation. ..
Collapse
Affiliation(s)
- Xiaoyu Song
- , Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Shirong Qiu
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Lower Ground, Samuels Building (F25), Kensington, New South Wales, 2052, AUSTRALIA
| | - Feng Zhou
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Zhengyang Liu
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Saidong Ma
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, 200240, CHINA
| | - Yao Chen
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200040, Shanghai, 200240, CHINA
| | - Xuan Cai
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, Shanghai, 200233, CHINA
| | - Tianruo Guo
- the University of New South Wales, Lower Ground, Samuels Building (F25), Sydney, 2052, AUSTRALIA
| | - Liming Li
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| |
Collapse
|
9
|
Wang L, Marek N, Steffen J, Pollmann S. Perceptual Learning of Object Recognition in Simulated Retinal Implant Perception - The Effect of Video Training. Transl Vis Sci Technol 2021; 10:22. [PMID: 34661623 PMCID: PMC8525839 DOI: 10.1167/tvst.10.12.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal implants (RIs) provide new vision for patients suffering from photoreceptor degeneration in the retina. The limited vision gained by RI, however, leaves room for improvement by training regimes. Methods Two groups of normal-sighted participants were respectively trained with videos or still images of daily objects in a labeling task. Object appearance was simulated to resemble RI perception. In Experiment 1, the training effect was measured as the change in performance during the training, and the same labeling task was conducted after 1 week to test the retention. In Experiment 2 with a different pool of participants, a reverse labeling task was included before (pre-test) and after the training (post-test) to show if the training effect could be generalized into a different task context. Results Both groups showed improved object recognition through training that was maintained for a week, and the video group showed better improvement (Experiment 1). Both groups showed improved object recognition in a different task that was maintained for a week, but the video group did not show better retention than the image group (Experiment 2). Conclusions Training with video materials leads to more improvement than training with still images in simulated RI perception, but this better improvement was specific to the trained task. Translational Relevance We recommend videos as better training materials than still images for patients with RIs to improve object recognition when the task-goal is highly specific. We also propose here that achieving highly specific training goals runs the risk of limiting the generalization of the training effects.
Collapse
Affiliation(s)
- Lihui Wang
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nico Marek
- Department of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Pollmann
- Department of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
10
|
Faber H, Ernemann U, Sachs H, Gekeler F, Danz S, Koitschev A, Besch D, Bartz-Schmidt KU, Zrenner E, Stingl K, Kernstock C. CT Assessment of Intraorbital Cable Movement of Electronic Subretinal Prosthesis in Three Different Surgical Approaches. Transl Vis Sci Technol 2021; 10:16. [PMID: 34264295 PMCID: PMC8299430 DOI: 10.1167/tvst.10.8.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose Electronic retinal implants restore some visual perception in patients blind from retinitis pigmentosa. Eye movements cause mechanical stress in intraorbital power supply cables leading to cable breaks. By using computer tomography (CT) scans at the extreme positions of the four cardinal gaze directions, this study determined in vivo, which of three surgical routing techniques results in minimal bending radius variation and favors durability. Methods Nine patients received the first-generation subretinal implant Alpha IMS (Retina Implant AG, Reutlingen, Germany) in one eye. Three techniques for intraorbital cable routing were used (straight cable route (A), parabulbar loop (B), and encircling band (C)), each in three patients. All patients underwent computer tomography of the orbital region. The bending radius of the intraorbital cable was measured with the DICOM viewer Osirix v4.1.2 (Pixmeo SARL, Bernex, Switzerland) and served as indicator for mechanical stress. Results Average bending radius variation was 87% for method A, 11% for method B, and 16% for method C. Methods A and B (P = 0.005) and methods A and C (P = 0.007) differed significantly, while method B and C showed no statistical difference (P = 0.07). Conclusions Compared to straight routes, arcuated cable routes significantly reduce cable movement and bending. Due to an easier surgical procedure, a parabulbar loop is the preferred method to minimize bending radius variation and prolong survival time of electronic subretinal implants. Translational Relevance CT analysis of cable bending of implanted medical devices allows to determine which surgical routing technique favors durability in vivo.
Collapse
Affiliation(s)
- Hanna Faber
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, Radiological Clinic, University of Tuebingen, Tuebingen, Germany
| | - Helmut Sachs
- Ophthalmology Clinic, Städtisches Klinikum Dresden Friedrichstadt, Dresden, Germany
| | - Florian Gekeler
- Ophthalmology Clinic, Klinikum Stuttgart, Stuttgart, Germany
| | - Søren Danz
- Radiologische Praxis Hofbauer Danz Fischer, Sindelfingen, Germany
| | - Assen Koitschev
- Clinic for Ear, Nose and Throat Disorders, Plastic Surgery, Klinikum Stuttgart, Stuttgart, Germany
| | - Dorothea Besch
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | | | - Eberhart Zrenner
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Center of Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | - Christoph Kernstock
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
11
|
Full gaze contingency provides better reading performance than head steering alone in a simulation of prosthetic vision. Sci Rep 2021; 11:11121. [PMID: 34045485 PMCID: PMC8160142 DOI: 10.1038/s41598-021-86996-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
The visual pathway is retinotopically organized and sensitive to gaze position, leading us to hypothesize that subjects using visual prostheses incorporating eye position would perform better on perceptual tasks than with devices that are merely head-steered. We had sighted subjects read sentences from the MNREAD corpus through a simulation of artificial vision under conditions of full gaze compensation, and head-steered viewing. With 2000 simulated phosphenes, subjects (n = 23) were immediately able to read under full gaze compensation and were assessed at an equivalent visual acuity of 1.0 logMAR, but were nearly unable to perform the task under head-steered viewing. At the largest font size tested, 1.4 logMAR, subjects read at 59 WPM (50% of normal speed) with 100% accuracy under the full-gaze condition, but at 0.7 WPM (under 1% of normal) with below 15% accuracy under head-steering. We conclude that gaze-compensated prostheses are likely to produce considerably better patient outcomes than those not incorporating eye movements.
Collapse
|
12
|
Faber H, Besch D, Bartz‐Schmidt K, Eisenstein H, Roider J, Sachs H, Gekeler F, Zrenner E, Stingl K. Restriction of eye motility in patients with RETINA IMPLANT Alpha AMS. Acta Ophthalmol 2020; 98:e998-e1003. [PMID: 32304165 DOI: 10.1111/aos.14435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the motility of the eye in patients with the RETINA IMPLANT Alpha AMS. METHODS Eye motility was determined in eight gaze directions in ten blind retinitis pigmentosa patients, who had received the RETINA IMPLANT Alpha AMS, before implantation of the subretinal implant and at six time-points up to one year after. RESULTS The analysis of eye motility showed a restriction in the upgaze and gaze to the temporal side directly after surgery in eight of the nine patients included. The degree of motility restriction decreased continuously with recovery during the observation time. One year after surgery, eye motility was still restricted in the majority of patients, especially in the upgaze to the temporal side at 20° (five of seven patients). CONCLUSION Retinal implants with intraorbital parts (e.g. connecting cables) caused restriction in the temporal and superior viewing directions in the majority of patients. Although this restriction might be cosmetically visible, this limitation in eye motility has no effects on the monocular vision and the implant's efficacy for daily use.
