1
|
Yang Y, Wang J, Shi Y, Cao H, Wei L, Gao L, Liu M. Oxidation enhances the toxicity of polyethylene microplastics to mouse eye: Perspective from in vitro and in vivo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124633. [PMID: 39074689 DOI: 10.1016/j.envpol.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
Microplastics (MPs) are ubiquitously dispersed in the environment, and undergoing the process of oxidation that alters their physical and chemical properties. Eyes, which directly interface with the external milieu, inevitably encounter MPs. Nonetheless, the ophthalmic toxicity of MPs towards organisms remains unclear. In this study, primary mouse corneal epithelial cells (MCECs), C57BL/6 mice, and CX3CrlGFP/+ mice were utilized to evaluate the toxicity and differences between oxidized low-density polyethylene MPs (modified-MPs) and low-density polyethylene MPs (virgin-MPs) on eyes. The results manifested that virgin-MPs and modified-MPs could be endocytosed by primary MCECs, resulting in a range of cellular damage. Furthermore, they could diminish tear secretion, increase intraocular pressure, and could be internalized into cornea and retina in mice, instigating a series of detrimental reactions. Importantly, modified-MPs exhibited heightened toxicity towards mouse eyes, seemingly due to oxidation enhances the interaction between virgin-MPs/modified-MPs and tissues/cells, and leading to the release of toxic substances increased. In conclusion, our discoveries demonstrate that oxidation exacerbates the harm of virgin-MPs to eyes, and are of great significance for evaluating the risk of MPs to ocular health.
Collapse
Affiliation(s)
- Ying Yang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Ji Wang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Hanwen Cao
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Li Wei
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
2
|
Doostparast Torshizi A, Truong DT, Hou L, Smets B, Whelan CD, Li S. Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson's disease. Nat Commun 2024; 15:6430. [PMID: 39080267 PMCID: PMC11289099 DOI: 10.1038/s41467-024-50718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Parkinson's disease is highly heterogeneous across disease symptoms, clinical manifestations and progression trajectories, hampering the identification of therapeutic targets. Despite knowledge gleaned from genetics analysis, dysregulated proteome mechanisms stemming from genetic aberrations remain underexplored. In this study, we develop a three-phase system-level proteogenomic analytical framework to characterize disease-associated proteins and dysregulated mechanisms. Proteogenomic analysis identified 577 proteins that enrich for Parkinson's disease-related pathways, such as cytokine receptor interactions and lysosomal function. Converging lines of evidence identified nine proteins, including LGALS3, CSNK2A1, SMPD3, STX4, APOA2, PAFAH1B3, LDLR, HSPB1, BRK1, with potential roles in disease pathogenesis. This study leverages the largest population-scale proteomics dataset, the UK Biobank Pharma Proteomics Project, to characterize genetically-driven protein disturbances associated with Parkinson's disease. Taken together, our work contributes to better understanding of genome-proteome dynamics in Parkinson's disease and sets a paradigm to identify potential indirect mediators connected to GWAS signals for complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA.
| | - Dongnhu T Truong
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Liping Hou
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Bart Smets
- Neuroscience Data Science, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher D Whelan
- Neuroscience Data Science, Janssen Research & Development, LLC, Cambridge, MA, USA
| | - Shuwei Li
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| |
Collapse
|
3
|
Zhu Z, Wang M, Lu S, Dai S, Liu J. Role of macrophage polarization in heart failure and traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1434654. [PMID: 39104386 PMCID: PMC11298811 DOI: 10.3389/fphar.2024.1434654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Heart failure (HF) has a severe impact on public health development due to high morbidity and mortality and is associated with imbalances in cardiac immunoregulation. Macrophages, a major cell population involved in cardiac immune response and inflammation, are highly heterogeneous and polarized into M1 and M2 types depending on the microenvironment. M1 macrophage releases inflammatory factors and chemokines to activate the immune response and remove harmful substances, while M2 macrophage releases anti-inflammatory factors to inhibit the overactive immune response and promote tissue repair. M1 and M2 restrict each other to maintain cardiac homeostasis. The dynamic balance of M1 and M2 is closely related to the Traditional Chinese Medicine (TCM) yin-yang theory, and the imbalance of yin and yang will result in a pathological state of the organism. Studies have confirmed that TCM produces positive effects on HF by regulating macrophage polarization. This review describes the critical role of macrophage polarization in inflammation, fibrosis, angiogenesis and electrophysiology in the course of HF, as well as the potential mechanism of TCM regulation of macrophage polarization in preventing and treating HF, thereby providing new ideas for clinical treatment and scientific research design of HF.
Collapse
Affiliation(s)
- Zheqin Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Min Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shenghua Lu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Sisi Dai
- Hunan University of Chinese Medicine, Changsha, China
| | - Jianhe Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Drzyzga Ł, Śpiewak D, Dorecka M, Wyględowska-Promieńska D. Available Therapeutic Options for Corneal Neovascularization: A Review. Int J Mol Sci 2024; 25:5479. [PMID: 38791518 PMCID: PMC11121997 DOI: 10.3390/ijms25105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Corneal neovascularization can impair vision and result in a poor quality of life. The pathogenesis involves a complex interplay of angiogenic factors, notably vascular endothelial growth factor (VEGF). This review provides a comprehensive overview of potential therapies for corneal neovascularization, covering tissue inhibitors of metalloproteinases (TIMPs), transforming growth factor beta (TGF-β) inhibitors, interleukin-1L receptor antagonist (IL-1 Ra), nitric oxide synthase (NOS) isoforms, galectin-3 inhibitors, retinal pigment epithelium-derived factor (PEDF), platelet-derived growth factor (PDGF) receptor inhibitors, and surgical treatments. Conventional treatments include anti-VEGF therapy and laser interventions, while emerging therapies such as immunosuppressive drugs (cyclosporine and rapamycin) have been explored. Losartan and decorin are potential antifibrotic agents that mitigate TGF-β-induced fibrosis. Ocular nanosystems are innovative drug-delivery platforms that facilitate the targeted release of therapeutic agents. Gene therapies, such as small interfering RNA and antisense oligonucleotides, are promising approaches for selectively inhibiting angiogenesis-related gene expression. Aganirsen is efficacious in reducing the corneal neovascularization area without significant adverse effects. These multifaceted approaches underscore the corneal neovascularization management complexity and highlight ideas for enhancing therapeutic outcomes. Furthermore, the importance of combination therapies and the need for further research to develop specific inhibitors while considering their therapeutic efficacy and potential adverse effects are discussed.
Collapse
Affiliation(s)
- Łukasz Drzyzga
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Dorota Śpiewak
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| |
Collapse
|
5
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2024:1-20. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
6
|
Cao Z, Ramadan A, Tai A, Zetterberg F, Panjwani N. Anti-Angiogenic and Anti-Scarring Dual Effect of Galectin-3 Inhibition in Mouse Models of Corneal Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:447-458. [PMID: 38159722 DOI: 10.1016/j.ajpath.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Corneal scarring is the third leading cause of global blindness. Neovascularization of ocular tissues is a major predisposing factor in scar development. Although corneal transplantation is effective in restoring vision, some patients are at high risk for graft rejection due to the presence of blood vessels in the injured cornea. Current treatment options for controlling corneal scarring are limited, and outcomes are typically poor. In this study, topical application of a small-molecule inhibitor of galectin-3, GB1265, in mouse models of corneal wound healing, led to the reduction of the following in injured corneas: i) corneal angiogenesis; ii) corneal fibrosis; iii) infiltration of immune cells; and iv) expression of the proinflammatory cytokine IL-1β. Four independent techniques (RNA sequencing, NanoString, real-time quantitative RT-PCR, and Western blot analysis) determined that decreased corneal opacity in the galectin-3 inhibitor-treated corneas was associated with decreases in the numbers of genes and signaling pathways known to promote fibrosis. These findings allowed for a high level of confidence in the conclusion that galectin-3 inhibition by the small-molecule inhibitor GB1265 has dual anti-angiogenic and anti-scarring effects. Targeting galectin-3 by GB1265 is, thus, attractive for the development of innovative therapies for a myriad of ocular and nonocular diseases characterized by pathologic angiogenesis and fibrosis.
