1
|
Abramovitch H, Bick AS, Guy N, Elul D, Mckyton A, Banin E, Levin N. Visual Tract Integrity Before and After Gene Therapy in Congenital Achromatopsia. Transl Vis Sci Technol 2025; 14:9. [PMID: 39908132 PMCID: PMC11804893 DOI: 10.1167/tvst.14.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/22/2024] [Indexed: 02/07/2025] Open
Abstract
Purpose CNGA3 achromatopsia is a rare hereditary syndrome caused by dysfunction of cone photoreceptors. Visual information is therefore obtained only by rod photoreceptors, resulting in low acuity, photoaversion, and color blindness. Trials using gene therapy have been initiated recently, in which clinical improvement was subtle. Methods To explain this suboptimal outcome, we used diffusion tensor imaging to assess visual pathway integrity in 3 CNGA3 achromatopsia patients before and after gene therapy, and compared them with 16 normally sighted adults. Results No significant differences from normal subjects in optic tract and radiation were detected. Fiber integrity reduction was observed in the occipitocallosal fibers. These differences showed some normalization after treatment, but intersubject variability was evident. Specifically, the observed changes were related to radial diffusivities, reflecting fiber myelination or glial cell alterations. Conclusions Despite the fundamental role of cone photoreceptors in human sight, primary visual pathways in patients are comparable with those of healthy individuals and thereby fiber integrity is probably not an obstacle for recovery. Preliminary results suggest that the splenial fibers are less cohesive in naïve patients and regain some integrity after treatment. These findings add to previous reports on this rare population and suggest that novel information is processed within the visual cortex after treatment. Translational Relevance Patients with complete color blindness were treated using a novel gene augmentation therapy. Unfortunately, the patients did not experience a sudden eureka moment of being able to perceive the full spectrum of colors. In this study, we rule out fiber disintegration as the cause of their limited recovery.
Collapse
Affiliation(s)
- Hillel Abramovitch
- fMRI Unit, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atira S. Bick
- fMRI Unit, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Guy
- Department of Cognitive Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deena Elul
- fMRI Unit, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayelet Mckyton
- fMRI Unit, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Takemura H, Kruper JA, Miyata T, Rokem A. Tractometry of Human Visual White Matter Pathways in Health and Disease. Magn Reson Med Sci 2024; 23:316-340. [PMID: 38866532 PMCID: PMC11234945 DOI: 10.2463/mrms.rev.2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Diffusion-weighted MRI (dMRI) provides a unique non-invasive view of human brain tissue properties. The present review article focuses on tractometry analysis methods that use dMRI to assess the properties of brain tissue within the long-range connections comprising brain networks. We focus specifically on the major white matter tracts that convey visual information. These connections are particularly important because vision provides rich information from the environment that supports a large range of daily life activities. Many of the diseases of the visual system are associated with advanced aging, and tractometry of the visual system is particularly important in the modern aging society. We provide an overview of the tractometry analysis pipeline, which includes a primer on dMRI data acquisition, voxelwise model fitting, tractography, recognition of white matter tracts, and calculation of tract tissue property profiles. We then review dMRI-based methods for analyzing visual white matter tracts: the optic nerve, optic tract, optic radiation, forceps major, and vertical occipital fasciculus. For each tract, we review background anatomical knowledge together with recent findings in tractometry studies on these tracts and their properties in relation to visual function and disease. Overall, we find that measurements of the brain's visual white matter are sensitive to a range of disorders and correlate with perceptual abilities. We highlight new and promising analysis methods, as well as some of the current barriers to progress toward integration of these methods into clinical practice. These barriers, such as variability in measurements between protocols and instruments, are targets for future development.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - John A Kruper
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| | - Toshikazu Miyata
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Hayashi S, Caron BA, Heinsfeld AS, Vinci-Booher S, McPherson B, Bullock DN, Bertò G, Niso G, Hanekamp S, Levitas D, Ray K, MacKenzie A, Avesani P, Kitchell L, Leong JK, Nascimento-Silva F, Koudoro S, Willis H, Jolly JK, Pisner D, Zuidema TR, Kurzawski JW, Mikellidou K, Bussalb A, Chaumon M, George N, Rorden C, Victory C, Bhatia D, Aydogan DB, Yeh FCF, Delogu F, Guaje J, Veraart J, Fischer J, Faskowitz J, Fabrega R, Hunt D, McKee S, Brown ST, Heyman S, Iacovella V, Mejia AF, Marinazzo D, Craddock RC, Olivetti E, Hanson JL, Garyfallidis E, Stanzione D, Carson J, Henschel R, Hancock DY, Stewart CA, Schnyer D, Eke DO, Poldrack RA, Bollmann S, Stewart A, Bridge H, Sani I, Freiwald WA, Puce A, Port NL, Pestilli F. brainlife.io: a decentralized and open-source cloud platform to support neuroscience research. Nat Methods 2024; 21:809-813. [PMID: 38605111 PMCID: PMC11093740 DOI: 10.1038/s41592-024-02237-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.
Collapse
Affiliation(s)
| | - Bradley A Caron
- Indiana University, Bloomington, IN, USA
- The University of Texas, Austin, TX, USA
| | | | - Sophia Vinci-Booher
- Indiana University, Bloomington, IN, USA
- Vanderbilt University, Nashville, TN, USA
| | - Brent McPherson
- Indiana University, Bloomington, IN, USA
- McGill University, Montréal, Quebec, Canada
| | | | | | - Guiomar Niso
- Indiana University, Bloomington, IN, USA
- Cajal Institute, CSIC, Madrid, Spain
| | | | - Daniel Levitas
- Indiana University, Bloomington, IN, USA
- The University of Texas, Austin, TX, USA
| | | | | | | | - Lindsey Kitchell
- Indiana University, Bloomington, IN, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Josiah K Leong
- Indiana University, Bloomington, IN, USA
- University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | | | | - Kyriaki Mikellidou
- University of Limassol, Nicosia, Cyprus
- University of Cyprus, Nicosia, Cyprus
| | - Aurore Bussalb
- Institut du Cerveau, CNRS, Sorbonne Université, Paris, France
| | | | - Nathalie George
- Institut du Cerveau, CNRS, Sorbonne Université, Paris, France
| | | | | | | | - Dogu Baran Aydogan
- University of Eastern Finland, Kuopio, Finland
- Aalto University School of Science, Espoo, Finland
| | | | - Franco Delogu
- Lawrence Technological University, Southfield, MI, USA
| | | | | | | | | | | | - David Hunt
- Indiana University, Bloomington, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ashley Stewart
- University of Queensland, St Lucia, Queensland, Australia
| | | | - Ilaria Sani
- The Rockefeller University, New York, NY, USA
- University of Geneva, Geneva, Switzerland
| | | | - Aina Puce
- Indiana University, Bloomington, IN, USA
| | | | - Franco Pestilli
- Indiana University, Bloomington, IN, USA.
- The University of Texas, Austin, TX, USA.
| |
Collapse
|
4
|
Stout JA, Mahzarnia A, Dai R, Anderson RJ, Cousins S, Zhuang J, Lad EM, Whitaker DB, Madden DJ, Potter GG, Whitson HE, Badea A. Accelerated Brain Atrophy, Microstructural Decline and Connectopathy in Age-Related Macular Degeneration. Biomedicines 2024; 12:147. [PMID: 38255252 PMCID: PMC10813528 DOI: 10.3390/biomedicines12010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Age-related macular degeneration (AMD) has recently been linked to cognitive impairment. We hypothesized that AMD modifies the brain aging trajectory, and we conducted a longitudinal diffusion MRI study on 40 participants (20 with AMD and 20 controls) to reveal the location, extent, and dynamics of AMD-related brain changes. Voxel-based analyses at the first visit identified reduced volume in AMD participants in the cuneate gyrus, associated with vision, and the temporal and bilateral cingulate gyrus, linked to higher cognition and memory. The second visit occurred 2 years after the first and revealed that AMD participants had reduced cingulate and superior frontal gyrus volumes, as well as lower fractional anisotropy (FA) for the bilateral occipital lobe, including the visual and the superior frontal cortex. We detected faster rates of volume and FA reduction in AMD participants in the left temporal cortex. We identified inter-lingual and lingual-cerebellar connections as important differentiators in AMD participants. Bundle analyses revealed that the lingual gyrus had a lower streamline length in the AMD participants at the first visit, indicating a connection between retinal and brain health. FA differences in select inter-lingual and lingual cerebellar bundles at the second visit showed downstream effects of vision loss. Our analyses revealed widespread changes in AMD participants, beyond brain networks directly involved in vision processing.
Collapse
Affiliation(s)
- Jacques A. Stout
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
| | - Ali Mahzarnia
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Rui Dai
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Robert J. Anderson
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Scott Cousins
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - Jie Zhuang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
| | - Eleonora M. Lad
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - Diane B. Whitaker
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - David J. Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Guy G. Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Heather E. Whitson
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
- Department of Medicine, Duke University Medical School, Durham, NC 27710, USA
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexandra Badea
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Ebrahimi M, Thompson P, Lauer AK, Sivaprasad S, Perry G. The retina-brain axis and diabetic retinopathy. Eur J Ophthalmol 2023; 33:2079-2095. [PMID: 37259525 DOI: 10.1177/11206721231172229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diabetic retinopathy (DR) is a major contributor to permanent vision loss and blindness. Changes in retinal neurons, glia, and microvasculature have been the focus of intensive study in the quest to better understand DR. However, the impact of diabetes on the rest of the visual system has received less attention. There are reports of associations of changes in the visual system with preclinical and clinical manifestations of diabetes. Simultaneous investigation of the retina and the brain may shed light on the mechanisms underlying neurodegeneration in diabetics. Additionally, investigating the links between DR and other neurodegenerative disorders of the brain including Alzheimer's and Parkinson's disease may reveal shared mechanisms for neurodegeneration and potential therapy options.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas K Lauer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sobha Sivaprasad
- National Institute of Health and Care Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas and San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Wang L, Ji Y, Ding H, Tian Q, Fan K, Shi D, Yu C, Qin W. Abnormal cerebral blood flow in patients with Leber's hereditary optic neuropathy. Brain Imaging Behav 2023; 17:471-480. [PMID: 37368154 DOI: 10.1007/s11682-023-00775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE The study aimed to unravel abnormal cerebral blood flow (CBF) in patients with Leber's hereditary optic neuropathy (LHON) using arterial spin labeling (ASL) and to investigate the associations among disrupted CBF, disease duration, and neuro-ophthalmological impairment. METHODS ASL perfusion imaging data was collected from 20 patients with acute LHON, 29 patients with chronic LHON, and 37 healthy controls. We used a one-way analysis of covariance to test the intergroup differences in CBF. Linear and nonlinear curve fit models were applied to explore the associations among CBF, disease duration, and neuro-ophthalmological metrics. RESULTS Brain regions differed in LHON patients, including the left sensorimotor and bilateral visual areas (p < 0.05, cluster-wise family-wise error correction). Acute and chronic LHON patients demonstrated lower CBF in bilateral calcarine than the healthy controls. Chronic LHON had lower CBF in the left middle frontal gyrus and sensorimotor cortex, and temporal-partial junction than the healthy controls and acute LHON. A significant logarithmic negative correlation was shown between CBF of left middle frontal gyrus and disease duration. A significant linear positive correlation was found between retinal nerve fiber layer thickness and CBF in left middle frontal gyrus, and negative correlations between loss of variance and CBF in left middle frontal gyrus and sensorimotor cortex (p < 0.05, Bonferroni correction). CONCLUSION LHON patients exhibited reduced CBF in the visual pathway, sensorimotor and higher-tier cognitive areas. Disease duration and neuro-ophthalmological impairments can influence the metabolism of non-visual areas.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yi Ji
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Ding
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- Department of Medical Imaging, Henan Provincial People's Hospital, Sanquan College of Xinxiang Medical University, Weiwu Road No. 7, Jinshui District, ZhengZhou, Henan Province, China.