Collapse
Affiliation(s)
- Hanna Faber
- University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| | - Dorothea Besch
- University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| | | | - Hanna Eisenstein
- University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| | - Johann Roider
- Department of Ophthalmology Christian‐Albrechts‐University of Kiel University Medical Center Kiel Germany
| | - Helmut Sachs
- Städtisches Klinikum Dresden Friedrichstadt Dresden Germany
| | - Florian Gekeler
- Department of Ophthalmology Klinikum Stuttgart Stuttgart Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research Center for Ophthalmology Eberhard Karls University Tuebingen Germany
- Werner Reichardt Centre for Integrative Neuroscience Eberhard Karls University Tuebingen Tuebingen Germany
| | - Katarina Stingl
- University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
- Center for Rare Eye Diseases Eberhard Karls University Tuebingen Germany
| |
Collapse
|
13
|
Muralidharan M, Guo T, Shivdasani MN, Tsai D, Fried S, Li L, Dokos S, Morley JW, Lovell NH. Neural activity of functionally different retinal ganglion cells can be robustly modulated by high-rate electrical pulse trains. J Neural Eng 2020; 17:045013. [DOI: 10.1088/1741-2552/ab9a97] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Im M, Kim SW. Neurophysiological and medical considerations for better-performing microelectronic retinal prostheses. J Neural Eng 2020; 17:033001. [PMID: 32329755 DOI: 10.1088/1741-2552/ab8ca9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maesoon Im
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | | |
Collapse
|
15
|
Photovoltaic Restoration of Central Vision in Atrophic Age-Related Macular Degeneration. Ophthalmology 2020; 127:1097-1104. [PMID: 32249038 DOI: 10.1016/j.ophtha.2020.02.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Loss of photoreceptors in atrophic age-related macular degeneration results in severe visual impairment, although some peripheral vision is retained. To restore central vision without compromising the residual peripheral field, we developed a wireless photovoltaic retinal implant (PRIMA; Pixium Vision, Paris, France) in which pixels convert images projected from video glasses using near-infrared light into electric current to stimulate the nearby inner retinal neurons. DESIGN We carried out a first-in-human clinical trial to test the safety and efficacy of the prosthesis in patients with geographic atrophy (ClinicalTrials.gov identifier, NCT03333954). PARTICIPANTS Five patients with geographic atrophy zone of at least 3 optic disc diameters, no foveal light perception, and best-corrected visual acuity of 20/400 to 20/1000 in the worse-seeing study eye. METHODS The 2-mm wide, 30-μm thick chip, containing 378 pixels (each 100 μm in diameter), was implanted subretinally in the area of atrophy (absolute scotoma). MAIN OUTCOME MEASURES Anatomic outcomes were assessed with fundus photography and OCT for up to 12 months of follow-up. Prosthetic vision was assessed by mapping light perception, bar orientation, letter recognition, and Landolt C acuity. RESULTS In all patients, the prosthesis was implanted successfully under the macula, although in 2 patients, it was implanted in unintended locations: within the choroid and off center by 2 mm. All 5 patients could perceive white-yellow prosthetic visual patterns with adjustable brightness in the previous scotomata. The 3 with optimal placement of the implant demonstrated prosthetic acuity of 20/460 to 20/550, and the patient with the off-center implant demonstrated 20/800 acuity. Residual natural acuity did not decrease after implantation in any patient. CONCLUSIONS Implantation of the PRIMA did not decrease the residual natural acuity, and it restored visual sensitivity in the former scotoma in each of the 5 patients. In 3 patients with the proper placement of the chip, prosthetic visual acuity was only 10% to 30% less than the level expected from the pixel pitch (20/420). Therefore, the use of optical or electronic magnification in the glasses as well as smaller pixels in future implants may improve visual acuity even further.
Collapse
|
16
|
Abstract
In humans high quality, high acuity visual experience is mediated by the fovea, a tiny, specialized patch of retina containing the locus of fixation. Despite this, vision restoration strategies are typically developed in animal models without a fovea. While electrical prostheses have been approved by regulators, as yet they have failed to restore high quality, high acuity vision in patients. Approaches under pre-clinical development include regenerative cell therapies, optogenetics and chemical photosensitizers. All retinal vision restoration therapies require reactivation of inner retina that has lost photoreceptor input and that the restored signals can be interpreted at a behavioural level. A greater emphasis on tackling these challenges at the fovea may accelerate progress toward high quality vision restoration.
Collapse
Affiliation(s)
- Juliette E McGregor
- Center for Visual Science, University of Rochester, 601 Crittenden Blvd, Rochester, New York, USA
| |
Collapse
|
17
|
Ho E, Boffa J, Palanker D. Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses. J Vis 2019; 19:22. [PMID: 31770773 PMCID: PMC6880846 DOI: 10.1167/19.13.22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022] Open
Abstract
Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.
Collapse
Affiliation(s)
- Elton Ho
- Department of Physics, Stanford University, Stanford, CA, USA
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Jack Boffa
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Ho E, Lei X, Flores T, Lorach H, Huang T, Galambos L, Kamins T, Harris J, Mathieson K, Palanker D. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays. J Neural Eng 2019; 16:066027. [PMID: 31341094 PMCID: PMC7192047 DOI: 10.1088/1741-2552/ab34b3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective Retinal prostheses aim to restore sight by electrically stimulating the surviving retinal neurons. In clinical trials of the current retinal implants, prosthetic visual acuity does not exceed 20/550. However, to provide meaningful restoration of central vision in patients blinded by age-related macular degeneration (AMD), prosthetic acuity should be at least 20/200, necessitating a pixel pitch of about 50 μm or lower. With such small pixels, stimulation thresholds are high due to limited penetration of electric field into tissue. Here, we address this challenge with our latest photovoltaic arrays and evaluate their performance in vivo. Approach We fabricated photovoltaic arrays with 55 and 40 μm pixels (a) in flat geometry, and (b) with active electrodes on 10 μm tall pillars. The arrays were implanted subretinally into rats with degenerate retina. Stimulation thresholds and grating acuity were evaluated using measurements of the visually evoked potentials (VEP). Main results With 55 μm pixels, we measured grating acuity of 48 ± 11 μm, which matches the linear pixel pitch of the hexagonal array. This geometrically corresponds to a visual acuity of 20/192 in a human eye, matching the threshold of legal blindness in the US (20/200). With pillar electrodes, the irradiance threshold was nearly halved, and duration threshold reduced by more than three-fold, compared to flat pixels. With 40 μm pixels, VEP was too low for reliable measurements of the grating acuity, even with pillar electrodes. Significance While being helpful for treating a complete loss of sight, current prosthetic technologies are insufficient for addressing the leading cause of untreatable visual impairment—AMD. Subretinal photovoltaic arrays may provide sufficient visual acuity for restoration of central vision in patients blinded by AMD.
Collapse
Affiliation(s)
- Elton Ho
- Department of Physics, Stanford University, Stanford, CA 94305, United States of America. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kuehlewein L, Troelenberg N, Stingl K, Schleehauf S, Kusnyerik A, Jackson TL, MacLaren RE, Chee C, Roider J, Wilhelm B, Gekeler F, Bartz‐Schmidt KU, Zrenner E, Stingl K. Changes in microchip position after implantation of a subretinal vision prosthesis in humans. Acta Ophthalmol 2019; 97:e871-e876. [PMID: 30816625 DOI: 10.1111/aos.14077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/02/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Retinal prosthetic devices have been developed to partially restore very low vision in legally blind patients with end-stage hereditary retinal dystrophies. Subretinal implants, unlike epiretinal implants, are not fixated by a tack. The aim of this study was to assess and analyse possible changes over time in the subretinal position of the RETINA IMPLANT Alpha IMS and Alpha AMS (ClinicalTrials.gov NCT01024803). METHODS Imaging studies were performed on fundus photographs using GIMP (Version 2.8.14). Postoperative photographs of the implanted eye were scaled and aligned. Landmarks were chosen and distances between landmarks were measured to then calculate the displacement of the microchip using a transformation matrix for rotational and translational movements. Analyses were performed using MATLAB 8.6 (The MathWorks Inc., Natick, MA). RESULTS Of the 27 datasets with the Alpha IMS device, 12 (44%) remained stable without displacement of the microchip relative to the optic disc and the major blood vessels, whereas in 15 (56%), displacement occurred. The mean ± SD displacement in those 15 eyes was 0.66 ± 0.35 mm (range, 0.24-1.67 mm). Of the eight datasets with the Alpha AMS device, 1 (13%) remained stable without displacement of the microchip relative to the optic disc and the major blood vessels, whereas in 7 (87%), displacement occurred. The mean ± SD displacement in those seven eyes was 0.66 ± 0.26 mm (range, 0.32-0.97 mm). Calculated from all eyes (including those in which no displacement occurred), the mean displacement was 0.36 mm in the IMS cohort, and 0.58 mm in the AMS cohort, however, the difference was not statistically significant (p = 0.17). CONCLUSIONS We have shown that the position of the subretinal implant changes in the majority of the cases after implantation. While the overall mean displacement of the chip was not significantly different in either of the cohorts, the maximum displacement was smaller in the Alpha AMS cohort.