Collapse
Affiliation(s)
- Zhiyi Cao
- New England Eye Center/Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
| | - Abdulraouf Ramadan
- New England Eye Center/Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
| | - Albert Tai
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | | | - Noorjahan Panjwani
- New England Eye Center/Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts; Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
7
|
Swamynathan S, Campbell G, Sohnen P, Kaur S, St. Leger AJ, Swamynathan SK. The Secreted Ly6/uPAR-Related Protein 1 (Slurp1) Modulates Corneal Angiogenic Inflammation Via NF-κB Signaling. Invest Ophthalmol Vis Sci 2024; 65:37. [PMID: 38252525 PMCID: PMC10810026 DOI: 10.1167/iovs.65.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Purpose Previously we demonstrated that the secreted Ly-6/uPAR related protein 1 (SLURP1), abundantly expressed in the corneal epithelium (CE) and secreted into the tear fluid, serves as an antiangiogenic molecule. Here we describe the Slurp1-null (Slurp1X-/-) mouse corneal response to silver nitrate (AgNO3) cautery. Methods Five days after AgNO3 cautery, we compared the wild-type (WT) and Slurp1X-/- mouse (1) corneal neovascularization (CNV) and immune cell influx by whole-mount immunofluorescent staining for CD31 and CD45, (2) macrophage and neutrophil infiltration by flow cytometry, and (3) gene expression by quantitative RT-PCR. Quantitative RT-PCR, immunofluorescent staining, and immunoblots were employed to evaluate the expression, phosphorylation status, and subcellular localization of NF-κB pathway components. Results Unlike the WT, the Slurp1X-/- corneas displayed denser CNV in response to AgNO3 cautery, with more infiltrating macrophages and neutrophils and greater upregulation of the transcripts encoding VEGFA, MMP2, IL-1b, and vimentin. At 2, 7, and 10 days after AgNO3 cautery, Slurp1 expression was significantly downregulated in the WT corneas. Compared with the WT, naive Slurp1X-/- CE displayed increased phosphorylation of IKK(a/b), elevated phosphorylation of IκB with decreased amounts of total IκB, and higher phosphorylation of NF-κB, suggesting that NF-κB signaling is constitutively active in naive Slurp1X-/- corneas. Conclusions Enhanced angiogenic inflammation in AgNO3 cauterized Slurp1X-/- corneas and constitutively active status of NF-κB signaling in the absence of Slurp1 suggest that Slurp1 modulates corneal angiogenic inflammation via NF-κB signaling.
Collapse
Affiliation(s)
- Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Gregory Campbell
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Peri Sohnen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Satinder Kaur
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Anthony J. St. Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | |
Collapse
|
8
|
Mangano K, Petralia MC, Bella R, Pennisi M, Muñoz-Valle JF, Hernández-Bello J, Nicoletti F, Fagone P. Transcriptional upregulation of galectin-3 in multiple sclerosis. Immunol Res 2023; 71:950-958. [PMID: 37491623 PMCID: PMC10667405 DOI: 10.1007/s12026-023-09408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disorder of the central nervous system (CNS) affecting approximately 2.5 million people worldwide. The mechanisms underlying the pathogenesis of MS are still only partially elucidated. Galectins are a family of β-galactoside-binding lectins that are involved in the regulation of immune and inflammatory responses and have been shown to exert a role in the maintenance of central nervous system (CNS) homeostasis. There has been an increasing interest in the role of galectin-3 in neuroinflammation and neurodegeneration. In the current study, we have evaluated the expression levels of galectin-3 in different cellular populations involved in the etiopathogenesis of MS. We have observed dramatically higher transcriptomic levels of galectin-3 in encephalitogenic CD4+ T cells in a preclinical model of MS, the MOG-induced experimental allergic encephalomyelitis (EAE). Also, significantly higher levels of galectin-3 were found in microglial cells, astrocytes, and oligodendrocytes isolated from the spinal cord of EAE mice, as well as in human MS-related white matter lesions. Modular co-expression analysis revealed that galectin-3 is co-expressed with genes involved in the regulation of microglia, cytokine production, and chemotaxis. This is the first comprehensive analysis of the expression of galectin-3 in MS, further strengthening its potential pathogenetic role in the etiopathogenesis of this CNS autoimmune disorder.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122, Messina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| | - José Francisco Muñoz-Valle
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Jorge Hernández-Bello
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy.
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| |
Collapse
|
9
|
Sofia C, Comes A, Sgalla G, Richeldi L. An update on emerging drugs for the treatment of idiopathic pulmonary fibrosis: a look towards 2023 and beyond. Expert Opin Emerg Drugs 2023; 28:283-296. [PMID: 37953604 DOI: 10.1080/14728214.2023.2281416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Currently approved drug treatments for idiopathic pulmonary fibrosis (IPF), pirfenidone and nintedanib, have been shown to slow lung function decline and improve clinical outcomes. Since significant advances in the understanding of pathogenetic mechanisms in IPF, novel potential agents are being tested to identify new targeted and better tolerated therapeutic strategies. AREAS COVERED This review describes the evidence from IPF phase II and III clinical trials that have been completed or are ongoing in recent years. The literature search was performed using Medline and Clinicaltrials.org databases. Particular attention is paid to the new inhibitor of phosphodiesterase 4B (BI 1015550), being studied in a more advanced research phase. Some emerging critical issues of the pharmacological research are highlighted considering the recent outstanding failures of several phase III trials. EXPERT OPINION An exponential number of randomized clinical trials are underway testing promising new molecules to increase treatment choices for patients with IPF and improve patients' quality of life. The next goals should aim at a deeper understanding of the pathogenic pathways of the disease with the challenging goal of being able not only to stabilize but also to reverse the ongoing fibrotic process in patients with IPF.
Collapse
Affiliation(s)
- Carmelo Sofia
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessia Comes
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giacomo Sgalla
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
11
|
Sun WX, Gao YY, Cao Y, Lu JF, Lv GH, Xu HQ. Catalpol Prevents Glomerular Angiogenesis Induced by Advanced Glycation End Products via Inhibiting Galectin-3. Curr Med Sci 2023; 43:668-678. [PMID: 37480413 DOI: 10.1007/s11596-023-2750-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/06/2022] [Indexed: 07/24/2023]
Abstract
OBJECTIVE The main characteristics of diabetic nephropathy (DN) at the early stage are abnormal angiogenesis of glomerular endothelial cells (GECs) and macrophage infiltration. Galectin-3 plays a pivotal role in the pathogenesis of DN via binding with its ligand, advanced glycation end products (AGEs). Catalpol, an iridoid glucoside extracted from Rehmannia glutinosa, has been found to ameliorate vascular inflammation, reduce endothelial permeability, and protect against endothelial damage in diabetic milieu. However, little is known about whether catalpol could exert an anti-angiogenesis and anti-inflammation effect induced by AGEs. METHODS Mouse GECs (mGECs) and RAW 264.7 macrophages were treated with different concentrations of AGEs (0, 50, 100, 200 and 400 µg/mL) for different time (0, 6, 12, 24 and 48 h) to determine the optimal concentration of AGEs and treatment time. Cells were treated with catalpol (10 µmol/L), GB1107 (1 µmol/L, galectin-3 inhibitor), PX-478 (50 µmol/L, HIF-1α inhibitor), adenovirus-green fluorescent protein (Ad-GFP) [3×107 plaque-forming unit (PFU)/mL] or Ad-galectin-3-GFP (2×108 PFU/mL), which was followed by incubation with 50 µg/mL AGEs. The levels of galectin-3, vascular endothelial growth factor A (VEGFA) and pro-angiogenic factors angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), tunica interna endothelial cell kinase-2 (Tie-2) were detected by enzymelinked immunosorbent assay (ELISA). Cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation of these cells. The expression levels of galectin-3, vascular endothelial growth factor receptor 1 (VEGFR1), VEGFR2, and hypoxia-inducible factor-1α (HIF-1α) in mGECs and those of galectin-3 and HIF-1α in RAW 264.7 macrophages were detected by Western blotting and immunofluorescence (IF) staining. The rat DN model was established. Catalpol (100 mg/kg) or GB1107 (10 mg/kg) was administered intragastrically once a day for 12 weeks. Ad-galectin-3-GFP (6×107 PFU/mL, 0.5 mL) or Ad-GFP (6×106 PFU/mL, 0.5 mL) was injected into the tail vein of rats 48 h before the sacrifice of the animals. The expression of galectin-3, VEGFR1, VEGFR2, and HIF-1α in renal cortices was analyzed by Western blotting. The expression of galectin-3, F4/80 (a macrophage biomarker), and CD34 (an endothelium biomarker) in renal cortices was detected by IF staining, and collagen accumulation by Masson staining. RESULTS The expression levels of galectin-3 and VEGFA were significantly higher in mGECs and RAW 264.7 macrophages treated with 50 µg/mL AGEs for 48 h than those in untreated cells. Catalpol and GB1107 could block the AGEs-induced proliferation of mGECs and RAW 264.7 macrophages. Over-expression of galectin-3 was found to reduce the inhibitory effect of catalpol on the proliferation of cells. Catalpol could significantly decrease the levels of Ang-1, Ang-2 and Tie-2 released by AGEs-treated mGECs, which could be reversed by over-expression of galectin-3. Catalpol could significantly inhibit AGEs-induced expression of galectin-3, HIF-1α, VEGFR1, and VEGFR2 in mGECs. The inhibitory effect of catalpol on galectin-3 in AGEs-treated mGECs was impaired by PX-478. Moreover, catalpol attenuated the AGEs-activated HIF-1α/galectin-3 pathway in RAW 264.7 macrophages, which was weakened by PX-478. Additionally, catalpol significantly inhibited the expression of galectin-3, macrophage infiltration, collagen accumulation, and angiogenesis in the kidney of diabetic rats. Over-expression of galectin-3 could antagonize these inhibitory effects of catalpol. CONCLUSION Catalpol prevented the angiogenesis of mGECs and macrophage proliferation via inhibiting galectin-3. It could prevent the progression of diabetes-induced renal damage.