| | - Chunshui Yu
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Radiology, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Wen Qin
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Radiology, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| |
Collapse
|
7
|
Carrozzi A, Gramegna LL, Sighinolfi G, Zoli M, Mazzatenta D, Testa C, Lodi R, Tonon C, Manners DN. Methods of diffusion MRI tractography for localization of the anterior optic pathway: A systematic review of validated methods. Neuroimage Clin 2023; 39:103494. [PMID: 37651845 PMCID: PMC10477810 DOI: 10.1016/j.nicl.2023.103494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
The anterior optic pathway (AOP) is a system of three structures (optic nerves, optic chiasma, and optic tracts) that convey visual stimuli from the retina to the lateral geniculate nuclei. A successful reconstruction of the AOP using tractography could be helpful in several clinical scenarios, from presurgical planning and neuronavigation of sellar and parasellar surgery to monitoring the stage of fiber degeneration both in acute (e.g., traumatic optic neuropathy) or chronic conditions that affect AOP structures (e.g., amblyopia, glaucoma, demyelinating disorders or genetic optic nerve atrophies). However, its peculiar anatomy and course, as well as its surroundings, pose a serious challenge to obtaining successful tractographic reconstructions. Several AOP tractography strategies have been adopted but no standard procedure has been agreed upon. We performed a systematic review of the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020 guidelines in order to find the combinations of acquisition and reconstruction parameters that have been performed previously and have provided the highest rate of successful reconstruction of the AOP, in order to promote their routine implementation in clinical practice. For this purpose, we reviewed data regarding how the process of anatomical validation of the tractographies was performed. The Cochrane Handbook for Systematic Reviews of Interventions was used to assess the risk of bias and thus the study quality We identified thirty-nine studies that met our inclusion criteria, and only five were considered at low risk of bias and achieved over 80% of successful reconstructions. We found a high degree of heterogeneity in the acquisition and analysis parameters used to perform AOP tractography and different combinations of them can achieve satisfactory levels of anterior optic tractographic reconstruction both in real-life research and clinical scenarios. One thousand s/mm2 was the most frequently used b value, while both deterministic and probabilistic tractography algorithms performed morphological reconstruction of the tract satisfactorily, although probabilistic algorithms estimated a more realistic percentage of crossing fibers (45.6%) in healthy subjects. A wide heterogeneity was also found regarding the method used to assess the anatomical fidelity of the AOP reconstructions. Three main strategies can be found: direct visual direct visual assessment of the tractography superimposed to a conventional MR image, surgical evaluation, and computational methods. Because the latter is less dependent on a priori knowledge of the anatomy by the operator, computational methods of validation of the anatomy should be considered whenever possible.
Collapse
Affiliation(s)
- Alessandro Carrozzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy.
| | - Giovanni Sighinolfi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Pituitary Unit, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Pituitary Unit, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - David Neil Manners
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department for Life Quality Studies (QUVI), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Takemura H, Liu W, Kuribayashi H, Miyata T, Kida I. Evaluation of simultaneous multi-slice readout-segmented diffusion-weighted MRI acquisition in human optic nerve measurements. Magn Reson Imaging 2023; 102:103-114. [PMID: 37149064 DOI: 10.1016/j.mri.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) is the only available method to measure the tissue properties of white matter tracts in living human brains and has opened avenues for neuroscientific and clinical studies on human white matter. However, dMRI using conventional simultaneous multi-slice (SMS) single-shot echo planar imaging (ssEPI) still presents challenges in the analyses of some specific white matter tracts, such as the optic nerve, which are heavily affected by susceptibility-induced artifacts. In this study, we evaluated dMRI data acquired by using SMS readout-segmented EPI (rsEPI), which aims to reduce susceptibility-induced artifacts by dividing the acquisition space into multiple segments along the readout direction to reduce echo spacing. To this end, we acquired dMRI data from 11 healthy volunteers by using SMS ssEPI and SMS rsEPI, and then compared the dMRI data of the human optic nerve between the SMS ssEPI and SMS rsEPI datasets by visual inspection of the datasets and statistical comparisons of fractional anisotropy (FA) values. In comparison with the SMS ssEPI data, the SMS rsEPI data showed smaller susceptibility-induced distortion and exhibited a significantly higher FA along the optic nerve. In summary, this study demonstrates that despite its prolonged acquisition time, SMS rsEPI is a promising approach for measuring the tissue properties of the optic nerve in living humans and will be useful for future neuroscientific and clinical investigations of this pathway.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan.
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | | | - Toshikazu Miyata
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Ikuhiro Kida
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Brown HDH, Gale RP, Gouws AD, Vernon RJW, Airody A, Hanson RLW, Baseler HA, Morland AB. Assessing the structure of the posterior visual pathway in bilateral macular degeneration. Sci Rep 2023; 13:5008. [PMID: 36973337 PMCID: PMC10042846 DOI: 10.1038/s41598-023-31819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Macular degeneration (MD) embodies a collection of disorders causing a progressive loss of central vision. Cross-sectional MRI studies have revealed structural changes in the grey and white matter in the posterior visual pathway in MD but there remains a need to understand how such changes progress over time. To that end we assessed the posterior pathway, characterising the visual cortex and optic radiations over a ~ 2-year period in MD patients and controls. We performed cross-sectional and longitudinal analysis of the former. Reduced cortical thickness and white matter integrity were observed in patients compared to controls, replicating previous findings. While faster, neither the rate of thinning in visual cortex nor the reduction in white matter integrity during the ~ 2-year period reached significance. We also measured cortical myelin density; cross-sectional data showed this was higher in patients than controls, likely as a result of greater thinning of non-myelinated tissue in patients. However, we also found evidence of a greater rate of loss of myelin density in the occipital pole in the patient group indicating that the posterior visual pathway is at risk in established MD. Taken together, our results revealed a broad decline in grey and white matter in the posterior visual pathway in bilateral MD; cortical thickness and fractional anisotropy show hints of an accelerated rate of loss also, with larger effects emerging in the occipital pole.
Collapse
Affiliation(s)
- Holly D H Brown
- Centre for Cognition and Neuroscience, Department of Psychology, University of Huddersfield, Huddersfield, UK.
- Department of Psychology, University of York, York, UK.
- York Neuroimaging Centre, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| | - Richard P Gale
- Hull York Medical School, University of York, York, UK
- Academic Unit of Ophthalmology, York and Scarborough Teaching Hospital NHS Foundation Trust, York, UK
| | - André D Gouws
- York Neuroimaging Centre, University of York, York, UK
| | - Richard J W Vernon
- Department of Psychology, University of York, York, UK
- York Neuroimaging Centre, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Archana Airody
- Academic Unit of Ophthalmology, York and Scarborough Teaching Hospital NHS Foundation Trust, York, UK
| | - Rachel L W Hanson
- Department of Psychology, University of York, York, UK
- York Neuroimaging Centre, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
- Academic Unit of Ophthalmology, York and Scarborough Teaching Hospital NHS Foundation Trust, York, UK
| | - Heidi A Baseler
- Department of Psychology, University of York, York, UK
- York Neuroimaging Centre, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
- Hull York Medical School, University of York, York, UK
| | - Antony B Morland
- Department of Psychology, University of York, York, UK
- York Neuroimaging Centre, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
10
|
Hao X, Zhang W, Jiao B, Yang Q, Zhang X, Chen R, Wang X, Xiao X, Zhu Y, Liao W, Wang D, Shen L. Correlation between retinal structure and brain multimodal magnetic resonance imaging in patients with Alzheimer's disease. Front Aging Neurosci 2023; 15:1088829. [PMID: 36909943 PMCID: PMC9992546 DOI: 10.3389/fnagi.2023.1088829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Background The retina imaging and brain magnetic resonance imaging (MRI) can both reflect early changes in Alzheimer's disease (AD) and may serve as potential biomarker for early diagnosis, but their correlation and the internal mechanism of retinal structural changes remain unclear. This study aimed to explore the possible correlation between retinal structure and visual pathway, brain structure, intrinsic activity changes in AD patients, as well as to build a classification model to identify AD patients. Methods In the study, 49 AD patients and 48 healthy controls (HCs) were enrolled. Retinal images were obtained by optical coherence tomography (OCT). Multimodal MRI sequences of all subjects were collected. Spearman correlation analysis and multiple linear regression models were used to assess the correlation between OCT parameters and multimodal MRI findings. The diagnostic value of combination of retinal imaging and brain multimodal MRI was assessed by performing a receiver operating characteristic (ROC) curve. Results Compared with HCs, retinal thickness and multimodal MRI findings of AD patients were significantly altered (p < 0.05). Significant correlations were presented between the fractional anisotropy (FA) value of optic tract and mean retinal thickness, macular volume, macular ganglion cell layer (GCL) thickness, inner plexiform layer (IPL) thickness in AD patients (p < 0.01). The fractional amplitude of low frequency fluctuations (fALFF) value of primary visual cortex (V1) was correlated with temporal quadrant peripapillary retinal nerve fiber layer (pRNFL) thickness (p < 0.05). The model combining thickness of GCL and temporal quadrant pRNFL, volume of hippocampus and lateral geniculate nucleus, and age showed the best performance to identify AD patients [area under the curve (AUC) = 0.936, sensitivity = 89.1%, specificity = 87.0%]. Conclusion Our study demonstrated that retinal structure change was related to the loss of integrity of white matter fiber tracts in the visual pathway and the decreased LGN volume and functional metabolism of V1 in AD patients. Trans-synaptic axonal retrograde lesions may be the underlying mechanism. Combining retinal imaging and multimodal MRI may provide new insight into the mechanism of retinal structural changes in AD and may serve as new target for early auxiliary diagnosis of AD.