Collapse
Affiliation(s)
- Laura Kuehlewein
- Institute for Ophthalmic Research University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| | | | - Krunoslav Stingl
- Institute for Ophthalmic Research University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| | | | - Akos Kusnyerik
- Department of Ophthalmology Semmelweis University Budapest Hungary
| | - Timothy L. Jackson
- Department of Ophthalmology Faculty of Life Sciences and Medicine King's College London King's College Hospital London UK
| | - Robert E. MacLaren
- Oxford Eye Hospital at the Oxford University Hospitals NHS Foundation Trust and Nuffield Laboratory of Ophthalmology University of Oxford Oxford UK
| | - Caroline Chee
- Department of Ophthalmology National University Hospital Singapore Singapore
| | - Johann Roider
- Department of Ophthalmology University of Kiel Kiel Germany
| | - Barbara Wilhelm
- Institute for Ophthalmic Research University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| | - Florian Gekeler
- Institute for Ophthalmic Research University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| | - Karl Ulrich Bartz‐Schmidt
- Institute for Ophthalmic Research University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
- Werner Reichardt Centre for Integrative Neuroscience Eberhard Karls University Tuebingen Tuebingen Germany
| | - Katarina Stingl
- Institute for Ophthalmic Research University Eye Hospital Center for Ophthalmology Eberhard Karls University Tuebingen Germany
| |
Collapse
|
20
|
Seo HW, Kim N, Ahn J, Cha S, Goo YS, Kim S. A 3D flexible microelectrode array for subretinal stimulation. J Neural Eng 2019; 16:056016. [PMID: 31357188 DOI: 10.1088/1741-2552/ab36ab] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells. APPROACH To investigate the effect of electrode designs on the electric field distribution, we simulated various electrode shapes and sizes using finite element analysis. Based on the simulation results, the 3D microelectrode array was fabricated and evaluated in in vitro condition. MAIN RESULTS Through the simulation, we verified that an electrode design of square frustum was effective to stimulate with high contrast. Also, the 3D flexible and transparent microelectrode array based on silicon and polydimethylsiloxane was fabricated using micro-electro-mechanical system technologies. In in vitro experiments, the subretinally positioned 3D microelectrodes properly evoked spikes in retinal ganglion cells. The mean threshold current was 7.4 µA and the threshold charge density was 33.64 µC·cm-2 per phase. SIGNIFICANCE The results demonstrate the feasibility of the fabricated 3D microelectrodes as the subretinal prosthesis. The developed microelectrode array would be integrated with the stimulation circuitry and implanted in animals for further in vivo experiments.
Collapse
Affiliation(s)
- Hee Won Seo
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Shalbaf F, Lovell NH, Dokos S, Trew M, Vaghefi E. Foveal eccentricity can influence activation threshold in subretinal electrical stimulation. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab0b85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Paraskevoudi N, Pezaris JS. Eye Movement Compensation and Spatial Updating in Visual Prosthetics: Mechanisms, Limitations and Future Directions. Front Syst Neurosci 2019; 12:73. [PMID: 30774585 PMCID: PMC6368147 DOI: 10.3389/fnsys.2018.00073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023] Open
Abstract
Despite appearing automatic and effortless, perceiving the visual world is a highly complex process that depends on intact visual and oculomotor function. Understanding the mechanisms underlying spatial updating (i.e., gaze contingency) represents an important, yet unresolved issue in the fields of visual perception and cognitive neuroscience. Many questions regarding the processes involved in updating visual information as a function of the movements of the eyes are still open for research. Beyond its importance for basic research, gaze contingency represents a challenge for visual prosthetics as well. While most artificial vision studies acknowledge its importance in providing accurate visual percepts to the blind implanted patients, the majority of the current devices do not compensate for gaze position. To-date, artificial percepts to the blind population have been provided either by intraocular light-sensing circuitry or by using external cameras. While the former commonly accounts for gaze shifts, the latter requires the use of eye-tracking or similar technology in order to deliver percepts based on gaze position. Inspired by the need to overcome the hurdle of gaze contingency in artificial vision, we aim to provide a thorough overview of the research addressing the neural underpinnings of eye compensation, as well as its relevance in visual prosthetics. The present review outlines what is currently known about the mechanisms underlying spatial updating and reviews the attempts of current visual prosthetic devices to overcome the hurdle of gaze contingency. We discuss the limitations of the current devices and highlight the need to use eye-tracking methodology in order to introduce gaze-contingent information to visual prosthetics.
Collapse
Affiliation(s)
- Nadia Paraskevoudi
- Brainlab – Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - John S. Pezaris
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Curr Opin Ophthalmol 2018. [PMID: 29528862 DOI: 10.1097/icu.0000000000000467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on the efforts to restore vision through subretinal implants in patients with degenerative retinal diseases. In addition to the current technique and its latest improvements, it will focus on the surgical technique of implantation as well as explantation and reimplantation. RECENT FINDINGS The durability of the current subretinal implant RETINA IMPLANT Alpha AMS has increased substantially compared with the predecessor model RETINA IMPLANT Alpha IMS. According to validated examinations in the laboratory, a median lifetime of 4.7 years will be reached in clinical use; in similar examinations, the previous model has reached only 8 months. Visual function has slightly increased. The surgical technique for subretinal implants is complex and demanding for ophthalmic surgeons, as it is multifaceted and combines novel surgical steps in areas, which are not commonly entered such as the suprachoroidal and the subretinal space. The surgical approach for implantation has matured considerably and has led to successful implantation in 64 patient cases. Surgical challenges are now mainly encountered with the exact subfoveal positioning of the device. The explantation procedure is relatively straight-forward because the implant can be withdrawn in a reverse direction along the already existent subretinal path. Reimplantations, however, are more challenging because some degree of scar tissue may exist along the path of the chip and around the scleral trapdoor. Nevertheless, reimplantations have now been carried out successfully in four patients. SUMMARY The new RETINA IMPLANT Alpha AMS shows significantly improved durability compared with the predecessor model RETINA IMPLANT Alpha IMS. The subretinal implant offers excellent visual results but requires experienced surgeons. Explantation of devices is straight-forward, and reimplantations are challenging but have been successful in four patients.
Collapse
|
24
|
Abdallah W, Li W, Weiland J, Humayun M, Ameri H. Implantation of multiple suprachoroidal electrode arrays in rabbits. J Curr Ophthalmol 2018; 30:68-73. [PMID: 29564412 PMCID: PMC5859463 DOI: 10.1016/j.joco.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose Epiretinal and subretinal prosthesis have been shown to be a valid way to provide some vision to patients with advanced outer retinal degeneration and profound vision loss. However, the field of vision for these patients is markedly limited by the area occupied by the electrode array. In this study, we aimed to evaluate the feasibility of implantation of multiple suprachoroidal electrode arrays in a single eye in order to increase the field of vision in patients implanted with retinal prosthesis. Methods The right eye of seventeen Dutch rabbits (age range, 5–6 months) was used for the study. Multiple inactive custom-made electrode arrays were inserted into the suprachoroidal space (SCS) and animals were followed up for up to 6 months using fundus photography, optical coherence tomography (OCT), and fluorescein angiography (FA). Results It was possible to surgically implant up to 8 electrode arrays in a single eye. None of the rabbits showed any major complications. The electrodes were well tolerated and remained in position in all rabbits. There was no evidence of retinal damage on follow-up exams and FA throughout the study. Conclusion Multiple suprachoroidal electrode array implantation is feasible and may provide a novel approach to increase the field of vision in subjects implanted with retinal prosthesis.