Collapse
Affiliation(s)
- Wei-Xiang Sun
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Chinese Pharmaceutical Technology, School of Animal Pharmacy, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key laboratory of Pharmacology and Safety Evaluation for Chinese Material Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu-Yan Gao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key laboratory of Pharmacology and Safety Evaluation for Chinese Material Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China
| | - Jin-Fu Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key laboratory of Pharmacology and Safety Evaluation for Chinese Material Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gao-Hong Lv
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key laboratory of Pharmacology and Safety Evaluation for Chinese Material Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Qin Xu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key laboratory of Pharmacology and Safety Evaluation for Chinese Material Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China.
| |
Collapse
|
12
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
13
|
Yang GN, Roberts PK, Gardner-Russell J, Shah MH, Couper TA, Zhu Z, Pollock GA, Dusting GJ, Daniell M. From bench to clinic: Emerging therapies for corneal scarring. Pharmacol Ther 2023; 242:108349. [PMID: 36682466 DOI: 10.1016/j.pharmthera.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corneal diseases are one of the leading causes of moderate-to-severe visual impairment and blindness worldwide, after glaucoma, cataract, and retinal disease in overall importance. Given its tendency to affect people at a younger age than other blinding conditions such as cataract and glaucoma, corneal scarring poses a huge burden both on the individuals and society. Furthermore, corneal scarring and fibrosis disproportionately affects people in poorer and remote areas, making it a significant ophthalmic public health problem. Traditional medical strategies, such as topical corticosteroids, are not effective in preventing fibrosis or scars. Corneal transplantation, the only effective sight-restoring treatment for corneal scars, is curbed by challenges including a severe shortage of tissue, graft rejection, secondary conditions, cultural barriers, the lack of well-trained surgeons, operating rooms, and well-equipped infrastructures. Thanks to tremendous research efforts, emerging therapeutic options including gene therapy, protein therapy, cell therapy and novel molecules are in development to prevent the progression of corneal scarring and compliment the surgical options currently available for treating established corneal scars in clinics. In this article, we summarise the most relevant preclinical and clinical studies on emerging therapies for corneal scarring in recent years, showing how these approaches may prevent scarring in its early development.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia.
| | - Philippe Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna 1090, Austria
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Terry A Couper
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Zhuoting Zhu
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Graeme A Pollock
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
14
|
Pitts KM, Neeson CE, Hall NE, Lin JB, Falah HK, Wang SL, Lo KT, Song CE, Margeta MA, Solá-Del Valle DA. Neurodegeneration Markers Galectin-3 and Apolipoprotein E Are Elevated in the Aqueous Humor of Eyes With Glaucoma. Transl Vis Sci Technol 2022; 11:1. [DOI: 10.1167/tvst.11.11.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kristen M. Pitts
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Cameron E. Neeson
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nathan E. Hall
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jonathan B. Lin
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Henisk K. Falah
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Silas L. Wang
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kristine T. Lo
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christian E. Song
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Milica A. Margeta
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David A. Solá-Del Valle
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Tabel M, Wolf A, Szczepan M, Xu H, Jägle H, Moehle C, Chen M, Langmann T. Genetic targeting or pharmacological inhibition of galectin-3 dampens microglia reactivity and delays retinal degeneration. J Neuroinflammation 2022; 19:229. [PMID: 36115971 PMCID: PMC9482176 DOI: 10.1186/s12974-022-02589-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Dysfunctional humoral and cellular innate immunity are key components in the development and progression of age-related macular degeneration (AMD). Specifically, chronically activated microglia and their disturbed regulatory system contribute to retinal degeneration. Galectin-3, a β-galactose binding protein, is a potent driver of macrophage and microglia activation and has been implicated in neuroinflammation, including neurodegenerative diseases of the brain. Here, we hypothesized that genetic deficiency of galectin-3 or its modulation via TD139 dampens mononuclear phagocyte reactivity and delays retinal degeneration. Methods Galectin-3 expression in AMD patients was analyzed by immunohistochemical stainings. Galectin-3 knockout and BALB/cJ mice were exposed to white bright light with an intensity of 15,000 lux for 1 h and Cx3cr1GFP/+ mice to focal blue light of 50,000 lux for 10 min. BALB/cJ and Cx3cr1GFP/+ mice received intraperitoneal injections of 15 mg/kg TD139 or vehicle for five consecutive days, starting one day prior to light exposure. The effects of galectin-3 deficiency or inhibition on microglia were analyzed by immunohistochemical stainings and in situ hybridization of retinal sections and flat mounts. Pro-inflammatory cytokine levels in the retina and retinal pigment epithelium (RPE) were quantified by qRT-PCR and transcriptomic changes were analyzed by RNA-sequencing. Retinal thickness and structure were evaluated by optical coherence tomography. Results We found that galectin-3 expression was strongly upregulated in reactive retinal mononuclear phagocytes of AMD patients and in the two related mouse models of light-induced retinal degeneration. The experimental in vivo data further showed that specific targeting of galectin-3 by genetic knockout or administration of the small-molecule inhibitor TD139 reduced microglia reactivity and delayed retinal damage in both light damage conditions. Conclusion This study defines galectin-3 as a potent driver of retinal degeneration and highlights the protein as a drug target for ocular immunomodulatory therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02589-6.
Collapse
|
16
|
Maupin KA, Diegel CR, Stevens PD, Dick D, Williams BO. Mutation of the galectin-3 glycan-binding domain (Lgals3-R200S) enhances cortical bone expansion in male mice and trabecular bone mass in female mice. FEBS Open Bio 2022; 12:1717-1728. [PMID: 36062328 PMCID: PMC9527582 DOI: 10.1002/2211-5463.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
We previously observed that genomic loss of galectin-3 (Gal-3; encoded by Lgals3) in mice has a significant protective effect on age-related bone loss. Gal-3 has both intracellular and extracellular functionality, and we wanted to assess whether the affect we observed in the Lgals3 knockout (KO) mice could be attributed to the ability of Gal-3 to bind glycoproteins. Mutation of a highly conserved arginine to a serine in human Gal-3 (LGALS3-R186S) blocks glycan binding and secretion. We generated mice with the equivalent mutation (Lgals3-R200S) and observed a subsequent reduction in Gal-3 secretion from mouse embryonic fibroblasts and in circulating blood. When examining bone structure in aged mice, we noticed some similarities to the Lgals3-KO mice and some differences. First, we observed greater bone mass in Lgals3-R200S mutant mice, as was previously observed in Lgals3-KO mice. Like Lgals3-KO mice, significantly increased trabecular bone mass was only observed in female Lgals3-R200S mice. These results suggest that the greater bone mass observed is driven by the loss of extracellular Gal-3 functionality. However, the results from our cortical bone expansion data showed a sex-dependent difference, with only male Lgals3-KO mice having an increased response, contrasting with our earlier study. These notable sex differences suggest a potential role for sex hormones, most likely androgen signaling, being involved. In summary, our results suggest that targeting extracellular Gal-3 function may be a suitable treatment for age-related loss of bone mass.
Collapse
|
17
|
Margeta MA, Yin Z, Madore C, Pitts KM, Letcher SM, Tang J, Jiang S, Gauthier CD, Silveira SR, Schroeder CM, Lad EM, Proia AD, Tanzi RE, Holtzman DM, Krasemann S, Chen DF, Butovsky O. Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity 2022; 55:1627-1644.e7. [PMID: 35977543 PMCID: PMC9488669 DOI: 10.1016/j.immuni.2022.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/09/2022] [Accepted: 07/18/2022] [Indexed: 12/27/2022]
Abstract
The apolipoprotein E4 (APOE4) allele is associated with an increased risk of Alzheimer disease and a decreased risk of glaucoma, but the underlying mechanisms remain poorly understood. Here, we found that in two mouse glaucoma models, microglia transitioned to a neurodegenerative phenotype characterized by upregulation of Apoe and Lgals3 (Galectin-3), which were also upregulated in human glaucomatous retinas. Mice with targeted deletion of Apoe in microglia or carrying the human APOE4 allele were protected from retinal ganglion cell (RGC) loss, despite elevated intraocular pressure (IOP). Similarly to Apoe-/- retinal microglia, APOE4-expressing microglia did not upregulate neurodegeneration-associated genes, including Lgals3, following IOP elevation. Genetic and pharmacologic targeting of Galectin-3 ameliorated RGC degeneration, and Galectin-3 expression was attenuated in human APOE4 glaucoma samples. These results demonstrate that impaired activation of APOE4 microglia is protective in glaucoma and that the APOE-Galectin-3 signaling can be targeted to treat this blinding disease.
Collapse
Affiliation(s)
- Milica A Margeta
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Kristen M Pitts
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Sophia M Letcher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christian D Gauthier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastian R Silveira
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Schroeder
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Alan D Proia
- Department of Pathology, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Campbell University School of Osteopathic Medicine, Lillington, NC, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Rusiniak ME, Punch PR, Hait NC, Maiti A, Burns RT, Chapla D, Moremen KW, Zhao P, Wells L, Hoffmeister K, Lau JTY. Extracellular ST6GAL1 regulates monocyte-macrophage development and survival. Glycobiology 2022; 32:701-711. [PMID: 35661210 PMCID: PMC9280526 DOI: 10.1093/glycob/cwac032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Interaction of immune cells with the systemic environment is necessary for the coordinated development and execution of immune responses. Monocyte-macrophage lineage cells reside at the junction of innate and adaptive immunity. Previously we reported that the sialyltransferase ST6GAL1 in the extracellular milieu modulates B cell development and IgG production, granulocyte production, and attenuates acute airway inflammation to bacterial challenge in mouse models. Here, we report that extracellular ST6GAL1 also elicits profound responses in monocyte-macrophage lineage cells. We show that recombinant ST6GAL1 adheres to subsets of thioglycolate-elicited inflammatory cells in the mouse peritoneum and to cultured human monocyte THP-1 cells. Exposure of the inflammatory cells to recombinant ST6GAL1 elicited wholesale changes in the gene expression profile of primary mouse myeloid cells; most notable was the striking up-regulation of monocyte-macrophage and monocyte-derived dendritic cell development pathway signature genes and transcription factors PU.1, NFκB and their target genes, driving increased monocyte-macrophage population and survival ex vivo. In the cultured human monocyte cells, the essential cell surface receptor of the monocyte-macrophage lineage, the M-CSF receptor (M-CSF-R, Csfr1) was a target of extracellular ST6GAL1 catalytic activity. Extracellular ST6GAL1 activated the M-CSF-R and initiated intracellular signaling events, namely, the nuclear translocation of NFκB subunit p65, and phosphorylation of ERK 1/2 and AKT. The findings implicate extracellular ST6GAL1 in monocyte development by a mechanism initiated at the cell surface and support an emerging paradigm of an extracellular glycan-modifying enzyme as a central regulator coordinating immune hematopoietic cell development and function.
