1
|
Fjaervoll HK, Fjaervoll KA, Yang M, Reiten OK, Bair J, Lee C, Utheim TP, Dartt D. Purinergic agonists increase [Ca 2+] i in rat conjunctival goblet cells through ryanodine receptor type 3. Am J Physiol Cell Physiol 2024; 327:C830-C843. [PMID: 39099424 PMCID: PMC11427011 DOI: 10.1152/ajpcell.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
ATP and benzoylbenzoyl-ATP (BzATP) increase free cytosolic Ca2+ concentration ([Ca2+]i) in conjunctival goblet cells (CGCs) resulting in mucin secretion. The purpose of this study was to investigate the source of the Ca2+i mobilized by ATP and BzATP. First-passage cultured rat CGCs were incubated with Fura-2/AM, and [Ca2+]i was measured under several conditions with ATP and BzATP stimulation. The following conditions were used: 1) preincubation with the Ca2+ chelator EGTA, 2) preincubation with the SERCA inhibitor thapsigargin (10-6 M), which depletes ER Ca2+ stores, 3) preincubation with phospholipase C (PLC) or protein kinase A (PKA) inhibitor, or 4) preincubation with the voltage-gated calcium channel antagonist nifedipine (10-5 M) and the ryanodine receptor (RyR) antagonist dantrolene (10-5 M). Immunofluorescence microscopy (IF) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to investigate RyR presence in rat and human CGCs. ATP-stimulated peak [Ca2+]i was significantly lower after chelating Ca2+i with 2 mM EGTA in Ca2+-free buffer. The peak [Ca2+]i increase in CGCs preincubated with thapsigargin, the PKA inhibitor H89, nifedipine, and dantrolene, but not the PLC inhibitor, was reduced for ATP at 10-5 M and BzATP at 10-4 M. Incubating CGCs with dantrolene alone decreased [Ca2+]i and induced CGC cell death at a high concentration. RyR3 was detected in rat and human CGCs with IF and RT-qPCR. We conclude that ATP- and BzATP-induced Ca2+i increases originate from the ER and that RyR3 may be an essential regulator of CGC [Ca2+]i. This study contributes to the understanding of diseases arising from defective Ca2+ signaling in nonexcitable cells.NEW & NOTEWORTHY ATP and benzoylbenzoyl-ATP (BzATP) induce mucin secretion through an increase in free cytosolic calcium concentration ([Ca2+]i) in conjunctival goblet cells (CGCs). The mechanisms through which ATP and BzATP increase [Ca2+]i in CGCs are unclear. Ryanodine receptors (RyRs) are fundamental in [Ca2+]i regulation in excitable cells. Herein, we find that ATP and BzATP increase [Ca2+]i through the activation of protein kinase A, voltage-gated calcium channels, and RyRs, and that RyRs are crucial for nonexcitable CGCs' Ca2+i homeostasis.
Collapse
Affiliation(s)
- Haakon K Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Ketil A Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Ole K Reiten
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeffrey Bair
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Changrim Lee
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P Utheim
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Darlene Dartt
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Xu L, Wang G, Shi R, Zeng B, Zhang Y, Liu Z, Dong N, Wang S, Li C. A cocktail of small molecules maintains the stemness and differentiation potential of conjunctival epithelial cells. Ocul Surf 2023; 30:107-118. [PMID: 37634570 DOI: 10.1016/j.jtos.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE The conjunctival epithelial cells cultured with bovine serum or feeder cells were not suitable for clinical application. Therefore, we developed a novel serum-free and feeder cell-free culture system containing only a cocktail of three chemicals (3C) to expand the conjunctival epithelial cells. METHODS The cell proliferative ability was evaluated by counting, crystal violet staining and Ki67 immunostaining. Co-staining of K7 and MUC5AC was performed to identify goblet cells. PAS staining was used to assess the ability of cells to synthesis and secrete glycoproteins. In vivo, eye drops containing 3C was administered to verify the role of 3C in the mouse conjunctival injury model. PAS, HE and immunofluorescence staining were performed to show conjunctival epithelial repair. RESULTS Compared with other small molecule groups and the serum group, the cells in 3C group showed superior morphology and proliferative ability. Meanwhile, 3C maintained the well-proliferative capacity of cells even after fifth passage. The 3C group also exhibited more K7 and MUC5AC double positive cells, and the PAS staining positive areas were present in both the cytoplasm and extracellular matrix. The cell sheets treated with 3C in air-lifted culture were obviously stratified. In vivo, more goblet cells in the conjunctival epithelium were observed in the 3C group. CONCLUSION Overall, our culture system can expand the conjunctival epithelial cells and retain their potential to differentiate into mature goblet cells, which provided a promising source of seed cells for conjunctival reconstruction. Furthermore, this system provides new insights for the clinical treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Lina Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Guoliang Wang
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ruize Shi
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Baihui Zeng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Zhen Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Nuo Dong
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361102, China.