Collapse
Affiliation(s)
- Walid Abdallah
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - James Weiland
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Mark Humayun
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Flores T, Lei X, Huang T, Lorach H, Dalal R, Galambos L, Kamins T, Mathieson K, Palanker D. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons. J Neural Eng 2018; 15:036011. [PMID: 29388561 DOI: 10.1088/1741-2552/aaac39] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE High-resolution prosthetic vision requires dense stimulating arrays with small electrodes. However, such miniaturization reduces electrode capacitance and penetration of electric field into tissue. We evaluate potential solutions to these problems with subretinal implants based on utilization of pillar electrodes. APPROACH To study integration of three-dimensional (3D) implants with retinal tissue, we fabricated arrays with varying pillar diameter, pitch, and height, and implanted beneath the degenerate retina in rats (Royal College of Surgeons, RCS). Tissue integration was evaluated six weeks post-op using histology and whole-mount confocal fluorescence imaging. The electric field generated by various electrode configurations was calculated in COMSOL, and stimulation thresholds assessed using a model of network-mediated retinal response. MAIN RESULTS Retinal tissue migrated into the space between pillars with no visible gliosis in 90% of implanted arrays. Pillars with 10 μm height reached the middle of the inner nuclear layer (INL), while 22 μm pillars reached the upper portion of the INL. Electroplated pillars with dome-shaped caps increase the active electrode surface area. Selective deposition of sputtered iridium oxide onto the cap ensures localization of the current injection to the pillar top, obviating the need to insulate the pillar sidewall. According to computational model, pillars having a cathodic return electrode above the INL and active anodic ring electrode at the surface of the implant would enable six times lower stimulation threshold, compared to planar arrays with circumferential return, but suffer from greater cross-talk between the neighboring pixels. SIGNIFICANCE 3D electrodes in subretinal prostheses help reduce electrode-tissue separation and decrease stimulation thresholds to enable smaller pixels, and thereby improve visual acuity of prosthetic vision.
Collapse
Affiliation(s)
- Thomas Flores
- Department of Applied Physics, Stanford University, Stanford, CA, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ho E, Smith R, Goetz G, Lei X, Galambos L, Kamins TI, Harris J, Mathieson K, Palanker D, Sher A. Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation. J Neurophysiol 2017; 119:389-400. [PMID: 29046428 DOI: 10.1152/jn.00872.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We demonstrate modulation of the retinal ganglion cells (RGC) activity using complex spatiotemporal stimuli delivered via subretinal photovoltaic implant at 20 Hz in healthy and in degenerate retina. RGCs exhibit fast and localized ON and OFF network-mediated responses, with antagonistic center-surround organization of their receptive fields.
Collapse
Affiliation(s)
- Elton Ho
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California
| | - Richard Smith
- Santa Cruz Institute for Particle Physics, University of California , Santa Cruz, California
| | - Georges Goetz
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California
| | - Xin Lei
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Ludwig Galambos
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Theodore I Kamins
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - James Harris
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Keith Mathieson
- Institute of Photonics, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California.,Department of Ophthalmology, Stanford University , Stanford, California
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California , Santa Cruz, California
| |
Collapse
|
27
|
Grosberg LE, Ganesan K, Goetz GA, Madugula SS, Bhaskhar N, Fan V, Li P, Hottowy P, Dabrowski W, Sher A, Litke AM, Mitra S, Chichilnisky EJ. Activation of ganglion cells and axon bundles using epiretinal electrical stimulation. J Neurophysiol 2017; 118:1457-1471. [PMID: 28566464 DOI: 10.1152/jn.00750.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
Epiretinal prostheses for treating blindness activate axon bundles, causing large, arc-shaped visual percepts that limit the quality of artificial vision. Improving the function of epiretinal prostheses therefore requires understanding and avoiding axon bundle activation. This study introduces a method to detect axon bundle activation on the basis of its electrical signature and uses the method to test whether epiretinal stimulation can directly elicit spikes in individual retinal ganglion cells without activating nearby axon bundles. Combined electrical stimulation and recording from isolated primate retina were performed using a custom multielectrode system (512 electrodes, 10-μm diameter, 60-μm pitch). Axon bundle signals were identified by their bidirectional propagation, speed, and increasing amplitude as a function of stimulation current. The threshold for bundle activation varied across electrodes and retinas, and was in the same range as the threshold for activating retinal ganglion cells near their somas. In the peripheral retina, 45% of electrodes that activated individual ganglion cells (17% of all electrodes) did so without activating bundles. This permitted selective activation of 21% of recorded ganglion cells (7% of expected ganglion cells) over the array. In one recording in the central retina, 75% of electrodes that activated individual ganglion cells (16% of all electrodes) did so without activating bundles. The ability to selectively activate a subset of retinal ganglion cells without axon bundles suggests a possible novel architecture for future epiretinal prostheses.NEW & NOTEWORTHY Large-scale multielectrode recording and stimulation were used to test how selectively retinal ganglion cells can be electrically activated without activating axon bundles. A novel method was developed to identify axon activation on the basis of its unique electrical signature and was used to find that a subset of ganglion cells can be activated at single-cell, single-spike resolution without producing bundle activity in peripheral and central retina. These findings have implications for the development of advanced retinal prostheses.
Collapse
Affiliation(s)
- Lauren E Grosberg
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California;
| | - Karthik Ganesan
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - Georges A Goetz
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Sasidhar S Madugula
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Nandita Bhaskhar
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - Victoria Fan
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Peter Li
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California
| | - Pawel Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland; and
| | - Wladyslaw Dabrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland; and
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California
| | - Subhasish Mitra
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - E J Chichilnisky
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| |
Collapse
|
28
|
Abstract
Sensory neuroprostheses for restoration of vision are a technical approach for treatment of previously untreatable blindness. These systems consist of a technical sensor such as a camera and an implanted multi-electrode array within the visual system. The image information from the sensor is processed with specially designed integrated circuits in such a way that the stimulation pulses can be determined and presented to the implanted multi-electrode matrix. Energy supply and the transfer of the stimulus pulse information is realized either via direct cable connections within the site of the implant or by telemetric inductive links. Currently, two retinal implant systems are approved in the European Union (EU) to be used in blind patients with retinitis pigmentosa. With both systems basic visual functions can be restored. The complication rate is relatively low given the complexity of the surgical procedure. Other systems are still under development but approval studies by several manufacturers and consortia are already in preparation.
Collapse
Affiliation(s)
- P Walter
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
29
|
Electronic retinal implant surgery. Eye (Lond) 2017; 31:191-195. [PMID: 28060358 DOI: 10.1038/eye.2016.280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 11/08/2022] Open
Abstract
Blindness due to outer retinal degeneration still remains largely untreatable. Photoreceptor loss removes light sensitivity, but the remaining inner retinal layers, the optic nerve, and indeed the physical structure of the eye itself may be unaffected by the degenerative processes. This provides the opportunity to restore some degree of vision with an electronic device in the subretinal space. In this lecture I will provide an overview of our experiences with the first-generation retinal implant Alpha IMS, developed by Retina Implant AG and based on the technology developed by Eberhart Zrenner as part of a multicentre clinical trial (NCT01024803). We are currently in the process of running a second NIHR-funded clinical trial to assess the next-generation device. The positive results from both studies to date indicate that the retinal implant should be included as a potential treatment for patients who are completely blind from retinitis pigmentosa. Evolution of the technology in future may provide further opportunities for earlier intervention or for other diseases.
Collapse
|
30
|
Jung JH, Pu T, Peli E. Comparing object recognition from binary and bipolar edge images for visual prostheses. JOURNAL OF ELECTRONIC IMAGING 2016; 25:061619. [PMID: 28458481 PMCID: PMC5407304 DOI: 10.1117/1.jei.25.6.061619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition.