Collapse
Affiliation(s)
- Michael E Rusiniak
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Patrick R Punch
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14215, United States
| | - Nitai C Hait
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Robert T Burns
- Translational Glycomics Center, Blood Research Institute, 8727 W. Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Karin Hoffmeister
- Translational Glycomics Center, Blood Research Institute, 8727 W. Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| |
Collapse
|
19
|
Hillenmayer A, Wertheimer CM, Geerlof A, Eibl KH, Priglinger S, Priglinger C, Ohlmann A. Galectin-1 and -3 in high amounts inhibit angiogenic properties of human retinal microvascular endothelial cells in vitro. PLoS One 2022; 17:e0265805. [PMID: 35320287 PMCID: PMC8942239 DOI: 10.1371/journal.pone.0265805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Galectin-1 and -3 are β-galactoside binding lectins with varying effects on angiogenesis and apoptosis. Since in retinal pigment epithelial cells high amounts of human recombinant galectin (hr-GAL)1 and 3 inhibit cell adhesion, migration and proliferation, we investigated if hr-GAL1 and 3 have homologous effects on human retinal microvascular endothelial cells (HRMEC) in vitro. Methods To investigate the effect of galectin-1 and -3 on HRMEC, proliferation, apoptosis and viability were analyzed after incubation with 30, 60 and 120 μg/ml hr-GAL1 or 3 by BrdU-ELISA, histone-DNA complex ELISA, live/dead staining and the WST-1 assay, respectively. Further on, a cell adhesion as well as tube formation assay were performed on galectin-treated HRMEC. Migration was investigated by the scratch migration assay and time-lapse microscopy. In addition, immunohistochemical staining on HRMEC for β-catenin, galectin-1 and -3 were performed and β-catenin expression was investigated by western blot analysis. Results Incubation with hr-GAL1 or 3 lead to a decrease in proliferation, migration, adhesion and tube formation of HRMEC compared to the untreated controls. No toxic effects of hr-GAL1 and 3 on HRMEC were detected. Intriguingly, after treatment of HRMEC with hr-GAL1 or 3, an activation of the proangiogenic Wnt/β-catenin signaling pathway was observed. However, incubation of HRMEC with hr-GAL1 or 3 drew intracellular galectin-1 and -3 out of the cells, respectively. Conclusion Exogenously added hr-GAL1 or 3 inhibit angiogenic properties of HRMEC in vitro, an effect that might be mediated via a loss of intracellular endogenous galectins.
Collapse
Affiliation(s)
- Anna Hillenmayer
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital Ulm, Ulm, Germany
| | - Christian M. Wertheimer
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital Ulm, Ulm, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich for Environmental Health, Neuherberg, Germany
| | - Kirsten H. Eibl
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | | | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
20
|
Wolf J, Schlecht A, Rosmus DD, Boneva S, Agostini H, Schlunck G, Wieghofer P, Lange C. Comparative transcriptome analysis of human and murine choroidal neovascularization identifies fibroblast growth factor inducible-14 as phylogenetically conserved mediator of neovascular age-related macular degeneration. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166340. [PMID: 35032596 DOI: 10.1016/j.bbadis.2022.166340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Visual outcome of patients with neovascular age-related macular degeneration has significantly improved during the last years following the introduction of anti-vascular endothelial growth factor (VEGF) therapy. However, about one third of patients show persistent exudation and decreasing visual acuity despite recurrent anti-VEGF treatment, which implies a role of other, still unknown proangiogenic mediators. METHODS The present study applied transcriptional profiling of human and mouse (C57BL/6J wildtype) choroidal neovascularization (CNV) membranes each with reference to healthy control tissue to identify yet unrecognized mediators of CNV formation. Key factors were further investigated by immunohistochemistry as well as by intravitreal inhibition experiments and multiplex protein assays in the laser-induced CNV mouse model. FINDINGS Transcriptional profiles of CNV membranes were characterized by enhanced activation of blood vessel development, cytoskeletal organization, and cytokine production, with angiogenesis and wound healing processes predominating in humans and activation of immune processes in mice. Besides several species-specific factors, 95 phylogenetically conserved CNV-associated genes were detected, among which fibroblast growth factor inducible-14 (FN14), a member of the tumor necrosis factor (TNF) receptor family, was identified as a key player of CNV formation. Blocking the pathway by intravitreal injection of a FN14 decoy receptor modulated the cytokine profile - most notably IL-6 - and led to a significant reduction of CNV size in vivo. INTERPRETATION This study characterizes the transcriptome of human and mouse CNV membranes in an unprejudiced manner and identifies FN14 as a phylogenetically conserved mediator of CNV formation and a promising new therapeutic target for neovascular AMD. FUNDING This study was funded by the Helmut Ecker Foundation and the Volker Homann Foundation.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany; Institute of Anatomy, Wuerzburg University, Wuerzburg, Germany
| | | | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, Leipzig, Germany; Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany; Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital Muenster, Muenster, Germany.
| |
Collapse
|
21
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
22
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
23
|
Hao D, Nourbakhsh M. Recent Advances in Experimental Burn Models. BIOLOGY 2021; 10:526. [PMID: 34204763 PMCID: PMC8231482 DOI: 10.3390/biology10060526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Experimental burn models are essential tools for simulating human burn injuries and exploring the consequences of burns or new treatment strategies. Unlike clinical studies, experimental models allow a direct comparison of different aspects of burns under controlled conditions and thereby provide relevant information on the molecular mechanisms of tissue damage and wound healing, as well as potential therapeutic targets. While most comparative burn studies are performed in animal models, a few human or humanized models have been successfully employed to study local events at the injury site. However, the consensus between animal and human studies regarding the cellular and molecular nature of systemic inflammatory response syndrome (SIRS), scarring, and neovascularization is limited. The many interspecies differences prohibit the outcomes of animal model studies from being fully translated into the human system. Thus, the development of more targeted, individualized treatments for burn injuries remains a major challenge in this field. This review focuses on the latest progress in experimental burn models achieved since 2016, and summarizes the outcomes regarding potential methodological improvements, assessments of molecular responses to injury, and therapeutic advances.
Collapse
Affiliation(s)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
24
|
Hirani N, MacKinnon AC, Nicol L, Ford P, Schambye H, Pedersen A, Nilsson UJ, Leffler H, Sethi T, Tantawi S, Gravelle L, Slack RJ, Mills R, Karmakar U, Humphries D, Zetterberg F, Keeling L, Paul L, Molyneaux PL, Li F, Funston W, Forrest IA, Simpson AJ, Gibbons MA, Maher TM. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur Respir J 2021; 57:13993003.02559-2020. [PMID: 33214209 PMCID: PMC8156151 DOI: 10.1183/13993003.02559-2020] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Galectin (Gal)-3 is a profibrotic β-galactoside-binding lectin that plays a key role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and IPF exacerbations. TD139 is a novel and potent small-molecule inhibitor of Gal-3. A randomised, double-blind, multicentre, placebo-controlled, phase 1/2a study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of inhaled TD139 in 36 healthy subjects and 24 patients with IPF. Six dose cohorts of six healthy subjects were evaluated (4:2 TD139:placebo ratio) with single doses of TD139 (0.15–50 mg) and three dose cohorts of eight patients with IPF (5:3 TD139:placebo ratio) with once-daily doses of TD139 (0.3–10 mg) for 14 days. Inhaled TD139 was well tolerated with no significant treatment-related side-effects. TD139 was rapidly absorbed, with mean time taken to reach maximum plasma concentration (Cmax) values ranging from 0.6 to 3 h and a plasma half-life (T1/2) of 8 h. The concentration of TD139 in the lung was >567-fold higher than in the blood, with systemic exposure predicting exposure in the target compartment. Gal-3 expression on alveolar macrophages was reduced in the 3 and 10 mg dose groups compared with placebo, with a concentration-dependent inhibition demonstrated. Inhibition of Gal-3 expression in the lung was associated with reductions in plasma biomarkers centrally relevant to IPF pathobiology (platelet-derived growth factor-BB, plasminogen activator inhibitor-1, Gal-3, CCL18 and YKL-40). TD139 is safe and well tolerated in healthy subjects and IPF patients. It was shown to suppress Gal-3 expression on bronchoalveolar lavage macrophages and, in a concerted fashion, decrease plasma biomarkers associated with IPF progression. TD139 is a potent inhibitor of galectin-3, a key driver of fibrosis in the lung. In this phase 1/2a clinical study, inhaled TD139 was safe, well tolerated, and demonstrated target engagement and decreased plasma biomarkers associated with IPF progression.https://bit.ly/2JREKx6
Collapse
Affiliation(s)
- Nikhil Hirani
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alison C MacKinnon
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Galecto, Copenhagen, Denmark
| | - Lisa Nicol
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Hakon Leffler
- Dept of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | - Ross Mills
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Duncan Humphries
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Lyn Paul
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Philip L Molyneaux
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Feng Li
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Wendy Funston
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian A Forrest
- Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael A Gibbons
- Respiratory Dept, Institute of Biomedical and Clinical Science, Royal Devon and Exeter NHS Foundation Trust, Medical School, University of Exeter, Exeter, UK
| | - Toby M Maher
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Jeethy Ram T, Lekshmi A, Somanathan T, Sujathan K. Galectin-3: A factotum in carcinogenesis bestowing an archery for prevention. Tumour Biol 2021; 43:77-96. [PMID: 33998569 DOI: 10.3233/tub-200051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.