| | - Shurong Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Cheng Li
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361102, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Gül F, Kobat S, Kasar K, Aydin S, Akkoç R. Serum Maresin 1 levels in idiopathic acute anterior uveitis patients. J Fr Ophtalmol 2022; 45:1160-1170. [DOI: 10.1016/j.jfo.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
|
4
|
Botten N, Hodges RR, Bair J, Utheim TP, Serhan CN, Yang M, Dartt DA. Resolvin D2 uses multiple Ca 2+ -dependent signaling pathways to stimulate mucin secretion in rat and human conjunctival goblet cells. J Cell Physiol 2022; 237:3816-3833. [PMID: 36066128 PMCID: PMC9560994 DOI: 10.1002/jcp.30854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022]
Abstract
The mucin layer of the tear film is produced by goblet cells in the conjunctiva to protect the ocular surface and maintain homeostasis. The pro-resolving lipid mediator resolvin D2 (RvD2) biosynthesized from an omega 3 fatty acid actively terminates inflammation and regulates mucin secretion from conjunctival goblet cells. Our objective was to determine which Ca2+ -dependent signaling pathways RvD2 uses to stimulate conjunctival goblet cell function (CGC). We hypothesize that RvD2 activates multiple intracellular Ca2+ signaling pathways to stimulate CGC secretion. Rat and human CGCs were cultured from conjunctival explants. The amount of RvD2 receptor GPR18/DRV2 message and protein were determined. The intracellular concentration of Ca2+ ([Ca2+ ]i ) was measured in CGCs using a fluorescent Ca2+ dye and mucin secretion was determined by measuring protein secretion enzymatically with a lectin. Goblet cells were incubated with signaling pathway inhibitors before stimulation with RvD2 and [Ca2+ ]i or secretion was measured. In rat and human CGCs RvD2 receptor and in rat CGCs IP3 (a molecule that releases Ca2+ from intracellular organelles) receptors 1-3 were detected. In both species of CGC RvD2 increased [Ca2+ ]i similarly to RvD1. In rat CGCs, the increase in [Ca2+ ]i and secretion stimulated by RvD2 was significantly blocked by inhibitors to phospholipase (PL-) C and IP3 -receptor, but not protein kinase C. Increase in [Ca2+ ]i was blocked by the PLD inhibitor, but not the PLA2 inhibitor. Secretion was blocked by PLA2 inhibitor, but not the PLD inhibitor. An inhibitor of the epidermal growth factor receptor blocked the increase in [Ca2+ ]i by RvD2 in both species of CGCs. In CGCs RvD2 activates multiple intracellular signaling pathways that are Ca2+ -dependent, along with one Ca2+ -independent and one cAMP/protein kinase A-dependent pathway. Activation of these pathways stimulate mucin secretion from rat and human CGCs into the tear film contributing to ocular surface homeostasis and health.
Collapse
Affiliation(s)
- Nora Botten
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robin R. Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tor P. Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Menglu Yang
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Darlene A. Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Lee HJ, Yang S, Cheon EJ, Shin S, Byun YS, Kim HS, Chung SH. Diquafosol ophthalmic solution enhances mucin expression via ERK activation in human conjunctival epithelial cells with hyperosmotic stress. Mol Vis 2022; 28:114-123. [PMID: 36034736 PMCID: PMC9352363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/28/2022] [Indexed: 11/02/2022] Open
Abstract
Purpose To evaluate the effect of diquafosol tetrasodium on the expression of secretory and membrane-associated mucins in multi-layered cultures of primary human conjunctival epithelial cells (HCEC) using intracellular extracellular signal regulated kinase (ERK) signaling. Methods HCECs were treated with hyperosmotic stress (400 mOsm/l) for 24 h after air-liquid interface cell culture followed by treatment with diquafosol. HCECs were stimulated for 1 h with or without PD98059, an ERK inhibitor, then treated with diquafosol for 6 h and 24 h. Mucin 1 (MUC1), mucin 16 (MUC16), and MUC5AC mRNA and protein expression levels were analyzed, and cell viability was detected using an MTT assay. Western blot analysis was used to examine p44/42 MAPK (Erk1/2) and phosphorylated p44/42 MAPK (Erk1/2) expression. Results Hyperosmotic stressed HCECs demonstrated increased MUC5AC secretion and gene expression when treated with diquafosol. MUC1 mRNA levels increased significantly at 24 h (p<0.01), and expression of MUC16 mRNA levels increased at 6 h and were maintained until 24 h (p<0.05).There was no significant difference in cell viability compared to the control group. Immunostaining results for MUC1, MUC16, and MUC5AC in diquafosol tetrasodium-treated HCECs at 24 h showed more positive cells than in the control group. Phosphorylation of p44/42 MAPK (Erk1/2) signaling molecules significantly increased from 5 min to 60 min (p<0.05). The effects of diquafosol on mucin expressions in hyperosmotic stressed HCECs were significantly inhibited by PD98059, an ERK inhibitor, at 6 h and 24 h. Conclusions ERK signaling may regulate the expression levels of MUC1, MUC16, and MUC5AC induced by diquafosol in hyperosmotic stressed HCECs.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea,Department of Biochemical Engineering, Seoil University, Seoul, Republic of Korea
| | - Soonwon Yang
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Eun Jeong Cheon
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Soojung Shin
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Yong-Soo Byun
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Hyun Seung Kim
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Olsen MV, Lyngstadaas AV, Bair JA, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Signaling Pathways Used by the Specialized Pro-Resolving Mediator Maresin 2 Regulate Goblet Cell Function: Comparison with Maresin 1. Int J Mol Sci 2022; 23:6233. [PMID: 35682912 PMCID: PMC9181304 DOI: 10.3390/ijms23116233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Specialized pro-resolving mediators (SPMs), including Maresins (MaR)-1 and 2, contribute to tear film homeostasis and resolve conjunctival inflammation. We investigated MaR2's signaling pathways in goblet cells (GC) from rat conjunctiva. Agonist-induced [Ca2+]i and high-molecular weight glycoconjugate secretion were measured. MaR2 increased [Ca2+]i and stimulated secretion. MaR2 and MaR1 stimulate conjunctival goblet cell function, especially secretion, by activating different but overlapping GPCR and signaling pathways, and furthermore counter-regulate histamine stimulated increase in [Ca2+]i. Thus, MaR2 and MaR1 play a role in maintaining the ocular surface and tear film homeostasis in health and disease. As MaR2 and MaR1 modulate conjunctival goblet cell function, they each may have potential as novel, but differing, options for the treatment of ocular surface inflammatory diseases including allergic conjunctivitis and dry eye disease. We conclude that in conjunctival GC MaR2 and MaR1, both increase the [Ca2+]i and stimulate secretion to maintain homeostasis by using one set of different, but overlapping, signaling pathways to increase [Ca2+]i and another set to stimulate secretion. MaR2 also resolves ocular allergy.