Collapse
Affiliation(s)
- Jae-Hyun Jung
- Harvard Medical School, Massachusetts Eye and Ear, Department of Ophthalmology, Schepens Eye Research Institute, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Tian Pu
- Harvard Medical School, Massachusetts Eye and Ear, Department of Ophthalmology, Schepens Eye Research Institute, 20 Staniford Street, Boston, Massachusetts 02114, United States
- University of Electronic Science and Technology of China, School of Optoelectronic Information, No. 4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Eli Peli
- Harvard Medical School, Massachusetts Eye and Ear, Department of Ophthalmology, Schepens Eye Research Institute, 20 Staniford Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
31
|
Goetz GA, Palanker DV. Electronic approaches to restoration of sight. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096701. [PMID: 27502748 PMCID: PMC5031080 DOI: 10.1088/0034-4885/79/9/096701] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal. We describe how the visual system responds to electrical stimulation. We highlight major differences between direct encoding of the retinal output with epiretinal stimulation, and network-mediated response with subretinal stimulation. We summarize results of pre-clinical evaluation of prosthetic visual functions in- and ex vivo, as well as the outcomes of current clinical trials of various retinal implants. We also briefly review alternative, non-electronic, approaches to restoration of sight to the blind, and conclude by suggesting some perspectives for future advancement in the field.
Collapse
Affiliation(s)
- G A Goetz
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA. Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
32
|
Stingl K, Bartz-Schmidt KU, Braun A, Gekeler F, Greppmaier U, Schatz A, Stett A, Strasser T, Kitiratschky V, Zrenner E. Transfer characteristics of subretinal visual implants: corneally recorded implant responses. Doc Ophthalmol 2016; 133:81-90. [PMID: 27510912 PMCID: PMC5052310 DOI: 10.1007/s10633-016-9557-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE The subretinal Alpha IMS visual implant is a CE-approved medical device for restoration of visual functions in blind patients with end-stage outer retina degeneration. We present a method to test the function of the implant objectively in vivo using standard electroretinographic equipment and to assess the devices' parameter range for an optimal perception. METHODS Subretinal implant Alpha IMS (Retina Implant AG, Reutlingen, Germany) consists of 1500 photodiode-amplifier-electrode units and is implanted surgically into the subretinal space in blind retinitis pigmentosa patients. The voltages that regulate the amplifiers' sensitivity (V gl) and gain (V bias), related to the perception of contrast and brightness, respectively, are adjusted manually on a handheld power supply device. Corneally recorded implant responses (CRIR) to full-field illumination with long duration flashes in various implant settings for brightness gain (V bias) and amplifiers' sensitivity (V gl) are measured using electroretinographic setup with a Ganzfeld bowl in a protocol of increasing stimulus luminances up to 1000 cd/m2. RESULTS CRIRs are a meaningful tool for assessing the transfer characteristic curves of the electronic implant in vivo monitoring the implants' voltage output as a function of log luminance in a sigmoidal shape. Changing the amplifiers' sensitivity (V gl) shifts the curve left or right along the log luminance axis. Adjustment of the gain (V bias) changes the maximal output. Contrast perception is only possible within the luminance range of the increasing slope of the function. CONCLUSIONS The technical function of subretinal visual implants can be measured objectively using a standard electroretinographic setup. CRIRs help the patient to optimise the perception by adjusting the gain and luminance range of the device and are a useful tool for clinicians to objectively assess the function of subretinal visual implants in vivo.
Collapse
Affiliation(s)
- K Stingl
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076, Tübingen, Germany
| | - K U Bartz-Schmidt
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076, Tübingen, Germany
| | - A Braun
- Retina Implant AG, Gerhard-Kindler-Straße 8, 72770, Reutlingen, Germany
| | - F Gekeler
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076, Tübingen, Germany.,Klinikum Stuttgart - Katharinenhospital, Eye Clinic, Kriegsbergstraße 60, 70174, Stuttgart, Germany
| | - U Greppmaier
- Retina Implant AG, Gerhard-Kindler-Straße 8, 72770, Reutlingen, Germany
| | - A Schatz
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076, Tübingen, Germany.,Klinikum Stuttgart - Katharinenhospital, Eye Clinic, Kriegsbergstraße 60, 70174, Stuttgart, Germany
| | - A Stett
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - T Strasser
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076, Tübingen, Germany
| | - V Kitiratschky
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076, Tübingen, Germany.
| | - E Zrenner
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Schleichstr. 12-16, 72076, Tübingen, Germany
| |
Collapse
|
33
|
Yue L, Weiland JD, Roska B, Humayun MS. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog Retin Eye Res 2016; 53:21-47. [DOI: 10.1016/j.preteyeres.2016.05.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 11/28/2022]
|
34
|
Lewis PM, Ayton LN, Guymer RH, Lowery AJ, Blamey PJ, Allen PJ, Luu CD, Rosenfeld JV. Advances in implantable bionic devices for blindness: a review. ANZ J Surg 2016; 86:654-9. [PMID: 27301783 PMCID: PMC5132139 DOI: 10.1111/ans.13616] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/17/2016] [Indexed: 02/02/2023]
Abstract
Since the 1950s, vision researchers have been working towards the ambitious goal of restoring a functional level of vision to the blind via electrical stimulation of the visual pathways. Groups based in Australia, USA, Germany, France and Japan report progress in the translation of retinal visual prosthetics from the experimental to clinical domains, with two retinal visual prostheses having recently received regulatory approval for clinical use. Regulatory approval for cortical visual prostheses is yet to be obtained; however, several groups report plans to conduct clinical trials in the near future, building upon the seminal clinical studies of Brindley and Dobelle. In this review, we discuss the general principles of visual prostheses employing electrical stimulation of the visual pathways, focusing on the retina and visual cortex as the two most extensively studied stimulation sites. We also discuss the surgical and functional outcomes reported to date for retinal and cortical prostheses, concluding with a brief discussion of novel developments in this field and an outlook for the future.
Collapse
Affiliation(s)
- Philip M Lewis
- Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arthur J Lowery
- Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia
| | - Peter J Blamey
- Bionics Institute, Department of Medical Bionics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia.,F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Walter P. Sehprothesen. SPEKTRUM DER AUGENHEILKUNDE 2016. [DOI: 10.1007/s00717-016-0299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Brandli A, Luu CD, Guymer RH, Ayton LN. Progress in the clinical development and utilization of vision prostheses: an update. Eye Brain 2016; 8:15-25. [PMID: 28539798 PMCID: PMC5398739 DOI: 10.2147/eb.s70822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vision prostheses, or "bionic eyes", are implantable medical bionic devices with the potential to restore rudimentary sight to people with profound vision loss or blindness. In the past two decades, this field has rapidly progressed, and there are now two commercially available retinal prostheses in the US and Europe, and a number of next-generation devices in development. This review provides an update on the development of these devices and a discussion on the future directions for the field.
Collapse
Affiliation(s)
- Alice Brandli
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Goetz G, Smith R, Lei X, Galambos L, Kamins T, Mathieson K, Sher A, Palanker D. Contrast Sensitivity With a Subretinal Prosthesis and Implications for Efficient Delivery of Visual Information. Invest Ophthalmol Vis Sci 2016; 56:7186-94. [PMID: 26540657 DOI: 10.1167/iovs.15-17566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the contrast sensitivity of a degenerate retina stimulated by a photovoltaic subretinal prosthesis, and assess the impact of low contrast sensitivity on transmission of visual information. METHODS We measure ex vivo the full-field contrast sensitivity of healthy rat retina stimulated with white light, and the contrast sensitivity of degenerate rat retina stimulated with a subretinal prosthesis at frequencies exceeding flicker fusion (>20 Hz). Effects of eye movements on retinal ganglion cell (RGC) activity are simulated using a linear-nonlinear model of the retina. RESULTS Retinal ganglion cells adapt to high frequency stimulation of constant intensity, and respond transiently to changes in illumination of the implant, exhibiting responses to ON-sets, OFF-sets, and both ON- and OFF-sets of light. The percentage of cells with an OFF response decreases with progression of the degeneration, indicating that OFF responses are likely mediated by photoreceptors. Prosthetic vision exhibits reduced contrast sensitivity and dynamic range, with 65% contrast changes required to elicit responses, as compared to the 3% (OFF) to 7% (ON) changes with visible light. The maximum number of action potentials elicited with prosthetic stimulation is at most half of its natural counterpart for the ON pathway. Our model predicts that for most visual scenes, contrast sensitivity of prosthetic vision is insufficient for triggering RGC activity by fixational eye movements. CONCLUSIONS Contrast sensitivity of prosthetic vision is 10 times lower than normal, and dynamic range is two times below natural. Low contrast sensitivity and lack of OFF responses hamper delivery of visual information via a subretinal prosthesis.