Collapse
Affiliation(s)
- T Jeethy Ram
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Asha Lekshmi
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - K Sujathan
- Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
26
|
Pourrajab F. Targeting the glycans: A paradigm for host-targeted and COVID-19 drug design. J Cell Mol Med 2021; 25:5842-5856. [PMID: 34028178 PMCID: PMC8242448 DOI: 10.1111/jcmm.16585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
There is always a need for new approaches for the control of virus burdens caused by seasonal outbreaks, the emergence of novel viruses with pandemic potential and the development of resistance to current antiviral drugs. The outbreak of the 2019 novel coronavirus-disease COVID-19 represented a pandemic threat and declared a public health emergency of international concern. Herein, the role of glycans for the development of new drugs or vaccines, as a host-targeted approach, is discussed where may provide a front-line prophylactic or threats to protect against the current and any future respiratory-infecting virus and possibly against other respiratory pathogens. As a prototype, the role of glycans in the coronavirus infection, as well as, galectins (Gal) as the glycan-recognition agents (GRAs) in drug design are here summarized. Galectins, in particular, Gal-1 and Gal-3 are ubiquitous and important to biological systems, whose interactions with viral glycans modulate host immunity and homeostatic balance.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Reproductive Immunology Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Biotechnology Research Center, International CampusShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
27
|
Ruan L, Yao X, Li W, Zhang L, Yang H, Sun J, Li A. Effect of galectin-3 in the pathogenesis of arteriovenous fistula stenosis formation. Ren Fail 2021; 43:566-576. [PMID: 33757402 PMCID: PMC7993384 DOI: 10.1080/0886022x.2021.1902822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective This study sought to investigate the effect of local expression of galectin-3 in the development of stenotic arteriovenous fistula (AVF). Methods We collected stenotic venous tissues, adjacent nonstenotic venous tissues, and blood samples from end-stage renal disease (ESRD) patients with AVF stenosis, while normal venous tissues and blood samples were collected from ESRD patients before AVF creation as controls. Also blood samples were collected from ESRD patients with nonstenosis functional AVF. Galectin-3, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-9 (MMP-9), and α-SMA expression in the venous tissues were examined by immunohistochemistry, and the ERK1/2 pathway activity in the intima was accessed by western blot. Serum galectin-3 level was measured by ELISA. Thereafter, human pulmonary arterial smooth muscle cells (HPASMCs) were cultured in vitro, and the interaction between Galectin-3 and ERK1/2 pathway in HPASMCs was estimated by western blot. Results ESRD patients with stenotic AVF had a significant higher serum galectin-3 level than normal controls, and patients with non-stenotic functional AVF. The expression levels of galectin-3, phosphorylated ERK1/2, PCNA, MMP-9, and α-SMA in the stenotic venous tissues were higher than that in the normal venous tissues or the adjacent nonstenotic AVF venous tissues. Correlation analysis showed that the expression of galectin-3 of the neointima was positively correlated with PCNA and α-SMA in the stenotic AVF venous tissues. In HPASMCs, galectin-3 can increase the activity of phosphorylated ERK1/2 and promote the expression of α-SMA. Conclusion In the stenotic AVF of ESRD patients, expression of the galectin-3 was significantly increased, showing a positive relation with neointima development.
Collapse
Affiliation(s)
- Lin Ruan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China.,Nephrology Department, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| | - Xiaoguang Yao
- Surgery Department, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang
| | - Wen Li
- Nephrology Department, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| | - Lihong Zhang
- Nephrology Department, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| | - Hongxia Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Jiahuan Sun
- Hebei key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Aiying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
28
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
29
|
Kim SJ, Chun KH. Non-classical role of Galectin-3 in cancer progression: translocation to nucleus by carbohydrate-recognition independent manner. BMB Rep 2021. [PMID: 32172730 PMCID: PMC7196190 DOI: 10.5483/bmbrep.2020.53.4.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Galectin-3 is a carbohydrate-binding protein and regulates diverse functions, including cell proliferation and differentiation, mRNA splicing, apoptosis induction, immune surveillance and inflammation, cell adhesion, angiogenesis, and cancer-cell metastasis. Galectin-3 is also recommended as a diagnostic or prognostic biomarker of various diseases, including heart disease, kidney disease, and cancer. Galectin-3 exists as a cytosol, is secreted in extracellular spaces on cells, and is also detected in nuclei. It has been found that galectin-3 has different functions in cellular localization: (i) Extracellular galectin-3 mediates cell attachment and detachment. (ii) cytosolic galectin-3 regulates cell survival by blocking the intrinsic apoptotic pathway, and (iii) nuclear galectin-3 supports the ability of the transcriptional factor for target gene expression. In this review, we focused on the role of galectin-3 on translocation from cytosol to nucleus, because it happens in a way independent of carbohydrate recognition and accelerates cancer progression. We also suggested here that intracellular galecin-3 could be a potent therapeutic target in cancer therapy. [BMB Reports 2020; 53(4): 173-180].
Collapse
Affiliation(s)
- Seok-Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University; Department of Life Science & Brain Korea 21 Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
30
|
The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int J Biochem Cell Biol 2020; 130:105881. [PMID: 33181315 DOI: 10.1016/j.biocel.2020.105881] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
Galectin-3 is a beta-galactoside-binding mammalian lectin and part of the 15 member galectin family that are evolutionarily highly conserved. It is the only chimeric protein with a C-terminal carbohydrate recognition domain (CRD) linked to a proline, glycine, and tyrosine rich additional N-terminal domain. Galectin-3 binds several cell surface glycoproteins via its CRD domain as well as undergoing oligomerization, via binding at the N-terminal or the CRD, resulting in the formation of a galectin-3 lattice on the cell surface. The galectin-3 lattice has been regarded as being a crucial mechanism whereby extracellular galectin-3 modulates cellular signalling by prolonging retention time or retarding lateral movement of cell surface receptors in the plasma membrane. As such galectin-3 can regulate various cellular functions such as diffusion, compartmentalization and endocytosis of plasma membrane glycoproteins and glycolipids and the functionality of membrane receptors. In multiple models of organ fibrosis, it has been demonstrated that galectin-3 is potently pro-fibrotic and modulates the activity of fibroblasts and macrophages in chronically inflamed organs. Increased galectin-3 expression also activates myofibroblasts resulting in scar formation and may therefore impact common fibrotic pathways leading to fibrosis in multiple organs. Over the last decade there has been a marked increase in the scientific literature investigating galectin-3 in a range of fibrotic diseases as well as the clinical development of new galectin-3 inhibitors. In this review we will examine the role of galectin-3 in fibrosis, the therapeutic strategies for inhibiting galectin-3 in fibrotic disease and the clinical landscape to date.
Collapse
|
31
|
Khandaker I, Funderburgh JL, Geary ML, Funderburgh ML, Jhanji V, Du Y, Hin-Fai Yam G. A novel transgenic mouse model for corneal scar visualization. Exp Eye Res 2020; 200:108270. [PMID: 32979396 DOI: 10.1016/j.exer.2020.108270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Corneal opacities affect vision for millions of individuals worldwide. Fibrotic scar tissues accumulate in reaction to inflammatory responses and remain permanently in corneal stroma, and conventionally correctable only by donor corneal transplantation. Numerous studies have explored innovative approaches to reverse corneal scarring through non-surgical means; however, existing mouse models limit these studies, due to the lack of visibility of scar tissue in mouse corneas with steep curvature. Here, we reported that corneal scarring was modelled using a transgenic mouse line, Tg(Col3a1-EGFP)DJ124Gsat, in which enhanced green fluorescence protein (EGFP) reporter expression was driven by the promoter of collagen 3a1 (COL3a1), a stromal fibrosis gene. Similar to wildtype, Col3a1-EGFP transgenic corneas developed opacities after wounding by alkali burn and mechanical ablation, respectively, as examined under stereomicroscopy and Spectral Domain optical coherent tomography. The time course induction of EGFP was aligned with Col3a1 upregulation and matched with the elevated expression of other fibrosis genes (α-smooth muscle actin, fibronectin and tenascin C). Measured by flow cytometry and enzyme-linked immunosorbent assay, increased number of EGFP expressing cells and fluorescent intensities were correlated to corneal thickening and scar volume. After treatment with human corneal stromal stem cells or their exosomes, EGFP expression was downregulated together with the reduction of scar volume and fibrosis gene expression. These results have demonstrated that the transgenic mouse line, Tg(Col3a1-EGFP)DJ124Gsat, can be a valuable tool for the detection of corneal fibrosis and scarring in vivo, and will be useful in monitoring the changes of corneal fibrosis over time.