Collapse
Affiliation(s)
- Markus V. Olsen
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| | - Anne V. Lyngstadaas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| | - Jeffrey A. Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
| | - Robin R. Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
| | - Tor P. Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
7
|
Resolvin D2 and Resolvin D1 Differentially Activate Protein Kinases to Counter-Regulate Histamine-Induced [Ca2+]i Increase and Mucin Secretion in Conjunctival Goblet Cells. Int J Mol Sci 2021; 23:ijms23010141. [PMID: 35008563 PMCID: PMC8745650 DOI: 10.3390/ijms23010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Resolvin (Rv) D2 and RvD1 are biosynthesized from docosahexaenoic acid (DHA) and promote resolution of inflammation in multiple organs and tissues, including the conjunctiva. Histamine is a mediator produced by mast cells in the conjunctiva during the allergic response. We determined the interaction of RvD2 with histamine and its receptor subtypes in cultured conjunctival goblet cells and compared them with RvD1 by measuring intracellular [Ca2+] and mucous secretion. Treatment with RvD2 significantly blocked the histamine-induced [Ca2+]i increase as well as secretion. RvD2 and RvD1 counter-regulate different histamine receptor subtypes. RvD2 inhibited the increase in [Ca2+]i induced by the activation of H1, H3, or H4 receptors, whereas RvD1 inhibited H1 and H3 receptors. RvD2 and RvD1 also activate distinct receptor-specific protein kinases to counter-regulate the histamine receptors, probably by phosphorylation. Thus, our data suggest that the counter-regulation of H receptor subtypes by RvD2 and RvD1 to inhibit mucin secretion are separately regulated.
Collapse
|
8
|
Choi JE, Hong Y, Heo J, Park Y. N-3 PUFA ameliorated bone loss induced by postmenopausal depression following exposure to chronic mild stress and maternal separation by regulating neuronal processes. J Nutr Biochem 2021; 100:108909. [PMID: 34801691 DOI: 10.1016/j.jnutbio.2021.108909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/21/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
Depression induced by chronic mild stress (CMS) reduced bone mass in ovariectomized (OVX) rats, and maternal separation (MS) during early life aggravated depression-induced bone mass destruction. N-3 polyunsaturated fatty acids (PUFA) have been shown to improve bone mass and depression, but the bone-protecting effects of n-3 PUFA were unclear in CMS+MS-induced depression models. The purpose of this study was to determine whether n-3 PUFA improved CMS+MS-induced postmenopausal bone loss via its antidepressant-like action. Rats were fed diets containing 0% of total energy intake (en %) of n-3 PUFA during lifetime or 1 en % n-3 PUFA during pre-weaning or post-weaning periods, or their entire lifetimes and were allocated to CMS or CMS+MS groups after OVX. Lifetime supply of n-3 PUFA enhanced bone mass and microarchitecture, and expression of runt-related transcription factor 2, while decreasing blood levels of amino-terminal cross-linked telopeptide of type 1 collagen and the expression of receptor activator of nuclear factor kappa Β ligand/osteoprotegerin, activating transcription factor 4, and adrenergic receptor β2. Lifetime supply of n-3 PUFA decreased levels of adrenocorticotropic hormone and corticosterone and the expression of corticotropin-releasing factor in the brain but increased expression of the glucocorticoid receptor, serotonin-2C receptor, cAMP response element-binding protein (CREB), and calmodulin kinase IV and serotonin levels. Supply of n-3 PUFA during the pre-and post-weaning periods had beneficial effects on the brain but not on the bones. Lifetime supply of n-3 PUFA ameliorated bone loss induced by chronic stress by regulating hypothalamic-pituitary-adrenal axis activity and serotonin-CREB signaling.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Yuni Hong
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Juhee Heo
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seongdong-gu, Seoul, Korea.
| |
Collapse
|
9
|
Anti-inflammatory actions of aspirin-triggered resolvin D1 (AT-RvD1) in bronchial epithelial cells infected with Cryptococcus neoformans. Inflammopharmacology 2021; 29:1603-1612. [PMID: 34405339 DOI: 10.1007/s10787-021-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The interaction of Cryptococcus neoformans with airway epithelial cells is crucial for the establishment of cryptococcosis. Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. METHOD Here, we evaluated the effects of AT-RvD1 (1, 10 or 100 nM) on human bronchial epithelial cells (BEAS-2B) stimulated with C. neoformans (1, 10 or 100 multiplicities of infection; MOI). RESULTS After 24 h, C. neoformans (all MOI) demonstrated no cytotoxic effects and increased IL-8 production on BEAS-2B cells when compared to controls. In addition, C. neoformans (MOI 100) increased the concentration of IL-6, but not of IL-10. AT-RvD1 (100 nM) significantly reduced the concentration of IL-8 and IL-6 and increased IL-10 production in C. neoformans-stimulated BEAS-2B cells. C. neoformans increased the phosphorylation of NF-κB and ERK1/2, and ALX/FPR2 expression. AT-RvD1 reduced the activation of NF-kB without altering the ERK1/2 and ALX/FPR2 expression. The anti-inflammatory effects of AT-RvD1 were dependent on the ALX/FPR2, once its antagonist (BOC2) reversed its anti-inflammatory effects. No alteration on the fungal burden as well as interactions with BEAS-2B cells was observed by AT-RvD1. CONCLUSION AT-RvD1 demonstrated significant anti-inflammatory effects in bronchial epithelial cells infected with C. neoformans without affecting the development of C. neoformans infection in the airways. TRIAL REGISTRATION Not applicable.