Collapse
Affiliation(s)
- Georges Goetz
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States 2Department of Electrical Engineering, Stanford University, Stanford, California, United States
| | - Richard Smith
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States
| | - Xin Lei
- Department of Electrical Engineering, Stanford University, Stanford, California, United States
| | - Ludwig Galambos
- Department of Electrical Engineering, Stanford University, Stanford, California, United States
| | - Theodore Kamins
- Department of Electrical Engineering, Stanford University, Stanford, California, United States
| | - Keith Mathieson
- Institute of Photonics, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States 5Department of Ophthalmology, Stanford University, Stanford, California, United States
| |
Collapse
|
38
|
Kalloniatis M, Nivison-Smith L, Chua J, Acosta ML, Fletcher EL. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: A review. Exp Eye Res 2015; 150:106-21. [PMID: 26521764 DOI: 10.1016/j.exer.2015.10.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
Abstract
Retinitis Pigmentosa (RP) reflects a range of inherited retinal disorders which involve photoreceptor degeneration and retinal pigmented epithelium dysfunction. Despite the multitude of genetic mutations being associated with the RP phenotype, the clinical and functional manifestations of the disease remain the same: nyctalopia, visual field constriction (tunnel vision), photopsias and pigment proliferation. In this review, we describe the typical clinical phenotype of human RP and review the anatomical and functional remodelling which occurs in RP determined from studies in the rd/rd (rd1) mouse. We also review studies that report a slowing down or show an acceleration of retinal degeneration and finally we provide insights on the impact retinal remodelling may have in vision restoration strategies.
Collapse
Affiliation(s)
- M Kalloniatis
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - L Nivison-Smith
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia
| | - J Chua
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - M L Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - E L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Lorach H, Kung J, Beier C, Mandel Y, Dalal R, Huie P, Wang J, Lee S, Sher A, Jones BW, Palanker D. Development of Animal Models of Local Retinal Degeneration. Invest Ophthalmol Vis Sci 2015. [PMID: 26207299 DOI: 10.1167/iovs.14-16011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Development of nongenetic animal models of local retinal degeneration is essential for studies of retinal pathologies, such as chronic retinal detachment or age-related macular degeneration. We present two different methods to induce a highly localized retinal degeneration with precise onset time, that can be applied to a broad range of species in laboratory use. METHODS A 30-μm thin polymer sheet was implanted subretinally in wild-type (WT) rats. The effects of chronic retinal separation from the RPE were studied using histology and immunohistochemistry. Another approach is applicable to species with avascular retina, such as rabbits, where the photoreceptors and RPE were thermally ablated over large areas, using a high power scanning laser. RESULTS Photoreceptors above the subretinal implant in rats degenerated over time, with 80% of the outer nuclear layer disappearing within a month, and the rest by 3 months. Similar loss was obtained by selective photocoagulation with a scanning laser. Cells in the inner nuclear layer and ganglion cell layer were preserved in both cases. However, there were signs of rewiring and decrease in the size of the bipolar cell terminals in the damaged areas. CONCLUSIONS Both methods induce highly reproducible degeneration of photoreceptors over a defined area, with complete preservation of the inner retinal neurons during the 3-month follow-up. They provide a reliable platform for studies of local retinal degeneration and development of therapeutic strategies in a wide variety of species.
Collapse
Affiliation(s)
- Henri Lorach
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States 2Department of Ophthalmology, Stanford University, Stanford, California, United States 3Institut de la Vision, Paris, France
| | - Jennifer Kung
- Department of Ophthalmology, Stanford University, Stanford, California, United States
| | - Corinne Beier
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California, United States
| | - Yossi Mandel
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States 5Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University, Stanford, California, United States
| | - Philip Huie
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States 2Department of Ophthalmology, Stanford University, Stanford, California, United States
| | - Jenny Wang
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States 2Department of Ophthalmology, Stanford University, Stanford, California, United States
| | - Seungjun Lee
- Department of Ophthalmology, Stanford University, Stanford, California, United States
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California, United States
| | - Bryan William Jones
- Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States 2Department of Ophthalmology, Stanford University, Stanford, California, United States
| |
Collapse
|
40
|
MacLaren RE. Gene Therapy for Retinal Disease: What Lies Ahead. Ophthalmologica 2015; 234:1-5. [PMID: 26279067 DOI: 10.1159/000438872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 07/19/2015] [Indexed: 11/19/2022]
Abstract
Gene therapy in simple terms can be defined as a medical treatment that exerts its effects using molecules of DNA or RNA within cells. Most traditional drugs act by mechanisms that include binding to cell surface receptors, inhibiting enzymes in intracellular pathways or by modifying transcription. These approaches rely to some extent on a normal genetic make-up of the cell in the final common pathway, which raises significant challenges in diseases that are caused by specific gene mutations. An alternative gene therapy approach to change the behaviour of cells at the most fundamental level by one single genetic modification is therefore potentially very powerful and wide ranging. This paper presents an overview of retinal gene therapy at the current time and highlights the future therapeutic potential for a number of diseases that are currently incurable.
Collapse
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, London, UK
| |
Collapse
|
41
|
Xia P, Hu J, Peng Y. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision. Artif Organs 2015; 39:1038-45. [DOI: 10.1111/aor.12504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Xia
- School of Mechanical Engineering; Shanghai Jiao Tong University; Shanghai China
| | - Jie Hu
- School of Mechanical Engineering; Shanghai Jiao Tong University; Shanghai China
| | - Yinghong Peng
- School of Mechanical Engineering; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
42
|
Hafed ZM, Stingl K, Bartz-Schmidt KU, Gekeler F, Zrenner E. Oculomotor behavior of blind patients seeing with a subretinal visual implant. Vision Res 2015; 118:119-31. [PMID: 25906684 DOI: 10.1016/j.visres.2015.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 11/19/2022]
Abstract
Electronic implants are able to restore some visual function in blind patients with hereditary retinal degenerations. Subretinal visual implants, such as the CE-approved Retina Implant Alpha IMS (Retina Implant AG, Reutlingen, Germany), sense light through the eye's optics and subsequently stimulate retinal bipolar cells via ∼1500 independent pixels to project visual signals to the brain. Because these devices are directly implanted beneath the fovea, they potentially harness the full benefit of eye movements to scan scenes and fixate objects. However, so far, the oculomotor behavior of patients using subretinal implants has not been characterized. Here, we tracked eye movements in two blind patients seeing with a subretinal implant, and we compared them to those of three healthy controls. We presented bright geometric shapes on a dark background, and we asked the patients to report seeing them or not. We found that once the patients visually localized the shapes, they fixated well and exhibited classic oculomotor fixational patterns, including the generation of microsaccades and ocular drifts. Further, we found that a reduced frequency of saccades and microsaccades was correlated with loss of visibility. Last, but not least, gaze location corresponded to the location of the stimulus, and shape and size aspects of the viewed stimulus were reflected by the direction and size of saccades. Our results pave the way for future use of eye tracking in subretinal implant patients, not only to understand their oculomotor behavior, but also to design oculomotor training strategies that can help improve their quality of life.