Collapse
Affiliation(s)
- Irona Khandaker
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States
| | - Moira L Geary
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States
| | - Martha L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States.
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
32
|
Abstract
The cornea is a transparent avascular tissue on the anterior segment of the eye responsible for providing refractive power and forming a protective barrier against the external environment. Infectious and inflammatory conditions can compromise the structure of the cornea, leading to visual impairment and blindness. Galectins are a group of β-galactoside-binding proteins expressed by immune and non-immune cells that play pivotal roles in innate and adaptive immunity. In this brief review, we discuss how different members of this family of proteins affect both pro-inflammatory and anti-inflammatory responses in the cornea, particularly in the context of infection, transplantation and wound healing. We further describe recent research showing beneficial effects of galectin-targeted therapy in corneal diseases.
Collapse
|
33
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
34
|
Srejovic I, Selakovic D, Jovicic N, Jakovljević V, Lukic ML, Rosic G. Galectin-3: Roles in Neurodevelopment, Neuroinflammation, and Behavior. Biomolecules 2020; 10:biom10050798. [PMID: 32455781 PMCID: PMC7277476 DOI: 10.3390/biom10050798] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
There is a plethora of evidence to suggest that Galectin-3 plays an important role in normal functions of mammalian cells, as well as in different pathogenic conditions. This review highlights recent data published by researchers, including our own team, on roles of Galectin-3 in the nervous system. Here, we discuss the roles of Galectin-3 in brain development, its roles in glial cells, as well as the interactions of glial cells with other neural and invading cells in pathological conditions. Galectin-3 plays an important role in the pathogenesis of neuroinflammatory and neurodegenerative disorders, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. On the other hand, there is also evidence of the protective role of Galectin-3 due to its anti-apoptotic effect in target cells. Interestingly, genetic deletion of Galectin-3 affects behavioral patterns in maturing and adult mice. The results reviewed in this paper and recent development of highly specific inhibitors suggests that Galectin-3 may be an important therapeutic target in pathological conditions including the disorders of the central nervous system.
Collapse
Affiliation(s)
- Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, 119146 Moscow, Russia
| | - Miodrag L. Lukic
- Department of Physiology—Molecular Medicine Unit, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Correspondence: (M.L.L.); (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
- Correspondence: (M.L.L.); (G.R.)
| |
Collapse
|
35
|
Storozhylova N, Crecente-Campo J, Cabaleiro D, Lugo L, Dussouy C, Simões S, Monteiro M, Grandjean C, Alonso MJ. An In Situ Hyaluronic Acid-Fibrin Hydrogel Containing Drug-Loaded Nanocapsules for Intra-Articular Treatment of Inflammatory Joint Diseases. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00154-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Pirounides D, Komnenou A, Papaioannou N, Gounari E, Stylianaki I, Alexandridis A, Chranioti A, Kofidou E, Koliakos G, Karampatakis V. The Antiangiogenic Properties of Adipose-Derived Mesenchymal Stem/Stromal Cells in Corneal Neovascularization in a Rabbit Model. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2020; 9:74-84. [PMID: 32490014 PMCID: PMC7134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose was to study the anti-angiogenic effect of adipose-derived mesenchymal stem/stromal cells (ADMSCs) on experimentally induced corneal injuries. Corneal neovascularization (NV) was induced by incising and subsequently suturing the corneal surface in 32 New Zealand rabbits. Following suturing, the rabbits were randomly allocated into 2 groups, and received either phosphate-buffered saline (PBS) (control) or ADMSCs, both administered via three different routes. Digital images of the cornea were obtained two weeks post-incision to measure the area of neovascularized cornea. Tumor necrosis factor (TNF) was immunohistochemically assessed in the both groups. The corneal tissue was evaluated for vascular endothelial growth factor (VEGF). The extent of corneal NV in all eyes was assessed photographically by an independent observer. Fourteen days after the incisions, the degree of corneal NV was substantially decreased in the ADMSC-treated group (1.87 ± 0.9 mm2, 1.4 % ± 0.67 % of corneal surface) compared to the control and PBS-treated group (4.66 ± 1.74 mm2, 3.51 % ± 1.31 %, p < 0.001). ADMSCs significantly decreased injury-induced corneal NV in New Zealand rabbits two weeks post-treatment. This strategy has potential for use in the control of corneal NV in vivo.
Collapse
Affiliation(s)
- Demetrios Pirounides
- Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Anastasia Komnenou
- Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Papaioannou
- Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Gounari
- Medical School, Laboratory of Biological Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioanna Stylianaki
- Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Alexandridis
- Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Angeliki Chranioti
- Department of Ophthalmology, General Hospital of Karditsa, Karditsa, Greece
| | - Evangelia Kofidou
- Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Koliakos
- Medical School, Laboratory of Biological Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Vasileios Karampatakis
- Faculty of Health Sciences, School of Medicine, Laboratory of Experimental Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
37
|
Lectin antagonists in infection, immunity, and inflammation. Curr Opin Chem Biol 2019; 53:51-67. [DOI: 10.1016/j.cbpa.2019.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
|
38
|
Du X, Zhao W, Nguyen M, Lu Q, Kiriazis H. β-Adrenoceptor activation affects galectin-3 as a biomarker and therapeutic target in heart disease. Br J Pharmacol 2019; 176:2449-2464. [PMID: 30756388 PMCID: PMC6592856 DOI: 10.1111/bph.14620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/11/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Myocardial fibrosis is a key histopathological component that drives the progression of heart disease leading to heart failure and constitutes a therapeutic target. Recent preclinical and clinical studies have implicated galectin-3 (Gal-3) as a pro-fibrotic molecule and a biomarker of heart disease and fibrosis. However, our knowledge is poor on the mechanism(s) that determine the blood level or regulate cardiac expression of Gal-3. Recent studies have demonstrated that enhanced β-adrenoceptor activity is a determinant of both circulating concentration and cardiac expression of Gal-3. Pharmacological or transgenic activation of β-adrenoceptors leads to increased blood levels of Gal-3 and up-regulated cardiac Gal-3 expression, effect that can be reversed with the use of β-adrenoceptor antagonists. Conversely, Gal-3 gene deletion confers protection against isoprenaline-induced cardiotoxicity and fibrogenesis. At the transcription level, β-adrenoceptor stimulation activates cardiac mammalian sterile-20-like kinase 1, a pivotal kinase of the Hippo signalling pathway, which is associated with Gal-3 up-regulation. Recent studies have suggested a role for the β-adrenoceptor-Hippo signalling pathway in the regulation of cardiac Gal-3 expression thereby contributing to the onset and progression of heart disease. This implies a therapeutic potential of the suppression of Gal-3 expression. In this review, we discuss the effects of β-adrenoceptor activity on Gal-3 as a biomarker and causative mediator in the setting of heart disease and point out pivotal knowledge gaps. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Xiao‐Jun Du
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Physiology and Pathophysiology, School of Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Wei‐Bo Zhao
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - My‐Nhan Nguyen
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Qun Lu
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Cardiovascular Medicine, First HospitalXi'an Jiaotong University Health Science CenterXi'anChina
| | - Helen Kiriazis
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| |
Collapse
|
39
|
Sammar M, Drobnjak T, Mandala M, Gizurarson S, Huppertz B, Meiri H. Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. Int J Mol Sci 2019; 20:ijms20133192. [PMID: 31261864 PMCID: PMC6651626 DOI: 10.3390/ijms20133192] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Galectins regulate cell growth, proliferation, differentiation, apoptosis, signal transduction, mRNA splicing, and interactions with the extracellular matrix. Here we focus on the galectins in the reproductive system, particularly on a group of six galectins that first appears in anthropoid primates in conjunction with the evolution of highly invasive placentation and long gestation. Of these six, placental protein 13 (PP13, galectin 13) interacts with glycoproteins and glycolipids to enable successful pregnancy. PP13 is related to the development of a major obstetric syndrome, preeclampsia, a life-threatening complication of pregnancy which affects ten million pregnant women globally. Preeclampsia is characterized by hypertension, proteinuria, and organ failure, and is often accompanied by fetal loss and major newborn disabilities. PP13 facilitates the expansion of uterine arteries and veins during pregnancy in an endothelial cell-dependent manner, via the eNOS and prostaglandin signaling pathways. PP13 acts through its carbohydrate recognition domain that binds to sugar residues of extracellular and connective tissue molecules, thus inducing structural stabilization of vessel expansion. Further, decidual PP13 aggregates may serve as a decoy that induces white blood cell apoptosis, contributing to the mother's immune tolerance to pregnancy. Lower first trimester PP13 level is one of the biomarkers to predict the subsequent risk to develop preeclampsia, while its molecular mutations/polymorphisms that are associated with reduced PP13 expression are accompanied by higher rates of preeclampsia We propose a targeted PP13 replenishing therapy to fight preeclampsia in carriers of these mutations.