Collapse
|
10
|
Biringer RG. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. J Cell Commun Signal 2021; 16:5-46. [PMID: 34173964 DOI: 10.1007/s12079-021-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Eicosanoid signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain and to cell survival itself. Disruption of normal eicosanoid signaling is implicated in numerous disease states. Eicosanoid signaling is facilitated by G-protein-coupled, eicosanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of non-prostanoid, eicosanoid receptors.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
11
|
Lyngstadaas AV, Olsen MV, Bair JA, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Pro-Resolving Mediator Annexin A1 Regulates Intracellular Ca 2+ and Mucin Secretion in Cultured Goblet Cells Suggesting a New Use in Inflammatory Conjunctival Diseases. Front Immunol 2021; 12:618653. [PMID: 33968020 PMCID: PMC8100605 DOI: 10.3389/fimmu.2021.618653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
The amount of mucin secreted by conjunctival goblet cells is regulated to ensure the optimal level for protection of the ocular surface. Under physiological conditions lipid specialized pro-resolving mediators (SPM) are essential for maintaining tissue homeostasis including the conjunctiva. The protein Annexin A1 (AnxA1) can act as an SPM. We used cultured rat conjunctival goblet cells to determine if AnxA1 stimulates an increase in intracellular [Ca2+] ([Ca2+]i) and mucin secretion and to identify the signaling pathways. The increase in [Ca2+]i was determined using fura2/AM and mucin secretion was measured using an enzyme-linked lectin assay. AnxA1 stimulated an increase in [Ca2+]i and mucin secretion that was blocked by the cell-permeant Ca2+ chelator BAPTA/AM and the ALX/FPR2 receptor inhibitor BOC2. AnxA1 increased [Ca2+]i to a similar extent as the SPMs lipoxin A4 and Resolvin (Rv) D1 and histamine. The AnxA1 increase in [Ca2+]i and mucin secretion were inhibited by blocking the phospholipase C (PLC) pathway including PLC, the IP3 receptor, the Ca2+/ATPase that causes the intracellular Ca2+ stores to empty, and blockade of Ca2+ influx. Inhibition of protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase also decreased the AnxA1-stimulated increase in [Ca2+]i and mucin secretion. In contrast inhibitors of ERK 1/2, phospholipase A2 (PLA2), and phospholipase D (PLD) did not alter AnxA1-stimulated increase in [Ca2+]i, but did inhibit mucin secretion. Activation of protein kinase A did not decrease either the AnxA1-stimulated rise in [Ca2+]i or secretion. We conclude that in health, AnxA1 contributes to the mucin layer of the tear film and ocular surface homeostasis by activating the PLC signaling pathway to increase [Ca2+]i and stimulate mucin secretion and ERK1/2, PLA2, and PLD to stimulate mucin secretion from conjunctival goblet cells.
Collapse
Affiliation(s)
- Anne V Lyngstadaas
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Markus V Olsen
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jeffrey A Bair
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Robin R Hodges
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tor P Utheim
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Darlene A Dartt
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Flitter BA, Fang X, Matthay MA, Gronert K. The potential of lipid mediator networks as ocular surface therapeutics and biomarkers. Ocul Surf 2021; 19:104-114. [PMID: 32360792 PMCID: PMC7606340 DOI: 10.1016/j.jtos.2020.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/03/2023]
Abstract
In the last twenty years an impressive body of evidence in diverse inflammatory animal disease models and human tissues, has established polyunsaturated fatty acids (PUFA) derived specialized-pro-resolving mediators (SPM), as essential mediators for controlling acute inflammation, immune responses, wound healing and for resolving acute inflammation in many non-ocular tissues. SPM pathways and receptors are highly expressed in the ocular surface where they regulate wound healing, nerve regeneration, innate immunity and sex-specific regulation of auto-immune responses. Recent evidence indicates that in the eye these resident SPM networks are important for maintaining ocular surface health and immune homeostasis. Here, we will review and discuss evidence for SPMs and other PUFA-derived mediators as important endogenous regulators, biomarkers for ocular surface health and disease and their therapeutic potential.
Collapse
Affiliation(s)
- Becca A Flitter
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA; Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Xiaohui Fang
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Karsten Gronert
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA; Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA; Infectious Diseases and Immunity Program, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Jeong YS, Bae YS. Formyl peptide receptors in the mucosal immune system. Exp Mol Med 2020; 52:1694-1704. [PMID: 33082511 PMCID: PMC7572937 DOI: 10.1038/s12276-020-00518-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Formyl peptide receptors (FPRs) belong to the G protein-coupled receptor (GPCR) family and are well known as chemotactic receptors and pattern recognition receptors (PRRs) that recognize bacterial and mitochondria-derived formylated peptides. FPRs are also known to detect a wide range of ligands, including host-derived peptides and lipids. FPRs are highly expressed not only in phagocytes such as neutrophils, monocytes, and macrophages but also in nonhematopoietic cells such as epithelial cells and endothelial cells. Mucosal surfaces, including the gastrointestinal tract, the respiratory tract, the oral cavity, the eye, and the reproductive tract, separate the external environment from the host system. In mucosal surfaces, the interaction between the microbiota and host cells needs to be strictly regulated to maintain homeostasis. By sharing the same FPRs, immune cells and epithelial cells may coordinate pathophysiological responses to various stimuli, including microbial molecules derived from the normal flora. Accumulating evidence shows that FPRs play important roles in maintaining mucosal homeostasis. In this review, we summarize the roles of FPRs at mucosal surfaces.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
14
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
15
|
Yang M, Bair JA, Hodges RR, Serhan CN, Dartt DA. Resolvin E1 Reduces Leukotriene B4-Induced Intracellular Calcium Increase and Mucin Secretion in Rat Conjunctival Goblet Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1823-1832. [PMID: 32561135 DOI: 10.1016/j.ajpath.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/25/2023]
Abstract
Leukotriene B4 (LTB4) is a major proinflammatory mediator important in host defense, whereas resolvins (Rvs) are produced during the resolution phase of inflammation. The authors determined the actions of both RvE1 and RvD1 on LTB4-induced responses of goblet cells cultured from rat conjunctiva. The responses measured were an increase in the intracellular [Ca2+] ([Ca2+]i) and high-molecular-weight glycoprotein secretion. Treatment with RvE1 or RvD1 for 30 minutes significantly blocked the LTB4-induced [Ca2+]i increase. The actions of RvE1 on LTB4-induced [Ca2+]i increase were reversed by siRNA for the RvE1 receptor, and the actions of RvD1 were reversed by an RvD1 receptor inhibitor. The RvE1 and RvD1 block of LTB4-stimulated increase in [Ca2+]i was also reversed by an inhibitory peptide to β-adrenergic receptor kinase. LTB4 and block of the LTB4-stimulated increase in [Ca2+]i by RvE1 and RvD1 were partially mediated by the depletion of intracellular Ca2+ stores. RvE1, but not RvD1, counterregulated the LTB4-induced high-molecular-weight glycoprotein secretion. Thus, both RvE1 and RvD1 receptors directly inhibit LTB4 by phosphorylating the LTB4 receptor using β adrenergic receptor kinase. RvE1 receptor counterregulates the LTB4-induced increase in [Ca2+]i and secretion, whereas RvD1 receptor only counterregulates LTB4-induced [Ca2+]i increase.