Collapse
Affiliation(s)
- Xiaoli Hao
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Xinyue Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Ruiting Chen
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
11
|
Bullock DN, Hayday EA, Grier MD, Tang W, Pestilli F, Heilbronner SR. A taxonomy of the brain's white matter: twenty-one major tracts for the 21st century. Cereb Cortex 2022; 32:4524-4548. [PMID: 35169827 PMCID: PMC9574243 DOI: 10.1093/cercor/bhab500] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/26/2023] Open
Abstract
The functional and computational properties of brain areas are determined, in large part, by their connectivity profiles. Advances in neuroimaging and network neuroscience allow us to characterize the human brain noninvasively, but a comprehensive understanding of the human brain demands an account of the anatomy of brain connections. Long-range anatomical connections are instantiated by white matter, which itself is organized into tracts. These tracts are often disrupted by central nervous system disorders, and they can be targeted by neuromodulatory interventions, such as deep brain stimulation. Here, we characterized the connections, morphology, traversal, and functions of the major white matter tracts in the brain. There are major discrepancies across different accounts of white matter tract anatomy, hindering our attempts to accurately map the connectivity of the human brain. However, we are often able to clarify the source(s) of these discrepancies through careful consideration of both histological tract-tracing and diffusion-weighted tractography studies. In combination, the advantages and disadvantages of each method permit novel insights into brain connectivity. Ultimately, our synthesis provides an essential reference for neuroscientists and clinicians interested in brain connectivity and anatomy, allowing for the study of the association of white matter's properties with behavior, development, and disorders.
Collapse
Affiliation(s)
- Daniel N Bullock
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena A Hayday
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark D Grier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Tang
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Franco Pestilli
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Miyata T, Benson NC, Winawer J, Takemura H. Structural Covariance and Heritability of the Optic Tract and Primary Visual Cortex in Living Human Brains. J Neurosci 2022; 42:6761-6769. [PMID: 35853720 PMCID: PMC9436011 DOI: 10.1523/jneurosci.0043-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Individual differences among human brains exist at many scales, spanning gene expression, white matter tissue properties, and the size and shape of cortical areas. One notable example is an approximately 3-fold range in the size of human primary visual cortex (V1), a much larger range than is found in overall brain size. A previous study (Andrews et al., 1997) reported a correlation between optic tract (OT) cross-section area and V1 size in postmortem human brains, suggesting that there may be a common developmental mechanism for multiple components of the visual pathways. We evaluated the relationship between properties of the OT and V1 in a much larger sample of living human brains by analyzing the Human Connectome Project (HCP) 7 Tesla Retinotopy Dataset (including 107 females and 71 males). This dataset includes retinotopic maps measured with functional MRI (fMRI) and fiber tract data measured with diffusion MRI (dMRI). We found a negative correlation between OT fractional anisotropy (FA) and V1 surface area (r = -0.19). This correlation, although small, was consistent across multiple dMRI datasets differing in acquisition parameters. Further, we found that both V1 surface area and OT properties were correlated among twins, with higher correlations for monozygotic (MZ) than dizygotic (DZ) twins, indicating a high degree of heritability for both properties. Together, these results demonstrate covariation across individuals in properties of the retina (OT) and cortex (V1) and show that each is influenced by genetic factors.SIGNIFICANCE STATEMENT The size of human primary visual cortex (V1) has large interindividual differences. These differences do not scale with overall brain size. A previous postmortem study reported a correlation between the size of the human optic tract (OT) and V1. In this study, we evaluated the relationship between the OT and V1 in living humans by analyzing a neuroimaging dataset that included functional MRI (fMRI) and diffusion MRI (dMRI) data. We found a small, but robust correlation between OT tissue properties and V1 size, supporting the existence of structural covariance between the OT and V1 in living humans. The results suggest that characteristics of retinal ganglion cells (RGCs), reflected in OT measurements, are correlated with individual differences in human V1.
Collapse
Affiliation(s)
- Toshikazu Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Institute, National Institute of Information and Communications Technology (NICT), Suita-shi 565-0871, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki-shi 444-8585, Japan
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle, 98195, Washington
| | - Jonathan Winawer
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10003
| | - Hiromasa Takemura
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Institute, National Institute of Information and Communications Technology (NICT), Suita-shi 565-0871, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki-shi 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama-cho 240-0193, Japan
| |
Collapse
|
13
|
Manners DN, Gramegna LL, La Morgia C, Sighinolfi G, Fiscone C, Carbonelli M, Romagnoli M, Carelli V, Tonon C, Lodi R. Multishell Diffusion MR Tractography Yields Morphological and Microstructural Information of the Anterior Optic Pathway: A Proof-of-Concept Study in Patients with Leber’s Hereditary Optic Neuropathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116914. [PMID: 35682499 PMCID: PMC9180110 DOI: 10.3390/ijerph19116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022]
Abstract
Tractography based on multishell diffusion-weighted magnetic resonance imaging (DWI) can be used to estimate the course of myelinated white matter tracts and nerves, yielding valuable information regarding normal anatomy and variability. DWI is sensitive to the local tissue microstructure, so tractography can be used to estimate tissue properties within nerve tracts at a resolution of millimeters. This study aimed to test the applicability of the method using a disease with a well-established pattern of myelinated nerve involvement. Eight patients with LHON and 13 age-matched healthy controls underwent tractography of the anterior optic pathway. Diffusion parameters were compared between groups, and for the patient group correlated with clinical/ophthalmological parameters. Tractography established the course of the anterior optic pathway in both patients and controls. Localized changes in fractional anisotropy were observed, and related to estimates of different tissue compartments within the nerve and tract. The proportion of different compartments correlated with markers of disease severity. The method described allows both anatomical localization and tissue characterization in vivo, permitting both visualization of variation at the individual level and statistical inference at the group level. It provides a valuable adjunct to ex vivo anatomical and histological study of normal variation and disease processes.
Collapse
Affiliation(s)
- David Neil Manners
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy; (L.L.G.); (G.S.); (C.F.); (M.C.); (V.C.); (C.T.); (R.L.)
- Correspondence:
| | - Laura Ludovica Gramegna
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy; (L.L.G.); (G.S.); (C.F.); (M.C.); (V.C.); (C.T.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (C.L.M.); (M.R.)
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (C.L.M.); (M.R.)
| | - Giovanni Sighinolfi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy; (L.L.G.); (G.S.); (C.F.); (M.C.); (V.C.); (C.T.); (R.L.)
| | - Cristiana Fiscone
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy; (L.L.G.); (G.S.); (C.F.); (M.C.); (V.C.); (C.T.); (R.L.)
| | - Michele Carbonelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy; (L.L.G.); (G.S.); (C.F.); (M.C.); (V.C.); (C.T.); (R.L.)
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (C.L.M.); (M.R.)
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy; (L.L.G.); (G.S.); (C.F.); (M.C.); (V.C.); (C.T.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (C.L.M.); (M.R.)
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy; (L.L.G.); (G.S.); (C.F.); (M.C.); (V.C.); (C.T.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (C.L.M.); (M.R.)
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy; (L.L.G.); (G.S.); (C.F.); (M.C.); (V.C.); (C.T.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (C.L.M.); (M.R.)
| |
Collapse
|
14
|
Tian Q, Wang L, Zhang Y, Fan K, Liang M, Shi D, Qin W, Ding H. Brain Gray Matter Atrophy and Functional Connectivity Remodeling in Patients With Chronic LHON. Front Neurosci 2022; 16:885770. [PMID: 35645726 PMCID: PMC9135140 DOI: 10.3389/fnins.2022.885770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to investigate the brain gray matter volume (GMV) and spontaneous functional connectivity (FC) changes in patients with chronic Leber's hereditary optic neuropathy (LHON), and their relations with clinical measures. Methods A total of 32 patients with chronic LHON and matched sighted healthy controls (HC) underwent neuro-ophthalmologic examinations and multimodel magnetic resonance imaging (MRI) scans. Voxel-based morphometry (VBM) was used to detect the GMV differences between the LHON and HC. Furthermore, resting-state FC analysis using the VBM-identified clusters as seeds was carried out to detect potential functional reorganization in the LHON. Finally, the associations between the neuroimaging and clinical measures were performed. Results The average peripapillary retinal nerve fiber layer (RNFL) thickness of the chronic LHON was significantly thinner (T = −16.421, p < 0.001), and the mean defect of the visual field was significantly higher (T = 11.28, p < 0.001) than the HC. VBM analysis demonstrated a significantly lower GMV of bilateral calcarine gyri (CGs) in the LHON than in the HC (p < 0.05). Moreover, in comparison with the HC, the LHON had significantly lower FC between the centroid of the identified left CG and ipsilateral superior occipital gyrus (SOG) and higher FC between this cluster and the ipsilateral posterior cingulate gyrus (p < 0.05, corrected). Finally, the GMV of the left CG was negatively correlated with the LHON duration (r = −0.535, p = 0.002), and the FC between the left CG and the ipsilateral posterior cingulate gyrus of the LHON was negatively correlated with the average peripapillary RNFL thickness (r = −0.522, p = 0.003). Conclusion The atrophied primary visual cortex of the chronic LHON may be caused by transneuronal degeneration following the retinal damage. Moreover, our findings suggest that the functional organization of the atrophied primary visual cortex has been reshaped in the chronic LHON.
Collapse
Affiliation(s)
- Qin Tian
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Wang
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Zhang
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Meng Liang
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Dapeng Shi
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Dapeng Shi
| | - Wen Qin
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Wen Qin
| | - Hao Ding
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
- Hao Ding
| |
Collapse
|
15
|
McGregor JE, Kunala K, Xu Z, Murphy PJ, Godat T, Strazzeri JM, Bateman BA, Fischer WS, Parkins K, Chu CJ, Puthussery T, Williams DR, Merigan WH. Optogenetic therapy restores retinal activity in primate for at least a year following photoreceptor ablation. Mol Ther 2022; 30:1315-1328. [PMID: 34547460 PMCID: PMC8899524 DOI: 10.1016/j.ymthe.2021.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
All retina-based vision restoration approaches rely on the assumption that photoreceptor loss does not preclude reactivation of the remaining retinal architecture. Whether extended periods of vision loss limit the efficacy of restorative therapies at the retinal level is unknown. We examined long-term changes in optogenetic responsivity of foveal retinal ganglion cells (RGCs) in non-human primates following localized photoreceptor ablation by high-intensity laser exposure. By performing fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) of RGCs expressing both the calcium indicator GCaMP6s and the optogenetic actuator ChrimsonR, it was possible to track optogenetic-mediated calcium responses in deafferented RGCs over time. Fluorescence fundus photography revealed a 40% reduction in ChrimsonR fluorescence from RGCs lacking photoreceptor input over the 3 weeks following photoreceptor ablation. Despite this, in vivo imaging revealed good cellular preservation of RGCs 3 months after the loss of photoreceptor input, and histology confirmed good structural preservation at 2 years. Optogenetic responses of RGCs in primate persisted for at least 1 year after the loss of photoreceptor input, with a sensitivity index similar to optogenetic responses recorded in intact retina. These results are promising for all potential therapeutic approaches to vision restoration that rely on preservation and reactivation of RGCs.