Collapse
Affiliation(s)
- Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Otfried-Mueller Strasse 25, Tuebingen 72076, Germany.
| | - Katarina Stingl
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Schleichstrasse 12-16, Tuebingen 72076, Germany.
| | - Karl-Ulrich Bartz-Schmidt
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Schleichstrasse 12-16, Tuebingen 72076, Germany
| | - Florian Gekeler
- Augenklinik Katharinenhospital, Klinikum Stuttgart, Kriegsbergstrasse 60, Stuttgart 70174, Germany
| | - Eberhart Zrenner
- Werner Reichardt Centre for Integrative Neuroscience, Otfried-Mueller Strasse 25, Tuebingen 72076, Germany; Center for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Schleichstrasse 12-16, Tuebingen 72076, Germany
| |
Collapse
|
43
|
Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, Groppe M, Jackson TL, MacLaren RE, Koitschev A, Kusnyerik A, Neffendorf J, Nemeth J, Naeem MAN, Peters T, Ramsden JD, Sachs H, Simpson A, Singh MS, Wilhelm B, Wong D, Zrenner E. Subretinal Visual Implant Alpha IMS--Clinical trial interim report. Vision Res 2015; 111:149-60. [PMID: 25812924 DOI: 10.1016/j.visres.2015.03.001] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 11/27/2022]
Abstract
A subretinal visual implant (Alpha IMS, Retina Implant AG, Reutlingen, Germany) was implanted in 29 blind participants with outer retinal degeneration in an international multicenter clinical trial. Primary efficacy endpoints of the study protocol were a significant improvement of activities of daily living and mobility to be assessed by activities of daily living tasks, recognition tasks, mobility, or a combination thereof. Secondary efficacy endpoints were a significant improvement of visual acuity/light perception and/or object recognition (clinicaltrials.gov, NCT01024803). During up to 12 months observation time twenty-one participants (72%) reached the primary endpoints, of which thirteen participants (45%) reported restoration of visual function which they use in daily life. Additionally, detection, localization, and identification of objects were significantly better with the implant power switched on in the first 3 months. Twenty-five participants (86%) reached the secondary endpoints. Measurable grating acuity was up to 3.3 cycles per degree, visual acuities using standardized Landolt C-rings were 20/2000, 20/2000, 20/606 and 20/546. Maximal correct motion perception ranged from 3 to 35 degrees per second. These results show that subretinal implants can restore very-low-vision or low vision in blind (light perception or less) patients with end-stage hereditary retinal degenerations.
Collapse
Affiliation(s)
- Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
| | | | - Dorothea Besch
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
| | - Caroline K Chee
- Department of Ophthalmology, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Charles L Cottriall
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Florian Gekeler
- Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany; Klinikum Stuttgart - Katharinenhospital, Eye Clinic, Kriegsbergstraße 60, 70174 Stuttgart, Germany(1)
| | - Markus Groppe
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Timothy L Jackson
- King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Robert E MacLaren
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Assen Koitschev
- Klinikum Stuttgart - Olgahospital, ORL-Department, Pediatric Otorhinolaryngology and Otology, Kriegsbergstr. 62, 70176 Stuttgart, Germany
| | - Akos Kusnyerik
- Department of Ophthalmology, Semmelweis University, Maria utca 39, H-1085 Budapest, Hungary
| | - James Neffendorf
- King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Janos Nemeth
- Department of Ophthalmology, Semmelweis University, Maria utca 39, H-1085 Budapest, Hungary
| | - Mohamed Adheem Naser Naeem
- Department of Ophthalmology, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Tobias Peters
- STZ Eyetrial, Center for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
| | - James D Ramsden
- Department of Otolaryngology, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, United Kingdom
| | - Helmut Sachs
- Klinikum Dresden Friedrichstadt, Univ. Teaching Hospital, Eye Clinic, Friedrichstr. 41, 01067 Dresden, Germany
| | - Andrew Simpson
- King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Mandeep S Singh
- Department of Ophthalmology, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Barbara Wilhelm
- STZ Eyetrial, Center for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
| | - David Wong
- Li Ka Shing Faculty of Medicine, University of Hong Kong, 301 Block B, Cyberport 4, Hong Kong
| | - Eberhart Zrenner
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany; Centre for Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany.
| |
Collapse
|
44
|
Van Gelder RN. Photochemical approaches to vision restoration. Vision Res 2015; 111:134-41. [PMID: 25680758 DOI: 10.1016/j.visres.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022]
Abstract
Photoswitches are traditional pharmacologic agonists, antagonists, or channel blockers that are covalently modified with an azobenzene derivative. Azobenzene undergoes wavelength-dependent isomerization between cis and trans conformation. For some photoswitches, only one of these configurations is biologically active, resulting in light-dependent activation or inhibition of function. Photoswitches that feature a quaternary ammonium coupled to the azobenzene moiety cause light-dependent neuronal depolarization due to blockage of voltage-gated potassium channels. Two photoswitch strategies have been pursued. In the one-component strategy, the photoswitch is applied to native receptors; in the two-component strategy, the photoswitch is combined with virally-mediated expression of a genetically modified receptor, to which the photoswitch may covalently bind. The former approach is simpler but the latter allows precise anatomic targeting of photoswitch activity. Acrylamide-azobenzene-quaternary ammonium (AAQ) is the prototypical first-generation one-component photoswitch. When applied to retinas with outer retinal degeneration, ganglion cell firing occurs in response to blue light, and is abrogated by green light. In vivo, AAQ restored pupillary light responses and behavioral light responses in blind animals. DENAQ is a prototypical second generation one-component photoswitch. It features spontaneous thermal relaxation so cell firing ceases in dark, and features a red-shifted activation spectrum. Interestingly, DENAQ only photoswitches in retinas with outer retinal degeneration. MAG is a photoswitched glutamate analog which covalently binds to a modified ionotropic glutamate receptor, LiGluR. When applied together, MAG and LiGluR also rescue physiologic and behavioral light responses in blind mice. Together, photoswitch compounds offer a potentially useful approach to restoration of vision in outer retinal degeneration.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, United States; Department of Pathology, University of Washington School of Medicine, United States; Department of Biological Structure, University of Washington School of Medicine, United States.