Collapse
Affiliation(s)
- Menglu Yang
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Department of Anaesthesia, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Olsen MV, Lyngstadaas AV, Bair JA, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Maresin 1, a specialized proresolving mediator, stimulates intracellular [Ca 2+ ] and secretion in conjunctival goblet cells. J Cell Physiol 2020; 236:340-353. [PMID: 32510663 DOI: 10.1002/jcp.29846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Mucin secretion from conjunctival goblet cells forms the tear film mucin layer and requires regulation to function properly. Maresin 1 (MaR1) is a specialized proresolving mediator produced during the resolution of inflammation. We determined if MaR1 stimulates mucin secretion and signaling pathways used. Cultured rat conjunctival goblet cells were used to measure the increase in intracellular Ca2+ ([Ca2 + ]i ) concentration and mucin secretion. MaR1-increased [Ca2+ ]i and secretion were blocked by inhibitors of phospholipase C, protein kinase C, Ca2+ /calmodulin-dependent protein kinase II, and extracellular-regulated kinase 1/2. MaR1 added before addition of histamine counterregulated histamine-stimulated increase in [Ca2+ ]i and secretion. We conclude that MaR1 likely has two actions in conjunctival goblet cells: first, maintaining optimal tear film mucin levels by increasing [Ca2+ ]i and stimulating mucin secretion in health and, second, attenuating the increase in [Ca2+ ]i and overproduction of mucin secretion by counterregulating the effect of histamine as occurs in ocular allergy.
Collapse
Affiliation(s)
- Markus V Olsen
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne V Lyngstadaas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jeffrey A Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tor P Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Charles N Serhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
RvE1 uses the LTB 4 receptor BLT1 to increase [Ca 2+] i and stimulate mucin secretion in cultured rat and human conjunctival goblet cells. Ocul Surf 2020; 18:470-482. [PMID: 32361084 DOI: 10.1016/j.jtos.2020.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Specialized pro-resolving lipid mediator resolvin (Rv) E1 stimulates secretion including mucins from conjunctival goblet cells. RvE1 can use both its ChemR23 receptor and the LTB4 receptor BLT1 to increase [Ca2+]i. The purpose of this study was to determine the expression of ChemR23 and BLT1 and receptors on conjunctival goblet cells and the respective roles these two receptors play in goblet cell responses to RvE1. METHODS Goblet cells were cultured from male rat or human conjunctiva from both sexes. Western blotting analysis, reverse transcription PCR and immunofluorescence microscopy were used to demonstrate the expression of ChemR23 and BLT1 in conjunctival goblet cells. High molecular weight glycoprotein secretion was determined using an enzyme-linked lectin assay. Signaling pathways were studied by measuring the increase in [Ca2+]i using fura 2/AM. RESULTS ChemR23 and BLT1 and receptors were present on both rat and human conjunctival goblet cells. The BLT1 inhibitors LY293111 and U75302 significantly blocked RvE1-and LTB4-stimulated [Ca2+]i increase. RvE1-and LTB4-stimulated [Ca2+]i and secretion increases were blocked by BLT1-targeted siRNA. RvE1-stimulated [Ca2+]i and secretion increases were also blocked by ChemR23-targeted siRNA. Addition of RvE1 2 min before or simultaneously with LTB4 desensitized the LTB4 [Ca2+]i response. Addition of RvE1 and LTB4 simultaneously caused secretion that was decreased compared to either response alone. CONCLUSION RvE1, in addition to the ChemR23 receptor, uses the BLT1 receptor to increase [Ca2+]i and stimulate secretion in both rat and human cultured conjunctival goblet cells.
Collapse
|
18
|
Zhou Q, Zhang WX, He ZQ, Wu BS, Shen ZF, Shang HT, Chen T, Wang Q, Chen YG, Han ST. The Possible Anti-Inflammatory Effect of Dehydrocostus Lactone on DSS-Induced Colitis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5659738. [PMID: 32082397 PMCID: PMC7011397 DOI: 10.1155/2020/5659738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Dehydrocostus lactone (DL), one of the main active constituents in Aucklandia lappa Decne. (Muxiang), reported to have anti-inflammatory, antiulcer, and immunomodulatory properties. However, the effect of DL on ulcerative colitis (UC) has not been reported. To analyze the anti-inflammatory potential role of DL in UC, we provide a mechanism for the pharmacological action of DL. METHODS The experimental model of UC was induced by using oral administration of 2% dextran sulfate sodium (DSS) with drinking water in BALB/c mice. Mesalazine (Mes, 0.52 g/kg/d), DL-high doses (DL-H, 20 mg/kg/d), DL-middle doses (DL-M, 15 mg/kg/d), DL-low doses (DL-L, 10 mg/kg/d) were gavaged once a day from day 4 to day 17. Disease activity index (DAI) was calculated daily. On day 18, mice were rapidly dissected and the colorectal tissues were used to detect the levels of UC-related inflammatory cytokines (TNF-α, IL-1β, MCP-1, MPO, SOD, IL-6, IL-17, and IL-23), IL-6/STAT3 inflammatory signaling pathway (iNOS, COX2, IL-6, GP130, L-17, and IL-23), and colorectal mucosal barrier-related regulatory factors (MUC2, XBP1s, and α, IL-1. RESULTS DL reduced the colorectal inflammation histological assessment, decreased UC-related inflammatory cytokines (TNF-α, IL-1β, MCP-1, MPO, SOD, IL-6, IL-17, and IL-23), IL-6/STAT3 inflammatory signaling pathway (iNOS, COX2, IL-6, GP130, L-17, and IL-23), and colorectal mucosal barrier-related regulatory factors (MUC2, XBP1s, and α, IL-1. CONCLUSIONS DL possessed the potential of anti-inflammatory effect to treated colitis. The protective mechanism of DL may involve in reducing inflammation and improving colorectal barrier function via downregulating the IL-6/STAT3 signaling.