Collapse
Affiliation(s)
- Juliette E. McGregor
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Corresponding author: Juliette E. McGregor, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Karteek Kunala
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhengyang Xu
- Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Peter J. Murphy
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Tyler Godat
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Jennifer M. Strazzeri
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | | | - William S. Fischer
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Keith Parkins
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Colin J. Chu
- Translational Health Sciences, University of Bristol, Bristol BS105NB, United Kingdom
| | - Teresa Puthussery
- School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - David R. Williams
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - William H. Merigan
- Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA,Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA,Corresponding author: William H. Merigan, Center for Visual Science, 601 Crittenden Blvd., University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
16
|
Ogawa S, Takemura H, Horiguchi H, Miyazaki A, Matsumoto K, Masuda Y, Yoshikawa K, Nakano T. Multi-Contrast Magnetic Resonance Imaging of Visual White Matter Pathways in Patients With Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:29. [PMID: 35201263 PMCID: PMC8883150 DOI: 10.1167/iovs.63.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Glaucoma is a disorder that involves visual field loss caused by retinal ganglion cell damage. Previous diffusion magnetic resonance imaging (dMRI) studies have demonstrated that retinal ganglion cell damage affects tissues in the optic tract (OT) and optic radiation (OR). However, because previous studies have used a simple diffusion tensor model to analyze dMRI data, the microstructural interpretation of white matter tissue changes remains uncertain. In this study, we used a multi-contrast MRI approach to further clarify the type of microstructural damage that occurs in patients with glaucoma. Methods We collected dMRI data from 17 patients with glaucoma and 30 controls using 3-tesla (3T) MRI. Using the dMRI data, we estimated three types of tissue property metrics: intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (IsoV). Quantitative T1 (qT1) data, which may be relatively specific to myelin, were collected from all subjects. Results In the OT, all four metrics showed significant differences between the glaucoma and control groups. In the OR, only the ICVF showed significant between-group differences. ICVF was significantly correlated with qT1 in the OR of the glaucoma group, although qT1 did not show any abnormality at the group level. Conclusions Our results suggest that, at the group level, tissue changes in OR caused by glaucoma might be explained by axonal damage, which is reflected in the intracellular diffusion signals, rather than myelin damage. The significant correlation between ICVF and qT1 suggests that myelin damage might also occur in a smaller number of severe cases.
Collapse
Affiliation(s)
- Shumpei Ogawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kenji Matsumoto
- Brain Science Institute, Tamagawa University, Machida, Japan
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiji Yoshikawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
- Yoshikawa Eye Clinic, Machida, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Chow-Wing-Bom HT, Callaghan MF, Wang J, Wei S, Dick F, Yu-Wai-Man P, Dekker TM. Neuroimaging in Leber Hereditary Optic Neuropathy: State-of-the-art and future prospects. Neuroimage Clin 2022; 36:103240. [PMID: 36510411 PMCID: PMC9668671 DOI: 10.1016/j.nicl.2022.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Leber Hereditary Optic Neuropathy (LHON) is an inherited mitochondrial retinal disease that causes the degeneration of retinal ganglion cells and leads to drastic loss of visual function. In the last decades, there has been a growing interest in using Magnetic Resonance Imaging (MRI) to better understand mechanisms of LHON beyond the retina. This is partially due to the emergence of gene-therapies for retinal diseases, and the accompanying expanded need for reliably quantifying and monitoring visual processing and treatment efficiency in patient populations. This paper aims to draw a current picture of key findings in this field so far, the challenges of using neuroimaging methods in patients with LHON, and important open questions that MRI can help address about LHON disease mechanisms and prognoses, including how downstream visual brain regions are affected by the disease and treatment and why, and how scope for neural plasticity in these pathways may limit or facilitate recovery.
Collapse
Affiliation(s)
- Hugo T Chow-Wing-Bom
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Junqing Wang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Shihui Wei
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Frederic Dick
- Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom; Department of Psychological Sciences, Birkbeck, University of London, United Kingdom; Department of Experimental Psychology, UCL, London, United Kingdom
| | - Patrick Yu-Wai-Man
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Tessa M Dekker
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom; Department of Experimental Psychology, UCL, London, United Kingdom
| |
Collapse
|
18
|
Abstract
We describe a collection of T1-, diffusion- and functional T2*-weighted magnetic resonance imaging data from human individuals with albinism and achiasma. This repository can be used as a test-bed to develop and validate tractography methods like diffusion-signal modeling and fiber tracking as well as to investigate the properties of the human visual system in individuals with congenital abnormalities. The MRI data is provided together with tools and files allowing for its preprocessing and analysis, along with the data derivatives such as manually curated masks and regions of interest for performing tractography.
Collapse
|
19
|
Aoyama Y, Inagaki S, Aoshima K, Iwata Y, Nakamura S, Hara H, Shimazawa M. Involvement of endoplasmic reticulum stress in rotenone-induced leber hereditary optic neuropathy model and the discovery of new therapeutic agents. J Pharmacol Sci 2021; 147:200-207. [PMID: 34384568 DOI: 10.1016/j.jphs.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is caused by mitochondrial DNA mutations and is the most common inherited mitochondrial disease. It is responsible for central vision loss in young adulthood. However, the precise mechanisms of onset are unknown. This study aimed to elucidate the mechanisms underlying LHON pathology and to discover new therapeutic agents. First, we assessed whether rotenone, a mitochondrial complex Ⅰ inhibitor, induced retinal degeneration such as that in LHON in a mouse model. Rotenone decreased the thickness of the inner retina and increased the expression levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and immunoglobulin heavy-chain binding protein (BiP). Second, we assessed whether rotenone reproduces LHON pathologies on RGC-5, a neural progenitor cell derived from the retina. Rotenone increased the cell death rate, ROS production and the expression levels of ER stress markers. During chemical compounds screening, we used anti-oxidative compounds, ER stress inhibitors and anti-inflammatory compounds in a rotenone-induced in vitro model. We found that SUN N8075, an ER stress inhibitor, reduced mitochondrial ROS production and improved the mitochondrial membrane potential. Consequently, the ER stress response is strongly related to the pathologies of LHON, and ER stress inhibitors may have a protective effect against LHON.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Animals
- Cells, Cultured
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Drug Discovery
- Drug Evaluation, Preclinical
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Endoplasmic Reticulum Stress/physiology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Mutation
- Optic Atrophy, Hereditary, Leber/chemically induced
- Optic Atrophy, Hereditary, Leber/drug therapy
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Piperazines/pharmacology
- Reactive Oxygen Species/metabolism
- Retina/drug effects
- Retina/metabolism
- Retina/pathology
- Retinal Degeneration/chemically induced
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Rotenone/adverse effects
- Mice
Collapse
Affiliation(s)
- Yakumo Aoyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kota Aoshima
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Iwata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
20
|
Ptito M, Paré S, Dricot L, Cavaliere C, Tomaiuolo F, Kupers R. A quantitative analysis of the retinofugal projections in congenital and late-onset blindness. NEUROIMAGE-CLINICAL 2021; 32:102809. [PMID: 34509923 PMCID: PMC8435915 DOI: 10.1016/j.nicl.2021.102809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Congenital (CB) and late blind (LB) affects the integrity brain visual structures. We measured the integrity of the retino-fugal system using structural MRI images. Optic nerve, optic tract, optic chiasm and LGN were reduced by 50 to 60% in CB and LB. There were no differences between CB and LB. In LB, optic nerve volume correlated negatively with blindness duration.
Vision loss early in life has dramatic consequences on the organization of the visual system and hence on structural plasticity of its remnant components. Most of the studies on the anatomical changes in the brain following visual deprivation have focused on the re-organization of the visual cortex and its afferent and efferent projections. In this study, we performed a quantitative analysis of the volume and size of the optic chiasm, optic nerve, optic tract and the lateral geniculate nucleus (LGN), the retino recipient thalamic nucleus. Analysis was carried out on structural T1-weighted MRIs from 22 congenitally blind (CB), 14 late blind (LB) and 29 age -and sex-matched sighted control (SC) subjects. We manually segmented the optic nerve, optic chiasm and optic tract, while LGN volumes were extracted using in-house software. We also measured voxel intensity of optic nerve, optic chiasm and optic tract. Mean volumes of the optic nerve, optic tract and optic chiasm were reduced by 50 to 60% in both CB and LB participants. No significant differences were found between the congenitally and late-onset blind participants for any of the measures. Our data further revealed reduced white matter voxel intensities in optic nerve, optic chiasm and optic tract in blind compared to sighted participants, suggesting decreased myelin content in the atrophied white matter. The LGN was reduced by 50% and 44% in CB and LB, respectively. In LB, optic nerve volume correlated negatively with the blindness duration index; no such correlation was found for optic chiasm, optic tract and LGN. The observation that despite the absence of visual input about half of the subcortical retinofugal projections are structurally preserved raises the question of their functional role. One possibility is that the surviving fibers play a role in the maintenance of circadian rhythms in the blind through the intrinsically photosensitive melanopsin-containing retinal ganglion cells.
Collapse
Affiliation(s)
- Maurice Ptito
- School of Optometry, University of Montreal, Montreal, QC, Canada; BRAINlab, University of Copenhagen, Copenhagen, Denmark; Danish Research Center for Magnetic Resonance (DRCMR), Copenhagen University Hospital, Hvidovre, Denmark
| | - Samuel Paré
- School of Optometry, University of Montreal, Montreal, QC, Canada
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium
| | - Carlo Cavaliere
- IRCCS SDN, Naples, Italy; Coma Science Group, Cyclotron Research Center and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Francesco Tomaiuolo
- Univesità degli Studi di Messina, Dipartimento di Medicina Clinica e Sperimentale
| | - Ron Kupers
- School of Optometry, University of Montreal, Montreal, QC, Canada; BRAINlab, University of Copenhagen, Copenhagen, Denmark; Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium.
| |
Collapse
|
21
|
He J, Zhang F, Xie G, Yao S, Feng Y, Bastos DCA, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. Hum Brain Mapp 2021; 42:3887-3904. [PMID: 33978265 PMCID: PMC8288095 DOI: 10.1002/hbm.25472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022] Open
Abstract
The retinogeniculate visual pathway (RGVP) conveys visual information from the retina to the lateral geniculate nucleus. The RGVP has four subdivisions, including two decussating and two nondecussating pathways that cannot be identified on conventional structural magnetic resonance imaging (MRI). Diffusion MRI tractography has the potential to trace these subdivisions and is increasingly used to study the RGVP. However, it is not yet known which fiber tracking strategy is most suitable for RGVP reconstruction. In this study, four tractography methods are compared, including constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, and multi-fiber (UKF-2T) and single-fiber (UKF-1T) unscented Kalman filter (UKF) methods. Experiments use diffusion MRI data from 57 subjects in the Human Connectome Project. The RGVP is identified using regions of interest created by two clinical experts. Quantitative anatomical measurements and expert anatomical judgment are used to assess the advantages and limitations of the four tractography methods. Overall, we conclude that UKF-2T and iFOD1 produce the best RGVP reconstruction results. The iFOD1 method can better quantitatively estimate the percentage of decussating fibers, while the UKF-2T method produces reconstructed RGVPs that are judged to better correspond to the known anatomy and have the highest spatial overlap across subjects. Overall, we find that it is challenging for current tractography methods to both accurately track RGVP fibers that correspond to known anatomy and produce an approximately correct percentage of decussating fibers. We suggest that future algorithm development for RGVP tractography should take consideration of both of these two points.