Collapse
Affiliation(s)
- Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, 2161002 Karmiel, Israel.
| | - Tijana Drobnjak
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87030 Rende, Italy
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Hamutal Meiri
- Hylabs Ltd., Rehovot, 7670606 and TeleMarpe Ltd., 6908742 Tel Aviv, Israel
| |
Collapse
|
40
|
Dahlqvist A, Zetterberg FR, Leffler H, Nilsson UJ. Aminopyrimidine-galactose hybrids are highly selective galectin-3 inhibitors. MEDCHEMCOMM 2019; 10:913-925. [PMID: 31303989 PMCID: PMC6596385 DOI: 10.1039/c9md00183b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022]
Abstract
Galactopyranosides with aryl-aminopyrimidine moieties at O3 inhibit the tumor and immunity-related galectin-3 with high selectivity over other galectins.
Galectins are a family of carbohydrate recognition proteins involved in, among other things, modulating cell signalling and cell–environment interactions, giving them roles in several pathologies like cancer and idiopathic lung fibrosis. Hence, developing new galectin inhibitors with high affinity and high selectivity is important to be able to target such diseases. Most existing galectin inhibitors have a disaccharide scaffold, but there has been success as of late in developing monogalactoside inhibitors such as α-arylthioglycosides. Here, we report aminopyrimidine-derivatised galactosides as good galectin-3 inhibitors with affinities down to 1.7 μM and a more than 300-fold selectivity over galectin-1. Mutant studies replacing Arg144 in galectin-3 with lysine and serine support the hypothesis that the binding of the derivatives involves interactions with Arg144. Molecular dynamics simulations converged to stable poses of the inhibitor aminopyrimidine moiety with polar interactions with Asp148 and Ser237, while the aryl-aminopyrimidine ring stacked onto the side chain of Arg144. Hence, combining an aminopyrimidine motif with a phenyl α-thiogalactoside motif offers an attractive route towards highly selective galectin-3 inhibitors.
Collapse
Affiliation(s)
- Alexander Dahlqvist
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| | - Fredrik R Zetterberg
- Galecto Biotech AB , Sahlgrenska Science Park, Medicinaregatan 8A , SE-413 46 Gothenburg , Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine , Section MIG , Lund University BMC-C1228b , Klinikgatan 28 , SE-221 84 Lund , Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| |
Collapse
|
41
|
Mattos RMD, Machado DE, Perini JA, Alessandra-Perini J, Meireles da Costa NDO, Wiecikowski AFDRDO, Cabral KMDS, Takiya CM, Carvalho RS, Nasciutti LE. Galectin-3 plays an important role in endometriosis development and is a target to endometriosis treatment. Mol Cell Endocrinol 2019; 486:1-10. [PMID: 30753853 DOI: 10.1016/j.mce.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
This study aimed to analyze galectin-3 importance in endometriotic lesions development and the effect of recombinant Gal-3 carbohydrate recognition domain (Gal3C) in experimental endometriosis treatment. Experimental endometriosis was induced in WT and Gal-3-/- mice. Initially developed lesions were macroscopically and histologically analyzed, including immunohistochemical analysis. Then, WT mice were treated with Gal3C for 15 days. Gal-3 deficiency and Gal3C treatment significantly impaired endometriosis development. A significant decrease in lesions implantation and size, VEGF and VEGFR-2 expression, vascular density and macrophage distribution were observed in Gal-3 absence or inhibition. A greater presence of iNOS positive cells was observed in knockout mice lesions, while the presence of Arginase positive cells was higher in the WT animal lesions. In addition, COX-2 and TGFb1 were reduced by Gal3C treatment. Data showed here indicate a relevant role of Gal-3 in endometriosis development and highlight a target of endometriosis treatment using Gal-3 inhibitor.
Collapse
Affiliation(s)
- Rômulo Medina de Mattos
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; University Center IBMR, Laureate Universities, Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Daniel Escorsim Machado
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; Research Laboratory of Pharmaceutical Sciences, West Zone State University - UEZO, Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Research Laboratory of Pharmaceutical Sciences, West Zone State University - UEZO, Rio de Janeiro, RJ, Brazil; Program of Post-graduation in Public Health and Environment, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Jéssica Alessandra-Perini
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; Research Laboratory of Pharmaceutical Sciences, West Zone State University - UEZO, Rio de Janeiro, RJ, Brazil
| | | | | | - Katia Maria Dos Santos Cabral
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Christina Maeda Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renato Sampaio Carvalho
- Laboratory of Molecular Targets, Pharmaceutical Biotechnology Department, Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
42
|
Stegmayr J, Zetterberg F, Carlsson MC, Huang X, Sharma G, Kahl-Knutson B, Schambye H, Nilsson UJ, Oredsson S, Leffler H. Extracellular and intracellular small-molecule galectin-3 inhibitors. Sci Rep 2019; 9:2186. [PMID: 30778105 PMCID: PMC6379368 DOI: 10.1038/s41598-019-38497-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/27/2018] [Indexed: 01/04/2023] Open
Abstract
Galectin-3 is a carbohydrate binding protein which has important roles in cancer and immunity. Potent galectin-3 inhibitors have been synthesized, for experimental purposes and potential clinical use. As galectin-3 is implicated in both intra- and extracellular activities, permeability of galectin-3 inhibitors is an important parameter determining biological effects. We compared the cellular uptake of galectin-3 inhibitors and their potency in the intracellular or extracellular space. The inhibitors differed in their polar surface area (PSA), but had similar affinities for galectin-3. Using a well-established permeability assay, we confirmed that the uptake was significantly higher for the inhibitor with the lowest PSA, as expected. To analyze intracellular activity of the inhibitors, we developed a novel assay based on galectin-3 accumulation around damaged intracellular vesicles. The results show striking differences between the inhibitors intracellular potency, correlating with their PSAs. To test extracellular activity of the inhibitors, we analyzed their potency to block binding of galectin-3 to cell surfaces. All inhibitors were equally able to block galectin-3 binding to cells and this was proportional to their affinity for galectin-3. These inhibitors may serve as useful tools in exploring biological roles of galectin-3 and may further our understanding of intracellular versus extracellular roles of galectin-3.
Collapse
Affiliation(s)
- John Stegmayr
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden.
| | | | - Michael C Carlsson
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark.,Agilent Technologies Denmark ApS, 2600, Glostrup, Denmark
| | - Xiaoli Huang
- Department of Biology, Lund University, 22100, Lund, Sweden.,Xintela AB, 22381, Lund, Sweden
| | - Gunjan Sharma
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Stina Oredsson
- Department of Biology, Lund University, 22100, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
43
|
Bojić-Trbojević Ž, Jovanović Krivokuća M, Vilotić A, Kolundžić N, Stefanoska I, Zetterberg F, Nilsson UJ, Leffler H, Vićovac L. Human trophoblast requires galectin-3 for cell migration and invasion. Sci Rep 2019; 9:2136. [PMID: 30765738 PMCID: PMC6376043 DOI: 10.1038/s41598-018-38374-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Invasive extravillous cytotrophoblast of the human placenta expresses galectins-1, -3, and -8 in vivo and in vitro. This study aimed to investigate the potential role of galectin-3 in cell migration and invasion, using recombinant human galectin-3 (rhgalectin-3), small molecule galectin inhibitor I47, and galectin-3 silencing. HTR-8/SVneo cell migration was stimulated by rhgalectin-3 and reduced by I47, which could be neutralised by rhgalectin-3. Inhibitor specificity and selectivity for the galectins expressed in extravillous trophoblast were validated in solid phase assays using recombinant galectin-1, -3, -8, confirming selectivity for galectin-3. HTR-8/SVneo cell migration and invasion, and invasion by isolated trophoblast cells in primary culture were significantly reduced in the presence of I47, which could be restored by rhgalectin-3. Upon HTR-8/SVneo cell treatment with galectin-3 siRNA both LGALS3 and galectin-3 protein were dramatically decreased. Silencing of galectin-3 induced significant reduction in cell migration and invasion, which was restored by rhgalectin-3. The influence on known mediators of cell invasion, MMP2 and -9, and integrins α1, α5, and β1 was followed in silenced cells, showing lower levels of MMPs and a large reduction in integrin subunit β1. These results show that galectin-3 acts as a pro-invasive autocrine/paracrine factor in trophoblast in vitro.
Collapse
Affiliation(s)
- Ž Bojić-Trbojević
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - M Jovanović Krivokuća
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - A Vilotić
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - N Kolundžić
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.,King's College London, Faculty of Life Sciences & Medicine, Department of Women & Children's Health, Guy's Hospital, London SE1 9RT, London, United Kingdom
| | - I Stefanoska
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - F Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46, Gothenburg, Sweden
| | - U J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, SE-22100, Lund, Sweden
| | - H Leffler
- Section MIG, Department of Laboratory Medicine Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Lj Vićovac
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
44
|
Fu YC, Xin ZM. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α. Biosci Rep 2019; 39:BSR20180552. [PMID: 30355648 PMCID: PMC6356011 DOI: 10.1042/bsr20180552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/27/2022] Open
Abstract
Expression of hypoxia-inducible factor (HIF) 1α has been observed in corneal neovascularization (CNV). Vascular endothelial growth factor (VEGF), one of the most well-known angiogenic factors in CNV, is under the regulation of HIF-1. The present study aims to investigate the synergistic effects of VEGF and HIF-1α gene silencing on alkali burn-induced CNV in rabbits. The models of rabbits in corneal alkali burn were established. SiRNA recombinant adenovirus was used to explore the synergistic effects of VEGF and HIF-1α gene silencing on alkali burn-induced CNV. CNV area and ultrastructure of cornea were observed. The expression of VEGF and HIF-1α was detected. CNV was observed in rabbits following alkali burn. In addition, overexpressed VEGF and HIF-1α was also observed in rabbits following alkali burn. Then, silencing HIF-1α or silencing VEGF decreased area of CNV, inhibited neovascularization and improved pathological changes, while double-target interference for VEGF and HIF-1α decreased area of CNV inhibited neovascularization, and improved pathological changes to a greater extent. Our study provides evidences emphasizing the distinct notion that VEGF and HIF-1α play the contributory role in alkali burn-induced CNV as a result of double-target interference for VEGF and HIF-1α inhibiting CNV in rabbits following corneal alkali burn.