Collapse
Affiliation(s)
- Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-xin Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zong-qi He
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu, China
| | - Ben-sheng Wu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu, China
| | - Zhao-feng Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong-tao Shang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tuo Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiong Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-gen Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shu-tang Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Swamynathan SK, Wells A. Conjunctival goblet cells: Ocular surface functions, disorders that affect them, and the potential for their regeneration. Ocul Surf 2020; 18:19-26. [PMID: 31734511 PMCID: PMC7004882 DOI: 10.1016/j.jtos.2019.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Conjunctival goblet cells (CGCs) are specialized cells that produce and secrete soluble mucins to the tear film that bathes the ocular surface. CGC numbers and functions are affected in various ocular surface diseases including dry eye disease with diverse etiologies. In this review we will (i) summarize the important functions of CGCs in ocular surface health, (ii) describe the ocular surface diseases that affect CGC numbers and function, (iii) provide an update on recent research outcomes that elucidate CGC differentiation, gene expression and functions, and (iv) present evidence in support of the prediction that restoring CGC numbers and/or functions is a viable strategy for alleviating ocular surface disorders that impact the CGCs.
Collapse
Affiliation(s)
- Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Alan Wells
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Chu CC, Zhao SZ. Pathophysiological Role and Drug Modulation of Calcium Transport in Ocular Surface Cells. Curr Med Chem 2019; 27:5078-5091. [PMID: 31237195 DOI: 10.2174/0929867326666190619114848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
The ocular surface structure and extraocular accessory organs constitute the ocular surface system, which includes the cornea, conjunctiva, eyelids, lacrimal organs, and lacrimal passages. This system is composed of, and stabilized by, the corneal epithelium, conjunctival cells, conjunctival goblet cells, lacrimal acinar cells and Tenon's fibroblasts, all of which maintain the healthy eyeball surface system. Ocular surface diseases are commonly referred to corneal and conjunctival disease and external ocular disease, resulting from damage to the ocular surface structure. A growing body of evidence has indicated that abnormal activation of the KCa3.1 channel and Ca2+/ calmodulin-dependent kinase initiates ocular injury. Signaling pathways downstream of the irregular Ca2+ influx induce cell progression and migration, and impair tight junctions, epithelial transport and secretory function. In this overview, we summarize the current knowledge regarding ocular surface disease in terms of physical and pathological alteration of the ocular system. We dissect in-depth, the mechanisms underlying disease progression, and we describe the current calcium transport therapeutics and the obstacles that remain to be solved. Finally, we summarize how to integrate the research results into clinical practice in the future.
Collapse
Affiliation(s)
- Chen-Chen Chu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| | - Shao-Zhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| |
Collapse
|
21
|
Botten N, Hodges RR, Li D, Bair JA, Shatos MA, Utheim TP, Serhan CN, Dartt DA. Resolvin D2 elevates cAMP to increase intracellular [Ca 2+] and stimulate secretion from conjunctival goblet cells. FASEB J 2019; 33:8468-8478. [PMID: 31013438 DOI: 10.1096/fj.201802467r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Under physiologic conditions, conjunctival goblet cells (CGCs) secrete mucins into the tear film to preserve ocular surface homeostasis. Specialized proresolving mediators (SPMs), like resolvins (Rvs), regulate secretion from CGCs and actively terminate inflammation. The purpose of this study was to determine if RvD2 stimulated mucin secretion and to investigate the cellular signaling components. Goblet cells were cultured from rat conjunctiva. Secretion was measured by an enzyme-linked lectin assay, change in intracellular [Ca2+] ([Ca2+]i) using Fura-2, and cellular cAMP levels by ELISA. RvD2 (10-11-10-8 M) stimulated secretion, increased cellular cAMP levels and the [Ca2+]i. RvD2-stimulated increase in [Ca2+]i and secretion was blocked by Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis and the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride but not by the cAMP exchange protein inhibitor α-[2-(3-chlorophenyl)hydrazinylidene]-5-(1,1-dimethylethyl)-b-oxo-3-isoxazolepropanenitrile. Forskolin, 3-isobutyl-1-methylxanthine, and 8-bromo-cAMP (8-Br-cAMP) increased [Ca2+]i. Increasing cAMP with 8-Br-cAMP inhibited the increase in [Ca2+]i stimulated by the cAMP-independent agonist cholinergic agonist carbachol. In conclusion, RvD2 uses both cellular cAMP and [Ca2+]i to stimulate glycoconjugate secretion from CGCs, but the interaction of cAMP and [Ca2+]i is context dependent. Thus RvD2 likely assists in the maintenance of the mucous layer of the tear film to sustain ocular surface homeostasis and has potential as a novel treatment for dry eye disease.-Botten, N., Hodges, R. R., Li, D., Bair, J. A., Shatos, M. A., Utheim, T. P., Serhan, C. N., Dartt, D. A. Resolvin D2 elevates cAMP to increase intracellular [Ca2+] and stimulate secretion from conjunctival goblet cells.