Collapse
Affiliation(s)
- Jianzhong He
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of TechnologyHangzhouChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fan Zhang
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Guoqiang Xie
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryNuclear Industry 215 Hospital of Shaanxi ProvinceXianyangChina
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Pituitary Tumor Surgery, Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yuanjing Feng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of TechnologyHangzhouChina
| | - Dhiego C. A. Bastos
- Department of Neurosurgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Departments of Psychiatry, Neurology and Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ron Kikinis
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra J. Golby
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurosurgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
22
|
Wang L, Ding H, Chen BT, Fan K, Tian Q, Long M, Liang M, Shi D, Yu C, Qin W. Occult primary white matter impairment in Leber hereditary optic neuropathy. Eur J Neurol 2021; 28:2871-2881. [PMID: 34166558 DOI: 10.1111/ene.14995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Leber hereditary optic neuropathy (LHON) is a disease maternally inherited from mitochondria that predominantly impairs the retinal ganglion cells and their axons. To identify whether occult brain white matter (WM) impairment is involved, a voxel-based analysis (VBA) of diffusion metrics was carried out in LHON patients with normal-appearing brain parenchyma. METHODS Fifty-four symptomatic LHON patients (including 22 acute LHON with vision loss for ≤12 months, and 32 chronic LHON) without any visible brain lesions and 36 healthy controls (HCs) were enrolled in this study. VBA was applied to quantify the WM microstructural changes of LHON patients. Finally, the associations of the severity of WM impairment with disease duration and ophthalmologic deficits were assessed. RESULTS Compared with the HCs, the average retinal nerve fiber layer (RNFL) thickness was significantly reduced in patients with chronic LHON, whereas it was increased in patients with acute LHON (p < 0.05, corrected). VBA identified significantly decreased fractional anisotropy widely in WM in both the acute and chronic LHON patients, including the left anterior thalamic radiation and superior longitudinal fasciculus, and bilateral corticospinal tract, dentate nuclei, inferior longitudinal fasciculus, forceps major, and optic radiation (OR; p < 0.05, corrected). The integrity of most WM structures (except for the OR) was correlated with neither disease duration nor RNFL thickness (p > 0.05, corrected). CONCLUSIONS Occult primary impairment of widespread brain WM is present in LHON patients. The coexisting primary and secondary WM impairment may jointly contribute to the pathological process of LHON.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hao Ding
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, California, USA
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Miaomiao Long
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chunshui Yu
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Amemiya K, Naito E, Takemura H. Age dependency and lateralization in the three branches of the human superior longitudinal fasciculus. Cortex 2021; 139:116-133. [PMID: 33852990 DOI: 10.1016/j.cortex.2021.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
The superior longitudinal fascicle/fasciculus (SLF) is a major white matter tract connecting the frontal and parietal cortices in humans. Although the SLF has often been analyzed as a single entity, several studies have reported that the SLF is segregated into three distinct branches (SLF I, II, and III). They have also reported the right lateralization of the SLF III volume and discussed its relationship with lateralized cortical functions in the fronto-parietal network. However, to date, the homogeneity or heterogeneity of the age dependency and lateralization properties of SLF branches have not been fully clarified. Through this study, we aimed to clarify the age dependency and lateralization of SLF I-III by analyzing diffusion-weighted MRI (dMRI) and quantitative R1 (qR1) map datasets collected from a wide range of age groups, mostly comprising right-handed children, adolescents, adults, and seniors (6 to 81 years old). The age dependency in dMRI measurement (fractional anisotropy, FA) was heterogeneous among the three SLF branches, suggesting that these branches are regulated by distinct developmental and aging processes. Lateralization analysis on SLF branches revealed that the right SLF III was larger than the left SLF III in adults, replicating previous reports. FA measurement also suggested that, in addition to SLF III, SLF II was lateralized to the right hemisphere in adolescents and adults. We further found a left lateralization of SLF I in qR1 data, a microstructural measurement sensitive to myelin levels, in adults. These findings suggest that the SLF sub-bundles are distinct entities in terms of age dependency and lateralization.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
24
|
Zhang J, Wang L, Ding H, Fan K, Tian Q, Liang M, Sun Z, Shi D, Qin W. Abnormal large-scale structural rich club organization in Leber's hereditary optic neuropathy. NEUROIMAGE-CLINICAL 2021; 30:102619. [PMID: 33752075 PMCID: PMC8010853 DOI: 10.1016/j.nicl.2021.102619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
LHON patients suffered large-scale structural network disruption. Non-rich club connections may be more vulnerable in the LHON. Both primary and secondary connectivity damage may coexist in the LHON.
Objective The purpose of this study was to investigate whether the large-scale structural rich club organization was abnormal in patients with Leber's hereditary optic neuropathy (LHON) using diffusion tensor imaging (DTI), and the associations among disrupted brain structural connectivity, disease duration, and neuro-ophthalmological impairment. Methods Nineteen acute, 34 chronic LHON patients, and 36 healthy controls (HC) underwent DTI and neuro-ophthalmological measurements. The brain structural network and rich club organization were constructed based on deterministic fiber tracking at the individual level. Then intergroup differences among the acute, chronic LHON patients and healthy controls (HC) in three types of structural connections, including rich club, feeder, and local ones, were compared. Network-based Statistics (NBS) was also used to test the intergroup connectivity differences for each fiber. Several linear and nonlinear curve fit models were applied to explore the associations among large-scale brain structural connectivity, disease duration, and neuro-ophthalmological metrics. Results Compared to the HC, both the acute and chronic LHON patients had consistently significantly lower fractional anisotropy (FA) and higher radial diffusion (RD) for feeder connections (p < 0.05, FDR correction). Acute LHON patients had significantly lower FA and higher RD for local connections (p < 0.05, FDR correction). There was no significant difference in large-scale brain structural connectivity between acute and chronic LHON (p > 0.05, FDR correction). NBS also identified reduced FA of three feeder connections and five local ones linking visual, auditory, and basal ganglia areas in LHON patients (p < 0.05, FDR correction). No structural connections showed linear or nonlinear association with either disease duration or neuro-ophthalmological indicators (p > 0.05, FDR correction). A significant negative correlation was shown between the retinal nerve fiber layer (RNFL) thickness and disease duration (p < 0.05, FDR correction). Conclusions Abnormal rich club organization of the structural network was identified in both the acute and chronic LHON. Furthermore, our findings suggest the coexistence of both primary and secondary connectivity damage in the LHON.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ling Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Hao Ding
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Meng Liang
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Zhihua Sun
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Wen Qin
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
25
|
Jonak K, Krukow P, Karakuła-Juchnowicz H, Rahnama-Hezavah M, Jonak KE, Stępniewski A, Niedziałek A, Toborek M, Podkowiński A, Symms M, Grochowski C. Aberrant Structural Network Architecture in Leber's Hereditary Optic Neuropathy. Minimum Spanning Tree Graph Analysis Application into Diffusion 7T MRI. Neuroscience 2020; 455:128-140. [PMID: 33359657 DOI: 10.1016/j.neuroscience.2020.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/15/2022]
Abstract
Examining individuals with Leber's hereditary optic neuropathy (LHON) provides a rare opportunity to understand how changes in mitochondrial DNA and loss of vision can be related to changes in organization of the whole-brain structural network architecture. In comparison with the previous neuroimaging studies with LHON participants, which were focused mainly on analyzing changes which occur in different areas of the patient's brain, network analysis not only makes it possible to observe single white matter fibers' aberrations but also the whole-brain nature of these changes. The purpose of our study was to better understand whole-brain neural network changes in LHON participants and see the correlation between the clinical data and the changes. To achieve this, we examined fifteen LHON patients and seventeen age-matched healthy subjects with the usage of ultra-high filed 7T magnetic resonance imaging (MRI). Basing on the analysis on MRI diffusion tensor imaging (DTI) data, whole-brain structural neural networks were reconstructed with the use of the minimum spanning tree algorithm (MST) for every participant. Our results revealed that the structural network in LHON participants was altered at both the local and the global level. The global network structures of LHON subjects were less centralized with path-like organization and there was an imbalance in the main hub centrality. Moreover, the inspection of nodes and hubs in terms of their anatomical placement revealed that in the LHON participants the prominent hubs were located within the basal ganglia (i.e. bilateral caudate, left pallidum), which differed them from healthy controls. An analysis of the relationships between the global MST metrics and LHON participants' clinical characteristics revealed significant correlations between the global network metrics and the duration of illness. Furthermore, the nodal parameters of the optic chiasm were significantly correlated with the duration of illness and the averaged thickness of the right retinal nerve fiber layer (RNFL). These findings clearly showed that the progression of the disease is accompanied by alterations within the brain network structure and its efficiency.
Collapse
Affiliation(s)
- Kamil Jonak
- Department of Clinical Neuropsychiatry, Medical University of Lublin, 20-439 Lublin, Poland; Department of Biomedical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Paweł Krukow
- Department of Clinical Neuropsychiatry, Medical University of Lublin, 20-439 Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland
| | | | - Katarzyna E Jonak
- Department of Foreign Languages, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | | | - Anna Niedziałek
- Department of Radiography, Medical University of Lublin, 20-081 Lublin, Poland
| | - Michał Toborek
- Department of Radiography, Medical University of Lublin, 20-081 Lublin, Poland
| | | | - Mark Symms
- GE Healthcare, Amersham Place, Amersham HP7 9NA, UK
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, Poland.