| |
Collapse
|
45
|
Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nayagam DAX, Sinclair NC, Shivdasani MN, Yeoh J, McCombe MF, Briggs RJ, Opie NL, Villalobos J, Dimitrov PN, Varsamidis M, Petoe MA, McCarthy CD, Walker JG, Barnes N, Burkitt AN, Williams CE, Shepherd RK, Allen PJ. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One 2014; 9:e115239. [PMID: 25521292 PMCID: PMC4270734 DOI: 10.1371/journal.pone.0115239] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Retinal visual prostheses (“bionic eyes”) have the potential to restore vision to blind or profoundly vision-impaired patients. The medical bionic technology used to design, manufacture and implant such prostheses is still in its relative infancy, with various technologies and surgical approaches being evaluated. We hypothesised that a suprachoroidal implant location (between the sclera and choroid of the eye) would provide significant surgical and safety benefits for patients, allowing them to maintain preoperative residual vision as well as gaining prosthetic vision input from the device. This report details the first-in-human Phase 1 trial to investigate the use of retinal implants in the suprachoroidal space in three human subjects with end-stage retinitis pigmentosa. The success of the suprachoroidal surgical approach and its associated safety benefits, coupled with twelve-month post-operative efficacy data, holds promise for the field of vision restoration. Trial Registration Clinicaltrials.gov NCT01603576
Collapse
Affiliation(s)
- Lauren N. Ayton
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- * E-mail:
| | - Peter J. Blamey
- Bionics Institute, East Melbourne, Australia
- Department of Medical Bionics, University of Melbourne, East Melbourne, Australia
| | - Robyn H. Guymer
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Chi D. Luu
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - David A. X. Nayagam
- Bionics Institute, East Melbourne, Australia
- Department of Pathology, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | | | - Mohit N. Shivdasani
- Bionics Institute, East Melbourne, Australia
- Department of Medical Bionics, University of Melbourne, East Melbourne, Australia
| | - Jonathan Yeoh
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Mark F. McCombe
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Robert J. Briggs
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Nicholas L. Opie
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | | | - Peter N. Dimitrov
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Mary Varsamidis
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | | | - Chris D. McCarthy
- NICTA, Computer Vision Research Group, Canberra, Australia
- National Institute for Mental Health Research, Australian National University, Canberra, Australia
| | - Janine G. Walker
- NICTA, Computer Vision Research Group, Canberra, Australia
- National Institute for Mental Health Research, Australian National University, Canberra, Australia
| | - Nick Barnes
- NICTA, Computer Vision Research Group, Canberra, Australia
- National Institute for Mental Health Research, Australian National University, Canberra, Australia
| | - Anthony N. Burkitt
- Bionics Institute, East Melbourne, Australia
- Centre for Neural Engineering, University of Melbourne, National Information and Communications Technology Australia (NICTA), Ltd., Melbourne, Australia
| | | | - Robert K. Shepherd
- Bionics Institute, East Melbourne, Australia
- Department of Medical Bionics, University of Melbourne, East Melbourne, Australia
| | - Penelope J. Allen
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | | |
Collapse
|
46
|
Jung JH, Aloni D, Yitzhaky Y, Peli E. Active confocal imaging for visual prostheses. Vision Res 2014; 111:182-96. [PMID: 25448710 DOI: 10.1016/j.visres.2014.10.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/14/2014] [Accepted: 10/25/2014] [Indexed: 11/26/2022]
Abstract
There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other "sensory substitution devices" that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and "see" only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system based on light-field imaging, we confirmed that the concept of a confocal de-cluttered image can be realized effectively.
Collapse
Affiliation(s)
- Jae-Hyun Jung
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Doron Aloni
- Department of Electro-Optics Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yitzhak Yitzhaky
- Department of Electro-Optics Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eli Peli
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Marc R, Pfeiffer R, Jones B. Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci 2014; 5:895-901. [PMID: 25089879 PMCID: PMC4210130 DOI: 10.1021/cn5001233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
![]()
Three
technologies have emerged as therapies to restore light sensing to
profoundly blind patients suffering from late-stage retinal degenerations:
(1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches.
Prosthetics are the most mature and the only approach in clinical
practice. Prosthetic implants require complex surgical intervention
and provide only limited visual resolution but can potentially restore
navigational ability to many blind patients. Optogenetics uses viral
delivery of type 1 opsin genes from prokaryotes or eukaryote algae
to restore light responses in survivor neurons. Targeting and expression
remain major problems, but are potentially soluble. Importantly, optogenetics
could provide the ultimate in high-resolution vision due to the long
persistence of gene expression achieved in animal models. Nevertheless,
optogenetics remains challenging to implement in human eyes with large
volumes, complex disease progression, and physical barriers to viral
penetration. Now, a new generation of photochromic ligands or chemical
photoswitches (azobenzene-quaternary ammonium derivatives) can be
injected into a degenerated mouse eye and, in minutes to hours, activate
light responses in neurons. These photoswitches offer the potential
for rapidly and reversibly screening the vision restoration expected
in an individual patient. Chemical photoswitch variants that persist
in the cell membrane could make them a simple therapy of choice, with
resolution and sensitivity equivalent to optogenetics approaches.
A major complexity in treating retinal degenerations is retinal remodeling:
pathologic network rewiring, molecular reprogramming, and cell death
that compromise signaling in the surviving retina. Remodeling forces
a choice between upstream and downstream targeting, each engaging
different benefits and defects. Prosthetics and optogenetics can be
implemented in either mode, but the use of chemical photoswitches
is currently limited to downstream implementations. Even so, given
the high density of human foveal ganglion cells, the ultimate chemical
photoswitch treatment could deliver cost-effective, high-resolution
vision for the blind.
Collapse
Affiliation(s)
- Robert Marc
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Rebecca Pfeiffer
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Bryan Jones
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| |
Collapse
|
48
|
Fransen JW, Pangeni G, Pardue MT, McCall MA. Local signaling from a retinal prosthetic in a rodent retinitis pigmentosa model in vivo. J Neural Eng 2014; 11:046012. [PMID: 24940618 DOI: 10.1088/1741-2560/11/4/046012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In clinical trials, retinitis pigmentosa patients implanted with a retinal prosthetic device show enhanced spatial vision, including the ability to read large text and navigate. New prosthetics aim to increase spatial resolution by decreasing pixel/electrode size and limiting current spread. To examine spatial resolution of a new prosthetic design, we characterized and compared two photovoltaic array (PVA) designs and their interaction with the retina after subretinal implantation in transgenic S334ter line 3 rats (Tg S334ter-3). APPROACH PVAs were implanted subretinally at two stages of degeneration and assessed in vivo using extracellular recordings in the superior colliculus (SC). Several aspects of this interaction were evaluated by varying duration, irradiance and position of a near infrared laser focused on the PVA. These characteristics included: activation threshold, response linearity, SC signal topography and spatial localization. The major design difference between the two PVA designs is the inclusion of local current returns in the newer design. MAIN RESULTS When tested in vivo, PVA-evoked response thresholds were independent of pixel/electrode size, but differ between the new and old PVA designs. Response thresholds were independent of implantation age and duration (⩽7.5 months). For both prosthesis designs, threshold intensities were within established safety limits. PVA-evoked responses require inner retina synaptic transmission and do not directly activate retinal ganglion cells. The new PVA design evokes local retinal activation, which is not found with the older PVA design that lacks local current returns. SIGNIFICANCE Our study provides in vivo evidence that prosthetics make functional contacts with the inner nuclear layer at several stages of degeneration. The new PVA design enhances local activation within the retina and SC. Together these results predict that the new design can potentially harness the inherent processing within the retina and is likely to produce higher spatial resolution in patients.
Collapse
Affiliation(s)
- James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
49
|
Huang WC, Cideciyan AV, Roman AJ, Sumaroka A, Sheplock R, Schwartz SB, Stone EM, Jacobson SG. Inner and outer retinal changes in retinal degenerations associated with ABCA4 mutations. Invest Ophthalmol Vis Sci 2014; 55:1810-22. [PMID: 24550365 DOI: 10.1167/iovs.13-13768] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To investigate in vivo inner and outer retinal microstructure and effects of structural abnormalities on visual function in patients with retinal degeneration caused by ABCA4 mutations (ABCA4-RD). METHODS Patients with ABCA4-RD (n = 45; age range, 9-71 years) were studied by spectral-domain optical coherence tomography (OCT) scans extending from the fovea to 30° eccentricity along horizontal and vertical meridians. Thicknesses of outer and inner retinal laminae were analyzed. Serial OCT measurements available over a mean period of 4 years (range, 2-8 years) allowed examination of the progression of outer and inner retinal changes. A subset of patients had dark-adapted chromatic static threshold perimetry. RESULTS There was a spectrum of photoreceptor layer thickness changes from localized central retinal abnormalities to extensive thinning across central and near midperipheral retina. The inner retina also showed changes. There was thickening of the inner nuclear layer (INL) that was mainly associated with regions of photoreceptor loss. Serial data documented only limited change in some patients while others showed an increase in outer nuclear layer (ONL) thinning accompanied by increased INL thickening in some regions imaged. Visual function in regions both with and without INL thickening was describable with a previously defined model based on photoreceptor quantum catch. CONCLUSIONS Inner retinal laminar abnormalities, as in other human photoreceptor diseases, can be a feature of ABCA4-RD. These changes are likely due to the retinal remodeling that accompanies photoreceptor loss. Rod photoreceptor-mediated visual loss in retinal regionswith inner laminopathy at the stages studied did not exceed the prediction from photoreceptor loss alone.
Collapse
Affiliation(s)
- Wei Chieh Huang
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|