Collapse
Affiliation(s)
- Nora Botten
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Dayu Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie A Shatos
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tor P Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Medical School, Boston, Massachusetts, USA.,Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Singh P, Ochoa Allemant P, Brown J, Perides G, Freedman SD, Martin CR. Effect of polyunsaturated fatty acids on postnatal ileum development using the fat-1 transgenic mouse model. Pediatr Res 2019; 85:556-565. [PMID: 30653193 PMCID: PMC6397682 DOI: 10.1038/s41390-019-0284-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LCPUFAs) play a critical role in neonatal health. We hypothesized that LCPUFAs play an essential role in priming postnatal gut development. We studied the effect of LCPUFAs on postnatal gut development using fat-1 transgenic mice, which are capable of converting n-6 to n-3 LCPUFAs, and wild-type (WT) C57BL/6 mice. METHODS Distal ileum sections were collected from fat-1 and WT mice on days 3, 14, and 28. Fatty acid analyses, histology, RT-qPCR and intestinal permeability were performed. RESULTS Fat-1 mice, relative to WT mice, showed increased n-3 LCPUFAs levels (α-linolenic acid, docosahexaenoic acid, and eicosapentaenoic acid, p < 0.05) and decreased arachidonic acid levels (p < 0.05) in the ileum. Preweaning fat-1 mice, compared to WT, showed >50% reduced muc2, Tff3, TLR9, and Camp expression (p < 0.05), markers of the innate immune response. There was a >two-fold increased expression of Fzd5 and EphB2, markers of cell differentiation (p < 0.05), and Fabp2 and 6, regulators of fatty acid transport and metabolism (p < 0.05). Despite reduced expression of tight junction genes, intestinal permeability in fat-1 was comparable to WT mice. CONCLUSIONS Our data support the hypothesis that fatty acid profiles early in development modulate intestinal gene expression in formative domains, such as cell differentiation, tight junctions, other innate host defenses, and lipid metabolism.
Collapse
Affiliation(s)
- Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - Pedro Ochoa Allemant
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - Joanne Brown
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - George Perides
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - Steven D. Freedman
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Division of Translational Research, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - Camilia R Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Dartt DA, Hodges RR, Serhan CN. Immunoresolvent Resolvin D1 Maintains the Health of the Ocular Surface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:13-25. [PMID: 31562618 PMCID: PMC6859005 DOI: 10.1007/978-3-030-21735-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review focuses on the role of one of the D-series resolvins (Rv) RvD1 in the regulation of conjunctival goblet cell secretion and its role in ocular surface health. RvD1 is the most thoroughly studied of the specialized proresolution mediators in the goblet cells. The anterior surface of the eye consists of the cornea (the transparent central area) and the conjunctiva (opaque tissue that surrounds the cornea and lines the eyelids). The secretory mucin MUC5AC produced by the conjunctival goblet cells is protective of the ocular surface and especially helps to maintain clear vision through the cornea. In health, a complex neural reflex stimulates goblet cell secretion to maintain an optimum amount of mucin in the tear film. The specialized pro-resolution mediator, D-series resolvin (RvD1) is present in human tears and induces goblet cell mucin secretion. RvD1 interacts with its receptors ALX/FPR2 and GPR32, activates phospholipases C, D, and A2, as well as the EGFR. This stimulation increases the intracellular [Ca2+] and activates extracellular regulated kinase (ERK) 1/2 to cause mucin secretion into the tear film. This mucin secretion protects the ocular surface from the challenges in the external milieu thus maintaining a healthy interface between the eye and the environment. RvD1 forms a second important mechanism along with activation of a neural reflex pathway to regulate goblet cell mucin secretion and protect the ocular surface in health.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Kaye R, Botten N, Lippestad M, Li D, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Resolvin D1, but not resolvin E1, transactivates the epidermal growth factor receptor to increase intracellular calcium and glycoconjugate secretion in rat and human conjunctival goblet cells. Exp Eye Res 2018; 180:53-62. [PMID: 30513286 DOI: 10.1016/j.exer.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE To identify interactions of the epidermal growth factor receptor (EGFR) with the pro-resolving mediator receptors for RvD1 and RvE1 to stimulate an increase in intracellular [Ca2+] ([Ca2+]i) and mucin secretion from cultured human and rat conjunctival goblet cells. METHODS Goblet cells from human and rat conjunctiva were grown in culture using RPMI media. Cultured goblet cells were pre-incubated with inhibitors, and then stimulated with RvD1, RvE1, EGF or the cholinergic agonist carbachol (Cch). Increase in [Ca2+]i was measured using fura-2/AM. Goblet cell secretion was measured using an enzyme-linked lectin assay with UEA-1. Western blot analysis was performed with antibodies against AKT and ERK 1/2. RESULTS In cultured human conjunctival goblet cells RvE1 -stimulated an increase in [Ca2+]i. RvD1-, but not the RvE1-, stimulated increase in [Ca2+]i and mucin secretion was blocked by the EGFR inhibitor AG1478 and siRNA for the EGFR. RvD1-, but not RvE1-stimulated an increase in [Ca2+]i that was also inhibited by TAPI-1, an inhibitor of the matrix metalloprotease ADAM 17. Inhibition of the EGFR also blocked RvD1-stimulated increase in AKT activity and both RvD1-and RvE1-stimulated increase in ERK 1/2 activity. Pretreatment with either RvD1 or RvE1 did not block the EGFR-stimulated increase in [Ca2+]i. CONCLUSIONS We conclude that in cultured rat and human conjunctival goblet cells, RvD1 activates the EGFR, increases [Ca2+]i, activates AKT and ERK1/2 to stimulate mucin secretion. RvE1 does not transactivate the EGFR to increase [Ca2+]I and stimulate mucin secretion, but does interact with the receptor to increase ERK 1/2 activity.