| |
Collapse
|
26
|
Takemura H, Palomero-Gallagher N, Axer M, Gräßel D, Jorgensen MJ, Woods R, Zilles K. Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. eLife 2020; 9:e55444. [PMID: 32844747 PMCID: PMC7532002 DOI: 10.7554/elife.55444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Although the primate visual system has been extensively studied, detailed spatial organization of white matter fiber tracts carrying visual information between areas has not been fully established. This is mainly due to the large gap between tracer studies and diffusion-weighted MRI studies, which focus on specific axonal connections and macroscale organization of fiber tracts, respectively. Here we used 3D polarization light imaging (3D-PLI), which enables direct visualization of fiber tracts at micrometer resolution, to identify and visualize fiber tracts of the visual system, such as stratum sagittale, inferior longitudinal fascicle, vertical occipital fascicle, tapetum and dorsal occipital bundle in vervet monkey brains. Moreover, 3D-PLI data provide detailed information on cortical projections of these tracts, distinction between neighboring tracts, and novel short-range pathways. This work provides essential information for interpretation of functional and diffusion-weighted MRI data, as well as revision of wiring diagrams based upon observations in the vervet visual system.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka UniversityOsakaJapan
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH AachenAachenGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Markus Axer
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - David Gräßel
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Roger Woods
- Ahmanson-Lovelace Brain Mapping Center, Departments of Neurology and of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- JARA - Translational Brain MedicineAachenGermany
| |
Collapse
|
27
|
Takemura H, Yuasa K, Amano K. Predicting Neural Response Latency of the Human Early Visual Cortex from MRI-Based Tissue Measurements of the Optic Radiation. eNeuro 2020; 7:ENEURO.0545-19.2020. [PMID: 32424054 PMCID: PMC7333978 DOI: 10.1523/eneuro.0545-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Although the non-invasive measurement of visually evoked responses has been extensively studied, the structural basis of variabilities in latency in healthy humans is not well understood. We investigated how tissue properties of optic radiation could predict interindividual variability in the latency of the initial visually evoked component (C1), which may originate from the primary visual cortex (V1). We collected C1 peak latency data using magnetoencephalography (MEG) and checkerboard stimuli, and multiple structural magnetic resonance imaging (MRI) data from 20 healthy subjects. While we varied the contrast and position of the stimuli, the C1 measurement was most reliable when high-contrast stimuli were presented to the lower visual field (LVF). We then attempted to predict interindividual variability in C1 peak latency in this stimulus condition with a multiple regression model using MRI parameters along the optic radiation. We found that this model could predict >20% of variance in C1 latency, when the data were averaged across the hemispheres. The model using the corticospinal tract did not predict variability in C1 latency, suggesting that there is no evidence for generalization to a non-visual tract. In conclusion, our results suggest that the variability in neural latencies in the early visual cortex in healthy subjects can be partly explained by tissue properties along the optic radiation. We discuss the challenges of predicting neural latency using current structural neuroimaging methods and other factors that may explain interindividual variance in neural latency.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Kenichi Yuasa
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, Osaka 565-0871, Japan
- Department of Psychology, New York University, New York, NY 10003
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Neuroanatomical Changes in Leber's Hereditary Optic Neuropathy: Clinical Application of 7T MRI Submillimeter Morphometry. Brain Sci 2020; 10:brainsci10060359. [PMID: 32526981 PMCID: PMC7348858 DOI: 10.3390/brainsci10060359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is one of the mitochondrial diseases that causes loss of central vision, progressive impairment and subsequent degeneration of retinal ganglion cells (RGCs). In recent years, diffusion tensor imaging (DTI) studies have revealed structural abnormalities in visual white matter tracts, such as the optic tract, and optic radiation. However, it is still unclear if the disease alters only some parts of the white matter architecture or whether the changes also affect other subcortical areas of the brain. This study aimed to improve our understanding of morphometric changes in subcortical brain areas and their associations with the clinical picture in LHON by the application of a submillimeter surface-based analysis approach to the ultra-high-field 7T magnetic resonance imaging data. To meet these goals, fifteen LHON patients and fifteen age-matched healthy subjects were examined. For all individuals, quantitative analysis of the morphometric results was performed. Furthermore, morphometric characteristics which differentiated the groups were correlated with variables covering selected aspects of the LHON clinical picture. Compared to healthy controls (HC), LHON carriers showed significantly lower volume of both palladiums (left p = 0.023; right p = 0.018), the right accumbens area (p = 0.007) and the optic chiasm (p = 0.014). Additionally, LHON patients have significantly higher volume of both lateral ventricles (left p = 0.034; right p = 0.02), both temporal horns of the lateral ventricles (left p = 0.016; right p = 0.034), 3rd ventricle (p = 0.012) and 4th ventricle (p = 0.002). Correlation between volumetric results and clinical data showed that volume of both right and left lateral ventricles significantly and positively correlated with the duration of the illness (left R = 0.841, p = 0.002; right R = 0.755, p = 0.001) and the age of the LHON participants (left R = 0.656, p = 0.007; right R = 0.691, p = 0.004). The abnormalities in volume of the LHON patients’ subcortical structures indicate that the disease can cause changes not only in the white matter areas constituting visual tracts, but also in the other subcortical brain structures. Furthermore, the correlation between those results and the illness duration suggests that the disease might have a neurodegenerative nature; however, to fully confirm this observation, longitudinal studies should be conducted.
Collapse
|
29
|
Kaneko T, Takemura H, Pestilli F, Silva AC, Ye FQ, Leopold DA. Spatial organization of occipital white matter tracts in the common marmoset. Brain Struct Funct 2020; 225:1313-1326. [PMID: 32253509 PMCID: PMC7577349 DOI: 10.1007/s00429-020-02060-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/18/2020] [Indexed: 11/30/2022]
Abstract
The primate brain contains a large number of interconnected visual areas, whose spatial organization and intracortical projections show a high level of conservation across species. One fiber pathway of recent interest is the vertical occipital fasciculus (VOF), which is thought to support communication between dorsal and ventral visual areas in the occipital lobe. A recent comparative diffusion MRI (dMRI) study reported that the VOF in the macaque brain bears a similar topology to that of the human, running superficial and roughly perpendicular to the optic radiation. The present study reports a comparative investigation of the VOF in the common marmoset, a small New World monkey whose lissencephalic brain is approximately tenfold smaller than the macaque and 150-fold smaller than the human. High-resolution ex vivo dMRI of two marmoset brains revealed an occipital white matter structure that closely resembles that of the larger primate species, with one notable difference. Namely, unlike in the macaque and the human, the VOF in the marmoset is spatially fused with other, more anterior vertical tracts, extending anteriorly between the parietal and temporal cortices. We compare several aspects of this continuous structure, which we term the VOF complex (VOF +), and neighboring fasciculi to those of macaques and humans. We hypothesize that the essential topology of the VOF+ is a conserved feature of the posterior cortex in anthropoid primates, with a clearer fragmentation into multiple named fasciculi in larger, more gyrified brains.
Collapse
Affiliation(s)
- Takaaki Kaneko
- RIKEN Center for Brain Science (CBS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, 41 Kanrin, Inuyamas-shi, Aichi, 484-8506, Japan.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, 1-4 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN, 47405, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Inter-individual Differences in Occipital Alpha Oscillations Correlate with White Matter Tissue Properties of the Optic Radiation. eNeuro 2020; 7:ENEURO.0224-19.2020. [PMID: 32156741 PMCID: PMC7189484 DOI: 10.1523/eneuro.0224-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Neural oscillations at ∼10 Hz, called alpha oscillations, are one of the most prominent components of neural oscillations in the human brain. In recent years, characteristics (power/frequency/phase) of occipital alpha oscillations have been correlated with various perceptual phenomena. However, the relationship between inter-individual differences in alpha oscillatory characteristics and the properties of the underlying brain structures, such as white matter pathways, is unclear. A possibility is that intrinsic occipital alpha oscillations are mediated by thalamocortical interaction; we hypothesized that the most promising candidate for characterizing the intrinsic alpha oscillation is optic radiation (OR), which is the geniculo-cortical pathway carrying signals between the lateral geniculate nucleus (LGN) and primary visual cortex (V1). We used resting-state magnetoencephalography (MEG) and diffusion-weighted/quantitative magnetic resonance imaging (MRI) (dMRI/qMRI) to correlate the frequency and power of occipital alpha oscillations with the tissue properties of the OR by focusing on the different characteristics across individuals. We found that the peak alpha frequency (PAF) negatively correlated with intracellular volume fraction (ICVF), reflecting diffusion properties in intracellular (axonal) space, whereas the peak alpha power was not correlated with any tissue properties measurements. No significant correlation was found between OR and beta frequency/amplitude or between other white matter tract connecting parietal and inferotemporal cortex and alpha frequency/amplitude. These results support the hypothesis that an interaction between thalamic nuclei and early visual areas is essential for the occipital alpha oscillatory rhythm.
Collapse
|
31
|
Beer AL, Plank T, Greenlee MW. Aging and central vision loss: Relationship between the cortical macro-structure and micro-structure. Neuroimage 2020; 212:116670. [PMID: 32088318 DOI: 10.1016/j.neuroimage.2020.116670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Aging and central vision loss are associated with cortical atrophies, but little is known about the relationship between cortical thinning and the underlying cellular structure. We compared the macro- and micro-structure of the cortical gray and superficial white matter of 38 patients with juvenile (JMD) or age-related (AMD) macular degeneration and 38 healthy humans (19-84 years) by multimodal MRI including diffusion-tensor imaging (DTI). A factor analysis showed that cortical thickness, tissue-dependent measures, and DTI-based measures were sensitive to distinct components of brain structure. Age-related cortical thinning and increased diffusion were observed across most of the cortex, but increased T1-weighted intensities (frontal), reduced T2-weighted intensities (occipital), and reduced anisotropy (medial) were limited to confined cortical regions. Vision loss was associated with cortical thinning and enhanced diffusion in the gray matter (less in the white matter) of the occipital central visual field representation. Moreover, AMD (but not JMD) patients showed enhanced diffusion in lateral occipito-temporal cortex and cortical thinning in the posterior cingulum. These findings demonstrate that changes in brain structure are best quantified by multimodal imaging. They further suggest that age-related brain atrophies (cortical thinning) reflect diverse micro-structural etiologies. Moreover, juvenile and age-related macular degeneration are associated with distinct patterns of micro-structural alterations.
Collapse
Affiliation(s)
- Anton L Beer
- Institut für Psychologie, Universität Regensburg, Regensburg, Germany.
| | - Tina Plank
- Institut für Psychologie, Universität Regensburg, Regensburg, Germany
| | - Mark W Greenlee
- Institut für Psychologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Rossi-Espagnet MC, Pro S, Martinelli D, Diodato D, Napolitano A, Longo D. Reply to: Viability of diffusion tensor imaging for assessing retrochiasmatic involvement in Kearns-Sayre syndrome remains elusive. Neuroradiology 2019; 62:133-134. [PMID: 31838563 DOI: 10.1007/s00234-019-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, IRCCS, 00100, Rome, Italy.
- NESMOS Department, Sant'Andrea Hospital, Sapienza University, Rome, Italy.
| | - Stefano Pro
- Neurology Unity, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Diodato
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, IRCCS, 00100, Rome, Italy
| |
Collapse
|
33
|
Visual pathways evaluation in Kearns Sayre syndrome: a diffusion tensor imaging study. Neuroradiology 2019; 62:241-249. [PMID: 31680196 DOI: 10.1007/s00234-019-02302-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/04/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Kearns Sayre syndrome (KSS) is a mitochondrial disorder characterized by development of visual impairment. Electroretinogram (ERG) and visual evoked potentials are not able to provide topographical information of optic damage. The purpose of this study was to explore retrochiasmatic optic pathway alteration in KSS with diffusion tractographic analysis and to compare it with different tracts. METHODS DTI from 8 KSS subjects (14.7 years) and 10 healthy controls (HC) were acquired on a 3T scanner. Optic radiations (OR), optic tracts (OT), inferior frontooccipital fasciculus (IFOF) and corticospinal tract (CST) were reconstructed with probabilistic tractography. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial (RD), and axial diffusivity (AD) were calculated, evaluating group differences. T test on diffusion parameters identified significantly different track portions among cohorts. RESULTS All patients had optic pathway alterations at electrophysiological examination. Significant lower FA were found in OT, IFOF, and CST of KSS group. RD was significantly higher in bilateral OR, IFOF, CST, and right OT, while ADC was higher in bilateral OR and CST. RD values were higher in the proximal and distal portion of OR bilaterally and in the distal portion of right OT, while widespread differences were found in IFOF and CST. No significant differences were found for AD. FA profiles analysis demonstrated significant differences between groups in several regions of OT, IFOF, and CST, while ADC assessment revealed spread differences in OR and CST. CONCLUSIONS DTI evaluation of retrochiasmatic tracks may represent a useful tool to topographically investigate retrochiasmatic visual impairment in KSS.