Collapse
Affiliation(s)
- Ying-Cong Fu
- Department of Burns and Plastic Surgery, Shengli Oilfield Central Hospital, Dongying 257034, P.R. China
| | - Zhi-Ming Xin
- Department of Burns and Plastic Surgery, Shengli Oilfield Central Hospital, Dongying 257034, P.R. China
| |
Collapse
|
45
|
Oyenuga A, Folsom AR, Fashanu O, Aguilar D, Ballantyne CM. Plasma Galectin-3 and Sonographic Measures of Carotid Atherosclerosis in the Atherosclerosis Risk in Communities Study. Angiology 2019; 70:47-55. [PMID: 29879846 PMCID: PMC6239970 DOI: 10.1177/0003319718780772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Galectin-3 is a β-galactoside-binding lectin that plays a role in the regulation of several conditions that are associated with atherosclerosis. The goal of this cross-sectional study was to assess the association of plasma galectin-3 concentrations with sonographic measures of carotid atherosclerosis in the Atherosclerosis Risk in Communities study. Linear regression was used to determine the difference and 95% confidence intervals (CIs) for carotid intima-media thickness (cIMT) by categorical and continuous representations of galectin-3. Logistic regression was used to determine the odds ratio and 95% CI, separately, for dichotomized cIMT (75th percentile = 0.9 mm) and carotid plaque and/or shadowing. Compared to those in the first quintile of galectin-3, those in the fifth quintile of galectin-3 level had higher cIMT (mean difference: 0.020 mm after multivariable adjustment; P trend = .04). Moreover, compared to those in the lowest galectin-3 quintile, those in the highest galectin-3 quintile had higher odds of carotid plaque/and or shadowing (odds ratio 1.13 after multivariable adjustment; P trend = .014). Higher levels of galectin-3 are associated with greater carotid atherosclerosis. Our findings provide support for the role of inflammatory biomarkers in the pathogenesis of atherosclerosis and suggest galectin-3 as a possible target for intervention in the prevention or management of atherosclerotic disease.
Collapse
Affiliation(s)
- Abayomi Oyenuga
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Aaron R. Folsom
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Oluwaseun Fashanu
- Department for the Prevention of Heart Disease, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - David Aguilar
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Ciccarone Center, Houston, Texas, USA.
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA.
| |
Collapse
|
46
|
AbuSamra DB, Argüeso P. Lectin-Glycan Interactions in Corneal Infection and Inflammation. Front Immunol 2018; 9:2338. [PMID: 30349544 PMCID: PMC6186829 DOI: 10.3389/fimmu.2018.02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
The cornea is an extraordinary component of vision that functions as the principal barrier to pathogens in the eye while allowing light transmission into the retina. Understanding the cellular and molecular mechanisms that maintain homeostasis in this tissue is the subject of intense scientific study given the high prevalence of corneal disease. Over the past decade, the interactions between lectins and glycans on plasma membranes have emerged as important regulatory factors in corneal biology. In particular, members of the galectin family have been shown to bind multiple β-galactoside-containing receptors to regulate immunopathological processes associated with viral and bacterial infection, transplantation, wound healing, dry eye, angiogenesis, and lymphangiogenesis. In this review, we describe the current understanding of how these surface interactions intersect with different pathways to activate unique cellular responses in cornea as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Dina B AbuSamra
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Qu M, Zhang X, Hu X, Dong M, Pan X, Bian J, Zhou Q. BRD4 inhibitor JQ1 inhibits and reverses mechanical injury-induced corneal scarring. Cell Death Discov 2018; 4:5. [PMID: 30062054 PMCID: PMC6060126 DOI: 10.1038/s41420-018-0066-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Corneal scarring is characterized by the improper deposition of extracellular matrix components and myofibroblast differentiation from keratocytes. The bromodomain-containing protein 4 (BRD4) inhibitor JQ1 has been shown to attenuate pathological fibrosis. The present study aimed to explore the potential therapeutic effect of JQ1 on mechanical injury-induced mouse corneal scarring and TGFβ-induced human corneal myofibroblast differentiation and the related mechanism. The corneal scarring and myofibroblast differentiation were evaluated with clinical observation and fibrosis-related gene expression analysis. In mice, subconjunctivally injected JQ1 suppressed the initial development and reversed the established progression of corneal scarring, while having no impairment on the epithelial regenerative capacity. BRD4 inhibition with either JQ1 or small-interfering RNA inhibited the differentiation and promoted the dedifferentiation of human corneal myofibroblasts. Moreover, JQ1 attenuated the accumulation of intracellular reactive oxygen species induced by TGFβ treatment, induced Nrf2 nuclear translocation and activated the expression of Nrf2-ARE downstream antioxidant genes. In conclusion, this study implicates that JQ1 suppresses and reverses corneal scarring through the regulation of BRD4 inhibition and Nrf2-dependant antioxidant induction.
Collapse
Affiliation(s)
- Mingli Qu
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoping Zhang
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.,2The Affiliated Hospital of Qingdao University, Qingdao, Shandong China
| | - Xiaoli Hu
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Muchen Dong
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.,3School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Xiaojing Pan
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Jiang Bian
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.,3School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Qingjun Zhou
- 1State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
48
|
Abstract
Galectins are carbohydrate-binding proteins that are involved in many physiological functions, such as inflammation, immune responses, cell migration, autophagy and signalling. They are also linked to diseases such as fibrosis, cancer and heart disease. How such a small family of only 15 members can have such widespread effects remains a conundrum. In this Cell Science at a Glance article, we summarise recent literature on the many cellular activities that have been ascribed to galectins. As shown on the accompanying poster, these include carbohydrate-independent interactions with cytosolic or nuclear targets and carbohydrate-dependent interactions with extracellular glycoconjugates. We discuss how these intra- and extracellular activities might be linked and point out the importance of unravelling molecular mechanisms of galectin function to gain a true understanding of their contributions to the physiology of the cell. We close with a short outlook on the organismal functions of galectins and a perspective on the major challenges in the field.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ralf Jacob
- Philipps-Universität Marburg, Institut für Zytobiologie, Robert-Koch-Str. 6, 35037 Marburg, Germany
| | - Hakon Leffler
- Sect. MIG (Microbiology, Immunology, Glycobiology), Dept Laboratory Medicine, Lund University, POB 117, 22100 Lund, Sweden
| |
Collapse
|
49
|
Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget 2018; 8:32505-32522. [PMID: 28455954 PMCID: PMC5464805 DOI: 10.18632/oncotarget.17129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Collapse
|
50
|
Rosmark O, Åhrman E, Müller C, Elowsson Rendin L, Eriksson L, Malmström A, Hallgren O, Larsson-Callerfelt AK, Westergren-Thorsson G, Malmström J. Quantifying extracellular matrix turnover in human lung scaffold cultures. Sci Rep 2018; 8:5409. [PMID: 29615673 PMCID: PMC5882971 DOI: 10.1038/s41598-018-23702-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
Remodelling of the extracellular matrix is accomplished by altering the balance between matrix macromolecule production and degradation. However, it is not well understood how cells balance production of new matrix molecules and degradation of existing ones during tissue remodelling and regeneration. In this study, we used decellularized lung scaffolds repopulated with allogenic lung fibroblasts cultured with stable isotope labelled amino acids to quantify the balance between matrix production and degradation at a proteome-wide scale. Specific temporal dynamics of different matrisome proteins were found to correspond to the proliferative activity of the repopulating cells and the degree of extracellular deposition. The remodeling of the scaffold was characterized by an initial phase with cell proliferation and high production of cell adhesion proteins such as emilin-1 and fibronectin. Extended culture time resulted in increased levels of core matrisome proteins. In a comparison with monolayer cultures on plastic, culture in lung scaffolds lead to a pronounced accumulation of proteoglycans, such as versican and decorin, resulting in regeneration of an extracellular matrix with greater resemblance to native lung tissue compared to standard monolayer cultures. Collectively, the study presents a promising technique for increasing the understanding of cell- extracellular matrix interactions under healthy and diseased conditions.
Collapse
Affiliation(s)
- Oskar Rosmark
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden.
| | - Emma Åhrman
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden.,Division of Infection Medicine, Department Clinical Sciences, Lund University, Lund, Sweden
| | - Catharina Müller
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Linda Elowsson Rendin
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Leif Eriksson
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Anders Malmström
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden.,Department Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | | | | | - Johan Malmström
- Division of Infection Medicine, Department Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|