Collapse
Affiliation(s)
- Rebecca Kaye
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nora Botten
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Marit Lippestad
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tor P Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Hirakata T, Lee HC, Ohba M, Saeki K, Okuno T, Murakami A, Matsuda A, Yokomizo T. Dietary ω-3 fatty acids alter the lipid mediator profile and alleviate allergic conjunctivitis without modulating T h2 immune responses. FASEB J 2018; 33:3392-3403. [PMID: 30383446 PMCID: PMC6404575 DOI: 10.1096/fj.201801805r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergic conjunctivitis (AC) is one of the most common ocular surface diseases in the world. In AC, T helper type 2 (Th2) immune responses play central roles in orchestrating inflammatory responses. However, the roles of lipid mediators in the onset and progression of AC remain to be fully explored. Although previous reports have shown the beneficial effects of supplementation of ω-3 fatty acids in asthma or atopic dermatitis, the underlying molecular mechanisms are poorly understood. In this study, a diet rich in ω-3 fatty acids alleviated AC symptoms in both early and late phases without affecting Th2 immune responses, but rather by altering the lipid mediator profiles. The ω-3 fatty acids completely suppressed scratching behavior toward the eyes, an allergic reaction provoked by itch. Although total serum IgE levels and the expression levels of Th2 cytokines and chemokines in the conjunctiva were not altered by ω-3 fatty acids, eosinophil infiltration into the conjunctiva was dramatically suppressed. The levels of ω-6–derived proinflammatory lipid mediators, including those with chemoattractant properties for eosinophils, were markedly reduced in the conjunctivae of ω-3 diet–fed mice. Dietary ω-3 fatty acids can alleviate a variety of symptoms of AC by altering the lipid mediator profile.—Hirakata, T., Lee, H.-C., Ohba, M., Saeki, K., Okuno, T., Murakami, A., Matsuda, A., Yokomizo, T. Dietary ω-3 fatty acids alter the lipid mediator profile and alleviate allergic conjunctivitis without modulating Th2 immune responses.
Collapse
Affiliation(s)
- Toshiaki Hirakata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hyeon-Cheol Lee
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mai Ohba
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Lippestad M, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Signaling pathways activated by resolvin E1 to stimulate mucin secretion and increase intracellular Ca 2+ in cultured rat conjunctival goblet cells. Exp Eye Res 2018; 173:64-72. [PMID: 29702100 PMCID: PMC6488018 DOI: 10.1016/j.exer.2018.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Glycoconjugate mucin secretion from conjunctival goblet cells is tightly regulated by nerves and specialized pro-resolving mediators (SPMs) to maintain ocular surface health. Here we investigated the actions of the SPM resolvin E1 (RvE1) on cultured rat conjunctival goblet cell glycoconjugate secretion and intracellular [Ca2+] ([Ca2+]i) and the signaling pathways used by RvE1. Goblet cells were cultured from rat conjunctiva in RPMI medium. The amount of RvE1-stimulated glycoconjugate mucin secretion was determined using an enzyme-linked lectin assay with Ulex Europaeus Agglutinin 1 lectin. Cultured goblet cells were also incubated with the Ca2+ indicator dye fura 2/AM and [Ca2+]i was measured. Cultured goblet cells were incubated with inhibitors to phospholipase (PL-) C, D, and A2 signaling pathways. RvE1 stimulated glycoconjugate secretion in a concentration dependent manner and was inhibited with the Ca2+ chelator BAPTA. The Ca2+i response was also increased in a concentration manner when stimulated by RvE1. Inhibition of PLC, PLD, and PLA2, but not Ca2+/calmodulin-dependent kinase blocked RvE1-stimulated increase in [Ca2+]i and glycoconjugate secretion. We conclude that under normal, physiological conditions RvE1 stimulates multiple pathways to increase glycoconjugate secretion and [Ca2+]i. RvE1 could be an important regulator of goblet cell glycoconjugate mucin secretion to maintain ocular surface health.
Collapse
Affiliation(s)
- Marit Lippestad
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tor P Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
He M, Lippestad M, Li D, Hodges RR, Utheim TP, Dartt DA. Activation of the EGF Receptor by Histamine Receptor Subtypes Stimulates Mucin Secretion in Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci 2018; 59:3543-3553. [PMID: 30025103 PMCID: PMC6049985 DOI: 10.1167/iovs.18-2476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/18/2018] [Indexed: 01/05/2023] Open
Abstract
Purpose The purpose of this study was to determine if histamine receptors interact with the epidermal growth factor receptor (EGFR) in cultured rat conjunctival goblet cells. Methods Goblet cells from rat conjunctiva were grown in organ culture. First-passage goblet cells were used in all experiments. Phosphorylated (active) and total EGFR, AKT, and extracellular signal-regulated kinase (ERK)1/2 were measured by Western blot analysis. Cells were preincubated with the EGFR antagonist AG1478 for 30 minutes or small interfering RNA specific to the EGFR for 3 days prior to stimulation with histamine or agonists specific for histamine receptor subtypes for 2 hours. Goblet cell secretion was measured using an enzyme-linked lectin assay. Goblet cells were incubated for 1 hour with the calcium indicator molecule fura-2/AM, and intracellular [Ca2+] ([Ca2+]i) was determined. Data were collected in real time and presented as the actual [Ca2+]i with time and as the change in peak [Ca2+]i. Results Histamine increased the phosphorylation of the EGFR. Mucin secretion and increase in [Ca2+]i stimulated by histamine, and agonists specific for each histamine receptor subtype were blocked by inhibition of the EGFR. Increase in [Ca2+]i stimulated by histamine and specific agonists for each histamine receptor was also inhibited by TAPI-1, a matrix metalloproteinase (MMP) inhibitor. The histamine-stimulated increase in activation of AKT, but not ERK1/2, was blocked by AG1478. Conclusions In conjunctival goblet cells, histamine, using all four receptor subtypes, transactivates the EGFR via an MMP. This in turn phosphorylates AKT to increase [Ca2+]i and stimulate mucin secretion.
Collapse
Affiliation(s)
- Min He
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Ophthalmology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Marit Lippestad
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Dayu Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Robin R. Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P. Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Darlene A. Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|