Collapse
|
34
|
Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct 2019; 224:2631-2660. [DOI: 10.1007/s00429-019-01907-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
|
35
|
Takemura H, Ogawa S, Mezer AA, Horiguchi H, Miyazaki A, Matsumoto K, Shikishima K, Nakano T, Masuda Y. Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage. NEUROIMAGE-CLINICAL 2019; 23:101826. [PMID: 31026624 PMCID: PMC6482365 DOI: 10.1016/j.nicl.2019.101826] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 04/13/2019] [Indexed: 02/04/2023]
Abstract
In patients with retinal ganglion cell diseases, recent diffusion tensor imaging (DTI) studies have revealed structural abnormalities in visual white matter tracts such as the optic tract, and optic radiation. However, the microstructural origin of these diffusivity changes is unknown as DTI metrics involve multiple biological factors and do not correlate directly with specific microstructural properties. In contrast, recent quantitative T1 (qT1) mapping methods provide tissue property measurements relatively specific to myelin volume fractions in white matter. This study aims to improve our understanding of microstructural changes in visual white matter tracts following retinal ganglion cell damage in Leber's hereditary optic neuropathy (LHON) patients by combining DTI and qT1 measurements. We collected these measurements from seven LHON patients and twenty age-matched control subjects. For all individuals, we identified the optic tract and the optic radiation using probabilistic tractography, and evaluated diffusivity and qT1 profiles along them. Both diffusivity and qT1 measurements in the optic tract differed significantly between LHON patients and controls. In the optic radiation, these changes were observed in diffusivity but were not evident in qT1 measurements. This suggests that myelin loss may not explain trans-synaptic diffusivity changes in the optic radiation as a consequence of retinal ganglion cell disease. Retinal ganglion cell damage affects diffusivity and T1 along visual pathways. DTI metric identified white matter change in both optic tract and optic radiation. T1 measurement in optic radiation did not exhibit abnormality, unlike DTI metric. Myelin loss may not be a major cause of diffusivity change along optic radiation.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Shumpei Ogawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Atsugi city hospital, Atsugi, Japan.
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Israel
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kenji Matsumoto
- Brain Science Institute, Tamagawa University, Machida, Japan
| | - Keigo Shikishima
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Hofstetter S, Sabbah N, Mohand-Saïd S, Sahel JA, Habas C, Safran AB, Amedi A. The development of white matter structural changes during the process of deterioration of the visual field. Sci Rep 2019; 9:2085. [PMID: 30765782 PMCID: PMC6375971 DOI: 10.1038/s41598-018-38430-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/27/2018] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence suggests that white matter plasticity in the adult brain is preserved after sensory and behavioral modifications. However, little is known about the progression of structural changes during the process of decline in visual input. Here we studied two groups of patients suffering from advanced retinitis pigmentosa with specific deterioration of the visual field: patients who had lost their peripheral visual field, retaining only central (“tunnel”) vision, and blind patients with complete visual field loss. Testing of these homogeneous groups made it possible to assess the extent to which the white matter is affected by loss of partial visual input and whether partially preserved visual input suffices to sustain stability in tracts beyond the primary visual system. Our results showed gradual changes in diffusivity that are indicative of degenerative processes in the primary visual pathway comprising the optic tract and the optic radiation. Interestingly, changes were also found in tracts of the ventral stream and the corticospinal fasciculus, depicting a gradual reorganisation of these tracts consequentially to the gradual loss of visual field coverage (from intact perception to partial vision to complete blindness). This reorganisation may point to microstructural plasticity underlying adaptive behavior and cross-modal integration after partial visual deprivation.
Collapse
Affiliation(s)
- Shir Hofstetter
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel.
| | - Norman Sabbah
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Fondation Ophtalmologique A. de Rothschild, F-75019, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Christophe Habas
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Centre de Neuro-Imagerie, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, F-75012, France
| | - Avinoam B Safran
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Department of Clinical Neurosciences, Geneva University School of Medicine, Geneva, Switzerland
| | - Amir Amedi
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France. .,The Cognitive Science Program, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel.
| |
Collapse
|
37
|
You Y, Joseph C, Wang C, Gupta V, Liu S, Yiannikas C, Chua BE, Chitranshi N, Shen T, Dheer Y, Invernizzi A, Borotkanics R, Barnett M, Graham SL, Klistorner A. Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease. Brain 2019; 142:426-442. [DOI: 10.1093/brain/awy338] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yuyi You
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Chitra Joseph
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Chenyu Wang
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Sidong Liu
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Con Yiannikas
- Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | - Brian E Chua
- Glaucoma Unit, Sydney Eye Hospital, Sydney, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Ting Shen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Yogita Dheer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Alessandro Invernizzi
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
- Eye Clinic, Department of Biomedical and Clinical Science ‘L. Sacco’, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Robert Borotkanics
- Applied Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, USA
- Department of Biostatistics and Epidemiology, Faculty of Medicine and Environmental Sciences, Auckland University of Technology, New Zealand
| | - Michael Barnett
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, Australia
| |
Collapse
|
38
|
Schurr R, Duan Y, Norcia AM, Ogawa S, Yeatman JD, Mezer AA. Tractography optimization using quantitative T1 mapping in the human optic radiation. Neuroimage 2018; 181:645-658. [DOI: 10.1016/j.neuroimage.2018.06.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/03/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022] Open
|
39
|
Yoshimine S, Ogawa S, Horiguchi H, Terao M, Miyazaki A, Matsumoto K, Tsuneoka H, Nakano T, Masuda Y, Pestilli F. Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage. Brain Struct Funct 2018; 223:3889-3900. [PMID: 29951918 DOI: 10.1007/s00429-018-1702-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/17/2018] [Indexed: 12/16/2022]
Abstract
We investigated the impact of age-related macular degeneration (AMD) on visual acuity and the visual white matter. We combined an adaptive cortical atlas and diffusion-weighted magnetic resonance imaging (dMRI) and tractography to separate optic radiation (OR) projections to different retinal eccentricities in human primary visual cortex. We exploited the known anatomical organization of the OR and clinically relevant data to segment the OR into three primary components projecting to fovea, mid- and far-periphery. We measured white matter tissue properties-fractional anisotropy, linearity, planarity, sphericity-along the aforementioned three components of the optic radiation to compare AMD patients and controls. We found differences in white matter properties specific to OR white matter fascicles projecting to primary visual cortex locations corresponding to the location of retinal damage (fovea). Additionally, we show that the magnitude of white matter properties in AMD patients' correlates with visual acuity. In sum, we demonstrate a specific relation between visual loss, anatomical location of retinal damage and white matter damage in AMD patients. Importantly, we demonstrate that these changes are so profound that can be detected using magnetic resonance imaging data with clinical resolution. The conserved mapping between retinal and white matter damage suggests that retinal neurodegeneration might be a primary cause of white matter degeneration in AMD patients. The results highlight the impact of eye disease on brain tissue, a process that may become an important target to monitor during the course of treatment.
Collapse
Affiliation(s)
- Shoyo Yoshimine
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Shumpei Ogawa
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.,Department of Ophthalmology, Atsugi City Hospital, Kanagawa, Japan
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Masahiko Terao
- Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| | | | - Kenji Matsumoto
- Tamagawa University Brain Science Institute, Machida, Tokyo, Japan
| | - Hiroshi Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana Network Science Institute, Indiana University, Bloomington, IN, 47405, USA. .,Department of Computer Science, Indiana University, Bloomington, USA. .,Department of Intelligent Systems Engineering, Indiana University, Bloomington, USA. .,Program in Neuroscience, Indiana University, Bloomington, USA. .,Program in Cognitive Science, Indiana University, Bloomington, USA. .,School of Optometry, Indiana University, Bloomington, USA.
| |
Collapse
|
40
|
Yeatman JD, Richie-Halford A, Smith JK, Keshavan A, Rokem A. A browser-based tool for visualization and analysis of diffusion MRI data. Nat Commun 2018; 9:940. [PMID: 29507333 PMCID: PMC5838108 DOI: 10.1038/s41467-018-03297-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
Human neuroscience research faces several challenges with regards to reproducibility. While scientists are generally aware that data sharing is important, it is not always clear how to share data in a manner that allows other labs to understand and reproduce published findings. Here we report a new open source tool, AFQ-Browser, that builds an interactive website as a companion to a diffusion MRI study. Because AFQ-Browser is portable-it runs in any web-browser-it can facilitate transparency and data sharing. Moreover, by leveraging new web-visualization technologies to create linked views between different dimensions of the dataset (anatomy, diffusion metrics, subject metadata), AFQ-Browser facilitates exploratory data analysis, fueling new discoveries based on previously published datasets. In an era where Big Data is playing an increasingly prominent role in scientific discovery, so will browser-based tools for exploring high-dimensional datasets, communicating scientific discoveries, aggregating data across labs, and publishing data alongside manuscripts.
Collapse
Affiliation(s)
- Jason D Yeatman
- Institute for Learning & Brain Sciences, University of Washington, Portage Bay Building, Box 357988, Seattle, WA, 98195, USA.
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, 98195, USA.
| | | | - Josh K Smith
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Anisha Keshavan
- Institute for Learning & Brain Sciences, University of Washington, Portage Bay Building, Box 357988, Seattle, WA, 98195, USA
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, WRF Data Science Studio, University of Washington, Physics/Astronomy Tower (PAT), 6th Floor 3910 15th Ave NE, Seattle, WA, 98195, USA
| | - Ariel Rokem
- eScience Institute, WRF Data Science Studio, University of Washington, Physics/Astronomy Tower (PAT), 6th Floor 3910 15th Ave NE, Seattle, WA, 98195, USA.
| |
Collapse
|
41
|
Uesaki M, Takemura H, Ashida H. Computational neuroanatomy of human stratum proprium of interparietal sulcus. Brain Struct Funct 2018; 223:489-507. [PMID: 28871500 PMCID: PMC5772143 DOI: 10.1007/s00429-017-1492-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022]
Abstract
Recent advances in diffusion-weighted MRI (dMRI) and tractography have enabled identification of major long-range white matter tracts in the human brain. Yet, our understanding of shorter tracts, such as those within the parietal lobe, remains limited. Over a century ago, a tract connecting the superior and inferior parts of the parietal cortex was identified in a post-mortem study: stratum proprium of interparietal sulcus (SIPS; Sachs, Das hemisphärenmark des menschlichen grosshirns. Verlag von georg thieme, Leipzig, 1892). The tract has since been replicated in another fibre dissection study (Vergani et al., Cortex 56:145-156, 2014), however, it has not been fully investigated in the living human brain and its precise anatomical properties are yet to be described. We used dMRI and tractography to identify and characterise SIPS in vivo, and explored its spatial proximity to the cortical areas associated with optic-flow processing using fMRI. SIPS was identified bilaterally in all subjects, and its anatomical position and trajectory are consistent with previous post-mortem studies. Subsequent evaluation of the tractography results using the linear fascicle evaluation and virtual lesion analysis yielded strong statistical evidence for SIPS. We also found that the SIPS endpoints are adjacent to the optic-flow selective areas. In sum, we show that SIPS is a short-range tract connecting the superior and inferior parts of the parietal cortex, wrapping around the intraparietal sulcus, and that it may be a crucial anatomy underlying optic-flow processing. In vivo identification and characterisation of SIPS will facilitate further research on SIPS in relation to cortical functions, their development, and diseases that affect them.
Collapse
Affiliation(s)
- Maiko Uesaki
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Open Innovation and Collaboration Research Organization, Ritsumeikan University, Osaka, Japan.
| | - Hiromasa Takemura
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Hiroshi Ashida
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Abstract
PURPOSE OF THE STUDY The purpose of the study was to evaluate neurodegeneration along brain visual pathways in primary open angle glaucoma (POAG) using improved analysis methods of volumetric and diffusion tensor magnetic resonance imaging (MRI) data. METHODS Eleven POAG patients (60.0±9.2 y) with primarily mild to moderate POAG and 11 age-matched controls (55.9±7.5 y) were studied using structural and diffusion tensor MRI. Surface-based segmentation was applied to structural MRI to obtain visual cortical area and volume. Fiber tracking was applied to diffusion tensor data to obtain diffusion parameters along the optic tract and optic radiation. MRI parameters in glaucoma patients were compared with the corresponding left and right visual fields and retinal nerve fiber layer thicknesses, instead of with the left and right eye. RESULTS Area and volume of the primary visual cortex were significantly reduced in POAG patients compared with controls (P<0.05) but did not correlate with visual field loss. Fractional anisotropy was reduced at multiple locations along the optic tracts and optic radiations in POAG patients compared with controls. Axial and radial diffusivity along the fiber tracts showed trends but were not significantly different between POAG patients and controls when averaged over the whole structures. Only fractional anisotropy (P<0.05) of the optic radiations was significantly correlated with visual field loss. No MRI parameters were correlated with retinal nerve fiber layer thickness. CONCLUSIONS Improved analysis techniques of MRI data improves delineation of degeneration in the brain visual pathways and further supports the notion that neurodegeneration is involved with glaucoma pathogenesis.
Collapse
|
43
|
Wandell BA, Le RK. Diagnosing the Neural Circuitry of Reading. Neuron 2017; 96:298-311. [PMID: 29024656 DOI: 10.1016/j.neuron.2017.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
We summarize the current state of knowledge of the brain's reading circuits, and then we describe opportunities to use quantitative and reproducible methods for diagnosing these circuits. Neural circuit diagnostics-by which we mean identifying the locations and responses in an individual that differ significantly from measurements in good readers-can help parents and educators select the best remediation strategy. A sustained effort to develop and share diagnostic methods can support the societal goal of improving literacy.
Collapse
Affiliation(s)
- Brian A Wandell
- Psychology Department, Stanford University, Stanford, CA 94305, USA.
| | - Rosemary K Le
- Psychology Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Le Meur G, Lebranchu P, Billaud F, Adjali O, Schmitt S, Bézieau S, Péréon Y, Valabregue R, Ivan C, Darmon C, Moullier P, Rolling F, Weber M. Safety and Long-Term Efficacy of AAV4 Gene Therapy in Patients with RPE65 Leber Congenital Amaurosis. Mol Ther 2017; 26:256-268. [PMID: 29033008 DOI: 10.1016/j.ymthe.2017.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was the evaluation of the safety and efficacy of unilateral subretinal injection of the adeno-associated vector (AAV) serotypes 2 and 4 (AAV2/4) RPE65-RPE65 vector in patients with Leber congenital amaurosis (LCA) associated with RPE65 gene deficiency. We evaluated ocular and general tolerance and visual function up to 1 year after vector administration in the most severely affected eye in nine patients with retinal degeneration associated with mutations in the RPE65 gene. Patients received either low (1.22 × 1010 to 2 × 1010 vector genomes [vg]) or high (between 3.27 × 1010 and 4.8 × 1010 vg) vector doses. An ancillary study, in which six of the original nine patients participated, extended the follow-up period to 2-3.5 years. All patients showed good ophthalmological and general tolerance to the rAAV2/4-RPE65-RPE65 vector. We observed a trend toward improved visual acuity in patients with nystagmus, stabilization and improvement of the visual field, and cortical activation along visual pathways during fMRI analysis. OCT analysis after vector administration revealed no retinal thinning, except in cases of macular detachment. Our findings show that the rAAV2/4.RPE65.RPE65 vector was well tolerated in nine patients with RPE65-associated LCA. Efficacy parameters varied between patients during follow-up.
Collapse
Affiliation(s)
- Guylène Le Meur
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France.
| | - Pierre Lebranchu
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; UMR 6597 CNRS, Image and Video Communication Team, Institute for Research into Communications and Cybernetics of Nantes, Polytech Nantes, Nantes, France
| | - Fanny Billaud
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| | | | | | - Yann Péréon
- Reference Centre for Neuromuscular Disorders, FILNEMUS, CHU de Nantes, Nantes, France
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle épinière ICM, Centre for NeuroImaging Research (CENIR), Paris, France
| | - Catherine Ivan
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France
| | | | | | - Fabienne Rolling
- INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| | - Michel Weber
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| |
Collapse
|
45
|
Takemura H, Pestilli F, Weiner KS, Keliris GA, Landi SM, Sliwa J, Ye FQ, Barnett MA, Leopold DA, Freiwald WA, Logothetis NK, Wandell BA. Occipital White Matter Tracts in Human and Macaque. Cereb Cortex 2017; 27:3346-3359. [PMID: 28369290 PMCID: PMC5890896 DOI: 10.1093/cercor/bhx070] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022] Open
Abstract
We compare several major white-matter tracts in human and macaque occipital lobe using diffusion magnetic resonance imaging. The comparison suggests similarities but also significant differences in the tracts. There are several apparently homologous tracts in the 2 species, including the vertical occipital fasciculus (VOF), optic radiation, forceps major, and inferior longitudinal fasciculus (ILF). There is one large human tract, the inferior fronto-occipital fasciculus, with no corresponding fasciculus in macaque. We could identify the macaque VOF (mVOF), which has been little studied. Its position is consistent with classical invasive anatomical studies by Wernicke. VOF homology is supported by similarity of the endpoints in V3A and ventral V4 across species. The mVOF fibers intertwine with the dorsal segment of the ILF, but the human VOF appears to be lateral to the ILF. These similarities and differences between the occipital lobe tracts will be useful in establishing which circuitry in the macaque can serve as an accurate model for human visual cortex.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Kevin S. Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Georgios A. Keliris
- Max Planck Institute for Biological Cybernetics, 72072 Tübingen, Germany
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Sofia M. Landi
- Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Julia Sliwa
- Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Frank Q. Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | | | - David A. Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Winrich A. Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | | | - Brian A. Wandell
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
46
|
Aguirre GK, Butt OH, Datta R, Roman AJ, Sumaroka A, Schwartz SB, Cideciyan AV, Jacobson SG. Postretinal Structure and Function in Severe Congenital Photoreceptor Blindness Caused by Mutations in the GUCY2D Gene. Invest Ophthalmol Vis Sci 2017; 58:959-973. [PMID: 28403437 PMCID: PMC5308769 DOI: 10.1167/iovs.16-20413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To examine how severe congenital blindness resulting from mutations of the GUCY2D gene alters brain structure and function, and to relate these findings to the notable preservation of retinal architecture in this form of Leber congenital amaurosis (LCA). Methods Six GUCY2D-LCA patients (ages 20–46) were studied with optical coherence tomography of the retina and multimodal magnetic resonance imaging (MRI) of the brain. Measurements from this group were compared to those obtained from populations of normally sighted controls and people with congenital blindness of a variety of causes. Results Patients with GUCY2D-LCA had preservation of the photoreceptors, ganglion cells, and nerve fiber layer. Despite this, visual function in these patients ranged from 20/160 acuity to no light perception, and functional MRI responses to light stimulation were attenuated and restricted. This severe visual impairment was reflected in substantial thickening of the gray matter layer of area V1, accompanied by an alteration of resting-state correlations within the occipital lobe, similar to a comparison group of congenitally blind people with structural damage to the retina. In contrast to the comparison blind population, however, the GUCY2D-LCA group had preservation of the size of the optic chiasm, and the fractional anisotropy of the optic radiations as measured with diffusion tensor imaging was also normal. Conclusions These results identify dissociable effects of blindness upon the visual pathway. Further, the relatively intact postgeniculate white matter pathway in GUCY2D-LCA is encouraging for the prospect of recovery of visual function with gene augmentation therapy.
Collapse
Affiliation(s)
- Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Omar H Butt
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ritobrato Datta
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alejandro J Roman
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sharon B Schwartz
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Samuel G Jacobson
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
47
|
Rokem A, Takemura H, Bock AS, Scherf KS, Behrmann M, Wandell BA, Fine I, Bridge H, Pestilli F. The visual white matter: The application of diffusion MRI and fiber tractography to vision science. J Vis 2017; 17:4. [PMID: 28196374 PMCID: PMC5317208 DOI: 10.1167/17.2.4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data.
Collapse
Affiliation(s)
- Ariel Rokem
- The University of Washington eScience Institute, Seattle, WA, ://arokem.org
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, JapanGraduate School of Frontier Biosciences, Osaka University, Suita-shi,
| | | | | | | | | | - Ione Fine
- University of Washington, Seattle, WA,
| | | | | |
Collapse
|
48
|
Identification and functional characterization of a novel MTFMT mutation associated with selective vulnerability of the visual pathway and a mild neurological phenotype. Neurogenetics 2017; 18:97-103. [PMID: 28058511 DOI: 10.1007/s10048-016-0506-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
Abstract
Mitochondrial protein synthesis is initiated by formylated tRNA-methionine, which requires the activity of MTFMT, a methionyl-tRNA formyltransferase. Mutations in MTFMT have been associated with Leigh syndrome, early-onset mitochondrial leukoencephalopathy, microcephaly, ataxia, and cardiomyopathy. We identified compound heterozygous MTFMT mutations in a patient with a mild neurological phenotype and late-onset progressive visual impairment. MRI studies documented a progressive and selective involvement of the retrochiasmatic visual pathway. MTFMT was undetectable by immunoblot analysis of patient fibroblasts, resulting in specific defects in mitochondrial protein synthesis and assembly of the oxidative phosphorylation complexes. This report expands the clinical and MRI phenotypes associated with MTFMT mutations, illustrating the complexity of genotype-phenotype relationships in mitochondrial translation disorders.
Collapse
|
49
|
Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F. A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. Cereb Cortex 2016; 26:2205-2214. [PMID: 25828567 PMCID: PMC4830295 DOI: 10.1093/cercor/bhv064] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information.
Collapse
Affiliation(s)
| | - Ariel Rokem
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, USA
| | - Jason D. Yeatman
- Department of Psychology, Stanford University, Stanford, CA, USA
- Institute for Learning and Brain Science (ILABS), University of Washington, Seattle, WA, USA
| | - Brian A. Wandell
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Franco Pestilli
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
50
|
Abstract
Progress in magnetic resonance imaging (MRI) now makes it possible to identify the major white matter tracts in the living human brain. These tracts are important because they carry many of the signals communicated between different brain regions. MRI methods coupled with biophysical modeling can measure the tissue properties and structural features of the tracts that impact our ability to think, feel, and perceive. This review describes the fundamental ideas of the MRI methods used to identify the major white matter tracts in the living human brain.
Collapse
Affiliation(s)
- Brian A Wandell
- Department of Psychology and Stanford Neurosciences Institute, Stanford University, Stanford, California 94305;
| |
Collapse
|